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Abstract

Preference tuning is a crucial process for aligning deep generative models with human
preferences. This survey offers a thorough overview of recent advancements in preference
tuning and the integration of human feedback. The paper is organized into three main
sections: 1) introduction and preliminaries: an introduction to reinforcement learning
frameworks, preference tuning tasks, models, and datasets across various modalities: lan-
guage, speech, and vision, as well as different policy approaches, 2) in-depth exploration
of each preference tuning approach: a detailed analysis of the methods used in pref-
erence tuning, and 3) applications, discussion, and future directions: an exploration
of the applications of preference tuning in downstream tasks, including evaluation methods
for different modalities, and an outlook on future research directions. Our objective is
to present the latest methodologies in preference tuning and model alignment, enhancing
the understanding of this field for researchers and practitioners. We hope to encourage
further engagement and innovation in this area. Additionally, we provide a GitHub link
https://github.com/hanyang1999/Preference-Tuning-with-Human-Feedback.

1. Introduction

Learning from human feedback is a crucial step in aligning generative models with human
preferences to generate output that closely resembles human speech and writing. Despite the
powerful learning capabilities of generative models in self-supervised learning, these models
frequently misinterpret instructions, leading to hallucinations in generation (Ji et al., 2023a;
Yao et al., 2023a). Additionally, ensuring the safety of the generated content remains
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a significant challenge for these models. Extensive research on preference tuning using
human feedback has demonstrated that adversarial samples can be utilized to jailbreak
systems (Rando & Tramèr, 2023; Wei et al., 2024). Ideally, generative models need to
be controlled to ensure that their outputs are safe and do not cause harm. Models often
exhibit unintended behaviors, such as fabricating facts (Chen & Shu, 2023; Sun et al.,
2024), producing biased or toxic text (Hartvigsen et al., 2022), or failing to follow user
instructions (Ji et al., 2023b; Tonmoy et al., 2024). Additionally, maintaining the privacy
of data is crucial to ensure the safe operation of models and protect user privacy (Brown
et al., 2022). In the text-to-image generation task, large-scale models often struggle to
produce images that are well-aligned with text prompts (Feng et al., 2022), particularly in
compositional image generation (Liu et al., 2022; Lee et al., 2023), object recognition (Qiao
et al., 2024), and coherent generation (Liu et al., 2023). Similarly, in text-to-speech tasks,
Zhang, Li, Li, Zhang, Wang, Zhou, and Qiu (2024), Chen, Hu, Wu, Wang, Chng, and
Zhang (2024a) integrate subjective human evaluation into the training loop to better align
synthetic speech with human preferences.

The application of preference tuning has been widely used in language tasks by training
instruction-tuned large language models (LLMs), such as Llama (Touvron et al., 2023b;
Dubey et al., 2024), Phi (Abdin et al., 2024), Mistral (Jiang et al., 2023), Nemotron (Par-
mar et al., 2024; Adler et al., 2024), Gemma (Team et al., 2024). Commercial models like
GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023; Reid et al., 2024), Claude (An-
thropic, 2024), Command-R, and Reka (Ormazabal et al., 2024) have leveraged human pref-
erence alignment to enhance their performance. Alignment of LLM improves task-specific
skills, coherence, fluency, and helps avoid undesired outputs. Additionally, alignment re-
search has benefited multilingual LLMs, such as Aya (Aryabumi et al., 2024; Üstün et al.,
2024), BLOOMZ, and mT0 (Muennighoff et al., 2023), as well as regional LLMs like Cen-
dol (Cahyawijaya et al., 2024) and SEALLM (Nguyen et al., 2023). Common approaches
to achieving LLM alignment involve reinforcement learning techniques that guide language
models to follow preferred samples by maximizing rewards. Reinforcement Learning from
Human Feedback (RLHF) (Christiano et al., 2017) is the initial approach that is used to
align models with human preference, which is further applied to the deep learning space that
has been popularized by its successes in LLMs (Ouyang et al., 2022; Bai et al., 2022a) via
PPO (Schulman et al., 2017), REINFORCE (Kool et al., 2019), Online Directed Preference
Optimization (online DPO) (Guo et al., 2024a), and Supervised Fine-Tuning (SFT)-like
approach (Dong et al., 2023). It typically involves three key aspects: human feedback col-
lection, reward modeling, and online RL for policy optimization. Recent methods, however,
allow for training the reward model alongside the policy model in an offline manner, as
demonstrated by DPO (Rafailov et al., 2024), and SLIC-HF (Zhao et al., 2023). Moreover,
preference tuning is also applied to vision-text tasks, and has been shown to improve the
representation of both image and text using the alignment score of image and text embed-
dings (Ramesh et al., 2022; Saharia et al., 2022; Yu et al., 2022b) measured by pre-trained
vision-text models, such as CLIP (Radford et al., 2021) and CoCa (Yu et al., 2022a). Wu,
Sun, Zhu, Zhao, and Li (2023d) utilize LoRA (Hu et al., 2021) to align Stable Diffusion (Lee
et al., 2023), a vision-text pre-trained model. The application in speech has not been much
explored, and there is only a handful works in the literature. Zhang et al. (2024) focus on
investigating alignment between codes and the text.
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Interestingly, while most preference tuning methods rely on training-based optimization
that modifies model weights, recent works are starting to explore training-free, inference-
time techniques that align model outputs with human preferences without altering param-
eters. These include prompt and in-context alignment, feedback-driven refinement, latent
vector-based modulation, and decoding-time adjustments—offering lightweight, flexible al-
ternatives for dynamic preference adaptation (Huang et al., 2024; Lin et al., 2024; Liu
et al., 2024; Li et al., 2025). While the majority of the paper focuses on categorizing and
analyzing various preference optimization techniques, for the sake of comprehensiveness,
we also examine how these methods are evaluated in practice. A preference optimization
technique is only useful if it results in measurable improvements in alignment with human
intent or task-specific goals. Therefore, we also include a survey of the current landscape
of complementary evaluation strategies or metrics in speech, language, vision and reward
modeling domain, that enable systematic comparison and benchmarking.

In this paper, we survey the recent advances of preference tuning with human feedback
in different modalities. It provides not only a comprehensive introduction including pre-
liminaries to get readers familiar with the topic, but also an in-depth review on the latest
proposed approaches and in-depth discussions. To summarize, the paper comprises the
following contributions:

• We provide a comprehensive overview of preference tuning for models on different
modalities, such as language, speech, and vision tasks, and expand our survey to all
existing preference tuning methods, including reinforcement learning (RL) approaches.

• We formulate and taxonomize a systematic framework and classification for preference
tuning for deep generative models from the existing literature.

• We present various applications of preference tuning to improve generation aspects
using human feedback. We also describe the automatic and human-based evaluations
to measure the quality of generation in deep generative models.

• We discuss the opportunities and future directions for preference tuning.

Through this survey, we aim to present the recent methodologies on preference tuning
and alignment for deep generative models, enabling researchers and practitioners to better
understand this topic and further innovate.

Survey Paper Organization We structure the paper as follows: In Section 2 We in-
troduce the formal definitions of the tasks and the notations used throughout. We then
examine preference tuning pipelines, datasets, and the various generative models employed
in preference optimization in Section 3. In Section 4, we explore online alignment methods
in depth, and examine offline alignment approaches in Section 5. In Section 6 we discuss
combined policies and sampling-agnostic alignment strategies. We then analyze training-
free optimization techniques in Section 7 and compare with training-based optimization.
We review evaluation methods for preference-optimized models in Section 8 and finally
conclude with a discussion on emerging topics in preference optimization and potential
future research directions in Section 9.
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2. Preliminaries

This section outlines the preliminaries of preference tuning, including the formal definitions
of the tasks and the notations used throughout this paper. Additionally, we provide a
taxonomy for classifying preference tuning methods.

2.1 Tasks and Definition

In general, the entire preference tuning mechanism for generative models can be formulated
as a RL problem described as follows.

2.1.1 RL Framework Concepts

Policy Model The policy model Ã¹ is a generative model that takes in an input prompt
x and returns a sequence of output or probability distributions y. We define a generative
model as a policy model Ã¹ where it is parameterized by ¹ with a policy model Ã. Given a
prompt x, a generative model generates an output y as following:

Ã¹(y|x) =
∏

t

Ã¹(yt|x, y<t), (1)

where yt is the t-th token in the response and y<t is tokens in the response before yt. For
example, for the text-based tasks, the input prompt is a text sequence x and the output
is a probability distribution over text vocabulary of LLM y; and for the vision-text-based
tasks, such as text-to-image tasks, the input x is the text sequence, and y is the generated
image.

Reward Model The reward model (RM) processes both the input x and the target y,
passing them through the model to obtain a reward r¹(y|x), which reflects the notion of
preferability. This preferability score can also be interpreted as a relative score assigned to
the target y given the input x. Less preferred outcomes receive a lower score compared to
more preferred samples.

Action Space The action refers to all tokens corresponding to the vocabulary of gen-
erative models. For text tasks, the action space encompasses the entire vocabulary of the
LLM. For vision tasks (similarly for speech tasks), the action space consists of real values
representing the image, for example, the next hierarchy in diffusion generative models (if
understanding diffusion models as Hierarchical Variational Autoencoders (Luo, 2022)).

Environment The distribution encompasses all possible input token sequences for gener-
ative models. In text-based tasks, these input token sequences correspond to text sequences,
highly depending on the sampling methods for the inference. In vision tasks, they corre-
spond to possible images.

2.1.2 Preference Data

In the preference tuning pipeline, we utilize the supervised data Dsft and the preference data
Dpref. We denote the supervised data Dsft = [(x1, y1), · · · , (xM , yM )] as a list of input and
label pairs. Specifically for the text SFT data, x can be represented as prompts. The prompt
xi = (Ii, F i, Qi) consists of the concatenation of an instruction Ii, few-shot samples F i, and
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a query Qi. Then, we denote the preference data Dpref = [(x1, y1w, y
1
l ), · · · , (xN , yNw , yNl )], a

list of input xi with preferred response yiw and dispreferred response yil , and they are either
sampled from the reference policy model Ãref or collected by human annotation. Generally,
given the preference data, we can obtain a reward r associated to the response with the
input.

2.1.3 Terminology and Notation

Table 1 lists the common notations used in this survey paper. The table serves as a quick
reference guide for understanding the mathematical expressions and technical terms used
throughout the paper.

Name Notation Description

Input Sequence x Input sequence that is passed to the model.
Output Sequence y Expected label or output of the model.

Dispreferred Response yl Negative samples for reward model training.
Preferred Response yw Positive samples for reward model training.

Optimal Policy Model Ã∗ Optimal policy model.
Policy Model Ã¹ Generative model that takes the input prompt and

returns a sequence of output or probability distribution.
Reference Policy Model Ãref Generative model that is used as a reference to

ensure the policy model is not deviated significantly.

Preference Dataset Dpref Dataset with a set of preferred and dispreferred.
responses to train a reward model.

SFT Dataset Dsft Dataset with a set of input and label for supervised
fine-tuning.

Loss Function L Loss function.
Regularization Hyper-parameters ³, ´reg Regularization Hyper-parameters for preference tuning.
Reward r Reward score.
Target Reward Margin µ The margin separating the winning and losing responses.
Variance ´i Variance (or noise schedule) used in diffusion models.

Table 1: Table of Terminology and Notation.

2.2 Taxonomy

We define the following categories for all of the preference tuning approaches as shown in
Table 2. Figure 1 shows the five categories we study in this survey paper and described in
the following:

Sampling Likewise in the literature of RL, we categorize the methods based on how we
sample the data and use them to train or obtain the reward: offline and online human
alignments. The categorization is related to how we compute the reward and use it in
the policy models. In online human alignment setting, the agent that collects a batch of
examples by interacting with the environment and uses them to update the policy. The
reward of the examples can be collected by the reward model or samples generated by
the policy model. While for the offline human alignment setting, the data are collected
from offline human demonstrations. In online reinforcement learning, we say a method is
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Figure 1: Taxonomy of the Preference Tuning methods.

on-policy if the agent collects data using the same policy that it is currently improving.
Conversely, a method is off-policy if the data is gathered by a different behavior policy than
the one being optimized.

Modality We study the use of preference tuning on various modality, such as text, speech,
vision, kinesthetic and others if we are not able to classify them. In the latest advancement
of NLP, the idea of RL has been further explored to language and speech tasks, even in
multi-modal tasks, such as vision-text. Thus, it is essential to categorize the papers by the
extend of the study in terms of the modality, such as text, speech, vision, and vision-text.

Language We explore the preference tuning application on different languages. In this
case, we categorize the method by English, non-English, and multilingual.

Reward Granularity In the preference tuning, the reward can be computed in different
granularity levels. The granularity levels can be expanded into two: sample- and token-
level. The token-level for each modality may differ, for example, in text tasks, we can use
subwords from vocabulary as tokens. And, in vision tasks, patches of image are tokens.

3. Preference Tuning

In this section, we cover the general framework to train preference-tuned generative models.
As shown in Table 3, the preference tuning training framework typically begins with the
supervised fine-tuning (SFT) stage, during which the generative model is trained to excel
at next-token prediction or use an instruction-tuned model as the base initialized model.
The SFT focuses on improving the model capability to generate tokens as it guides the
model on how an generative model should response to a prompt input. Once the model
is able to properly generate fluent text sequences, the model is further aligned by further
policy optimization via RL. The alignment is useful to guide the model to answer with a
appropriate manner based on the preference objective. This step is a necessary training
stage to make sure the model generation aligned to human preference, thus, the model
will act more human-like. Notably, the human alignment stage can also be jointly trained
alongside SFT. As a disclaimer, rigorously speaking, preference learning is only one direction
among different directions and approaches for alignment (though the most dominant and
popular one for now), but in this paper, since we will only focus on the preference line
methods, we will use these two terminologies interchangeably.
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Method Modality Languages Reward Granularity

Text Speech Vision Kinesthetic Other EN Non-EN Multi. Sample Token

Online Methods

RLHF (Christiano et al., 2017)
PPO (Schulman et al., 2017)

AI Feedback (Bai et al., 2022b) ✓ × × × × ✓ × × ✓ ×
P3O (Wu et al., 2023c) ✓ × × × × ✓ × × ✓ ×
MaxMin-RLHF (Chakraborty et al., 2024) ✓ × × × × ✓ × × ✓ ×
Multi-Ling RLHF (Dang et al., 2024) ✓ × × × × ✓ ✓ ✓ × ×
RLHF-PPO (Ouyang et al., 2022) ✓ × × × × ✓ × × ✓ ×
RLHF Workflow (Dong et al., 2024) ✓ × × × × ✓ × × ✓ ×

REINFORCE (Williams, 1992)
ReMax (Li et al., 2023c) ✓ × × × × ✓ × × ✓ ×
RLOO (Ahmadian et al., 2024a) ✓ × × × × ✓ × × ✓ ×
GRPO (Shao et al., 2024) ✓ × × × × ✓ ✓ ✓ ✓ ×

Online DPO
Iterative DPO (Xu et al., 2023) ✓ × × × × ✓ × × ✓ ×
OAIF (Guo et al., 2024a) ✓ × × × × ✓ × × ✓ ×
OPTune (Chen et al., 2024d) ✓ × × × × ✓ × × ✓ ×
Self-Rewarding (Yuan et al., 2024b) ✓ × × × × ✓ × × ✓ ×

Nash-Learning
NLHF (Munos et al., 2023) ✓ × × × × ✓ × × ✓ ×
SPPO (Wu et al., 2024) ✓ × × × × ✓ × × ✓ ×

SFT-like
RAFT (Dong et al., 2023) ✓ × × × × ✓ × × ✓ ×
ReST (Gulcehre et al., 2023) ✓ × × × × ✓ × × ✓ ×
RRHF (Yuan et al., 2023) ✓ × × × × ✓ × × ✓ ×
SuperHF (Mukobi et al., 2023) ✓ × × × × ✓ × × ✓ ×

Multi-Modal Models
Diffusion (Schulman et al., 2017)

AlignProp (Prabhudesai et al., 2023) ✓ × ✓ × × ✓ × × ✓ ×
DDPO (Black et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×
DPOK (Fan et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×
DRaFT (Clark et al., 2023) ✓ × ✓ × × ✓ × × ✓ ×
PRDP (Deng et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×
ReFL (Xu et al., 2024b) ✓ × ✓ × × ✓ × × ✓ ×

VLLM (Liu et al., 2024b)
DLPO (Chen et al., 2024c) ✓ × ✓ × × ✓ × × ✓ ×
HIVE (Zhang et al., 2024b) ✓ × ✓ × × ✓ × × ✓ ×
LLaVA-rlhf (Sun et al., 2023) ✓ × ✓ × × ✓ × × ✓ ×
RLHF-V (Yu et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×
Rich Feedback (Liang et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×

Offline Methods

BPPO (Zhuang et al., 2023) × × × ✓ × × × × ✓ ×
Multi-Modal Models

Diffusion-DPO (Wallace et al., 2024) ✓ × ✓ × × ✓ × × ✓ ×
POVID (Zhou et al., 2024b) ✓ × ✓ × × ✓ × × ✓ ×

Offline DPO (Rafailov et al., 2024) ✓ × × × × ✓ × × ✓ ×
ALLO (Chen et al., 2024) ✓ × × × × ✓ × × × ✓

CPO (Guo et al., 2024b) ✓ × × × × ✓ ✓ ✓ ✓ ×
GPO (Tang et al., 2024b) ✓ × × × × ✓ × × ✓ ×
IPO (Azar et al., 2024) × × × × ✓ × × × ✓ ×
KTO (Ethayarajh et al., 2024) ✓ × × × × ✓ × × ✓ ×
ODPO (Amini et al., 2024) ✓ × × × × ✓ × × ✓ ×
ORPO (Hong et al., 2024) ✓ × × × × ✓ × × ✓ ×
PRO (Song et al., 2024b) ✓ × × × × ✓ × × ✓ ×
R-DPO (Park et al., 2024) ✓ × × × × ✓ × × ✓ ×
rDPO (Chowdhury et al., 2024) ✓ × × × × ✓ × × ✓ ×
sDPO (Kim et al., 2024) ✓ × × × × ✓ × × ✓ ×
VPO (Chen et al., 2024b) ✓ × × × × ✓ × × ✓ ×
Mallows-DPO (Chen et al., 2024b) ✓ × × × × ✓ × × ✓ ×
RainbowPO (Zhao et al., 2024a) ✓ × × × × ✓ × × ✓ ×
SimPO (Meng et al., 2024) ✓ × × × × ✓ × × ✓ ×
(Li et al., 2024b) ✓ × × × × ✓ ✓ ✓ ✓ ×

SLiC-HF (Zhao et al., 2023) ✓ × × × × ✓ × × ✓ ×
Combination

P3O (Fakoor et al., 2020) × × ✓ × × × × × ✓ ×
RTO (DPO + PPO) (Zhong et al., 2024) ✓ × × × × ✓ × × × ✓

Sampling-Agnostic

ExPO (Zheng et al., 2024a) ✓ × × × × ✓ × × ✓ ×

Table 2: Preference Tuning methods. The categorization based on the methods under study
and it does not limit the extension of the method to other domains or modalities.
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Figure 2: Preference Tuning methods. The circles with shaded areas represent off-policy
methods, while the unshaded circles denote on-policy methods. The overlapping
area signifies methods that incorporate both on-policy and off-policy approaches.
The policy-agnostic circle indicates methods that are applicable to either on-
policy or off-policy scenarios. The combination circle represents methods that
integrate both online and off-policy strategies.

Figure 3: Training stages.

3.1 Training Phases

The training phases for preference tuning are described as follows.

3.1.1 Supervised Fine-Tuning (SFT)

On the preference tuning, a generative model with trainable weights ¹ normally starts by
SFT via maximum likelihood (MLE) using teacher forcing and cross-entropy loss. The
training is done using the supervised fine-tuning dataset Dsft. The objective is to maximize
the log probability of a set of human demonstrations. The generative model is trained to
generate the label by predicting the next token yt+1 given the input x, current and previous
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Figure 4: Preference Tuning methods for online algorithms, such as RLHF, Online DPO,
and SFT-like, and offline methods, such as DPO.

Reward Model Sizes Model Base Datasets

Single Objective

BTRM Qwen2 7B△ Qwen2 UNK
Eurus-RM (Yuan et al., 2024a) 7B△ Mistral UltraInteract, UltraFeedback, UltraSafety
FsfairX-LLama3-v0.1 (Dong et al., 2023) 8B△ Llama3 UNK
GRM-llama3-8B-sftreg (Yang et al., 2024a) 8B△ Llama3 Preference 700K
GRM-llama3-8B-distill (Yang et al., 2024a) 8B△ Llama3 Preference 700K
InternLM2 (Cai et al., 2024) 1.8B△, 7B△, 20B△ UNK UNK
SteerLM-Llama3 (Wang et al., 2024) 70B△ Llama3 HelpSteer2
Nemotron-4-340B-Reward (Adler et al., 2024) 340B△ Nemotron4 HelpSteer2
Pair-preference-model-LLamA3-8B (Dong et al., 2024) 8B△ LLama3 RLHFlow Pair Preference
Starling-RM-34B 34B△ Yi-34B-Chat Nectar
UltraRM (Cui et al., 2023) 13B△ Llama2 UltraFeedback

Multi-Objective

ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024) 8B△ Llama3 HelpSteer, UltraFeedback, BeaverTails-30k
CodeUltraFeedback, Prometheus, Argilla-Capybara

Argilla-OpenOrca, Argilla-Math-Preference

Multi-Model

MetaMetrics-RM (Winata et al., 2024) Multiple Multiple Skywork Preference Data and AllenAI Preference Data

Table 3: Reward Models.

label tokens yt:<t. During the SFT, we utilize an attention mask applying to the entire
context x and yt:<t, and avoid applying attention to future tokens. The trained model
denoted Ãsft

¹ and it is often to be used to initialize reward model and policy model Ã¹.

3.1.2 Reward Modeling

The reward model rϕ(x, y) can be trained either separately (offline) or jointly trained with
the policy model Ã¹ (online). Table 3 shows the list of reward models.

Single Objective Reward Model Bradley-Terry Reward Model (Bradley & Terry,
1952) is a pairwise comparison between two samples. It estimates the probability that
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the pairwise comparison i { j, which indicates a strong preference of i over j, is true as:

P (i { j) =
exp si

exp si + exp sj
, (2)

where si and sj are latent variables representing sample i and sample j, respectively. Thus,
given the preference dataset Dpref = {xi, yiw, yil}Ni=1, we could obtain an estimation of the
reward model rϕ(x, y) by minimizing the negative log-likelihood loss:

L(ϕ) = −E(x,yw,yl)∼Dpref
logP (yw { yl | x) (3)

= −E(x,yw,yl)∼Dpref
log Ã(rϕ(x, yw)− rϕ(x, yl)), (4)

which Ã denotes the logistic function, i.e., Ã(x) := (1 + e−x)−1.

Multi-Objective Reward Model Absolute-Rating Multi-Objective Reward Model (Ar-
moRM) (Wang et al., 2024) is a two-stage approach that first trains a multi-objective RM
and then learns a gating layer that scalarizes reward objectives in a mixture-of-experts way.
Each example consists of an input x and output y with k-dimensional rating vector, where
each dimension corresponds to a reward objective. A concatenation of input and output
x · y is passed through the model f¹ with a linear regression layer w, which outputs a
k-dimensional rating prediction. The model is trained with regression loss:

min
¹,w

Ex,y,r∈D∥w¦f¹(x· y)− r∥22. (5)

Then, it learns a mixture-of-experts gating function, gϕ, which is implemented as a shallow
MLP. This MLP takes the representation of the input x and outputs a k-dimensional vector,
which is then processed by a softmax function. During the training of the gating layer, the
backbone and the regression layer are kept frozen. Only the gating layer is trained using
the Bradley-Terry loss, augmented with an additional scaling variable.

Multi-Model Reward Model MetaMetrics (Winata et al., 2024) is a method to com-
bine multiple existing reward models into a more powerful reward model by calibrating
them using the preference data. The method is a systematic way to identify reward models
that can be used complementary without blindly use the models. There are two meth-
ods introduced to calibrate the models using Bayesian optimization and boosting method.
Thus, the approach is highly efficient and they are aspect-agnostic, thus allowing flexibility
to use them in any preference data.

3.1.3 Preference Alignment

In the domain of preference alignment, methods can be primarily categorized into two types
based on how data is utilized during training: online and offline preference alignment.

Online Preference Alignment Online preference alignment is a method in which data
for preference tuning is continuously sampled throughout the training process. This ap-
proach effectively addresses the misalignment between the Supervised Fine-Tuning (SFT)
objective and the ultimate goal of generating high-quality outputs as determined by human
evaluation. While SFT significantly enhances performance, online preference alignment
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ensures that the model remains aligned with human preferences. Stiennon, Ouyang, Wu,
Ziegler, Lowe, Voss, Radford, Amodei, and Christiano (2020), Ouyang et al. (2022) propose
reinforcement learning from human feedback (RLHF) to further align language models with
human intent. RLHF pipeline starts with the stage of modeling the rewards from human
preferences, known as reward modeling stage, by maximizing the likelihood of preferences
under the ground truth assumption. After obtaining the RM, RLHF further trains the
Language Model policy via Reinforcement Learning to maximize the score given by the
RM. Proximal Policy Optimization (PPO) was commonly chosen as the RL algorithm to
update the policy because of its great sample efficiency. We provide a detailed explanation
in Section 4.

Offline Preference Alignment Offline preference alignment utilizes pre-existing data
for preference tuning prior to the start of training. This approach is generally more efficient
than online methods, as it removes the need for continuous data sampling and reward
modeling. A prominent example is Directed Preference Optimization (DPO) (Rafailov
et al., 2024). A detailed explanation is provided in Section 5.

3.1.4 Joint Training

Recent works also proposed that two stages of SFT and RLHF can be simplied as one stage
with a weighted combination of the two loss functions and even lead to better performance.
The key takeaway is to treat the preferred answer in the Human Alignment/RLHF stage
as the SFT target, e.g., SLiC-HF (Zhao et al., 2023).

3.2 Datasets

The dataset sources for SFT and preference tuning can be collected from various sources,
such as human and LLMs feedback. Table 4 shows the list of SFT and alignment text data
labeled by the data source either they are collected by human or synthetically generated by
LLM.

3.2.1 SFT Datasets

The SFT data is useful for training LM on high-quality input-output demonstration pairs.
This is usually conducted for the foundation model as initialization. The SFT data can be
in the form of prompts with various format.

LLM-Generated Datasets Taori et al. (2023) propose Alpaca, a dataset with demon-
strations generated using OpenAI’s GPT-3 text-davinci-003 model. The instruction data
can be used to conduct instruction tuning for LLMs and allow them to follow instruction
better. A version of Alpaca dataset with Chain-of-Thought (CoT) (Wei et al., 2022) and
it is introduced to further improve the LLM’s reasoning ability. Multi-turn datasets gener-
ated using LLMs are also created, such as ChatAlpaca, UltraChat (Ding et al., 2023), and
WildChat (Zhao et al., 2024c).

Human-Generated and Human-Annotated Datasets Using human-generated and
human-annotated data are essential in training high-quality models. Zhou et al. (2024a)
have shown quality is more important than quantity, as shown as using LIMA datasets
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Dataset # Samples Usecase Data Source Annotation

or (# Tokens) or [Byte Size] SFT Alignment Human LLM Human

Alpaca (Taori et al., 2023) 52k ✓ × ✓ ✓ ×
Alpaca-CoT△ 127.5M ✓ × ✓ ✓ ✓

Aya Dataset (Singh et al., 2024) 202k ✓ × ✓ × ✓

ChatAlpaca△ 20k ✓ × ✓ ✓ ×
BeaverTails (Ji et al., 2024) 30k, 330k ✓ ✓ ✓ ✓ ✓

Code-Alpaca△ 20k ✓ × ✓ ✓ ×
CodeUltraFeedback△ 10k ✓ ✓ ✓ ✓ ✓

Dolly (Conover et al., 2023) 15k ✓ × ✓ × ✓

FLAN collection (Longpre et al., 2023) UNK! ✓ × ✓ × ✓

HC3 (Guo et al., 2023) 24.3k ✓ ✓ ✓ ✓ ✓

HelpSteer2 (Wang et al., 2024) 21k ✓ ✓ ✓ ✓ ✓

HH-RLHF (Bai et al., 2022a) 170k × ✓ ✓ × ✓

InstructionWild v2 (Ni et al., 2023) 110k ✓ × ✓ × ✓

LIMA (Zhou et al., 2024a) 1.3k ✓ × ✓ × ✓

Magpie (Air) (Xu et al., 2024b) 300k, 3M ✓ ✓ ✓ ✓ ✓

Magpie (Pro) (Xu et al., 2024b) 300k, 1M ✓ ✓ ✓ ✓ ✓

M2Lingual (Maheshwary et al., 2024) 174k ✓ × ✓ ✓ ×
Natural Questions (Kwiatkowski et al., 2019) 323k ✓ × ✓ × ✓

Oasst1 (Köpf et al., 2024) 88.8k ✓ ✓ ✓ × ✓

Okapi (Lai et al., 2023) 4.3M∗ ✓ ✓ ✓ ✓ ×
P3 (Sanh et al., 2021) 122M ✓ × ✓ × ✓

Preference 700K△ 700K × ✓ UNK UNK UNK
Prometheus2 (Kim et al., 2024) 200k ✓ ✓ ✓ ✓ ×
Prosocial-Dialog (Kim et al., 2022) 165.4k ✓ ✓ ✓ × ✓

RLHFlow Pair Preference△ 700k × ✓ ✓ ✓ ✓

Self-instruct (Wang et al., 2023b) 197k ✓ × ✓ × ✓

ShareGPT Multiple Versions ✓ ✓ ✓ ✓ ✓

StackExchange△ 10.8M ✓ ✓ ✓ × ✓

Super-Natural Instructions (Wang et al., 2022) 5M ✓ ✓ ✓ ✓ ✓

UltraChat (Ding et al., 2023) 1.5M ✓ × × ✓ ✓

UltraFeedback (Cui et al., 2023) 64k ✓ ✓ ✓ ✓ ✓

WildChat (Zhao et al., 2024c) 652k ✓ ✓ ✓ ✓ ✓

WizardLM (Xu et al., 2023) 250k ✓ ✓ ✓ ✓ ✓

xP3 (Muennighoff et al., 2023) 78.8M ✓ × ✓ × ✓

Table 4: SFT and alignment text datasets.  The dataset is updated over the time and the
number placed on the table is from the latest dataset released by the authors.
!The exact size is unknown and some the datasets are no longer accessible. ∗The
estimated number of translated and English instructions.

Dataset # Samples Usecase Data Source Annotation

or (# Tokens) or [Byte Size] SFT Alignment Human LLM Human

ImageRewardDB (Xu et al., 2024b) 137k+ ✓ ✓ ✓ × ✓

Pick-a-pic (Kirstain et al., 2023) 500k+ × ✓ ✓ ✓ ✓

RichHF-18K (Liang et al., 2024) 18k × ✓ ✓ × ✓

Table 5: SFT and alignment vision datasets.  The dataset is updated over the time and
the number placed on the table is from the latest dataset released by the authors.
!The exact size is unknown and some the datasets are no longer accessible. ∗The
estimated number of translated and English instructions.

that models trained only consist of 1,000 carefully human curated prompts and responses,
without any reinforcement learning or human preference modeling can outperform models
with much larger instruction-tuned datasets.
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Dataset Collection FLAN collection (Longpre et al., 2023) is introduced to train a
collection of tasks on top of T5 and PaLM models (Raffel et al., 2020). For training mul-
tilingual LMs, Cendol Collection (Cahyawijaya et al., 2024), ROOTS (Laurenccon et al.,
2022), and xP3 (Muennighoff et al., 2023) are used in SFT. Other potential datasets are
crowd-sourcing datasets, although they are designed for SFT, but they can be useful re-
sources for SFT, such as NusaCrowd (Cahyawijaya et al., 2023) and SEACrowd (Lovenia
et al., 2024).

3.2.2 Human Preference Alignment Datasets

The human alignment data can be in the form of pair-wise or ranking format. We can have
a set of preferred and dispreferred data Dpref for each input sample. For pairwise dataset,
we collect pairs of preferred response yw and dispreferred response yl. In case of multiple
responses, we can gather responses y0, y1, y2, . . . and ask humans to pick the best yi from
each. These datasets have been used to train reward models.

Conversational Datasets Several existing conversational datasets are instrumental in
evaluating the quality of dialogue system or chatbot responses. Notable examples include
HelpSteer2 (Wang et al., 2024) and UltraFeedback (Cui et al., 2023). HelpSteer2 provides
alignment scores across five different aspects—helpfulness, correctness, coherence, complex-
ity, and verbosity—collected from human evaluators. UltraFeedback offers alignment scores
for four aspects: instruction-following, truthfulness, honesty, and helpfulness. Additionally,
HH-RLHF (Bai et al., 2022a) introduces datasets labeled with scores for helpfulness and
harmlessness.

Code Datasets CodeUltraFeedback comprises 10,000 coding instructions, each anno-
tated with four responses generated by a diverse pool of 14 LLMs (Weyssow et al., 2024).
These responses are ranked based on five distinct coding preferences: instruction-following,
complexity, style, readability, and another instance of instruction-following. The rankings
are determined using GPT-3.5 as a judge, providing both numerical scores and detailed
textual feedback.

3.3 Pre-trained Generative Models

We categorize pre-trained generative models into three main types: LMs, VLMs, and SLMs.
Additionally, we classify these models based on their accessibility: (1) Open Source: The
model and data are open and accessible, (2) Open-Weight: Only the model is accessible
and some or all data are inaccessible, (3) Close-weight and Close-source: The model
is a black-box and may only be accessible by API or service, and (4) Close Access: The
model is inaccessible. We also categorize these models based on the datasets used for pre-
training, specifically noting whether they are trained with Supervised Fine-Tuning (SFT)
datasets or Human Preference Tuning datasets.

3.3.1 Language Models (LMs)

Table 6 shows the list of LMs categorized by the model accessibility and annotated with
the model sizes, languages, model base, and fine-tuning methods applied to the model.
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Model Sizes SFT/Pref. Tuning Langs. Model Base SFT Pref. Tuning

Open-source LM

Aya-23 (Aryabumi et al., 2024) 8B, 35B Multi. (23) Dec-Only; Command R ✓ ×
Aya-101 (Üstün et al., 2024) 13B Multi. (101) Enc-Dec; mT5 ✓ ×
Bactrian-X (Li et al., 2023a) 7B Multi. (52) Dec-Only; Llama1 ✓ ×
BART (Lewis et al., 2020) 139M, 406M English Enc-Dec × ×
BLOOM (Le Scao et al., 2023) 560M, 1.1B, 1.7B, 3B, 7.1B, 176B Multi. (46) + Code (13) Dec-Only ✓ ×
BLOOMZ (Muennighoff et al., 2023) 560M, 1.1B, 1.7B, 3B, 7.1B, 176B Multi. (108) + Code (13) Dec-Only; BLOOM ✓ ×
Cendol (Cahyawijaya et al., 2024) 7B, 13B Multi. (10) Dec-Only; Llama2 ✓ ×

300M, 580M, 1.2B, 3.7B, 13B Multi. (10) Enc-Dec; mT5 ✓ ×
FLAN-T5 (Longpre et al., 2023) 80M, 250M, 780M, 3B, 11B English Enc-Dec; T5 ✓ ×
Llama1 (Touvron et al., 2023a) 6.7B, 13B, 32.5B, 65.2B English Dec-Only × ×
M2M-100 (Fan et al., 2021) 418M, 1.2B, 12B Multi. (100) Enc-Dec ✓ ×
mBART (Liu, 2020) 406M Multi. (25), Multi. (50) Enc-Dec ✓ ×
Megatron-LM (Shoeybi et al., 2019) 1.2B, 2.5B, 4.2B, 8.3B English Dec-Only; GPT-2 × ×
MPT (Instruct/Chat)△ 7B, 30B English Dec-Only ✓ ✓

mT0 (Muennighoff et al., 2023) 560M, 1B7, 3B, 7B1 Multi. (108) + Code (13) Enc-Dec; mT5; ✓ ×
OLMo (Groeneveld et al., 2024) 1B, 7B English + Code Dec-Only × ×
OPT (Zhang et al., 2022) 125M, 350M, 1.3B, 2.7B, 6.7B, English Dec-Only; Megatron-LM × ×

13B, 30B, 66B, 175B
Phi1 (Gunasekar et al., 2023) 1.3B English Dec-Only × ×
Phi1.5 (Li et al., 2023a) 1.3B English Dec-Only × ×
Pythia (Biderman et al., 2023) 70M, 160M, 410M, 1B, 1.4B, English Decoder-Only; GPT-NeoX × ×

2.8B, 6.9B, 12B
SantaCoder (Allal et al., 2023) 1.1B Code (3) Dec-Only ✓ ×
StarCoder (Li et al., 2023d) 15.5B Code (80+) Dec-Only ✓ ×
T0 (Sanh et al., 2021) 3B, 11B English Enc-Dec; T5 ✓ ×
T5 (Raffel et al., 2020) 80M, 250M, 780M, 3B, 11B English Enc-Dec ✓ ×
T5v1.1 (Raffel et al., 2020; Shazeer, 2020) 80M, 250M, 780M, 3B, 11B English Enc-Dec × ×
WizardCoder (Luo et al., 2023) 7B, 13B, 15B, 33B Code Dec-Only ✓ ×
Open-weight LM

Alpaca△ 7B English Dec-Only; Llama1 ✓ ×
C4AI Command-R (incl. Plus)△ 35B, 104B Multi. (13) Dec-Only ✓ ✓

DBRX△ 132B Multi. (UNK) + Code MoE ✓ ✓

DeepSeek-V2△ 16B, 236B Multi. (UNK) + Code MoE ✓ ✓

Falcon (Almazrouei et al., 2023) 7B, 40B, 180B Multi. (2) + Code Dec-Only ✓ ×
Falcon2△ 11B Multi. (11) + Code Dec-Only ✓ ×
Gemma (Team et al., 2024) 2B, 7B Multi. (UNK) + Code Dec-Only ✓ ✓

Gemma2△ 9B, 27B Multi. (UNK) + Code Dec-Only ✓ ✓

Llama2 (Touvron et al., 2023b) 7B, 13B, 70B Multi. (UNK) + Code Dec-Only ✓ ✓

Llama3, Llama3.1 (Dubey et al., 2024)△ 8B, 70B Multi. (UNK) + Code Dec-Only ✓ ✓

LlaMAX (Lu et al., 2024) 7B, 8B Multi. (102) Dec-Only; Llama2, Llama3 ✓ ×
Mistral (Jiang et al., 2023) 7B Multi. (UNK) + Code Dec-Only ✓ ✓

Mixtral-MoE (Jiang et al., 2024) 8×7B, 8×22B Multi. (UNK) + Code MoE; Mistral ✓ ✓

Nemotron-4 (15B) (Parmar et al., 2024) 15B Multi. (53) + Code (43) Dec-Only × ×
Nemotron-4 (340B) (Adler et al., 2024) 340B Multi. (53) + Code (43) Dec-Only; Nemotron-4 (15B) ✓ ✓

NLLB (Costa-jussà et al., 2022) 600M, 1.3B, 3.3B, 54.5B (MoE) Multi. (200+) Enc-Dec; M2M-100, MoE ✓ ×
Phi3 (Abdin et al., 2024) 3.8B, 7B, 14B Multi. (UNK) + Code Dec-Only ✓ ✓

Qwen (Bai et al., 2023) 1.8B, 7B, 14B, 72B Multi. (100) + Code Dec-Only ✓ ✓

Snowflake Artic△ 128 × 3.66B Multi. (UNK) + Code MoE ✓ ✓

StableLM 2 (1.6B) (Bellagente et al., 2024) 1.6B Multi. (7) + Code Dec-Only ✓ ✓

StableVicuna△ 13B English Dec-Only; Vicuna ✓ ✓

Vicuna (Chiang et al., 2023) 7B, 13B English Dec-Only; Llama1, Llama2 ✓ ×
Close-weight and Close-source LM

Bard (Manyika & Hsiao, 2023) UNK UNK UNK ✓ ✓

Chinchilla (Hoffmann et al., 2022) 70B English + Code Dec-Only × ×
Claude 3.5 Sonnet (Anthropic, 2024) UNK UNK UNK ✓ ✓

Command R (Plus)△ UNK UNK UNK ✓ ✓

Gemini 1.0 (Team et al., 2023) UNK UNK Dec-Only ✓ ✓

Gemini 1.5 (Reid et al., 2024) UNK UNK MoE; Gemini 1.0 ✓ ✓

Gopher (Rae et al., 2021) 280B English + Code Dec-Only × ×
GPT-3 (Brown et al., 2020) 125M, ..., 175B Multi. (UNK) Dec-Only; GPT-2 × ×
GPT-3.5 (Instruct GPT) (Ouyang et al., 2022) 1.3B UNK Enc-Dec; GPT-3 ✓ ✓

GPT-4 (Achiam et al., 2023) UNK Multi. (UNK) UNK ✓ ✓

Reka (Ormazabal et al., 2024) 7B (Edge), 21B (Flash), UNK (Core) Multi. (110) Enc-Dec ✓ ✓

Close-access LM

AlexaTM (Soltan et al., 2022) 20B Multi. (12) Enc-Dec; BART × ×
BloombergGPT (Wu et al., 2023b) 50.6B English Dec-Only; BLOOM × ×
FLAN-PaLM (Longpre et al., 2023) 8B, 62B, 540B Multi. (124+) + Code (24+) UNK ✓ ×
PaLM (Chowdhery et al., 2023) 8B, 62B, 540B Multi. (124) + Code (24) Dec-Only × ×
PaLM2 (Anil et al., 2023) 400M, ..., 15B Multi. (124+) + Code (24+) UNK ✓ ×

Table 6: Pre-trained Generative Language Models.  The languages do not include the lan-
guages seen by the base model.

3.3.2 Speech Language Models (SLMs)

Table 7 shows the list of open-weight and open-source Speech Language Models (SLMs)
categorized by the datasets and methods used in training.
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Model Sizes SFT/Pref. Tuning Langs. Model Base SFT Pref. Tuning

Open-weight SLM

BAT (Zheng et al., 2024d) 7B English Enc-Dec ✓ ×
SpeechGPT (Zhang et al., 2023) 13B English Dec ✓ ✓

Open-source SLM

Close-weight and Close-source SLM

Reka (Ormazabal et al., 2024) 7B (Edge), 21B (Flash), UNK (Core) Multi. (110) Enc-Dec ✓ ✓

Table 7: Pre-trained Speech Language Models.  The languages do not include the languages
seen by the base model.

Model Sizes SFT/Pref. Tuning Langs. Model Base SFT Pref. Tuning

Open-weight VLM

Falcon 2 VLM 11B△ Multi. (11) Enc-Dec ✓ ×
InstructBLIP (Dai et al., 2023b) 7B, 13B (Vicuna) English Enc-Dec ✓ ×

3B, 11B (FLAN-T5) English Enc-Dec ✓ ×
InstructPix2Pix (Brooks et al., 2023) UNK English UNK ✓ ×
LLaVA 1.5 (Liu et al., 2024a) 7B, 13B English Enc-Dec ✓ ×
LLaVA 1.6 (NeXT) UNK△ English Enc-Dec ✓ ×
X-instructblip (Panagopoulou et al., 2023) 7B, 13B English Enc-Dec ✓ ×
Phi3-Vision (Abdin et al., 2024) 4.2B English Enc-Dec ✓ ×
Otter (Li et al., 2023) 7B (Dec) English Enc-Dec ✓ ×
MultiModal-GPT (Gong et al., 2023) UNK English Enc-Dec ✓ ×
Stable Diffusion v1.5 (Rombach et al., 2022) UNK English Enc-Dec ✓ ×
Video-LLaMA (Zhang et al., 2023) 7B, 13B English Dec-Only ✓ ×
Open-source VLM

Close-weight and Close-source SLM

Reka (Ormazabal et al., 2024) 7B (Edge), 21B (Flash), UNK (Core) Multi. (110) Enc-Dec ✓ ✓

SORA (Liu et al., 2024) UNK UNK Enc-Dec ✓ ✓

Table 8: Pre-trained Vision Language Models.  The languages do not include the languages
seen by the base model.

3.3.3 Vision Language Models (VLMs)

Table 8 shows the list of open-weight and open-source Vision Language Models (VLMs)
categorized by the datasets and methods used in training.

4. Online Alignment

In this section, we explore into human preference tuning using online methods, where data
is continuously sampled. Online preference tuning involves real-time model updates as new
data becomes available, enabling the model to dynamically adapt to evolving preferences
and new information. This approach allows the alignment process to incorporate new data
as it arrives and benefit from online exploration. We discuss the mechanisms of data col-
lection, processing, and real-time model updates, emphasizing the benefits of managing
non-stationary environments and enhancing model performance through continuous learn-
ing. Various techniques and strategies for implementing especially on-policy tuning are
examined to provide a comprehensive understanding of its effective application in human
preference tuning. We cover standard RL-based methods (e.g., PPO, which is online and
on-policy), online DPO and SFT like algorithms (which can be on-policy or off-policy) and
Nash Learning (or self-play) based algorithms.
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4.1 Reinforcement Learning Human Feedback (RLHF)

In general, RLHF learns a reward function from human feedback and then optimize that
reward function (Christiano et al., 2017). The training for RLHF involves three stages:

• The policy model Ã¹ interacts with the environment and the parameters of Ã¹ are
updated via RL.

• The pairs of segments are selected from the output produced by the policy model Ã¹,
and send them to human annotators for comparison.

• The parameters are optimized using reward r to fit the comparisons collected from
human.

According to Ziegler, Stiennon, Wu, Brown, Radford, Amodei, Christiano, and Irving
(2019), the RLHF pipeline for LMs can be summarized as following:

• Supervised Fine-Tuning: A pre-trained LM is instruction-tuned using a dataset
consisting of a given instruction prompt, and (typically) a human-written completion.
The LM/policy is trained with a cross-entropy loss over the completion only. Often,
the SFT model, denoted as sft is used to initialize both the reward model and the
RLHF policy.

• Reward Modeling: RLHF leverages a reward model rϕ trained using a dataset of
preferences D. The reward model is trained using the following loss:

loss(r) = E(x,{yi}i,b)∼S

[
log

er(x,yb)∑
i e

r(x,yi)

]
. (6)

or, for pairwise preferences,

LRM(ϕ) = −E(x,yw,yl)∼Dpref
log Ã(rϕ(x, yw)− rϕ(x, yl)). (7)

• Reinforcement Learning: In this stage, the learned reward model rϕ∗ is used to
provide online feedback in the optimization of the policy. In Ziegler et al. (2019),
Stiennon et al. (2020), Ouyang et al. (2022), RLHF further maximizes average reward
with an extra KL regularization term, i.e.:

LRL(ϕ) = Ex∼D,y∼Ã(·|x) [rϕ∗(x, y)− ´regKL(Ã(· | x) | Ãref(· | x))] , (8)

where ´reg > 0 is a hyper-parameter controlling the deviation from the reference policy
Ãref = ÃSFT.

Notably, the reward model is trained by assumption on the Bradley-Terry Model, which
leverages pairwise preference datasets — i.e. pairs of preferred and non-preferred responses.
There are various methods and variations for training RLHF, primarily categorized into two
main approaches: PPO style (with critic) and REINFORCE style (without critic). In the
following sections, we will describe these methods in detail.
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4.1.1 Proximal Policy Optimization (PPO)

Initially in the original RLHF paper (Ziegler et al., 2019), they use PPO (Schulman et al.,
2017) as their optimization strategy. PPO framework is a method for the human preference
signals from external reward models with RLHF. The idea is to improve the current state of
affairs by introducing an algorithm that attains the data efficiency and reliable performance
of TRPO, while using only first-order optimization with a simpler clipped surrogate objec-
tive, omitting the expensive second-order optimization presented in TRPO using stochastic
gradient ascent. Whereas standard policy gradient methods perform one gradient update
per data sample, PPO (Schulman et al., 2017) proposes a novel objective function that
enables multiple epochs of minibatch updates. It have some of the benefits of TRPO, but
they are much simpler to implement and more efficient. For the optimization, KL-shaped
reward (Ahmadian et al., 2024a) is useful as penalty-free optimization of the reward model
leads to degradation in the coherence of the model. Optimizing this objective is equivalent
to maximizing the following KL-shaped reward in expectation. There are many variants of
PPO for RLHF, e.g. P3O (Wu et al., 2023c), or RLHF-V (Yu et al., 2024) for multi-modal
models.

Pairwise Proximal Policy Optimization (P3O) P3O (Wu et al., 2023c) is an on-
policy RL algorithms that interleaves off-policy updates with on-policy updates. P3O uses
the effective sample size between the behavior policy and the target policy to control how
far they can be from each other and does not introduce any additional hyper-parameters.

RLHF-V RLHF-V (Yu et al., 2024) enhances MLLM trustworthiness via behavior align-
ment from fine-grained correctional human feedback. Specifically, RLHF-V collects human
preference in the form of segment-level corrections on hallucinations, and performs dense
direct preference optimization over the human feedback.

4.1.2 REINFORCE

One notable issue of PPO is its hyperparameter sensitivity and high demand of GPU mem-
ory when training the models. Thus many works revisit the REINFORCE (Williams, 1987,
1992) style policy gradient (Sutton et al., 1999) methods to avoid the computation burden
raised by training the critic network.

ReMax ReMax (Li et al., 2023c) builds upon the well-known REINFORCE algorithm
leveraging three key properties of RLHF: fast simulation, deterministic transitions, and
trajectory-level rewards. The name “ReMax” reflects its foundation in REINFORCE and
its use of the argmax operator. ReMax modifies the gradient estimation by incorporating
a subtractive baseline value as following:

g̃(¹) =
1

N

N∑

i=1

T∑

t=1

[
∇¹ log Ã¹ (at | x, a1:t−1)× (r(xi, ai1:T )− b¹(x

i))
]
, (9)

where N is the number of prompts, b¹(x
i) is a baseline value for which ReMax (Li et al.,

2023c) chose as

b¹(x
i) = r(xi, āi1:T ), ā

i
t ∈ argmaxÃ¹(·|xi, āi1:t−1). (10)
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This baseline value can be calculated by greedily sampling a response and computing the
associated reward value.

REINFORCE Leave One-Out (RLOO) RLOO (Ahmadian et al., 2024a) extends the
REINFORCE algorithm by leveraging multiple online samples to achieve unbiased variance
reduction. It improves upon REINFORCE in two key ways: (1) The rewards from each
sample can serve as a baseline for all other samples, and (2) Policy updates are performed
using the average of gradient estimates from each sample, resulting in a variance-reduced
multi-sample Monte Carlo (MC) estimate. This is the intuition behind the RLOO estimator,
as following:

1

k

k∑

i=1

∇ log Ã(y(i)|x)[R(y(i), x)−
1

k − 1

∑

j ̸=i

R(y(j), x)], for y(1), ..., y(k)
i.i.d∼ Ã¹(·|x), (11)

where k refers to the number of online samples generated, RLOOk considers each y(i)
individually and uses the remaining k − 1 samples to create an unbiased estimate of the
expected return for the prompt. This approach functions similarly to a parameter-free value
function, but it is estimated at each training step.

Group Relative Policy Optimization (GRPO) GRPO proposes in Shao et al. (2024),
is also a REINFORCE style algorithm and has been proven to enhance the reasoning capa-
bility of LLMs e.g. in training DeepSeek Math and DeepSeek R1 (Guo et al., 2025). For the
outcome supervision RL with GRPO, GRPO samples a group of outputs {o1, o2, · · · , oG}
from the old policy Ã¹old for each question q and then optimizes the policy model by maxi-
mizing the following objective JGRPO(¹) =:

1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

{
min

[
Ã¹ (oi,t | q, oi,<t)

Ã¹old (oi,t | q, oi,<t)
Âi,t, clip

(
Ã¹ (oi,t | q, oi,<t)

Ã¹old (oi,t | q, oi,<t)
, 1− ε, 1 + ε

)
Âi,t

]

− ´DKL [Ã¹||Ãref ]} ,

where ε and ´ are hyper-parameters, and Âi,t is the advantage calculated based on relative
rewards of the outputs inside each group only, which was chosen as:

ri −mean(r)

std(r)
. (12)

Following up work Dr. GRPO (Liu et al., 2025) argue that the 1
|oi|

discounting in GRPO

and advantage normalization by the variance std(r) in (12) lead to biased policy gradient
estimator and are also empirically unnecessary. Liu et al. (2025) propose the variant named
Dr. GRPO by removing these two parts.

4.2 Online Directed Preference Optimization (Online DPO)

4.2.1 Online AI Feedback (OAIF)

OAIF (Guo et al., 2024a) employ a LLM as an annotator during each training iteration. In
this process, two responses are sampled from the current model, and the LLM annotator
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is prompted to select the preferred response, thereby providing real-time feedback. OAIF
aims to gather preferences dynamically for responses generated by the language model being
aligned. Given the prohibitive cost of using human feedback, this method leverages an LLM
as an online annotator to collect preferences over pairs of responses sampled from the model
Ã¹ during its alignment process. The objective for online DPO yields (please see detailed
derivation of DPO in Section 5.1):

LOAIF (Ã¹;Ãref) :=

− Ex∼D,(yw,yl)∼Ã¹
−

[
log Ã

(
´reg log

Ã¹ (yw | x)
Ãref (yw | x)

− ´reg log
Ã¹ (yl | x)
Ãref (yl | x)

)]
, (13)

in which we note Ã¹− to show that preference pairs are generated under Ã¹, but we further
adopt a stop gradient to prevent it from getting into the loss objective for the gradient com-
putation. The OAIF is illustrated in Algorithm 1 (OAIF algorithm in Guo et al. (2024a)),
in which function ℓ can be log-sigmoid (DPO), square (IPO), or ReLU (SLiC) functions.

Algorithm 1 Online AI Feedback (OAIF) for Direct Alignment from Preference (DAP)

1: Input: Prompt dataset Dx = {xi}Ni=1, an LLM annotator, SFT model Ã¹0
2: for t := 0 to T do
3: Sample prompt x ∼ Dx

4: Sample response pair y1, y2 ∼ Ã¹t(·|x)
5: Use LLM annotator to get preference pair yw, yl
6: Update ¹t into ¹t+1 using ∇¹ℓ(x, yw, yl, ¹

t)
7: end for

4.2.2 Iterative Directed Preference Optimization

Iterative DPO (Xu et al., 2023; Xiong et al., 2024) has been proposed to narrow the gap
between the performance offline preference optimization methods like DPO and online meth-
ods like RLHF, as RLHF still outperforms offline DPO. Different from DPO that used a
fixed offline dataset, iterative DPO proposed to formulate the preference datasets by the
generations of the current model and labelers, being either a pretrained reward model or
LLM as a judge or the model to be trained itself through specific prompting (Yuan et al.,
2024b), thus this pipeline usually appears at the same time with self-rewarding (Yuan et al.,
2024b) methods (some paper will even call self-rewarding as iterative DPO methods). For
each iteration, if the batch size for preference datasets utilized for policy optimization is
only 1, then iterative DPO is essentially the same as online DPO or OAIF, except that
the reference policy may be chosen as the last iterated policy instead of always being the
SFT policy; otherwise iterative DPO is a hybrid method which combines offline learning in
loss function optimization and online sampling in preference data generation. The reference
model in the loss objective may differ between different methods, can be fixed SFT model
Xiong et al. (2024) or last iterated model (Xu et al., 2023; Yuan et al., 2024b) or some
mixtures.
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4.2.3 Online Preference Tuning (OPTune)

OPTune (Chen et al., 2024d) is an algorithm for efficient data generation in online RLHF. It
improves both generation and training efficiency by selectively regenerating only the lowest-
rewarded responses and employing a weighted DPO objective that prioritizes pairs with
larger reward gaps. This approach significantly enhances the overall efficiency of the RLHF
pipeline, setting the stage for the development of preference-aligned LLMs in a resource-
efficient manner. The method enhances both data generation and training efficiency for
online preference alignment. To minimize the cost of iterative data regeneration, it employs
a straightforward yet effective reward-based prompt selection strategy, updating responses
only for prompts with the lowest scores according to the reward model. Additionally,
recognizing that converting scalar rewards to binary labels for the online DPO objective
results in information loss, the method introduces a weighted DPO loss variant. This
variant prioritizes learning from response pairs with larger reward gaps, further boosting
online learning efficiency.

4.3 SFT-like

4.3.1 Rank Responses to align Human Feedback (RRHF)

RRHF (Yuan et al., 2023) is a method that evaluates sampled responses from various
sources using the logarithm of conditional probabilities and aligns these probabilities with
human preferences through ranking loss. This approach can utilize responses from multiple
origins, including the model’s own outputs, responses from other large language models,
and human expert responses, to learn how to rank them effectively. The primary objective
is to simplify the complex hyper-parameter tuning and extensive training resources required
by PPO. Before training, RRHF samples responses from diverse sources, which can include
model-generated responses from the model itself as well as pre-existing human-authored
responses of varying quality. During training, RRHF scores these responses based on the
log probability provided by the training language model. These scores are then aligned with
human preference rankings or labels using ranking loss, ensuring that the model’s outputs
are better aligned with human preferences.

4.3.2 Reward rAnked FineTuning (RAFT)

RAFT (Dong et al., 2023) is the combination of ranking samples by rewards and SFT,
which iteratively alternates among three steps: 1) The batch is sampled from the generative
models; 2) The reward function is used to score the samples and filter them to get a filtered
subset of high rewards; and 3) fine-tune the generative models on the filtered subset.

4.3.3 Reinforced Self-Training (ReST)

ReST (Gulcehre et al., 2023) is an RLHF algorithm aimed at aligning an LM’s outputs
with human preferences. It uses a learned reward function to model human preferences over
sequences. In the Markov decision process underlying conditional language modeling, states
represent partial sequences, and actions correspond to generated tokens. ReST divides
the typical reinforcement learning pipeline into distinct offline stages for dataset growth
and policy improvement. Initially, it fine-tunes a model to map input sequences to output
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sequences using a dataset of sequence pairs, optimizing with Negative Log-Likelihood (NLL)
loss. Then, it creates a new dataset by augmenting the initial training dataset with samples
generated by the model. In this phase, conditioning inputs are resampled from the original
dataset, similar to self-training, but direct sampling is possible if accessible.

4.3.4 Supervised Iterative Learning from Human Feedback (SuperHF)

SuperHF (Mukobi et al., 2023) is an alignment algorithm that enhances data efficiency using
a reward model and replaces PPO with a straightforward supervised fine-tuning loss. The
core concept involves the language model generating its own training data by sampling a
“superbatch” of outputs, filtering these through a reward model, and iteratively fine-tuning
on each filtered completion. This method builds upon and unifies previous research by
integrating two crucial components: (1) the Kullback-Leibler (KL) divergence penalty and
(2) an iterative process of sampling and fine-tuning. Additionally, SuperHF is embedded
within a Bayesian inference framework, demonstrating that both RLHF and SuperHF can
be understood from a unified theoretical perspective that does not rely on reinforcement
learning. This perspective naturally justifies the use of the KL penalty and the iterative
approach.

4.4 Nash Learning

4.4.1 Nash Learning from Human Feedback (NLHF)

NLHF (Munos et al., 2023) is motivated to address the limitation of reward models (or
essentially the Elo ratings) to represent the richness of human preferences as in RLHF.
Instead of targeting at maximizing the (regularized) reward, NLHF takes the preference
model as the ‘first class citizen’, and pursue ‘a policy that consistently generates responses
preferred over those generated by any competing policy’. Thus this policy is the Nash
equilibrium of this preference model, the reason the method is named NLHF. Concretely,
the (regularized) preference model for two policies Ã, Ã′ is defined as:

P
(
Ã > Ã′

)
:=

Ex∼ÄEy∼Ã(·|x),y′∼Ã′(·|x)

[
P
(
y > y′ | x

)
− ´reg log

Ã(y | x)
µ(y | x) + ´reg log

Ã′ (y′ | x)
µ (y′ | x)

]
, (14)

and NLHF searches the Nash Equilibrium such that (denote µ as Ãref for simplicity here):

Ã∗ := argmax
Ã

min
Ã′

P
(
Ã > Ã′

)
− ´regKLÄ(Ã, µ) + ´regKLÄ

(
Ã′, µ

)
. (15)

For optimization, the Nash-MD algorithm proposed in NLHF used a geometric mixture
between the current policy Ãt and the reference policy µ as the competing policy in the
place of Ã′:

Ãµ
t (y) :=

Ãt(y)
1−¸´regµ(y)¸´reg

∑
y′ Ãt (y

′)1−¸´reg µ (y′)¸´reg
, (16)

where ¸ is a learning rate, and Nash-MD algorithm is a step of mirror descent relative to
the regularized policy Ãµ

t :

Ãt+1 := argmax
Ã

[¸P (Ã > Ãµ
t )−KL (Ã, Ãµ

t )] , (17)
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which yields a closed-form solution that:

log Ãt+1(y) = [(1− ¸´reg) log Ãt(y) + ¸´reg logµ(y)] + ¸P (y > Ãµ
t ) + c, (18)

where c is a normalization constant which is independent of y and the algorithm is proved
to converge of rate 1

T under the tabular setting. For practical concern, when policy is a deep
neural network beyond tabular setting, NLHF further proposes Nash-MD-PG motivated by
Nash-MD, and the algorithm updates the policy with policy gradient:

∇¹PÄ
(
Ã¹ > Ã′

¹−

)
= Ex∼Ä,y∼Ã¹(·|x),y′∼Ã′(·|x)

[
ĝ
(
x, y, y′

)]
, (19)

where Ã′
¹−

denotes a stop-gradient on Ã′
¹ with Ã′

¹ being a geometric mixture

log Ã′
¹(y | x) := (1− ¼) log (Ã¹(y | x)) + ¼ log(µ(y | x)) + c(x), (20)

in which ¼ is a mixing constant and

ĝ
(
x, y, y′

)
:= ∇¹ log Ã¹(y | x)

(
P
(
y > y′ | x

)
− 1/2− ´regKL (Ã¹(· | x), µ(· | x))

)
, (21)

respectively. NLHF also argues that, Nash equilibrium of the preference model is a solution
that better aligns with the diversity of human preferences.

4.4.2 Self-Play Preference Optimization (SPPO)

SPPO (Wu et al., 2024) can be understood as a specific instance of NLHF by taking ¼ = 0,
i.e., the reference policy is itself. The algorithm can be found in Algorithm 2, given an LLM
judge:

Algorithm 2 Self-Play Preference Optimization (SPPO)

1: Input: base policy Ã¹0 , preference oracle P, learning rate ¸, number of generated
samples K

2: for t = 0, 1, . . . do
3: Generate synthetic responses by sampling x ∼ D and y1:K ∼ Ã¹t(·|x)
4: Annotate the win-rate P(yk { yk′ |x), ∀k, k′ ∈ [K]
5: Select responses from y1:K to form dataset Dt = {(xi, yi, P̂(yi { Ã¹t |xi))}i∈[N ]

6: Optimize Ã¹t+1
according to:

¹t+1 ← argmin
¹

E(x,y,P̂(y{Ã¹t
|x))∼Dt

(
log

(
Ã¹(y|x)
Ã¹t(y|x)

)
− ¸

(
P̂(y { Ã¹t |x)−

1

2

)2
)
.

7: end for

4.5 Fine-tuning Diffusion Models

Given the popularity of diffusion based T2I models and its different nature of structural
properties to LLM, we have the methods of fine-tuning diffusion models as a separate section
of interest. We first briefly review the formulation of text-to-image diffusion generative
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models. For a more comprehensive background of diffusion models, we refer the interested
readers to existing tutorial and survey papers (Luo, 2022; Cao et al., 2024; Yang et al.,
2023; Tang & Zhao, 2024; Chen et al., 2024f; Chan, 2024). DDPM (Sohl-Dickstein et al.,
2015; Ho et al., 2020) consider a sequence of positive noise scales 0 < ´1, ´2, · · · , ´N < 1,
and perturb data by gradually adding noise through a stochastic process: for each training
data point x0 ∼ pdata (x), a discrete Markov chain {x0, x1, · · · , xN} is constructed such
that:

xi =
√

1− ´ixi−1 +
√

´izi−1, i = 1, · · · , N, (22)

where zi−1 ∼ N (0, I). For generative modeling, the backward process - a variational Markov
chain in the reverse direction - is parameterized with

p¹ (xi−1 | xi) = N
(
xi−1;

1√
1− ´i

(xi + ´is¹ (i, xi)) , ´iI

)
, (23)

in which s¹ (i, xi) is learned by maximizing an evidience lower bound (ELBO). In the con-
text of text-to-image generation, trained s¹∗ will also be dependent on an input prompt
c for conditional generation, becoming s¹ (i, xi, c). For inference process, samples can be
generated by starting from pure noise and following the estimated reverse process as:

xi−1 =
1√

1− ´i
(xi + ´is¹∗ (i, xi, c)) +

√
´izi, i = N,N − 1, · · · , 1. (24)

4.5.1 DDPO and DPOK

We review some key elements in DDPO and DPOK (Black et al., 2024; Fan et al., 2024)
to formulate the problem of fine-tuning diffusion models as discrete-time MDPs, and then
apply RL algorithms. Note that recent works, Tang (2024), Uehara, Zhao, Biancalani, and
Levine (2024a), Uehara, Zhao, Black, Hajiramezanali, Scalia, Diamant, Tseng, Biancalani,
and Levine (2024b) extend a continuous-time stochastic control formulation for fine-tuning,
which motivates works e.g. Uehara, Zhao, Black, Hajiramezanali, Scalia, Diamant, Tseng,
Levine, and Biancalani (2024c), Uehara, Zhao, Hajiramezanali, Scalia, Eraslan, Lal, Levine,
and Biancalani (2024d) for more feedback efficient or conservative fine-tuning, Domingo-
Enrich, Drozdzal, Karrer, and Chen (2024) for a memory-less extension and using adjoint
methods for solving the such control problem. Zhao, Chen, Zhang, Yao, and Tang (2025b)
propose a continuous-time reinforcement learning framework and a continuous time PPO
variant for more robust diffusion models preference learning.

In this paper, however we stick to the discrete time formulation for simplicity and
broader community. Consider taking (i, xi, c) as the state space, and define the action as
the next hierarchy xi−1 to go to, then Eq. (24) naturally defines a stochastic policy: the
stochasticity of the policy comes from

√
´izi, thus the policy follows Gaussian with mean

determined by s¹∗ (i, xi, c) with variance ´i:

Ã¹(xi−1 | xi) ∼ N
(

1√
1− ´i

(xi + ´is¹ (i, xi, c)) , ´i

)
, i = N,N − 1, · · · , 1. (25)
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Given this formulation, Black et al. (2024) directly maximize the expected reward (without
regularization) JDDPO = E¹ [r(x0, c)] by REINFORCE or PPO:

∇¹JDDPO = E

[
T∑

t=0

∇¹ log p¹ (xt−1 | xt, c) r (x0, c)
]
. (26)

Compare to DDPO, DPOK (Fan et al., 2024) optimize the same regularized reward objective
as in Eq. (8):

JDPOK = E¹ [r(x0, c)]− ´Ep(z) [KL (p¹ (x0 | z) ∥ ppre (x0 | z))] (27)

They further proposed a clipped gradient algorithm for optimization, motivated by the
original PPO clipped objective. In addition, DPOK shows that adding regularization will
yield a better generation result compared to the version without regularization.

4.5.2 Reward Feedback Learning (ReFL)

ReFL (Xu et al., 2024b) is a supervised fine-tuning method based on its pre-trained reward
model ImageReward rIR(c, x). The objective for ReFL optimization is a linear combination
of negative pre-trained loss (for diffusion models) and reward maximization:

JReFL(¹) = Jpre(¹) + ¼ Ec∼pc,xt∼p¹(·|c) (ϕ (rIR (c, xt))) , (28)

in which ¼ is a scaling constant, ϕ is taken as a ReLU function and t ∈ [0, T̃ ] is a random
number for sampling, a technique that Xu et al. (2024b) claim can help stabilize the training
instead of always letting t be 0.

4.5.3 Direct Reward Fine-Tuning (DRaFT)

DRaFT (Clark et al., 2023) introduces a straightforward method for fine-tuning diffusion
models using differentiable reward functions. The goal is to fine-tune the parameters ¹ of a
pre-trained diffusion model such that images generated by the sampling process maximize
a differentiable reward function r:

J(¹) = Ec∼pc,xT∼N (0,I) [r(sample(¹, c,xT ), c)] , (29)

where sample(¹, c,xT ) denotes the sampling process from time t = T → 0 with context c.
First, DRaFT consider solving Eq. 29 by computing ∇¹r(sample(¹, c,xT ), c) and using gra-
dient ascent. Computing this gradient requires backpropagation through multiple diffusion
model calls in the sampling chain, similar to backpropagation through time in a recurrent
neural network. To mitigate the memory cost associated with this process, DRaFT em-
ploys two strategies: 1) low-rank adaptation (LoRA) (Hu et al., 2021), and 2) gradient
checkpointing (Chen et al., 2016).

4.5.4 AlignProp

AlignProp (Prabhudesai et al., 2023) introduces a method that transforms denoising infer-
ence within text-to-image diffusion models into a differentiable recurrent policy, effectively
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linking conditioning input prompts and sampled noise to generate output images. This
approach enables fine-tuning of the denoising model’s weights through end-to-end back-
propagation, guided by differentiable reward functions applied to the generated images.
The proposed model casts conditional image denoising as a single step MDP with states
S = {(xT , c), xT ∼ N (0, I)}, actions are the generated image samples, and the whole DDIM
denoising chain corresponds to a differentiable policy that maps states to image samples:
A = {x0 : x0 ∼ Ã¹(·|xT , c), xT ∼ N (0, I) }. The reward function is a differentiable function
of parameters ϕ that depends only on generated images Rϕ(x0), x0 ∈ A. Given a dataset of
prompts input D, our loss function reads:

Lalign(¹;D) = − 1
|D|

∑

ci∈D

Rϕ(Ã¹(xT , c
i)). (30)

The parameters of the diffusion model using gradient descent on Lalign. The policy Ã is
recurrent, and training it is akin to backpropagation through time, a technique commonly
used for training recurrent neural networks. The gradient for updating the parameters of
the diffusion model with respect to the downstream objective (i.e., the differentiable reward
function) is expressed as following:

∇̂¹Lalign =
∂Lalign
∂¹

+
K∑

t=0

∂Lalign
∂xt

· ∂xt
∂¹

, (31)

in which K is uniformly drawn from [0, T ] for memory efficiency instead of being T , referred
as randomized truncation in Prabhudesai et al. (2023).

4.5.5 Proximal Reward Difference Prediction

PRDP (Deng et al., 2024) proposes a loss for matching likelihood difference with reward
difference for fine-tuning diffusion models, inspired by DPO. Notice that, (same as derivation
in DPO), for any two generations x10 and x20, the optimal policy (KL-regularized reward)
yields:

log
Ã¹⋆
(
x10 | c

)

Ãref
(
x10 | c

) − log
Ã¹⋆
(
x20 | c

)

Ãref
(
x20 | c

) =
r
(
x10, c

)
− r

(
x20, c

)

´reg
(32)

thus PRDP proposes to minimize the MSE error between LHS with ¹ (replacing ¹∗) and
RHS. The objective is LPRDP (Ã¹;Ãref) :=

Ec∼D,(x1,x2)∼Ã¹(·|c)

(
´reg log

Ã¹
(
x10 | x

)

Ãref
(
x10 | x

) − ´reg log
Ã¹
(
x20 | x

)

Ãref
(
x20 | x

) − (r(x10)− r(x20))

)2

,

(33)

Furthermore, they also employ proximal updates (clipping the ratios and optimizing a
proximal objective) for stable training of (33), in the same spirit of PPO.

Similar works include Yang, Chen, and Zhou (2024b), which apply the idea of dense
reward to DPO-style explicit-reward-free approach on text-to-image diffusion models, so as
to suit better to diffusion models’ generation hierarchy.
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4.5.6 Diffusion Loss-guided Policy Optimization (DLPO)

DLPO (Chen et al., 2024c) applies online RL to fine-tune TTS diffusion models, where
the reward is shaped by the diffusion model’s loss. Incorporating the diffusion model loss
into the objective function serves as an additional mechanism to enhance performance and
maintain the coherence of the model. The method’s objective is described as following:

Ec∼p(c)Et∼U{1,T}Ep¹(x0:T |c) [−³r(x0, c)− ´∥ϵ̃(xt, t)− ϵ¹(xt, c, t)∥2] , (34)

where ³, ´ are the reward and weights for diffusion model loss, respectively. DLPO uses
the following gradient to update the objective:

Ec∼p(c)Et∼U{0,T}Ep¹(x1:T |c)

[− (³r(x0, c)− ´∇¹∥ϵ̃(xt, t)− ϵ¹(xt, c, t)∥2)∇¹ log p¹(xt−1|xt, c)] . (35)

The diffusion model objective is incorporated into the reward function as a penalty. This
algorithm aligns with the training procedure of TTS diffusion models by integrating the
original diffusion model objective ´∥ϵ̃(xt, t)−ϵ¹(xt, c, t)∥2 as a penalty in the reward function.
This approach effectively prevents model deviation and ensures that the model remains
coherent during training.

4.5.7 Human Feedback for Instructional Visual Editing (HIVE)

HIVE (Zhang et al., 2024b) is proposed to improve instruction visual editing models (dif-
fusion models based, e.g., InstructPix2Pix (Brooks et al., 2023)) with human feedback. In
instructional supervised training, the stable diffusion model has two conditions c = [cI , cT ],
where cT is the editing instruction, and cI is the latent space of the original input image.
In the training process, a pre-trained auto-encoder with encoder E and decoder D is used
to convert between edited image x̃ and its latent representation z = E(x̃). The diffusion
process is composed of an equally weighted sequence of denoising autoencoders ϵ¹ (zt, t, c),
t = 1, · · · , T , which are trained to predict a denoised variant of their input zt, which is a
noisy version of z. The objective of instructional supervised training is:

L = EE(x̃),c,ϵ∼N (0,I),t

[
∥ϵ− ϵ¹ (zt, t, c) ∥22

]
. (36)

HIVE proposes that optimizing a exponential reward weighted objective for fine-tuning
diffusion models:

LHIVE(¹) := EE(x̃),c,ϵ∼N (0,I),t

[
É(x̃, c) · ∥ϵ− ϵ¹ (zt, t, c)∥22

]
, (37)

with É(x̃, c) = exp (rϕ(x̃, c)/´) being the exponential reward weight for edited image x̃ and
condition c, which is motivated by the closed form of optimal solution for RLHF in Eq.
(38).

5. Offline Alignment

In this section, we present a detailed explanation for each offline preference tuning method,
including SLiC-HF, DPO and its variants. In Table 5, for simplicity, we include represen-
tative DPO variants and their final loss objectives. For each DPO variant, we conclude not
only the resulting final objective or algorithm, but also both summarize the motivation or
the direction the method contributed to for improvement over DPO.
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Method Objective

DPO − log Ã
(
´reg log

Ã¹(yw|x)
Ãref(yw|x) − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

)

IPO
(
´reg log

Ã¹(yw|x)
Ãref(yw|x) − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

− 1
2

)2

f -DPO − log Ã
(
´regf

′
(

Ãθ(yw|x)
Ãref(yw|x)

)
− ´regf

′
(

Ãθ(yl|x)
Ãref(yl|x)

))

KTO −¼wÃ
(
´reg log

Ã¹(yw|x)
Ãref(yw|x) − zref

)
− ¼lÃ

(
zref − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

)
,

where zref = E(x,y)∼D [´regKL (Ã¹(y|x)||Ãref(y|x))]

ODPO − log Ã
(
´reg log

Ã¹(yw|x)
Ãref(yw|x) − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

−∆r(x)
)

Mallows-DPO − log Ã
(
ϕ(x)

[
´reg log

Ã¹(yw|x)
Ãref(yw|x) − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

])

R-DPO − log Ã
(
´reg log

Ã¹(yw|x)
Ãref(yw|x) − ´reg log

Ã¹(yl|x)
Ãref(yl|x)

− (³|yw| − ³|yl|)
)

CPO − log p¹(yw|x)− log Ã (´reg log Ã¹(yw|x)− ´reg log Ã¹(yl|x))

ORPO − log p¹(yw|x)− ¼ log Ã
(
log p¹(yw|x)

1−p¹(yw|x) − log p¹(yl|x)
1−p¹(yl|x)

)
,

where p¹(y|x) = exp
(

1
|y| log Ã¹(y|x)

)

SimPO − log Ã
(
´reg

|yw| log Ã¹(yw|x)−
´reg

|yl|
log Ã¹(yl|x)− µ

)

RainbowPO − log Ã

(
ϕ(x)

[
´reg

|yw| log
Ã¹(yw|x)
Ã³(yw|x) −

´reg

|yl| log
Ã¹(yl|x)
Ã³(yl|x)

])

Table 9: Various preference optimization DPO objectives. The table is inspired from Meng
et al. (2024).

5.1 Offline Directed Preference Optimization (Offline DPO)

One disadvantage of RLHF is that the RL step often requires substantial computational
effort (e.g., to carry out the proximal policy optimization). DPO, recently proposed by
Rafailov et al. (2024), suggested a possible way to bypass the reward modeling stage and
avoid RL, and has attracted great attention. The key idea of DPO is the observation that
given a reward function r(x, y), the problem in Eq. (8) has a closed-form solution:

Ãr(y | x) =
1

Z(x)
Ãref(y | x) exp

(
1

´reg
r(x, y)

)
, (38)

where Z(x) =
∑

y Ãref(y | x) exp
(

1
´reg

r(x, y)
)
is a normalizing constant. Rearranging the

terms, and plug in the ground truth reward r∗ with the optimal policy Ã∗ = Ãr∗ yield:

r∗(x, y) = ´reg log
Ã∗(y | x)
Ãref(y | x)

+ ´reg logZ(x). (39)

Through this change of variables, the latent reward r∗(x, y) can be expressed in terms of the
optimal policy Ã∗(y | x), the reference policy Ãref (y | x) and a constant Z∗(x). Substituting

2621



Winata, Zhao, Das, Tang, Yao, Zhang & Sahu

this r∗ expression into Eq. (2) yields:

p∗ (y1 { y2 | x) = Ã

(
´reg log

Ã∗ (y1 | x)
Ãref (y1 | x)

− ´reg log
Ã∗ (y2 | x)
Ãref (y2 | x)

)
, (40)

where Z∗(x) cancels out and motivates the DPO objective:

LDPO (Ã¹;Ãref) :=

− E(x,yw,yl)∼D

[
log Ã

(
´reg log

Ã¹ (yw | x)
Ãref (yw | x)

− ´reg log
Ã¹ (yl | x)
Ãref (yl | x)

)]
, (41)

which is a supervised learning problem, requiring much less computation than the RLHF.
To understand the loss objective of DPO, we can further examine its gradient as following:

∇¹LDPO(Ã¹;Ãref ) =

− ´regE(x,yw,yl)∼D

[
Ã(r̂¹(x, yl)− r̂¹(x, yw))︸ ︷︷ ︸

higher weight when estimate is wrong

[
∇¹ log Ã(yw | x)︸ ︷︷ ︸

increase likelihood of yw

− ∇¹ log Ã(yl | x)︸ ︷︷ ︸
decrease likelihood of yl

]]
, (42)

in which

r̂¹(x, y) = ´reg log
Ã¹(y | x)
Ãref (y | x)

, (43)

is called the implicit reward model for the policy Ã¹ in DPO.

5.1.1 Identity Preference Optimization (IPO)

For DPO variants, we first visit IPO, proposed in Azar et al. (2024), motivated to bypass the
assumption of Bredley-Terry model in the derivation of DPO (which comes from the reward
modeling stage of RLHF). Azar et al. (2024) first propose a generic form of regularized
optimization objective as:

max
Ã

E
x∼Ä

y∼Ã(.|x)
y′∼µ(.|x)

[
Ψ
(
p∗
(
y { y′ | x

))]
− ´regDKL (Ã∥Ãref) (44)

in which the new introduced function Ψ is non-decreasing. They show that Eq. (44) shares
the same optimality as DPO when taking Ψ(q) = log(q/(1 − q)) (notably this equivalence
still needs the Bradley-Terry model assumption). Furthermore, Azar et al. (2024) show that
when Ψ(x) = x, i.e., when Ψ is the identity mapping, Eq. (44) is equivalent to:

LIPO (Ã¹;Ãref) := E(x,yw,yl)∼D

(
´reg log

Ã¹ (yw | x)
Ãref (yw | x)

− ´reg log
Ã¹ (yl | x)
Ãref (yl | x)

− 1

2

)2

, (45)

if the offline dataset D is created by x ∼ Ä and y, y′ ∼ µ. Notice that the derivation of the
objective in Eq. (45) does not acquire Bredley-Terry model, thus IPO is preference model
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free. In Azar et al. (2024), it is also demonstrated through a synthetic bandit experiment
that DPO can be prone to overfitting, while IPO could avoid this problem. In addition,
also shows that online version of IPO (Calandriello et al., 2024) (see details of online DPO
in Section 4.2) is indeed equivalent to Nash-MD proposed in Nash Learning from Human
Feedback (Munos et al., 2023).

5.1.2 Rejection Sampling Optimization (RSO)

RSO revisits the derivation of DPO and interpret the objective as a maximum likelihood
estimator (MLE) of the optimal policy based on Eq. (40) (Liu et al., 2023). However,
such a density estimation problem theoretically requires the datasets to be generated from
the optimal policy instead of the SFT model in DPO. Thus, RSO algorithm is proposed
to generate the datasets from the approximated optimal policy with an aid of a trained
reward model rϕ∗ and statistical rejection sampling, see in Algorithm 3. Notice that Ãrϕ∗

Algorithm 3 RSO algorithm.

1: Start with empty Y ← {}.
2: while not enough samples in Y do
3: Generate y ∼ Ãsft(y | x) that is

not in Y.
4: Generate u ∼ U [0, 1] and let M =

min
{
m | m g πrφ∗

(y|x)

πsft(y|x)
for all y /∈ Y

}
.

5: if u <
πrφ∗

(y|x)

Mπsft(y|x)
then

6: Accept y and add it to Y.
7: else
8: Reject y.
9: end if

10: end while
Table 10: RSO illustration in Liu et al. (2023).

is computed by Eq. (38) with the learned reward model rϕ∗ . Liu et al. (2023) show that
this distribution correction could help improve the performance of DPO by utilizing the
resampled preference dataset.

Method Loss Function f(x)

DPO log logistic − log Ã(x)

IPO square (x− 1)2

SLiC-HF hinge loss max(0, 1− x)

Table 11: Unified perspective through loss function in
Liu et al. (2023), Tang et al. (2024b).

Table 12: Loss function comparison
in Tang et al. (2024b).
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In addition, RSO also unifies DPO and (normalized) SLiC-HF from the perspective of
loss function; similar unified perspective also appeared in GPO (Tang et al., 2024b) (see
e.g., in Table 1 of it):

LGPO (Ã¹;Ãref) := E(x,yw,yl)∼D

[
f

(
´reg log

Ã¹ (yw | x)
Ãref (yw | x)

− ´reg log
Ã¹ (yl | x)
Ãref (yl | x)

)]
, (46)

for any convex function f , like in Table 11. GPO further provides an analysis of this for-
mulation from an policy improvement and policy regularization trade-off. Applying Taylor
Expansion of the form above yields:

LGPO (Ã¹;Ãref) = f(0) + ´reg f
′(0)︸ ︷︷ ︸
<0

E(x,yw,yl)∼D [Ä¹]︸ ︷︷ ︸
optimization

+
1

2
´2
reg f

′′(0)︸ ︷︷ ︸
>0

E(x,yw,yl)∼D

[
Ä2¹
]

︸ ︷︷ ︸
regularization

, (47)

in which Ä¹ = log Ã¹(yw|x)
Ãref (yw|x) − log Ã¹(yl|x)

Ãref (yl|x)
denotes ‘implicit reward difference’.

5.1.3 f-DPO

DPO is derived from the RLHF objective which utilized the (reverse) KL divergence to
prevent the deviation of new models from old models. f -DPO in Wang, Jiang, Yang,
Liu, and Chen (2023) consider extending this statistical distance to general f -divergence.
Concretely, for two probability distribution P and Q with probability density function p
and q respectively, f -divergence is defined as:

Df (P ||Q) = Eq(x)

[
f

(
p(x)

q(x)

)]
, (48)

and reverse KL divergence is a special case when taking f(x) = x log(x). Wang et al. (2023)
first show that through a first order condition of optimality / KKT and the similar change
of variable technique in DPO, the RLHF objective with a f -divergence

LRLHF−f (ϕ) = Ex∼D,y∼Ã(·|x) [rϕ∗(x, y)− ´regDf (Ã(· | x) | Ãref(· | x))] , (49)

could yield the f -DPO objective:

Lf−DPO (Ã¹;Ãref) =

E(x,yw,yl)∼D

[
− log Ã

(
´regf

′

(
Ã¹ (yw | x)
Ãref (yw | x)

)
− ´regf

′

(
Ã¹ (yl | x)
Ãref (yl | x)

))]
. (50)

Special cases of Eq. (50) are when taking f divergence as ³-divergence and JS-divergence,
and Wang et al. (2023) further argue that JS-divergence could possibly yield a better diver-
sity and accuracy tradeoff than reverse KL, through small-scale experiments on e.g., IMDB
controllable generation and fine-tuning Pythia 2.8B on Anthropic HH dataset.

5.1.4 Kahneman-Tversky Optimization (KTO)

KTO (Ethayarajh et al., 2024) is motivated to address the need of pairwise preferences
datasets in DPO, which can be scarce and expensive. Instead of maximizing the log-
likelihood of preferences in DPO and inspired by Kahneman & Tversky’s prospect theory,
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KTO proposes to minimize a human-aware loss function (HALO) that represents the utility
of generations and also takes into account the human nature of loss aversion. The resulting
KTO objective decouples the pair-preferences into two separate terms that are further
linearly combined:

LKTO (Ã¹;Ãref) :=

− E(x,yw,yl)∼D

[
¼wÃ(´reg log

Ã¹(yw|x)
Ãref(yw|x)

− zref) + ¼lÃ(zref − ´reg log
Ã¹(yl|x)
Ãref(yl|x)

)

]
, (51)

where zref = E(x,y)∼D [´regKL (Ã¹(y|x)||Ãref(y|x))] acts like a subjective value and ¼w, ¼l are
additonal hyper-parameters to be tuned. If there is only desired/undesired answer, the
KTO objective will thus have only one term, which makes it pairwise preference data free.

5.1.5 Offset DPO (ODPO)

DPO objective cannot reflect the significance of the preference pairs i.e., the extent yw is
preferred to yl, and ODPO (Amini et al., 2024) propose to add a margin to capture this
significance; they model this margin, or they call offset ∆r as a monotonically increasing
function f(·) of the difference between the scores associated with the responses:

∆r(x, yw, yl) = ³f (score (x, yw)− score (x, yl)) , (52)

where ³ is a hyper-parameter that controls the extent to which an offset should be enforced.
The resulting objective becomes:

LODPO (Ã¹;Ãref) :=

− E(x,yw,yl)∼D

[
log Ã

(
´reg log

Ã¹(yw|x)
Ãref(yw|x)

− ´reg log
Ã¹(yl|x)
Ãref(yl|x)

−∆r(x, yw, yl)

)]
. (53)

5.1.6 Mallows-DPO

Mallows-DPO (Chen et al., 2024b) is motivated by DPO’s lack of capability to charac-
terize the diversity of human preferences. Inspired by Mallows Ranking Model (opposed
to Bredley-Terry in RLHF and DPO) which has a natural carrier of a dispersion index,
Mallows-DPO pays attention to the dispersion of the preferences: when human tends to
agree about the answer to a certain question, e.g., ‘1 + 1 =?’, the preference dispersion will
be small; however, the dispersion will be large for answer to a general open question. Chen
et al. (2024b) propose a contextual scaled objective derived from MLE under Mallows: com-
pared to DPO that puts equal weights on each prompt and preference pairs, the resulting
Mallows-DPO adds a contextual scaling factor ϕ(x) that represents this dispersion of the
preferences of answers to each prompt x:

LMallows−DPO (Ã¹;Ãref) :=

− E(x,yw,yl)∼D

[
log Ã

(
ϕ(x)

[
´reg log

Ã¹(yw|x)
Ãref(yw|x)

− ´reg log
Ã¹(yl|x)
Ãref(yl|x)

])]
. (54)
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To compute this dispersion, Mallows-DPO provided a direct approach by using a normalized
predictive entropy of preference pairs {ywi , yli}i=1,...,N with N = max(|yw|, |yl|):

ϕ(x) = − log

(
1
2

∑N−1
i=1

[
HÃref

(Yi+1 | Yi = ywi ) +HÃref
(Yi+1 | Yi = yli)

]

log(n)

)
. (55)

To illustrate the effect of this additional term, when dispersion is high: ϕ(x) in Eq. (55)
will be close to 0, and Mallows-DPO will put less weights on the corresponding preference
pairs in the optimization objective to prevent from overfitting; In contrast, when dispersion
is low, Mallows-DPO put more weights in the preference optimization objective, for which
ϕ(x) is large and will lead to stronger effect of alignment.

5.1.7 LR-DPO

LR-DPO (Park et al., 2024), DPO with length regularization is motivated to address the
problem of verbosity in the DPO setting. LR-DPO proposed a simple regularization strategy
that prevents length exploitation by penalizing the rewards with length of the generation
in standard RLHF objective:

LLR-RLHF(ϕ) = Ex∼D,y∼Ã(·|x) [rϕ∗(x, y)− ³|y| − ´regKL(Ã(· | x) | Ãref(· | x))] , (56)

in which ³ is a hyper-parameter that controls the extent of length regularization. Eq. (56)
thus similarly yields a supervised learning objective referred as DPO with length regular-
ization:

LLR−DPO (Ã¹;Ãref)

= − E
(x,yw,yl)∼D

log Ã

(
´reg log

Ã¹(yw|x)
Ãref(yw|x)

− ´reg log
Ã¹(yl|x)
Ãref(yl|x)

− (³|yw| − ³|yl|)
)
. (57)

Park et al. (2024) further show that this can effectively improve model quality by addressing
the verbosity issue.

5.1.8 Contrastive Preference Optimization (CPO)

CPO (Xu et al., 2024a) is motivated to improve the memory and speed efficiency of DPO
by neglecting the reference policy, further accompanied by a SFT loss term:

LCPO (Ã¹) := −E(x,yw,yl)∼D

[
log p¹(yw|x) + log Ã

(
´reg log

Ã¹(yw|x)
Ã¹(yl|x)

)]
. (58)

5.1.9 Odds Ratio Preference Optimization (ORPO)

Opposed to maximizing the likelihood ratios of winning and losing answers in the preference
pair in DPO, ORPO (Hong et al., 2024) propose that odds ratio can be a more sensible
choice.

LORPO (Ã¹) :=

− E(x,yw,yl)∼D

[
log p¹(yw|x) + ¼ log Ã

(
log

p¹(yw|x)
1− p¹(yw|x)

− log
p¹(yl|x)

1− p¹(yl|x)

)]
. (59)
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where p¹(y|x) = exp
(

1
|y| log Ã¹(y|x)

)
. ORPO is similar to CPO in the sense that it is also

reference model free and combined with a SFT loss; in addition, notably that ORPO also
adopts a form of length regularization by normalizing the likelihoods with respect to the
length, as in the definition of p¹(y|x); finally, they compute odds ratio instead of the original
likelihood ratio.

5.1.10 SimPO

SimPO (Meng et al., 2024) proposes a simple yet effective objective that is claimed to match
or even outperform the performance of DPO:

LSimPO (Ã¹) := −E(x,yw,yl)∼D

[
log Ã

(
´reg
|yw|

log Ã¹(yw|x)−
´reg
|yl|

log Ã¹(yl|x)− µ

)]
, (60)

where µ is introduced as a target reward margin to help separating the winning and losing
responses. SimPO is similar to CPO in the sense of being reference model free; it also
adopted the length normalization for the likelihoods as in ORPO; finally, it additionally in-
troduced a constant margin to be tuned that could help to further improve the performance
by encouraging a larger difference between the normalized likelihoods.

5.1.11 RainbowPO

Inspired by the paper Rainbow on improving DQN for better performance, RainbowPO
(Zhao et al., 2024a) demystifies the effectiveness of existing DPO variants by categorizing
their key components into several broad directions, and integrate the identified effective
components into a single cohesive objective:

LRainbowPO (Ã¹;Ãref ) = − E
(x,yw,yl)∼D

f

[
ϕ(x)

(
´

|yw|¸ log
Ã¹ (yw | x)
Ã³ (yw | x)

− ´

|yl|¸ log
Ã¹ (yl | x)
Ã³ (yl | x)

)]
,

(61)

in which ¸ ∈ {0, 1}, and Ã³ is referred to a mixing policy mechanism they propose for
formulating a better reference policy by mixing policy Ãref and Ãµ , defined as:

Ã³(y | x) ∝ Ã³
ref(y | x) · Ã1−³

µ (y | x), (62)

and Ãµ is a policy which assumes to exist (which can be understood as the reference policy
taken by SimPO (Meng et al., 2024)), such that the model is perfect at distinguishing the
preference pairs in the dataset:

Ãµ (yw | x)1/|y
É | /Ãµ (yl | x)1/|y

l| = exp(µ), (63)

for any prompt x. Zhao et al. (2024a) show that optimizing such generic objective can yield
the best performance on downstream task of tuning Llama3-8B-Instruct for instruction-
following capabilities, benefiting from composition of effective elements.
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5.2 Diffusion Models or Multi-Modal Models

5.2.1 Diffusion-DPO

Diffusion-DPO (Wallace et al., 2024) is adapting DPO to diffusion models. It uses a fixed
dataset and each example contains a prompt and a pairs of images generated from a reference
model with human label. Similar to RL for diffusion, the goal is still to align the base
diffusion models to human preferences. The derivation is similar to RL framework for
diffusion in DDPO and DPOK, and also DPO for Language Models:

L(¹) = −E(xw
0 ,xl

0)∼D log Ã(´regExw
1:T∼p¹(xw

1:T |xw
0 )

x1:T∼p¹(xl
1:T |xl

0)

[
log

p¹ (x
w
0:T )

pref
(
xw0:T

) − log
p¹
(
xl0:T

)

pref
(
xl0:T

)
]
). (64)

However, the main concern left is that the likelihood term of the generations p¹ (x0:T ) is
not tractable if only given generation x0. Wallace et al. (2024) further propose to use
the forward process q (x1:T | x0) of diffusion to match the distribution of backward process
p¹ (x1:T | x0), and yield the final DPO-Diffusion objective:

LDPO-diffusion(¹) = −E(xw
0 ,xl

0)∼D,t∼U [0,T ],xw
t ∼q(xw

t |xw
0 ),xl

t∼q(xl
t|x

l
0)
log Ã(−´regT

[
KL
(
q
(
xwt−1 | xw0,t

)
∥p¹

(
xwt−1 | xwt

))
−KL

(
q
(
xwt−1 | xw0,t

)
∥pref

(
xwt−1 | xwt

))

−KL
(
q(xlt−1 | xl0,t)∥p¹(xlt−1 | xlt)

)
+KL

(
q(xlt−1 | xl0,t)∥pref(xlt−1 | xlt)

)]
), (65)

with each term can be readily computed. Other variants of Diffusion-DPO includes Diffusion-
KTO (Li et al., 2024a) and Diffusion-NPO (Wang et al., 2025), which are mainly motivated
by related preference learning algorithm in LLMs and adopt these successful methods for
diffusion models. Motivated by Rich Feedback (Liang et al., 2024) paper, Rich Preference
Optimization (RPO, Zhao, Chen, Guo, Winata, Ou, Huang, Yao, and Tang (2025a)) ex-
plores the promise of curating preference pairs from rich feedback. They utilize VLMs for
generating concrete textual feedback signals on misalignment parts of prompt and diffusion
models generated images, which further yield concrete and concise editing instructions.
They utilize these instructions to edit the original image and get better images, which
reveals the necessity of informative preference pairs.

5.2.2 POVID

POVID (Zhou et al., 2024b) proposes a method for performing preference optimization in
visual language models (VLM) with synthetically generated preferences. This is mainly
aimed at attenuating the hallucination problems in VLMs that arises due to lack of align-
ment between the language and vision modalities. Specifically, the authors use the ground-
truth instructions as the preferred response and employ a two-stage approach to generate
dis-preferred responses: first, use GPT-4V to inject hallucinatory texts into the preferred
responses, and second, add diffusion noise to the image to trigger the inherent hallucination
behavior of the VLM by making the image difficult for the VLM to understand. Both the
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strategies are merged together in an reformulation of the DPO loss as:

LPOVID(Ã¹;Ãref ) = −E(x,yw,yl)∼D

[
log Ã

(
³ log

Ã¹(yw | x)
Ãref (yw | x)

−
(
´reg1 log

Ã¹(y
t
l | x)

Ãref (y
t
l | x)

+ ´reg2 log
Ã¹(y

n
l | xn)

Ãref (y
n
l | xn)

))]
,

(66)

where ³, ´reg1 , ´reg2 are coefficients for balancing preferred responses (yw) and dispreferred
responses (ytl , y

n
l ). ytl indicates the dispreferred response generated using GPT-4V, and ynl

denotes the dispreferred response generated using the noisy image xn.

5.3 Sequence Likelihood Calibration (SLiC-HF)

SLiC-HF (Zhao et al., 2023) uses a sequence level contrastive learning training method
to align the model’s sequence likelihood over the decoded sequences by measuring their
similarity with given reference sequences. The main reason to use a contrastive objective is
to put more loss on negative sequence compared to positive sequences such that model puts
more probability mass on generating positive sequences. Further, this specific formulation
allows the use of human preference for ranking directly by using offline policy preference
data D or by training a separate predictive ranking model on offline data. SLiC-HF obtains
a supervised fine-tuned model Ã¹ref(y | x), which we denote as the reference model for
consistency with RLHF pipelines on a reference dataset (x, ytarget) ∼ D. The preference
datasets {yw, yl}m is formulated by uniformly drawing answer pairs from Ã¹ref(· | x) and
ranking them by their similarity (from a score computed by a pre-trained model denoted as
s(y, yref;x)) to the target answer yref. The step after is to align the SFT model’s sequence
likelihood using the SLiC loss (Zhao et al., 2022):

LSLiC(Ã¹;Ãref) =
∑

Lcal (¹, x, ytarget, {yw, yl}m) + ¼Lreg (¹, ¹ref;x, ytarget) , (67)

in which Lcal is the calibration loss from SLiC and Lreg is the regularization loss to prevent
the aligned model stray away from the SFT model. Taking a special case of Lcal and Lreg

to be a rank calibration loss and cross entropy loss respectively, Eq. (67) becomes:

LSLiC(Ã¹;Ãref) = max (0, ¶ − log Ã¹(yw|x) + log Ã¹(yl|x))︸ ︷︷ ︸
rank calibration loss

−¼ log Ã¹(yref|x)︸ ︷︷ ︸
regularization

, (68)

where, in the first term of calibration loss, we are maximizing the likelihood corresponding
to the positive sequence yw and minimizing negative sequence yl and the margin ¶ is a hyper-
parameter represents which can be a constant or prompt dependent score/rank difference;
the second term is just standard SFT loss. As a remark, one can use a secondary reward
model, opposed to the similarity function in SLiC, trained on human preference data to
classify positive or negative pairs (yw, yl).

6. Combined Policies and Sampling-Agnostic Alignment

In this section, we explore some other directions proposed in literature for improving the
effectiveness of human preference tuning. We discuss ExPO (Zheng et al., 2024a), which
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proposed that combining two aligned models by extrapolating from their weights could
enhance the alignment quality of the model; we discuss P3O (Fakoor et al., 2020), which
utilized both on-policy and off-policy sampling; we also introduce sampling-agnostic align-
ment methods that can be applied to both off-policy and on-policy approaches.

6.1 ExPO

ExPO (Zheng et al., 2024a) provides a simple and training-free method for enhancing the
alignment of large language models (LLMs) with human preferences. The core insight
behind ExPO is that a model trained with DPO/RLHF can be viewed as an interpolation
between two models with differing strengths. By leveraging this concept, one can potentially
extrapolate a stronger model if the other two models are available. Specifically, if we
denote the model ÃExPO as the interpolation of two other models, Ãa and Ãb, which may
be trained using different alignment methods and datasets, ExPO assumes that combining
these models will yield improved alignment. The stronger, better-aligned model ÃExPO

is then obtained by extrapolating from the weights of these two relatively weaker models
(which is reminiscent to Model Soups (Wortsman et al., 2022)), as formulated below:

ÃExPO = (1 + ³)Ãa − ³Ãb = Ãa + ³ (Ãa − Ãb) = Ãa + ³∆Ã. (69)

This method is shown to work when Ãa and Ãb are a stronger model from a combination
of SFT model and a model further preference trained on top of it respectively. However
in naive cases of choosing arbitrary Ãa and Ãb, it has shown to cause model collapse or
degradation. Nevertheless broader applicability of this approach requires further research.

6.2 Policy-on Policy-off Policy Optimization (P3O)

P3O (Fakoor et al., 2020) is a simple and effective algorithm that uses the effective sample
size to automatically manage the combination of on-policy and off-policy optimization.
It performs gradient ascent using the gradient. Fakoor et al. (2020) describe how P3O
integrates the following on-policy update with the off-policy update:

∇on
¹ J (Ã¹) = E

s∼dÃ¹,a∼Ã¹

[g (Ã¹)] , (70)

∇off
¹ J (Ã¹) = E

s∼d´reg,a∼´reg

[Ǟcg (Ã¹)] , (71)

where Ã¹ denotes a policy that is parameterized by parameters ¹ ∈ R
n, and qÃ¹ and vÃ¹

denote a parameterization of the state-action and state-only value functions, respectively.
It is also denoted the baselined policy gradient integrand in short by following:

g (Ã¹) = ÂÃ¹(s, a)∇¹ log Ã¹(a | s), (72)

ÂÃ¹(s, a) = q̂Ã¹(s, a)− v̂Ã¹(s). (73)

It forms a unified policy optimization as following:

E
s∼dÃ¹ ,a∼Ã¹

[g (Ã¹)] + E

s∼d´reg,a∼´reg

[Ǟcg (Ã¹)]− ¼∇¹ E

s∼d´reg,a∼´reg

KL (´reg(· | s)∥Ã¹(· | s)) . (74)
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The first term above is the standard on-policy gradient. The second term is the off-policy
policy gradient with truncation of the IS ratio using a constant c while the third term allows
explicit control of the deviation of the target policy Ã¹ from ´reg. Further, the KL-divergence
term can be rewritten as E

s∼dÃ¹,a∼Ã¹

[log Ä] and therefore minimizes the importance ratio Ä

over the entire replay buffer ´reg. There are two hyper-parameters in the P3O gradient: the
IS ratio threshold c and the KL regularization co-efficient ¼.

6.3 Reinforced Token Optimization (RTO)

Standard RLHF and DPO’s reward models are all based on the whole generation, thus
the whole pipeline is in some sense closer to bandit instead of classical MDP based RL.
Inspired by that nature of auto-regressive models is next token prediction , RTO (Zhong
et al., 2024) derives a token-wise reward function from preference data and conducts policy
optimization using this learned reward signal. Broadly, RTO formulates the optimization
problem as an MDP and involves two primary steps: (1) learning a token-wise reward from
preference data, and (2) optimizing this reward through RL training methods like PPO.

Theoretical Version. Consider the offline setting by assuming that we have an offline
dataset D = {(Äw, Ä l)} that contains several trajectory pairs, where Äw = {(swh , awh )}Hh=1

is preferred over Ä l = {(slh, alh)}Hh=1. Each pair of trajectories shares the same initial state
(i.e., sw1 = sl1), but differs in the subsequent tokens. RTO computes the maximum likelihood
estimator ¹mle based on D by maximizing the log likelihood and calculates the pessimistic
reward r̂ via token-wise reward learning. The output of the algorithm is policy Ã̂.

Practical Version Similar to learning the reward model in RLHF, the key challenge left
is to learn the token-wise reward from the offline data. For sentence level reward, popular
frameworks outlined in InstructGPT (Ouyang et al., 2022), Claude (Bai et al., 2022a), and
LLaMA2 (Touvron et al., 2023a) replace the last layer of the LLM with a linear layer for
a scalar output and maximize the log-likelihood, which thus cannot be naively used for
token-level reward. RTO observes that, given a trajectory Ä = {(sh, ah)}Hh=1, denoting
Ã∗
´reg

(a|s) = exp{(Q∗
´reg

(s, a) − V ∗
´reg

(s))/´reg} as the optimal policy, the KL regularization
can be rewritten as:

H∑

h=1

´reg log
Ã∗
´reg

(ah|sh)
Ãref(ah|sh)

=
H∑

h=1

(
Q∗

´reg
(sh, ah)− V ∗

´reg
(sh)− log Ãref(ah|sh)

)

=

H∑

h=1

r(sh, ah)− V ∗
´reg

(s1) (75)

+
H−1∑

h=1

(
Es′∼P(·|sh,ah)[V

∗
´reg

(s′)]− V ∗
´reg

(sh+1)
)

︸ ︷︷ ︸
(⋆)

, (76)

in which the second equality follows from the fact that:

QÃ
´reg

(s, a) = r´reg
(s, a) + Es′∼P(·|s,a)[V´regÃ

(s′)], (77)
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with r´reg
(s, a) = r(s, a) + ´reg log Ãref(a|s). RTO focuses on the typical LLM generation

scenario where the transition kernel is deterministic. Then, (⋆) = 0, yielding that

H∑

h=1

r(sh, ah) =
H∑

h=1

´reg log
Ã∗
´reg

(ah|sh)
Ãref(ah|sh)

+ V ∗
´reg

(s1). (78)

Building upon this result and combining it with the definition of the BT model, for any
trajectory pair {Ä j = {(sjh, a

j
h)}Hh=1}2j=1 satisfying s11 = s21, we have:

P(Ä1 { Ä2) = Ã

(
H∑

h=1

r(s1h, a
1
h)−

H∑

h=1

r(s2h, a
2
h)

)

= Ã

(
H∑

h=1

´reg log
Ã∗
´reg

(a1h|s1h)
Ãref(a

1
h|s1h)

−
H∑

h=1

´reg log
Ã∗
´reg

(a2h|s2h)
Ãref(a

2
h|s2h)

)
.

(79)

Similar to the bandit setting where the learning objective is equivalent to a BT model with

sentence-wise reward r∗(x, y) = ´reg log
Ã∗

´reg
(y|x)

Ãref(y|x)
(Rafailov et al., 2024), it shows that the

learning objective in token-wise MDP equivalents to a BT model with a token-wise reward
function

r∗(sh = (x, y1:h−1), ah = yh) = ´reg log
Ã∗
´reg

(ah|sh)
Ãref(ah|sh)

= ´reg log
Ã∗
´reg

(yh|x, y1:h−1)

Ãref(yh|x, y1:h−1)
, (80)

where x is the prompt, y1:h−1 is the tokens generated so far, and yh is the token chosen at the
current step. RTO assigns the defined token-wise reward function to each step. Formally,
for any h, it is defined as following:

´reg
1 log

Ã∗
´reg

(yh|x, y1:h−1)

Ãref(yh|x, y1:h−1)
− ´2

reg log
Ã(yh|x, y1:h−1)

Ãref(yh|x, y1:h−1)

≈ ´1
reg log

Ãdpo(yh|x, y1:h−1)

Ãref(yh|x, y1:h−1)
− ´2

reg log
Ã(yh|x, y1:h−1)

Ãref(yh|x, y1:h−1)
:= rrto((x, y1:h−1), yh),

(81)

as the token-wise reward used by RTO, where ´1
reg and ´2

reg are tuning parameters, and Ã
is the current policy to be updated. In the last step, RTO uses Ãdpo, the policy learned by
DPO, as a proxy for the unknown optimal Ã∗

´reg
. Then RTO employs PPO to optimize the

model with respect to the token-wise reward rrto. The idea of transformation from sequence
level preferences to token level guidance also appeared in an earlier work by Yang, Zhang,
Xia, Feng, Xiong, and Zhou (2024c).

7. Training-Free Optimization

Another area currently being explored in the literature is training-free preference optimiza-
tion or inference-time alignment. The main goal of this approach is to use inference-time
techniques to cater to user-specific or task-specific preferences at runtime, instead of relying
on explicit training, while preserving the original model’s integrity. Inference-time tech-
niques can include a broad range of methods, such as, in-context learning, model merging,
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chat vectors, decode time intervention, and the use of external models during decoding.
Existing work in these categories implicitly depends on test-time scaling to achieve perfor-
mance. Since there is significant overlap in this area, this section clusters the broad types
of techniques and details exemplar works for each cluster.

7.1 In-Context Alignment

This group of work builds on vanilla in-context learning to achieve alignment without chang-
ing model weights. They aim to steer the model’s behavior towards a preferred outcome,
either through changes in the system prompt or in-context examples. Lin et al. (2024)
utilize a specially crafted system prompt and as few as three stylistic examples, enabling
the model to adapt effectively to response styles. Lee, Park, Kim, and Seo (2024) gen-
eralize the specialized system prompts, allowing users to specify behavioral preferences in
system prompts, thereby influencing model behavior. Although alignment is training-free,
the authors did need to train models to interpret a vast array of system prompts. Song,
Fan, Zhang, Wang, and Wang (2024a) use a contrastive scoring mechanism to assess the
difference in log probabilities between the model’s samples for each response before and
after in-context learning, and then selects the response that aligns with a human preference
score. Cheng, Liu, Zheng, Ke, Wang, Dong, Tang, and Huang (2024) optimize (iteratively
updates) user prompts to better match the LLM’s input processing without changing LLM
weights, effectively training a small surrogate ‘reward’ model from pairwise human pref-
erences. This is similar in essence to RLHF, but the changes are applied to the prompts
themselves, viewed as a form of iterative prompt tuning.

7.2 Reward Model-Based Alignment

Several methods use feedback from a separate reward model or LLM to iteratively improve
the model’s responses. These techniques generally rely on selecting the best response by
using a reward model or LLM-As-A-Judge, which acts as a proxy for human preference,
and refining the output through iterative feedback. Li et al. (2025) introduce Test-Time
Preference Optimization (TPO), which utilizes a reference model to sample multiple re-
sponses to a prompt. A reward model then scores these responses and selects a winner and
a rejected response. A critique LLM is then used to provide feedback on why the winner
outperforms the rejected response. Another call to a critique LLM uses these feedback to
define how to improve current response, and then based on the instructions generate sample
responses for the next round. This refinement continues until the final response is obtained,
demonstrating improvements over DPO-baselined models.

Other works focus on Best-of-N sampling-based methods, where N candidate responses
are generated for a prompt and evaluated using a reward model to select the highest-
scoring response. The granularity of rewards can vary between using response level rewards,
segment level rewards and token level rewards during decoding. Heuristics for selecting the
best response include Best-of N (Lightman et al., 2024; Huang et al., 2025), Monte Carlo
tree search (Zhang et al., 2024; Zhao et al., 2024b), reward model based exploitation and
exploration (Hung et al., 2024) or rejection sampling during decoding the response (Khanov
et al., 2024; Li et al., 2024).
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7.3 Vector-Based Alignment

This body of work suggests that encoded representations of preference dimensions can be
learned and extracted, similar to task arithmetic (Ilharco et al., 2023). Multiple such
representations, corresponding to different domain-specific alignments, can be extracted
through linear operations between the base and aligned models, and then applied to the
base model in various ways to achieve different alignment goals. Huang et al. (2024) lead
the way of using ‘alignment vectors’ obtained from the difference between base models
and some trained version of the same model (e.g., a continued pre-trained version), which
regains alignment characteristics. Shahriar, Qi, Pappas, Doss, Sunkara, Halder, Mager, and
Benajiba (2024) extract these ‘alignment vectors’ and achieves multi-domain alignment on
the fly by performing weighted mixing, then applying them to the base model. Shirafuji,
Takenaka, and Taguchi (2025) focus on debiasing alignment, specifically training a biased
model and subtracting the base LLM to obtain the ‘alignment vector’ that exemplifies the
direction of bias. They then use linear operations with the ‘alignment vector’ to de-bias
other pre-trained language models.

7.4 Decoding Time Alignment

Methods in this section influence decoding at the token level directly. For example, Khanov
et al. (2024), Chen, Zhang, Luo, Chai, and Liu (2025), Kuang, Sun, McFaddin, Ma, and Ettl
(2024) modify the conditional probability of token generation by using a general-purpose
or personalized reward model on the vocabulary during decoding, thus generating tokens
that align with preferences. Similarly, Liu et al. (2024) adjust the conditional probability of
token generation by interpolating between an aligned model and a reference model during
decoding, allowing dynamic control over alignment without retraining. While these methods
are training-free from a preference optimization perspective, the reward model itself still
needs training unless an off-the-shelf model can be repurposed. Zhu, Liu, Zhang, Guo,
and Mao (2025) take a slightly different approach by dynamically adapting the model’s
behavior at the token level using surrogate reward signals instead of actual reward models
during decoding, based on preference principles such as ethical guidelines or specific stylistic
preferences. Zhang, Bai, Chen, Ma, Wang, Sun, Zheng, and Yang (2025) similarly treat
each token generation as an online learning problem, adjusting the model’s outputs to
align with user-specific preferences provided through user or system prompts. Li, Wei,
Zhao, Zhang, and Zhang (2023b), on the other hand, uses self-reflection on the reference
model itself alongside preference principles, allowing the model to adjust its token-level
decisions, i.e., select token or rewind generation during the decoding phase. Gao, Ge,
Shen, Dou, Ye, Wang, Zheng, Zou, Chen, Yan, et al. (2024) also work via influencing the
decoding by directly estimating aligned responses through a method called self-contrastive
decoding. Finally, Li, Patel, Viégas, Pfister, and Wattenberg (2023b) adopt a different
strategy by identifying specific attention heads within the model strongly correlated with
truthful responses. During inference, the activations of these attention heads are adjusted
in directions that promote truthfulness, achieving alignment.
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7.5 Model Merging Based Alignment

Recent work in model merging has shown that performing some type of weighted linear
interpolation of model weights has compositional effects (Wortsman et al., 2022). This has
been demonstrated in other domains such as federated learning (Kairouz et al., 2021; Das &
Brunschwiler, 2019) in IID or non-IID domains. Zheng et al. (2024a) perform linear inter-
polation between a base SFT-ed model and an aligned model to produce a new model with
improved alignment with human preferences. Jang, Kim, Lin, Wang, Hessel, Zettlemoyer,
Hajishirzi, Choi, and Ammanabrolu (2024) involve independently training policy models on
distinct preference dimensions and subsequently merging their parameters post-training to
optimize different directions. This approach reduces computational complexity from expo-
nential to linear concerning the number of preferences and allows for efficient integration of
new preferences without retraining the entire model.

7.6 Comparative Analysis: Inference-Time vs. Training-Based Alignment

There are several key differences between inference-time and training-based alignment ap-
proaches:

1. Alignment Speed: Inference-time methods are proposed as fast alternatives to their
training-based counterparts, such as RLHF or DPO, which can take days. However,
inference costs cannot be discounted entirely, as multiple LLM calls are often necessary
for even a single response in inference-time alignment.

2. Complexity of alignment: Inference based optimizations are frequently somewhat
limited to the peformance of the context and the models attention to the context, and
decoding strategies and reward models instead of explicit training performance.

3. On the Fly Domain Transfer: raining-free approaches can adapt to changing
preferences or domains on the fly, whereas training-based approaches typically require
expensive retraining.

4. Data Efficiency: Training or retraining requires extensive collection of preference
data, which can be costly. Inference-time algorithms often perform well with vastly
smaller amounts of in-context data.

5. Latency Impact: Training-based approaches have fixed inference latency after train-
ing, whereas the latency of inference-time alignment approaches is typically higher due
to test-time scaling.

It is important to note that there is no conclusive evidence to suggest that either training-
free or training-based alignment techniques consistently outperform the other. The choice
between the two should depend on resource constraints and the specific requirements of the
use case.

8. Evaluation

In the context of aligning models with human preferences it is crucial to evaluate not just the
models’ core abilities but also how aligned they are with human preferences. In Section 4 -
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Section 7 we have explored different types of preference optimization techniques, but without
standardized and comprehensive evaluation metrics, it is difficult to assess the practical
performance of these aligned models or compare different optimization approaches. In this
section, we survey key evaluation techniques across speech, language, vision, and reward
models, enabling practitioners to make informed decisions about model development and
deployment. Each of the evaluation methods presented in this section, from AlpacaEval for
language models to SpeechLMScore for speech models, can be applied across all optimization
techniques within their respective modalities.

8.1 LLM As A Judge for LLM Evaluation

Human evaluation is both costly and time-consuming. Developing an automatic evalua-
tion method that closely aligns with human assessments can significantly reduce evaluation
time and accelerate research progress. In this context, we outline the benchmarks employed
for automatic evaluation using LLMs.

8.1.1 AlpacaEval

AlpacaEval (Dubois et al., 2024) win rate (against GPT4) is an LLM-based automatic
evaluation that has high-level agreement to human. To further improve the fairness of
the evaluation and address the verbosity issue of GPT4 as a judge, Dubois et al. (2024)
introduce a length-controlled version of AlpacaEval that aims to conduct measurement
with outputs with similar lengths. The metric is used in AlpacaEval calculates win-rates
for models across a variety of NLP tasks to measure of model capabilities compared to a
baseline by using an LLM judge. AlpacaEval 2.0: The judge uses GPT4-Turbo to replace
GPT-3 based model “text-davinci-003” in the 1.0 version, which makes it more challenging
and have a metric that better reflects the current SOTA model.

8.1.2 ChatbotArena

ChatbotArena (Chiang et al., 2024) is a benchmarking platform for Large Language Models
(LLMs) that conducts anonymous, randomized ‘battles’ in a crowdsourced environment. On
this platform, users can pose questions and receive responses from two anonymous LLMs.
After reviewing the answers, users vote for the response they prefer, with the identities of
the models revealed only after voting. This crowdsourcing approach effectively gathers a
diverse array of user prompts, accurately reflecting real-world LLM applications. Utilizing
this data, they apply a range of advanced statistical techniques, from the Bradley-Terry
model (Bradley & Terry, 1952) to the E-values framework (Vovk &Wang, 2021), to estimate
model rankings as reliably and efficiently as possible.

8.1.3 MT-Bench

MT-bench (Zheng et al., 2024b) is a series of open-ended questions designed to evaluate
a chatbot’s multi-turn conversational and instruction-following abilities. It is used in the
platform that assesses these capabilities in a crowdsourced battle format. This platform is
particularly useful for evaluating the quality of LLM-generated responses, utilizing judges
like GPT-4. Consequently, employing LLM as a judge provides a scalable and explainable
method to approximate human preferences, which would otherwise be very costly to obtain.
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8.1.4 HELM

HELM (Liang et al., 2022) is a large-scale reproducible and transparent framework for
evaluating LLM models to enhance the transparency of language models. The framework
has seven metrics, such as accuracy, calibration, robustness, fairness, bias, toxicity, and
efficiency.

8.2 Vision Language Model Evaluation

8.2.1 VHELM

VHELM1 is an extension of the HELM framework (Liang et al., 2022) with the adaptation
methods to assess the performance of VLMs by scoring the winning rates against the GPT-
4V model.

8.2.2 MMStar

MMStar (Chen et al., 2024e) is a multi-modal benchmark consisting of 1,500 samples metic-
ulously curated by human experts. It evaluates six core capabilities and 18 specific criteria
to assess the multi-modal capacities of LVLMs. The samples are selected from existing
benchmarks using an automated process, followed by human review to ensure each sample
demonstrates visual dependency, minimal data leakage, and requires advanced multi-modal
skills.

8.3 Speech Language Model Evaluation

8.3.1 SpeechLMScore

SpeechLMScore (Maiti et al., 2023) calculates the average log-probability of a speech signal
by converting it into discrete tokens and assessing the average probability of generating the
token sequence. Formally, SpeechLMScore(x|¹) is defined as:

SpeechLMScore(d|¹) = 1

T

T∑

i=1

log p(di|d<i, ¹), (82)

where ¹ is an LM used to generate the score. Specifically, to compute SpeechLMScore, the
process involves: i) encoding the speech into discrete tokens d = d1 · · · dT , and ii) iteratively
calculating the log probability of each token di given all preceding tokens d1 · · · di−1 using
¹, i.e., log p(di|d<i, ¹). SpeechLMScore thus measures the average log-probability of a se-
quence of speech tokens. This metric is closely related to the perplexity of a speech sample,
essentially indicating how perplexed a speech language model is when presented with a set
of discrete tokens from speech x.

8.3.2 SpeechBERTScore

SpeechBERTScore (Saeki et al., 2024) evaluates the BERTScore for self-supervised dense
speech features derived from both generated and reference speech, even when these se-
quences differ in length. This method utilizes BERTScore as a metric to assess the quality

1. https://crfm.stanford.edu/helm/vhelm/latest/.
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of speech generation. By computing the BERTScore for SSL feature sequences from both
the generated and reference speech, SpeechBERTScore effectively captures their semantic
alignment.

8.4 Reward Model Evaluation

To assess the quality of reward models, it is crucial to evaluate their performance using
appropriate benchmarks. Zhu, Frick, Wu, Zhu, Ganesan, Chiang, Zhang, and Jiao (2024),
Jiang, Ren, and Lin (2023) propose using validation sets from previous RLHF training
processes, such as Anthropic’s Helpful and Harmless data (Bai et al., 2022a) or OpenAI’s
Learning to Summarize (Stiennon et al., 2020). Additionally, newly released preference data,
aimed at expanding the diversity of preference training datasets, such as UltraFeedback (Cui
et al., 2023), UltraInteract (Yuan et al., 2024a), and Nectar (Zhu et al., 2024), lack test
sets, necessitating a new style of evaluation for reward models. RewardBench is a bench-
mark dataset and codebase designed for this purpose (Lambert et al., 2024). The dataset
comprises a collection of prompt-chosen-rejected triplets that span various domains, includ-
ing chat, reasoning, and safety. This allows for a comprehensive evaluation of how reward
models perform on challenging, structured, and out-of-distribution queries. Winata et al.
(2024) propose MetaMetrics, a new method to construct a meta-metric that is aligned
with human preferences by calibrating multiple metrics by using Bayesian optimization and
boosting methods, which has been further applied to machine translation (Anugraha et al.,
2024).

9. Discussion and Research Directions

In this section, we describe topics related to human preferences that are either underexplored
or still in their early stages. We also discuss potential future research areas that could be
highly beneficial for advancing the field.

9.1 Discussion

9.1.1 Effectiveness of Optimization Components

In the literature on preference tuning, the comparative performance of different methods
remains unclear, particularly when comparisons are not conducted under fair conditions.
This is largely because RL is highly sensitive to changes in hyper-parameters, and running
multiple hyper-parameter configurations is very costly. For instance, when a new method is
proposed, the baseline may not be fully optimized, resulting in weaker baselines. Another
issue in automatic evaluation using LLMs as judges is the bias introduced by the pre-training
data. A model might prefer predictions generated by a similar type of model. For example,
a GPT-4 model may favor outputs from its own model family over those from other models,
such as Llama. Additionally, judge models may have a preference for longer sequences
or text in certain positions (Zheng et al., 2024b). Therefore, finding a less biased model
is crucial during evaluation. Consequently, the effectiveness of each method, along with
their optimized components and the models used in automatic evaluation, needs further
investigation and careful consideration.
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9.1.2 Offline vs. Online Algorithms

Through theoretical and experimental analysis, Xu, Fu, Gao, Ye, Liu, Mei, Wang, Yu, and
Wu (2024a) explore the limitations of DPO and find that DPO is sensitive to distribution
shifts between the base model outputs and preference data. They suggest that iterative
DPO, which involves continuous updating, is more effective than training on static data.
However, they also find that DPO fails to improve performance on challenging tasks such
as code generation. From a different perspective, Tang, Guo, Zheng, Calandriello, Cao,
Tarassov, Munos, Pires, Valko, and Cheng (2024a) clarify the confusion surrounding the
limitations of offline algorithms’ performance, often attributed to the bounded performance
of offline algorithms. The paper discusses that the dichotomy between online and offline
algorithms is frequently inaccurate in practice. An offline algorithm that continuously
updates its data stream effectively functions as an online algorithm. Consequently, the
shortcomings identified in offline learning can be mitigated by adopting a more careful
approach to the data generation process.

9.1.3 LLM as a Judge can be Unreliable

It has widely been aware that LLM-as-a-judge can be susceptible to length bias: Wang,
Ivison, Dasigi, Hessel, Khot, Chandu, Wadden, MacMillan, Smith, Beltagy, et al. (2023a)
have noticed that when evaluating 13B parameter models in head-to-head comparisons with
the Davinci-003 model, win rates have a strong correlation (0.96) with the average number
of unique tokens in the model’s response. Zheng, Pang, Du, Liu, Jiang, and Lin (2024c)
find that popular benchmarks of LLM-as-a-judge can be cheated by even a null model
to achieve impossible high winning rate. These possible bias of LLM-as-a-judge calls for
further research on how to improve the existing usage or more reliable evaluation methods
while still being efficient.

9.2 Research Directions

Here, we explore potential research directions that offer significant opportunities for further
investigation and development. These avenues hold promise for both academic researchers
and industry practitioners, providing ground for innovative studies and practical applica-
tions. We summarize key ideas and topics that could drive future advancements in the field,
highlighting areas where there is ample room for exploration and growth.

9.2.1 Multilingual, Multicultural, and Pluralistic Preference Tuning

While significant resources have been allocated to enhance the safety of LLMs for deploy-
ment, the safety of multilingual LLMs remains underexplored. Ahmadian, Ermis, Goldfarb-
Tarrant, Kreutzer, Fadaee, and Hooker (2024b) is one of the pioneering works pushing the
boundaries of aligning language models by optimizing for both general and safety per-
formance simultaneously in a multilingual setting using Distributional DPO. Similarly, Li
et al. (2024b) propose exploring DPO training to reduce toxicity in multilingual open-ended
generations. Another line of research focuses on using multilingual alignment based on hu-
man preferences to improve reasoning abilities, aiming to align reasoning processes in other
languages with those in the dominant language (She et al., 2024). There is still ample

2639



Winata, Zhao, Das, Tang, Yao, Zhang & Sahu

room for exploration in the multilingual space, particularly in examining the cultural as-
pects of multilingualism (Adilazuarda et al., 2024; AlKhamissi et al., 2024) and improving
the alignment of LLM for generation (Winata et al., 2021b). It is crucial to cover more
diverse languages, including regional languages, different dialects (Aji et al., 2022), and
code-switching (Winata et al., 2021a), which are common phenomena in bilingual and mul-
tilingual communities (Winata et al., 2024). Additionally, the exploration of multilingual
topics in vision-language and speech tasks remains open for further investigation.

9.2.2 Multi-modality

While alignment in LLMs has been extensively studied, alignment for multi-modal models
has not yet been investigated to the same extent. Sun et al. (2023) and Zhou et al. (2024b)
align LLaVA (Liu et al., 2024a) using PPO and DPO, respectively. Similarly, Li, Xie,
Li, Chen, Wang, Chen, Yang, Wang, and Kong (2023c) and Yu, Hu, Yao, Zhang, Zhao,
Wang, Wang, Pan, Xue, and Li (2023) employ DPO and its variations to align the Qwen-
VL (Bai et al., 2023) and Muffin (Yu et al., 2023) models. Notably, in addition to different
alignment strategies and base models, all these works introduce novel preference datasets
for alignment, varying in size, collection methods, and generation schemes. Consequently,
while each of these studies offers valuable insights into alignment for multi-modal LLMs,
it can sometimes be challenging to attribute reported improvements to specific proposed
choices. Furthermore, Amirloo, Fauconnier, Roesmann, Kerl, Boney, Qian, Wang, Dehghan,
Yang, and Gan (2024) examine each component of multi-modal alignment independently,
involving sampling from the model during policy optimization.

9.2.3 Speech Applications

The application of preference tuning in speech technology is in its early stages, offering many
opportunities for future exploration. As research advances, preference tuning is expected to
enhance various speech-related technologies, including TTS and speech recognition systems,
by incorporating human preferences to improve performance and user satisfaction. In TTS,
it can help select the most natural and pleasing synthetic voices (Zhang et al., 2024), while in
speech recognition, it can ensure more accurate and contextually appropriate transcriptions.
Additionally, preference tuning can benefit voice assistants, automated customer service
systems, and language learning tools by creating more intuitive and effective interfaces.
Ongoing research and experimentation will be essential to fully realize the potential of
preference tuning in speech technology, aiming to develop systems that are both technically
proficient and closely aligned with human communication and preferences.

9.2.4 Unlearning

Yao, Xu, and Liu (2023b), Zhang, Lin, Bai, and Mei (2024a) propose an alignment tech-
nique for unlearning by utilizing negative examples, which are easier and cheaper to collect
than the positive examples needed for preference tuning. This method is considered compu-
tationally efficient, with costs comparable to light supervised finetuning. They demonstrate
that unlearning is particularly appealing when resources are limited and the priority is to
stop generating undesirable outputs. Despite using only negative samples, unlearning can
achieve better alignment performance than RLHF. The unlearning method can be very
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useful in removing harmful responses, erasing copyright-protected content, and reducing
hallucinations. This approach is promising and has potential for further exploration in
future work.

9.2.5 Benchmarking Preference Tuning Methods

Developing a comprehensive benchmark for various preference tuning methods is essential
for gaining a clearer understanding of their individual effectiveness. Currently, the effec-
tiveness of each method is somewhat unclear, making it difficult to fully appreciate their
value. By creating a benchmark, we can systematically assess and compare these methods,
thereby clarifying their strengths and weaknesses. This effort to elucidate the usefulness of
each approach is vital for advancing our knowledge and improving the application of prefer-
ence tuning techniques. Such a benchmark would not only enable more informed decisions
when selecting the most suitable method for specific tasks but also stimulate innovation by
identifying areas that require further refinement and development. Ultimately, this initia-
tive aims to enhance the overall effectiveness and reliability of preference tuning methods
across various applications.

9.2.6 Mechanistic Understanding of Preference Tuning Methods

Despite the popularity of preference tuning methods for LLM alignment, explanations for
their underlying mechanisms in terms of how models become “aligned” still lack, thus
making it difficult to explain phenomena like jailbreaks (Chao et al., 2023). Taking toxicity
reduction as the task and applying DPO on GPT2-medium, Lee, Bai, Pres, Wattenberg,
Kummerfeld, and Mihalcea (2024) suggest that capabilities may be rather bypassed instead
of removed. Thus, current preference tuning methods may still be vulnerable to reverse-
engineering and the models tuned are easy to be unaligned again. More interpretation of
preference tuning methods could possibly address these concerns by ensuring that models
not only meet alignment objectives more reliably but also provide clearer insights into how
these objectives are achieved; it could also possibly help lead to better preference tuning
methods that can mitigate issues such as jailbreaking and other forms of misalignment,
where models exhibit undesirable behaviors despite appearing aligned during training.

9.2.7 Privacy and Safety

There has also been concern raised about the private and safety aspects about existing
alignment techniques. Wu, Inan, Backurs, Chandrasekaran, Kulkarni, and Sim (2023a)
propose to combine DP-SGD with RLHF using PPO for a privacy preserving alignment.
For safety, Dai, Pan, Sun, Ji, Xu, Liu, Wang, and Yang (2023a) propose safe RLHF by
introducing a safety constraint to ensure the aligned model to be both helpful and less
harmless. Recent study in Qi, Panda, Lyu, Ma, Roy, Beirami, Mittal, and Henderson (2024)
introduce the concept of ”shallow safety alignment” to uncover a fundamental vulnerability
in current safety alignment approaches and proposes ”deep safety alignment” as a promising
defense. These works pin down several future research directions in the privacy and safety
aspects of RLHF and general alignment algorithms.
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can speak many languages: Unlocking multilingual preference optimization for llms.
arXiv preprint arXiv:2407.02552.

Das, A., & Brunschwiler, T. (2019). Privacy is what we care about: Experimental investiga-
tion of federated learning on edge devices. In International Workshop on Challenges
in Artificial Intelligence and Machine Learning for Internet of Things held in con-
junction with ACM SenSys. Association for Computing Machinery, Inc.

Deng, F., Wang, Q., Wei, W., Hou, T., & Grundmann, M. (2024). Prdp: Proximal reward
difference prediction for large-scale reward finetuning of diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7423–7433.

Ding, N., Chen, Y., Xu, B., Qin, Y., Hu, S., Liu, Z., Sun, M., & Zhou, B. (2023). Enhancing
chat language models by scaling high-quality instructional conversations. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 3029–3051.

Domingo-Enrich, C., Drozdzal, M., Karrer, B., & Chen, R. T. (2024). Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal
control. arXiv preprint arXiv:2409.08861.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan, R., Diao, S., Zhang, J., Shum,
K., & Zhang, T. (2023). Raft: Reward ranked finetuning for generative foundation
model alignment. arXiv preprint arXiv:2304.06767.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H., Zhou, Y., Jiang, N., Sahoo, D., Xiong,
C., & Zhang, T. (2024). Rlhf workflow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A.,
Schelten, A., Yang, A., & Fan, A. (2024). The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Dubois, Y., Galambosi, B., Liang, P., & Hashimoto, T. B. (2024). Length-controlled alpacae-
val: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475.

2646



Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., & Kiela, D. (2024). Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306.

Fakoor, R., Chaudhari, P., & Smola, A. J. (2020). P3o: Policy-on policy-off policy opti-
mization. In Uncertainty in artificial intelligence, pp. 1017–1027. PMLR.

Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O.,
Wenzek, G., & Chaudhary, V. (2021). Beyond english-centric multilingual machine
translation. Journal of Machine Learning Research, 22 (107), 1–48.

Fan, Y., Watkins, O., Du, Y., Liu, H., Ryu, M., Boutilier, C., Abbeel, P., Ghavamzadeh,
M., Lee, K., & Lee, K. (2024). Reinforcement learning for fine-tuning text-to-image
diffusion models. Advances in Neural Information Processing Systems, 36.

Feng, W., He, X., Fu, T.-J., Jampani, V., Akula, A., Narayana, P., Basu, S., Wang, X. E.,
& Wang, W. Y. (2022). Training-free structured diffusion guidance for compositional
text-to-image synthesis. arXiv preprint arXiv:2212.05032.

Gao, S., Ge, Q., Shen, W., Dou, S., Ye, J., Wang, X., Zheng, R., Zou, Y., Chen, Z., Yan, H.,
et al. (2024). Linear alignment: A closed-form solution for aligning human preferences
without tuning and feedback. arXiv preprint arXiv:2401.11458.

Gong, T., Lyu, C., Zhang, S., Wang, Y., Zheng, M., Zhao, Q., Liu, K., Zhang, W., Luo, P.,
& Chen, K. (2023). Multimodal-gpt: A vision and language model for dialogue with
humans. arXiv preprint arXiv:2305.04790.

Groeneveld, D., Beltagy, I., Walsh, P., Bhagia, A., Kinney, R., Tafjord, O., Jha, A. H.,
Ivison, H., Magnusson, I., & Wang, Y. (2024). Olmo: Accelerating the science of
language models. arXiv preprint arXiv:2402.00838.

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova, K., Weerts, L., Sharma, A., Sid-
dhant, A., Ahern, A., Wang, M., & Gu, C. (2023). Reinforced self-training (rest) for
language modeling. arXiv preprint arXiv:2308.08998.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Del Giorno, A., Gopi, S., Javaheripi,
M., Kauffmann, P., de Rosa, G., & Saarikivi, O. (2023). Textbooks are all you need.
arXiv preprint arXiv:2306.11644.

Guo, B., Zhang, X., Wang, Z., Jiang, M., Nie, J., Ding, Y., Yue, J., & Wu, Y. (2023). How
close is chatgpt to human experts? comparison corpus, evaluation, and detection.
arXiv preprint arXiv:2301.07597.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
et al. (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.

Guo, S., Zhang, B., Liu, T., Liu, T., Khalman, M., Llinares, F., Rame, A., Mesnard, T.,
Zhao, Y., & Piot, B. (2024a). Direct language model alignment from online ai feedback.
arXiv preprint arXiv:2402.04792.

Guo, Y., Cui, G., Yuan, L., Ding, N., Wang, J., Chen, H., Sun, B., Xie, R., Zhou, J., & Lin,
Y. (2024b). Controllable preference optimization: Toward controllable multi-objective
alignment. arXiv preprint arXiv:2402.19085.

2647



Winata, Zhao, Das, Tang, Yao, Zhang & Sahu

Hartvigsen, T., Gabriel, S., Palangi, H., Sap, M., Ray, D., & Kamar, E. (2022). Toxigen: A
large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3309–3326.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. In Neurips,
Vol. 33, pp. 6840–6851.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,
de Las Casas, D., Hendricks, L. A., Welbl, J., & Clark, A. (2022). Training compute-
optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030.

Hong, J., Lee, N., & Thorne, J. (2024). Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2 (4), 5.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen,
W. (2021). Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Huang, A., Block, A., Liu, Q., Jiang, N., Foster, D. J., & Krishnamurthy, A. (2025). Is best-
of-n the best of them? coverage, scaling, and optimality in inference-time alignment.
arXiv preprint arXiv:2503.21878.

Huang, S.-C., Li, P.-Z., Hsu, Y.-c., Chen, K.-M., Lin, Y. T., Hsiao, S.-K., Tsai, R., &
Lee, H.-Y. (2024). Chat vector: A simple approach to equip llms with instruction
following and model alignment in new languages. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 10943–10959.

Hung, C.-Y., Majumder, N., Mehrish, A., & Poria, S. (2024). Inference time alignment with
reward-guided tree search. arXiv preprint arXiv:2406.15193.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L., Hajishirzi, H., & Farhadi, A. (2023).
Editing models with task arithmetic. In The Eleventh International Conference on
Learning Representations.

Jang, J., Kim, S., Lin, B. Y., Wang, Y., Hessel, J., Zettlemoyer, L., Hajishirzi, H., Choi, Y.,
& Ammanabrolu, P. (2024). Personalized soups: Personalized large language model
alignment via post-hoc parameter merging. In Adaptive Foundation Models: Evolving
AI for Personalized and Efficient Learning.

Ji, J., Liu, M., Dai, J., Pan, X., Zhang, C., Bian, C., Chen, B., Sun, R., Wang, Y., & Yang, Y.
(2024). Beavertails: Towards improved safety alignment of llm via a human-preference
dataset. Advances in Neural Information Processing Systems, 36.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A.,
& Fung, P. (2023a). Survey of hallucination in natural language generation. ACM
Computing Surveys, 55 (12), 1–38.

Ji, Z., Yu, T., Xu, Y., Lee, N., Ishii, E., & Fung, P. (2023b). Towards mitigating llm
hallucination via self reflection. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 1827–1843.

2648



Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l.,
Bressand, F., Lengyel, G., Lample, G., & Saulnier, L. (2023). Mistral 7b. arXiv
preprint arXiv:2310.06825.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot,
D. S., Casas, D. d. l., Hanna, E. B., & Bressand, F. (2024). Mixtral of experts. arXiv
preprint arXiv:2401.04088.

Jiang, D., Ren, X., & Lin, B. Y. (2023). Llm-blender: Ensembling large language models
with pairwise comparison and generative fusion. In Proceedings of the 61th Annual
Meeting of the Association for Computational Linguistics (ACL 2023).

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz,
K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open
problems in federated learning. Foundations and trends® in machine learning, 14 (1–
2), 1–210.

Khanov, M., Burapacheep, J., & Li, Y. (2024). ARGS: Alignment as reward-guided search.
In The Twelfth International Conference on Learning Representations.

Kim, D., Kim, Y., Song, W., Kim, H., Kim, Y., Kim, S., & Park, C. (2024). sdpo: Don’t
use your data all at once. arXiv preprint arXiv:2403.19270.

Kim, H., Yu, Y., Jiang, L., Lu, X., Khashabi, D., Kim, G., Choi, Y., & Sap, M. (2022).
Prosocialdialog: A prosocial backbone for conversational agents. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 4005–
4029.

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., Neubig, G., Lee, M., Lee,
K., & Seo, M. (2024). Prometheus 2: An open source language model specialized in
evaluating other language models. arXiv preprint arXiv:2405.01535.

Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna, J., & Levy, O. (2023). Pick-a-pic:
An open dataset of user preferences for text-to-image generation. Advances in Neural
Information Processing Systems, 36, 36652–36663.

Kool, W., van Hoof, H., & Welling, M. (2019). Buy 4 reinforce samples, get a baseline for
free!. Deep RL Meets Structured Prediction.
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