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DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH:

INSIGHTS INTO POPULATION CHAOS∗
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Abstract. Flour beetles (genus Tribolium) have long been used as a model organism to under-
stand population dynamics in ecological research. A rich and rigorous body of work has cemented
flour beetles’ place in the field of mathematical biology. One of the most interesting results using
flour beetles is the induction of chaos in a laboratory beetle population, in which the well-established
LPA (larvae-pupae-adult) model was used to inform the experimental factors that would lead to
chaos. However, whether chaos is an intrinsic property of flour beetles remains an open question.
Inspired by new experimental data, we extend the LPA model by stratifying the adult population
into newly emerged and mature adults and considering cannibalism as a function of mature adults.
We fit the model to longitudinal data of larvae, pupae, and adult beetle populations to demonstrate
the model’s ability to recapitulate the transient dynamics of flour beetles. We present local and
global stability results for the trivial and positive steady states and explore bifurcations and limit
cycles numerically. Our results suggest that, while chaos is a possibility, it is a rare phenomenon
within realistic ranges of the parameters obtained from our experiment and is likely induced by
environmental changes connected to media changes and population censusing.
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1. Introduction. It is well known that limited resources will affect population
growth and that, on the other hand, organisms may affect their environment. Natu-
rally, population fluctuations will be observed as this dance goes on—organisms will
attempt to adapt to their environment while potentially modifying their environment
and then responding to these changes. The potential for chaotic dynamics, charac-
terized by aperiodic oscillations, was recognized in single-species ecological models by
Robert May in 1974 [39], spurring a hunt for chaos in natural populations.

In a landmark study, Costantino and colleagues induced chaotic dynamics in a
laboratory population of red flour beetles [6, 8]. In this work, laboratory populations
of Tribolium castaneum (family: Tenebrionidae) were manipulated in order to place
their dynamics in the desired region of asymptotic behavior, such as convergence
to a stable equilibrium or that of a limit cycle. This study spurred a decade-long
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DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH 2301

exploration into the rich dynamics of the LPA (larvae-pupae-adult) model and the
role of chaos in natural ecosystems. The “Beetle Team,” composed of Jim Cushing,
R. F. Costantino, Brian Dennis, Robert Desharnais, Shandelle Henson, Aaron King,
and Jeffrey Edmunds, thoroughly characterized the dynamical behaviors of the LPA
model and rigorously validated their theoretical results with experiments (see, for
example, [18, 23, 35, 15, 29]).

Tribolium’s oscillatory population dynamics, as well as their adaptation to cohab-
itation with humans, made the insects an excellent candidate organism in the hunt for
chaos. The humble flour beetle has long been used to study reproduction, population
dynamics, evolution, genetics, and dispersal [47, 41]. The flour beetle’s over 5,000-
year history with infesting stored grains means the insects can easily adapt to their
experimental settings [1]. Numerous experiments by Thomas Park have solidified
the place of Tribolium in scientific literature [43, 44, 45]; his two-species competi-
tion experiments in particular spurred ecological and mathematical exploration into
why the experiments did not end with a consistently dominant species [43, 3, 38].
A thorough review of the contributions of flour beetles to ecology and biology may
be found in [47]. Tribolium have also been modeled mathematically prior to their
most recent rise to fame; for example, competition between two Tribolium species has
been modeled using a system of ODEs, with Bartlett modeling competition from a
predator-prey perspective rather than that of resource competition [3]. Leslie modeled
this competition using a stochastic two-stage model for each species, although finding
the two-stage age structure insufficient [38]. Renshaw studied the spatial distribution
of flour beetles using a discrete “stepping-stone” lattice model as well as analyzing a
diffusion model [48].

Part of the mathematical interest in Tribolium stems from nonlinear interactions
between their life stages. Flour beetles are holometabolous (i.e., go through complete
metamorphosis) and self-regulate their populations through cannibalism [41, 5, 40, 47].
It has been suggested that the periodic nature of Tribolium populations is induced by
cannibalistic behaviors [47] (in general, Veprauskas and Cushing showed that suffi-
ciently intense cannibalism on juveniles prevents extinction in nutrient-poor environ-
ments [51]). Adult females lay between two and sixteen eggs per day [50, 2]. These
eggs may be cannibalized by larvae or adults; those that survive go through six larval
instars [41]. After approximately fourteen to thirty days, larvae develop into pupae
and remain in this state for seven to fourteen days [41, 42]. Pupae are immobile and
have no protection, and they may be consumed by adults and sometimes larvae [4].
As they emerge, adults are initially white to light brown in color and do not have a
hardened exoskeleton (sclerotization); these individuals may be referred to as callow
adults and will develop a sclerotized exterior within a few days [41]. Newly emerged
adult females have approximately twenty times lower fecundity than their mature
counterparts [41]. New adults may also be consumed by mature adults [4]. Devel-
opment times depend on humidity as well as temperature, with optimal egg-to-adult
development at 30◦C lasting thirty days [32, 41, 47]. Faster development is asso-
ciated with higher temperatures and higher relative humidity [41]. Figure 1 shows
the life stages of Tribolium after hatching and highlights the physical changes during
development.

The standard LPA model is given by the following [6, 9]:

L(t+ 1) = bA(t)e−c1L(t)−c2A(t),

P (t+ 1) = (1− µl)L(t),

A(t+ 1) = P (t)e−c3A(t) + (1− µa)A(t).

(1.1)
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2302 BROZAK, PERALTA, PHAN, NAGY, AND KUANG

Fig. 1. Tribolium life cycle as depicted in the larvae-pupae-newly emerged adult-adult model
(2.1). Images of newly emerged adult provided by S. Alme; all other images obtained from [34].

The populations of larvae, pupae, and adults at time t are denoted by L(t), P (t),
and A(t), respectively. Units of time are in two-week intervals, which roughly aligns
with the development time of larvae [6, 41, 42]. Hence, P (t) contains pupae as well as
nonfeeding larvae and callow adults [6]. The recruitment rate b denotes the number
of eggs that will hatch into larvae in the absence of cannibalism [6]. The parameter
0< µi < 1 is the natural mortality probability for life stage i ∈ {l, a} so that (1− µi)
is the proportion of individuals in life stage i that survive to the next stage [6]. The
coefficients c1 ≥ 0, c2 ≥ 0, and c3 ≥ 0 represent the intensity of cannibalism on eggs
by larvae and adults, respectively, as well as adults consuming pupae [6].

The dynamics of the LPA model have been extensively characterized and vali-
dated with experimental data. In the absence of cannibalism, the model is linear and
the population may go extinct or grow exponentially [16]. Cannibalism affects the
asymptotic behavior of the system and induces complex nonlinear behaviors such as
limit cycles and chaos. Cushing [9] showed the local stability of the extinction equi-
librium as well as the stability of the positive steady state when the net reproductive
threshold is near one. Furthermore, when the net reproductive threshold is greater
than one, the system is uniformly persistent with respect to the extinction equilib-
rium. The model also has a global chaotic attractor, which, for certain parameters,
has an unstable saddle cycle of period eleven [16]. Kuang and Cushing [36] derived
thresholds for the global stability of the positive steady state in the absence of larval
cannibalism on eggs. Desharnais and colleagues showed that small perturbations may
have a significant effect on the amplitude of oscillations [21]. In a special case of the
model where adults live for two weeks, Cushing used synchronous orbits to study the
existence of an invariant loop and cycle chains [10].

The standard (deterministic) LPA model has been modified in several ways.
Cushing and colleagues argue for the incorporation of demographic and environmen-
tal stochasticity [16, 18, 17, 19] and have also modified the model to account for
a periodic-forcing environment [7, 30, 27]. For certain sets of parameters such as
cannibalism rates and mortality, the LPA model predicted chaotic dynamics, which
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DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH 2303

accurately reflected the data; this includes the prediction of invariant loops and equi-
libria [18, 17, 19, 6, 8]. A compilation of some mathematical results can be found
in [11].

Henson and Cushing proved the existence and stability of periodic cycles in the
periodic LPA model, showing theoretically that a fluctuating environment results in
increased population levels [30]. These theoretical results were in line with experi-
mental findings published by Jillson [33] and studied by Costantino et al. [7]. Henson
et al. found in the periodic LPA model an unstable saddle cycle separated two sta-
ble 2-cycles, significantly affecting transient dynamics [28]. Furthermore, populations
exhibiting oscillations in a constant environment may have more than one oscillatory
final state in a periodic environment [27, 29].

Initially, we intended to study population dynamics in response to different en-
vironments using Tribolium confusum (see Appendix A). Additional goals for this
experiment were to decrease counting variability using protocols based on existing
methods [20, 6, 8]. T. confusum has distinct physical life stage forms (i.e., eggs, lar-
vae, pupae, and adult) and experience behavioral shifts during the transition between
each stage. We found it difficult to reproduce the protocols in previous works that
grouped multiple life stages together, hence our desire to develop new protocols.

After culturing flour beetles and recording their populations over several weeks,
we attempted to parameterize the LPA model using our data; our results suggested
that the dynamics exhibited in our laboratory may be better represented by a modified
version of the LPA model. Hence, we present a four-dimensional discrete time map
for the dynamics of Tribolium beetles by accounting for the lower fecundity of newly
emerged adults. We analyze the stability properties of the two steady states of the
model and numerically study the bifurcations of the model. We were interested in
whether an additional equation in the model would induce complexity, but found that
our data supported the conclusion that chaos is not an inherent property of Tribolium.

Finally, we discuss differences in experimental methods and how they may contribute
to model performance and generate hypotheses for further study.

2. The LPAA model. The total beetle population is split into four mutually
exclusive compartments: larvae (L), pupae (P ), newly emerged adults (A1), and
mature adults (A2). Each time step spans two weeks, as done in previous work [14, 6].
Thus, the newly emerged adult compartment contains callow and newly sclerotized
adults and accounts for the significantly lower fecundity of newly emerged females
[41]. As done by Park et al., we assume it takes ten days for a newly sclerotized adult
to become sexually mature [46]. Hence, the two-week time step still holds for this
formulation. The discrete time model, which we will refer to as the LPAA model, is
governed by the following difference equations:

L(t+ 1) = bA2(t)e
−c1A2(t),

P (t+ 1) = (1− µl)L(t),

A1(t+ 1) = (1− µp)P (t),

A2(t+ 1) =A1(t)e
−c2A2(t) + (1− µa)A2(t).

(2.1)

Similar to the LPA model (1.1), cannibalistic interactions are modeled using a
binomial distribution [18]. The strength of the cannibalistic interactions are described
by the coefficients 0 ≤ c1 ≤ 1 (mature adults consuming larvae) and 0 ≤ c2 ≤ 1 (ma-
ture adults consuming newly emerged adults). We assume that encounters between
mature adults and an egg or newly emerged adult occur at random, with the proba-
bility that the egg or immature adult survives given by (1− cj)

A2(t) ≈ exp (−cjA2(t))

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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for j = 1,2 [18]. It is assumed that the only losses of eggs and immature adults are
due to cannibalistic interactions with mature adults. Total or near-total survival of
callow adults in the absence of cannibalism has been observed by Park et al. [46].

While the LPAA model shares many parameters and functional forms with the
LPA model, there are several key differences. Larval cannibalism on eggs and adult
cannibalism on pupae are not included in the model; however, mature adult can-
nibalism on newly emerged adults is incorporated. While we extensively compared
variations of the LPA and LPAA models that included various cannibalistic interac-
tions (for example, adult cannibalism on pupae), the best fit was obtained when only
adults partook in cannibalism. This result suggests the testable hypothesis that only
these sources of cannibalism contribute significantly to the dynamics.

3. Fitting to experimental data. We investigated the influence of salts and
large inorganic compounds at small concentrations on the population dynamics of
T. confusum over 20 weeks. This work is part of a larger ongoing study working to
understand population dynamics in the context of multiple resource limitation from
a stoichiometric perspective. Specifically, we aimed to understand how laboratory
populations of T. confusum responded to changes to their environment in the form of
varying nitrogen and phosphorus ratios. Details of our experimental protocols may
be found in Appendix A.

No significant qualitative differences were observed between experimental sub-
groups. We first fitted the LPA model to our data, shown in the left panels of Figure 2
and Figure 3. However, the estimated parameters (defined in Table 1) were not biolog-
ically sensible, as shown in Table 2. Adjusting the parameter constraints, the model
failed to produce a good fit. This motivated a principled approach in developing
an alternative, biologically reasonable model that would better describe our results.
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Fig. 2. Left panels: LPA model fitted to experimental group with 1% nitrogen in unbleached
flour. Right panels: LPAA model fitted to the same data. The weighted sum of squared errors is
reported for each model.
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Fig. 3. Left panels: LPA model fitted to experimental group with 1% phosphorous in bleached
flour. Right panels: LPAA model fitted to the same data. The weighted sum of squared errors is
reported for each model.

Table 1

Parameter definitions. ∗Larval mortality probability µl was estimated directly from the data.

Parameter Definition (unit) Source

b larval recruitment (larvae per adult) Fitted
µl proportion of larvae lost due to natural mortality *

µp proportion of pupae lost due to natural mortality Fitted
µa proportion of pupae lost due to natural mortality Fitted
c1 cannibalism of mature adults on eggs (per mature adult) Fitted
c2 cannibalism of mature adults on immature adults (per mature adult) Fitted

Table 2

Best fit parameter values. Median values are reported with minimums (maximums). References
are listed for reported ranges found or assumed in the literature. It should be noted that, in the LPA
model (1.1), c1 and c2 correspond to cannibalism on eggs by larvae and adults. In the LPAA model
(2.1), c1 corresponds to cannibalism on eggs by mature adults and c2 corresponds to cannibalism
of newly emerged adults by mature adults. Larval mortality µl is estimated directly from the data,
while all other parameters are fitted.

LPA LPAA

Parameter Median (Mininum, maximum) Median (Mininum maximum)

b 20 (20, 20) 6.4232 (4.2781, 20)
µl 0.6053 (0.5253, 0.6739) 0.6053 (0.5253, 0.6739)
µp 2.64e-12 (1.21e-12, 2.75e-11)
µa 0.0842 (0.0353, 0.1039) 0.0358 (0, 0.0948)
c1 0.0179 (0.0089, 0.0209) 0.0099 (0.0066, 0.017)
c2 0.0003 (0, 0.0097) 0.0028 (0.0014, 0.0050)

c3 1.0760e-13 (1.8714e-14, 7.922e-5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2306 BROZAK, PERALTA, PHAN, NAGY, AND KUANG

Table 3

Objective values by experimental group. The only group with a poor parameterization (indicated
by estimated parameters at the top of biological constraints) is the P 0.5% bleached group.

Group LPA LPAA % improvement

N 0.5% unbleached 3.68× 10
4 3.98× 104 −8.15%

N 0.5% bleached 4.88× 104 4.05× 10
4 +16.91%

N 1% unbleached 3.50× 10
4 3.91× 104 −11.71%

N 1% bleached 2.98× 104 2.25× 10
4 +24.50%

P 0.5% unbleached 3.31× 104 2.97× 10
4 +10.2%

P 0.5% bleached 6.99× 10
4 8.12× 104 −16.17%

P 1% unbleached 5.66× 10
4 6.09× 104 −7.5972%

P 1% bleached 4.76× 104 4.11× 10
4 +13.66%

After rigorously comparing many biologically feasible models to our experiments, we
found that the LPAA model best recapitulated our time-series data.

Fittings to our experimental data are shown in Figure 2 and Figure 3; we high-
light these two cases since the other experimental subgroups had similar results.1 We
minimize the weighted sum-squared error between the data and the one-step forecasts
of the model. All datasets are weighted equally. The initial conditions of the juvenile
stages were determined by the value of the data at the indicated time step. Since the
adults have significantly longer lifespans than juveniles, we calculate the initial values
of the adult populations using

A1(j) = data(j)− data(j − 1),

A2(j) = data(j − 1),

where data(j) indicates the number of adults at the jth time step, 2≤ j ≤ 9.
One-step forecasts are shown in Figure 2 and Figure 3 for two experimental groups

which we feel are characteristic of the overall data. While the weighted sum of squared
residuals are generally comparable between models (see Table 3), estimated parame-
ter values for the LPAA model lie in expected biological ranges [50, 2]. The estimated
values for the larval recruitment parameter b indicate a poor fit for the LPA model.
All experimental subgroups had biologically reasonable LPAA parameters with the
exception of the P 0.5% bleached group, in which both the LPA and LPAA models
performed poorly. Quantile-quantile (QQ) plots of the one-step residuals show ap-
proximately straight lines, indicating normally distributed residuals and goodness of
fit (see Appendix B).

We hypothesize that, aside from using different Tribolium species, different count-
ing and sorting procedures also contribute to variation in model performance. For
example, Desharnais and Liu combined large larvae and pupae to match the time
steps of the LPA model [22], which we were unable to reproduce because thresholds
for sorting were indeterminable.

4. Basic model properties. The LPAA model presented above is autonomous
with the corresponding projection matrix

P(x(t)) =









0 0 0 be−c1A2(t)

1− µl 0 0 0
0 1− µp 0 0
0 0 e−c2A2(t) 1− µa









,

where x(t) = (L(t), P (t), A1(t), A2(t))
T .

1Data and other fittings are available at https://github.com/sjbrozak/Tribolium-LPAA.
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Lemma 4.1. The LPAA model (2.1) is positively invariant for the region

Ω=

{

(L,P,A1,A2)∈R
4
+ :L≤ L̂,P ≤ P̂ ,A1 ≤ Â1A2 ≤

Â1

µa

+A2(0)

}

,

where L̂= b
ec1

, P̂ = b(1−µl)
ec1

, and Â1 =
b(1−µl)(1−µp)

ec1
.

Proof. Because the projection matrix is nonnegative with nonnegative initial con-
ditions, solutions of the model exist uniquely and remain nonnegative [13]. To show
boundedness, observe that

L(t)≤ L̂ :=max
{

bxe−c1x : x> 0
}

,

where the maximum L̂= b
ec1

exists at x= 1/c1. Hence, we may obtain the following
upper bounds on pupae and immature adults:

P (t)≤ P̂ := (1− µl) L̂

and

A1(t)≤ Â1 := (1− µp) P̂ .

We now show that A2(t) is bounded by iterating the equation for mature adults.
Observe that

A2(1)≤ Â1 + (1− µa)A2(0),

A2(2)≤ Â1 + (1− µa) Â1 + (1− µa)
2
A2(0),

... ≤
...

A2(n)≤ Â1

n−1
∑

i=0

(1− µa)
i
+ (1− µa)

n
A2(0),

which implies that

A2(n)≤ Â1

(

1− (1− µa)
n

1− (1− µa)

)

+ (1− µa)
n
A2(0)

≤
Â1

µa

+A2(0).

Thus, A2(t) is bounded, and subsequently, all compartments are bounded for all time
given nonnegative initial data.

The model (2.1) attains two steady states: a trivial (extinction) steady state
E0 = (0,0,0,0)T and a unique positive steady state given by E∗ = (L∗, P ∗,A∗

1,A
∗

2)
T ,

which satisfies

L∗ = bA∗

2e
−c1A

∗

2 , P ∗ = (1− µl)L
∗,

A∗

1 = (1− µp)P
∗, A∗

2 =A∗

1e
−c2A

∗

2 + (1− µa)A
∗

2.

We may obtain a closed form expression for E∗ by substituting L∗ and P ∗ into A∗

1,
and we find that

A∗

1 = bA∗

2 (1− µl) (1− µp) e
−c1A

∗

2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
1
/1

6
/2

5
 t

o
 1

2
9
.2

1
9
.4

3
.1

9
8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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Assuming that A∗

2 6= 0 (lest the model stay at the extinction equilibrium) and substi-
tuting this new expression for A∗

1 into A∗

2,

A∗

2 =
1

c1 + c2
ln

(

b (1− µl) (1− µp)

µa

)

.

Clearly, the positive steady state exists uniquely when ln (
b(1−µl)(1−µp)

µa
)> 0, and so,

we can define

R0 :=
b (1− µl) (1− µp)

µa

> 1

as the condition necessary for existence of the positive steady state. Biologically,
this threshold gives the average number of offspring of a single adult that survive to
adulthood.

5. Stability of the extinction steady state. We present the conditions re-
quired for local and global stability of the extinction steady state.

Theorem 5.1. The extinction equilibrium E0 is locally and globally asymptoti-

cally stable when R0 < 1 and unstable when R0 > 1.

Proof. Recall that the population projection matrix is given by

P(x(t)) =









0 0 0 be−c1A2(t)

1− µl 0 0 0
0 1− µp 0 0
0 0 e−c2A2(t) 1− µa









.

The inherent projection matrix, which describes dynamics of small populations, is
given by the Jacobian at the trivial equilibrium, or P(E0) [13]. Observe that a
nonnegative matrix A is primitive and irreducible if and only if Am > 0 for some
positive integer m [26, Chapter 13, section 5]. The matrix (P(E0))m > 0 for m = 6.
We are now equipped to apply the Perron–Frobenius theorem, restated here from [31,
p. 182].

Theorem 5.2 (Perron–Frobenius). If M is an n× n nonnegative matrix, there

exists a unique nonnegative eigenvalue λ that is dominant in the sense that |µ| ≤ λ
for all other eigenvalues µ of M . There exist right and left eigenvectors u ≥ 0 and

v ≥ 0 such that Mu= λu and vM = λv. If M is primitive and irreducible, then λ is

simple and positive, u and v are unique and positive, and |µ|<λ.

By the Perron–Frobenius theorem, P(E0) has a positive, algebraically simple,
strictly dominant eigenvalue. Furthermore, this eigenvalue is <1 and only if R0 < 1;
hence, the extinction steady state is locally asymptotically stable when this condition
holds [13, Theorem 1.1.3, p. 10]. Note that, elementwise,









0 0 0 be−c1A2(t)

1− µl 0 0 0
0 1− µp 0 0
0 0 e−c2A2(t) 1− µa









≤









0 0 0 b
1− µl 0 0 0

0 1− µp 0 0
0 0 1 1− µa









.

Because the projection matrix is less than or equal to the inherent projection ma-
trix for all (L,P,A1,A2) ∈ R

4
+, a comparison argument shows that the extinction

equilibrium is globally asymptotically stable when R0 < 1 [13].
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6. Local stability of the positive steady state.

Theorem 6.1. The positive steady state is locally asymptotically stable when

1<R0 <min

{

exp

(

1 +
c2
c1

)

, exp

(

1− µa

µa

(

1 +
c1
c2

))}

.

Proof. To derive conditions for local stability, we linearize around the positive
steady state [12] and observe that the Jacobian of the system (2.1) takes the form

J(L∗, P ∗,A∗

1,A
∗

2) =

















0 0 0 L∗

(

1

A∗

2

− c1

)

1− µl 0 0 0
0 1− µp 0 0

0 0 µa

A∗

2

A∗

1

1− µa(1 + c2A
∗

2)

















.

This Jacobian will be nonnegative, irreducible, and primitive (again, the sixth power)
given that

L∗

(

1

A∗

2

− c1

)

> 0 and 1− µa(1 + c2A
∗

2)> 0.

The first inequality leads to A∗

2 < 1/c1, while the latter implies that

A∗

2 <
1

c2
·
1− µa

µa

.

Thus,

R0 <min

{

exp

(

1 +
c2
c1

)

, exp

(

1− µa

µa

(

1 +
c1
c2

))}

.

It should be noted that these results are analogous to those of Cushing and Zhou for
the LPA model [12].

7. Global stability of the positive steady state. We show global stability
for the positive equilibrium following an argument similar to Kuang and Cushing [36].
Specifically, we aim to use the result proved by Hautus and Bolis [24] and restated in
Kuang and Cushing [36, Theorem 1.1]. The spirit of this theorem relies on showing
that the dynamical system, when constrained to a region D, is monotone with only
one attracting steady state.

We follow [36] and convert the LPAA model (2.1) to a single discrete delay equa-
tion for t≥ 3:

A2(t+ 1) = bA2(t− 3) (1− µl) (1− µp) e
−c1A2(t−3)−c2A2(t) + (1− µl)A2(t).

For convenience, we define

β := b (1− µl) (1− µp) , β > 0,

xt :=A2(t+ 3), t≥−3.

This yields that

xt+1 = (1− µa)xt + βxt−3e
−c1xt−3−c2xt , t≥ 0(7.1)
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2310 BROZAK, PERALTA, PHAN, NAGY, AND KUANG

with initial conditions (L(0), P (0),A1(0),A2(0))
T converted to initial history

x−3 =A2(0)> 0,

x−2 =A2(1) =A1(0)e
−c2A2(0) + (1− µa)A2(0),

x−1 =A2(2) = P (0) (1− µp) e
−c2A2(1) + (1− µa)A2(1),

x0 =A2(3) =L(0) (1− µl) (1− µp) e
−c2A2(2) + (1− µa)A2(2).

The difference-delay model (7.1) attains a trivial steady state at x0 = 0 and

x∗ =
1

c1 + c2
ln

(

β

µa

)

,

which exists and is unique when β/µa > 1. It should be noted that β/µa =R0 as we
have defined previously; we will use the notation R0 going forward. This condition is
analogous to what was found by Kuang and Cushing [36] for the LPA model, where
instead they defined β = b (1− µl). Our results on global stability are summarized in
the following theorem.

Theorem 7.1. The positive steady state E∗ is globally asymptotically stable when

1<R0 <min

{

e,
ec1 (1− µa)

c2µa

}

.

Proof. We assume that R0 > 1 so that this steady state exists. Before proceeding,
we aim to bound the solutions of (7.1) from above. For t≥ 0, observe that

xt+1 ≤ (1− µa)xt + βxt−3e
−c1xt−3 .

The function xe−c1x attains a maximum of 1/ (ec1) at x= 1/c1, so then,

xt+1 ≤ (1− µa)xt +
β

ec1
.

Iterating through the map from initial condition x0, we have that

xt+1 ≤ (1− µa)
t+1

+
β

ec1µa

(

1− (1− µa)
t+1

)

.

Since (1− µa)< 1 by definition,

limsup
t→∞

xt ≤
β

ec1µa

.(7.2)

We require some additional preliminaries in order to apply the desired result [24, 36].
Define

F (xt, xt−1, xt−2, xt−3) = (1− µa)xt + βxt−3e
−c1xt−3−c2xt , t≥ 0

and G(u) = F (u,u,u,u)− u with u > 0 and u 6= x∗. Because limu→∞G(u) < 0 and
G(u) = 0 if and only if u = 0 or u = x∗, it is true that (u− x∗) [F (u,u,u,u)− u] < 0
as desired.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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To show that F is increasing in each of its arguments, we rewrite our difference-
delay equation to include the transition compartments. We differentiate to obtain

∂F

∂xt

= (1− µa)− βc2xt−3e
−c1xt−3−c2xt ,

∂F

∂xt−1
= 0,

∂F

∂xt−2
= 0,

∂F

∂xt−3
= β (1− c1xt−3) e

−c1xt−3−c2xt .

Assume that β < min{eµa,
(1−µa)ec1

c2
}. Then, there exists T > 3 such that, for

t > T , xt−3 < 1/c1. We consider the region D= (0,1/c1)
4
. Observe that x∗ ∈ (0,1/c1)

and ∂F/∂xt−i ≥ 0 for i= 1,2,3. We now focus on ∂F/∂xt. When xt−3 ≥ 0,

xt−3e
−c1xt−3−c2xt ≤ xt−3e

−c1xt−3 ≤
1

ec1
.

The above implies that, for xt, xt−3 ≥ 0,

∂F

∂xt

≥ (1− µa)−
βc2
ec1

≥ 0

by assumption. This shows that, when restricted to the region D, F is strictly increas-
ing in its arguments. Hence, we may apply the theorem proven by [24]. Recalling that
we require R0 = β/µa > 1, we have shown that the positive steady state is globally
stable when

µa <β <min

{

eµa,
ec1 (1− µa)

c2

}

.

It should be noted that, in the case where c2 is small, the interval for global stability
reduces to 1<R0 < e.

Figure 4(a) highlights the stability regions for the extinction and positive steady
states as a function of adult mortality (µa) and the natural logarithm of larval re-
cruitment in the absence of cannibalism (ln b). Numerical simulations corroborate our
analytical findings for stability (right panels of Figure 4). Because R0 > 1 is required
for the existence of the positive steady state, as well as the numerical evidence pre-
sented in Figure 4, we hypothesize that the actual region for local asymptotic stability
is given by 1<R0 < e2. Figure 4(b) uses parameter values near what we obtained via
fitting, predicting sustained oscillations in our experiments.

8. Bifurcations. We explore the bifurcation behavior of the LPA (1.1) and
LPAA models (2.1) numerically through simulation and Lyapunov exponent calcu-
lation to investigate whether chaos is inherent in our laboratory populations. The
Lyapunov exponent often acts as an indicator for chaotic behavior, although it is not
sufficient [16]; specifically, strictly positive Lyapunov exponents are taken to denote
chaos. We follow the algorithm described in [19, Appendix], which we briefly restate
here. In theory, the Lyapunov exponent λ may be computed as

λ= lim
t→∞

1

t
ln ||JtJt−1 . . .J1| |,
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Fig. 4. (a) Stability regions for steady states of the LPAA model (2.1) with the hypothesized
upper bound for local stability in the special case when c2 = 0. (b)–(e) show the total Tribolium
population for the indicated parameter values with c2 = 0, µl = 0.6053, and µp = 0, similar to our
fitted parameters listed in Table 2. Here, G.A.S. indicates global asymptotic stability and L.A.S.
indicates local asymptotic stability.

where Jt denotes the Jacobian of the system evaluated at time t. Here,

Jt =









0 0 0 b (1− c1A2(t)) e
−c1A2(t)

1− µl 0 0 0
0 1− µp 0 0
0 0 e−c2A2(t) −c2A1(t)e

−c2A2(t) + (1− µa)









.

However, the matrix multiplication may be numerically unstable. Following [19],
we rescale the matrix multiplication. A sequence of scalars st is chosen to be st =
||JtSt−1St−2 . . .St| | with St = Jt/st. The scalars are initialized with s1 = ||J1| | and
S1 = J1/s1. Then, the Lyapunov exponent may be computed as

λ=
1

t

t
∑

i=1

ln (si).

Further details on the calculations involved may be found in [19, Appendix]. Our
procedure for the bifurcation and Lyapunov exponent diagrams is as follows:

1. Set the value for the chosen bifurcation parameter.
2. Simulate the model (2.1) for 50,000 time steps in order to remove transients.
3. For the bifurcation diagram, plot the last 100 iterations of the simulation for

the given parameter value.
4. For the Lyapunov exponent diagram, compute the Jacobian of the model

evaluated at the current time step Jt and follow the computation above as
stated in [19, Appendix].

5. Update the bifurcation parameter and continue steps 2–4.
Figure 5 shows the dynamics of the model with the recruitment rate b as the bi-

furcation parameter using parameter values obtained from fitting to the experimental
data (see Table 2). Both the LPA model (Figure 5(a)) and the LPAA model (Figure
5(b)) go to the positive steady state, with the Lyapunov exponents remaining negative
and thus indicating nonchaotic behavior.
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DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH 2313

Fig. 5. Bifurcation and Lyapunov exponent diagrams for (a) the LPA model and (b) the LPAA
model where larval recruitment in the absence of cannibalism is used as the bifurcation parameter.
Median values obtained from fitting are used for all other parameters and are listed in Table 2.

When the strength of cannibalism on eggs by adults is varied, we see that both
models again go to a steady state around our experimental parameterization
(Figure 6). No levels of egg cannibalism here show clear indication of chaotic be-
haviors, with Lyapunov exponents remaining negative.

Costantino and colleagues found chaotic dynamics, again indicated by a positive
Lyapunov exponent, when the intensity of cannibalism on pupae c3 is between 0.1
and 0.5 in their experimental parameterization [8]. Because we do not incorporate
cannibalism on pupae but instead on newly emerged adults, we instead vary c2 for
comparison. Figure 7 indicates no chaotic dynamics in our experiments as the canni-
balism intensity on new adults increases.

The clearest chaotic dynamics are shown when µa, or adult mortality, is varied,
as shown in Figure 8. The LPA model indicates potentially chaotic dynamics (Figure
8(a)), while the LPAA model goes to the positive steady state. In Costantino et al. [8],
the chaotic cloud was observed for µa > 0.96 based on their experimental data, while
we do not observe chaotic dynamics in any region of µa for our model.

Biologically, these figures could indicate that chaos is not an inherent character-
istic of T. confusum, but rather a response to environmental changes. While this
conclusion is not surprising, our use of a different experimental setup and model
strengthen the statement.

9. Discussion. This work has contributed to the study of Tribolium by extend-
ing the famous LPA model through the stratification of adults into newly emerged and
reproductively mature. Although a four-dimensional matrix model, it was mathemat-
ically tractable. Numerical experiments support previous findings that chaos is not
a natural characteristic of Tribolium beetles and must be induced. Given their sta-
tus as a grain pest, chaos may be observed as a result of pest management strategies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2314 BROZAK, PERALTA, PHAN, NAGY, AND KUANG

Fig. 6. Bifurcation and Lyapunov exponent diagrams for (a) the LPA model and (b) the LPAA
model where the cannibalism on eggs by adults is used as the bifurcation parameter. Median values
obtained from fitting are used for all other parameters and are listed in Table 2.

Fig. 7. Bifurcation and Lyapunov exponent diagrams for (a) the LPA model and (b) the LPAA
model where the cannibalism on the new adult cohort is used as the bifurcation parameter. Median
values obtained from fitting are used for all other parameters and are listed in Table 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
1
/1

6
/2

5
 t

o
 1

2
9
.2

1
9
.4

3
.1

9
8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH 2315

Fig. 8. Bifurcation and Lyapunov exponent diagrams for (a) the LPA model and (b) the LPAA
model where the proportion of adults lost due to natural causes is used as the bifurcation parameter.
Median values obtained from fitting are used for all other parameters and are listed in Table 2.

pushing parameter values to chaotic regions (for example, sufficiently increasing adult
mortality).

Initially, we cultured several T. confusum populations in order to understand
population responses to varying environments. We found that the LPA model did
not adequately describe our experiments, and a modified version of the LPA model,
which we call the LPAA model, better recapitulated our time-series data. We added
an additional equation for newly emerged adults motivated by their reduced fecundity.
Our resulting model suggested that newly emerged adults may play an important role
in flour beetle dynamics.

We analyzed the stability of the steady states of the LPAA model. The global
stability results for the extinction and positive steady states were analogous to that of
the LPA model. Bifurcations of the LPAA model were explored numerically, showing
a distinct lack of chaos in regions in which the LPA model exhibited chaos. Conditions
for the stability of limit cycles is unknown. The parameterization obtained from fitting
suggests that chaos is not inherent to our flour beetle population and must be induced.

We hypothesize the differences between the LPA and LPAA models are due to
using different species of Tribolium as well as different experimental setups. Aside from
differing initial experimental goals, abiotic factors such as temperature and relative
humidity may have a role. In addition, some data collected by the original Beetle
Team categorized small larvae into the “larval stage” and large larvae and pupae
(and potentially callow adults) into the “pupal stage” in order to match the time
discretization of the LPA model (for example, [20] describes this stratification but does
not provide cutoffs for differentiating small and large larvae). As well, it is unclear
exactly how media changes impact the population. Flour beetles condition the media
via a buildup of feces, pheromones, and other excretions [25]. The conditioning of the
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flour has been shown to affect cannibalism and oviposition [25, 50]. The media changes
effectively “reset” the flour and potentially influence the population dynamics. Media
changes and censusing the population result in the loss of eggs with downstream effects
on the later life stages, with the latter issue being particularly difficult to circumvent.
While Costantino and colleagues changed media with each census (and thus, every
two weeks) [6], media changes took place every eight weeks in our experiments. Hence,
we hypothesize that media changes as well as censusing contribute to the oscillations,
and potentially the chaos, observed in Tribolium.

This model is a direct extension of the groundbreaking work done by Cushing,
Costantino, Dennis, Desharnais, Henson, and others; they have surely cemented the
place of the LPA model and Tribolium in mathematical history. Flour beetles provide
an excellent source of interesting nonlinear interactions between life stages and are
amenable to experimentation. These insects have a long history with humans and
long future with scientists as well.

Appendix A. Experimental methods. Over the course of 20 weeks, we inves-
tigated the influence of salts and large inorganic compounds at small concentrations
on the population dynamics of T. confusum. Large molecules such as organophos-
phates are known to cause desiccation by blocking quinone glands, and salts tend to
inhibit water retention [37].

All animals used in this study were obtained from a stock colony of T. confusum
maintained at Scottsdale Community College. The stock population was founded
15 years prior to the start of this study from a small colony (approximately 100
beetles) obtained from Ward’s Science in Rochester, New York, and continuously
maintained using standard culturing procedures for this species [41]. Beetles were
reared on unbromated whole wheat flour and baker’s yeast media (95:5 by mass) in
3.3 L food-grade containers modified to allow air flow. The stock population was
continuously incubated in the dark at approximately 28± 2◦C. The stock population
experienced a bottleneck during the COVID pandemic with population density in
2021 reaching perhaps 10% of its maximum. Robust populations were reestablished
after the bottleneck and provided beetles for these experiments.

Sample colonies were established at time 0 with 20 sclerotized adults cultured
in 25 g of flour with 5% yeast media and held in 118 mL finely vented food storage
containers. The study design comprised 2 independent experiments testing effects of
variations in media on population dynamics. Both experiments were fully crossed,
2-factor, balanced designs with n = 3 sample cultures in each treatment. In both
experiments, flour type—bleached and unbleached—was one factor. The other factor
tested the lethality of particular salts. In experiment 1, the second factor was dipotas-
sium phosphate (K2PO4), with levels 0.5% and 1% by mass added to the media. In
experiment 2, concentration of sodium nitrate (NaNO3) was the second factor, with
the same levels.

Populations were censused every 2 weeks with media changes every 8 weeks.
Adults, pupae, and larger larvae were sifted out of the media with a fine flour sifter.
Larvae were removed promptly from the sifter, and remaining individuals were to
be sorted by length through a threshold of ∼2.75 to 3.00 mm. If larvae exceeded
the threshold, they were considered large enough to count. Pupae were manually
separated and counted by hand. Adults were sorted into living and dead categories,
photographed, and recorded with ImageJ software [49]. Callow (unsclerotized) adults
were counted separately, but the final adult count includes both callow and sclerotized
adults. Deceased callow adults were not observed in this experiment. Eggs were not

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
1
/1

6
/2

5
 t

o
 1

2
9
.2

1
9
.4

3
.1

9
8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



DYNAMICS OF AN LPAA MODEL FOR TRIBOLIUM GROWTH 2317

counted because they are laid freely through the media and are white or colorless
and therefore blend into the media; hence, they are unsortable manually [41]. During
media changes, half of the media is removed by mass, excluding live adults, pupae,
and larvae. Media were then replenished with 12.50 g of new media mixtures based
on trial requirements. Careful measures were taken to ensure as many live larvae as
possible were removed from the media prior to recording the media mass for removal.
The number of dead adults was documented and included in the discarded media.

Appendix B. QQ plots of residuals. Quantile-quantile (QQ) plots of the
residuals for Figures 2 and 3 are shown in Figures 9 and 10.

QQ plot of LPAA residuals (N 1% bleached)
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Fig. 9. QQ plots of the residuals of the one-step forecasts of the LPAA model for the N 1%
bleached group.

QQ plot of LPAA residuals (P 1% unbleached)
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Fig. 10. QQ plots of the residuals of the one-step forecasts of the LPAA model for the P 1%
unbleached group.
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Data availability. All code and data used in this study are available on Github
at the following repository: https://github.com/sjbrozak/Tribolium-LPAA.
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