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Better Al For Understanding Life on Earth: Predict First, Design Later

Yana Bromberg’

Abstract

Generative Al is generating much enthusiasm on poten-
tially advancing biological design in computational biology.
In this paper we take a somewhat contrarian view, argu-
ing that a broader and deeper understanding of existing bi-
ological sequences is essential before undertaking the de-
sign of novel ones. We draw attention, for instance, to cur-
rent protein function prediction methods which currently
face significant limitations due to incomplete data and in-
herent challenges in defining and measuring function. We
propose a “blue sky" vision centered on both comprehen-
sive and precise annotation of existing protein and DNA
sequences, aiming to develop a more complete and precise
understanding of biological function. By contrasting re-
cent studies that leverage generative Al for biological de-
sign with the pressing need for enhanced data annotation,
we underscore the importance of prioritizing robust predic-
tive models over premature generative efforts. We advocate
for a strategic shift toward thorough sequence annotation
and predictive understanding, laying a solid foundation for
future advances in biological design.

Keywords: Al-enabled biological design; bionformat-
ics; generative Al function prediction; annotation.

1 Introduction

Bioinformatics is experiencing a Generative Al (GenAl)
fever. Even when severely restricting ourselves to macro-
molecules, it seems as if every other day new research is
published on yet another deep neural network (DNN) ex-
panding the footprint of GenAl over protein, DNA, and RNA
sequences and even entire genomes. The gains seem noth-
ing short of spectacular, including generating protein se-
quences with novel catalytic activities [1], novel antibody
sequences with high expression yield and binding affin-
ity [2], and even whole microbial genomes [3]. These capa-
bilities are powered by foundation models - task-agnostic
DNNss trained in a self-supervised manner to learn inherent
data representations.

It is impossible not to be impressed by the sheer rate
of and the diversity of publications (if not advances) in an
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emerging domain at the intersection of GenAl and biology
— Al-enabled biological design. One would not be faulted
for thinking that we now understand and control life. Case
in point, the highlight in [4] places the model proposed one
day earlier in [3] as having learned the language of DNA.

We respectfully disagree. We do not understand
enough biology to claim that we can control it. Claims of
control are premature at best, naive at worst. Through a
somewhat controversial title, in this blue sky paper we ar-
gue that we should equally value and perhaps even prior-
itize precisely annotating the existing diversity of sequences
rather than feverishly and single-mindedly focusing on de-
novo synthesis. Our charge amounts to: Fewer, potentially
dubious bragging rights; more meaningful research.

The reason for what we are suggesting can be summed
up in one word: evolution. The shift in focus that we ad-
vocate recognizes the value of billions of years of evolu-
tion, this wonderful experiment that has generated a re-
markable diversity of life forms characterized by intricate
and highly regulated systems. While significant progress
has been made in protein and nucleotide analysis using
deep learning, the emphasis on generating novel sequences
overlooks the vast, well-optimized results of natural evo-
lution. We propose that understanding existing biological
sequences should precede attempts to design new ones. An-
notating sequences presents a significant challenge, but the
potential rewards are substantial. Deeper insights into the
complexities of biological systems can potentially identify
new avenues for medical and industrial applications.

2 Data Before Models

It took the world’s scientific research community nearly
fifty years [5] and hundreds of millions of dollars to extract
the protein 3D structure data present in the Protein Data
Bank (PDB) [6] at the time of AlphaFold’s appearance on
the scene [7]. At its baseline, PDB is genius in its simplicity
— for every protein amino acid sequence entry, there is
a corresponding set of atom 3D coordinates. In “data-
for-training" terms, this one-to-one mapping of language
(sequence) to meaning (structure) was ideal.

Note that the biological diversity of the training se-
quences, necessary for the development of useful models,
had not been a guaranteed or expected result of “normal"
PDB data collection, where experimental work tends to fa-
vor large families of similar proteins. This diversity was
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externally imposed on the PDB [8] by the Structural Ge-
nomics Initiative [9] in an effort to create a more represen-
tative protein structure space. This effort, in part, was due to
the desire to answer the question “Can we predict the pro-
tein structure from sequence?” — a question that has been
thought about and addressed by the field since at least the
first iteration of Critical Assessment of Structure Prediction
(CASP) challenge in 1994 [10].

In fact, NNs have been championed as an answer to
various aspects of protein structure prediction starting as
early as 1993 [11] and have been consistently improved over
time. Surely, deep learning advances have helped in the
process! But would the DeepMind team been able to deliver
such an impactful result in the absence of a well-defined
question and/or lacking the PDB?

3 Data and Knowledge before Models

The road to AlphaFold was not a straight line. Scientific
inquiry often reaches a tipping point through the conver-
gence and integration of insights from multiple branches
of knowledge. As AlQuraishi reflected on the performance
of AlphaFold (v1.0) in 2019 at the biennial CASP competi-
tion [12]: “Their approach builds on two ideas developed
in the academic community during the preceding decade:
(i) the use of co-evolutionary analysis to map residue co-
variation in protein sequence to physical contact in pro-
tein structure, and (ii) the application of deep neural net-
works to robustly identify patterns in protein sequence and
co-evolutionary couplings and convert them into contact
maps." Co-variation, which identifies correlated mutations
across protein sequences, provides insights into structural
constraints driven by evolutionary pressures. This concept
is grounded in a profound understanding of sequence evolu-
tion and the relationships between sequence, structure, and
function. In other words, AlphaFold is not only a remark-
able milestone but also a powerful testament to the decades
of bioinformatics research that laid the essential ground-
work of knowledge for its development.

The larger point we are making is that seeking to un-
derstand (and leverage) the well-optimized results of natu-
ral evolution keeps proving itself a worthy endeavor. The
success of protein language models (PLMs), such as TAPE-
BERT [13], Protein-BERT [14], ESM1b [15], ESM2 [16],
Prottrans-BERT, Prottrans-Albert, and Prottrans-T5 [17],
made possible by their ability to ingest millions of pro-
tein sequences, something that was not possible before with
methods based on sequence alignment, is indeed further ev-
idence of the benefit of “harnessing" the results of evolution
(as in, for instance, feeding them directly to large models).

Yet, it is important to get things right. A growing ar-
gument in the scientific community is that PLMs implicitly
learn structure due to their ability to ingest millions of pro-
tein sequences. The hypothesis is that this ability in turn

enables capturing the selective pressures exerted on protein
sequences throughout billions of years of evolution. In [18],
the authors challenge this hypothesis. They “stress-test"
PLMs on their ability to perform remote homology predic-
tion, which requires structural knowledge to identify pro-
teins with low sequence similarity. The results show that,
while PLMs are better at this task than traditional sequence
alignment methods, they still struggle in the “twilight zone"
of very low sequence identity, exposing that they have not
learned protein structure sufficiently. So, back to structure.

4 The Importance of Asking Questions: What
Should we Know and Why?

Why do we want to know about protein structure? Beyond
basic physics and biology, protein structure — the most-
likely end result of the folding process — is important be-
cause it conveys certain aspects of protein function. Func-
tion, in turn, is relevant to drug development, understand-
ing of disease, industrial advances, and eco-relevant engi-
neering, among many other uses.

While it may come as a surprise to many Al researchers,
scientists disagree about what exactly protein function is: Is
it the interaction with other members of a biological path-
way (e.g. binding of a metal)? Is it the purpose of such inter-
action (e.g. electron transfer)? Is it the resulting organismal
phenotype (e.g. a live cell with plenty of energy)? This lim-
ited agreement on what function is means that only some
definitions are accepted by some communities for some pro-
teins [19, 20, 21, 22, 23, 24]. There is no one “functional PDB."

Why is it important to acknowledge this? Doing so af-
firms that we lack both the gold standard data relating a pro-
tein to its function (this protein does X) and the gold stan-
dard description of said function (what exactly is X?). Our
limited understanding has implications for GenAl. Design-
ing a new protein that performs a specific function requires
a deep understanding of how that function is achieved by
existing proteins. Without this knowledge, it is difficult to
ensure that newly designed sequence will function as in-
tended and will not disrupt existing biological systems.

We do not aim to add to the confusion, but it is impor-
tant to acknowledge that we do not have answers to these
basic questions. This is the first step that lays the foundation
for what we are proposing; that is, our blue sky vision.

5 Blue Sky Idea(s)

Understanding biological function, even when restricted to
macromolecules, is a wicked problem. While this term was
first introduced by design theorist Horst Rittel and urban
planner Melvin Webber in 1973 to describe challenges in
social planning, we find it increasingly being used in the
Al community and its sub-communities, including, for ex-
ample, the growing “Al for science" sub-community. While
its usage is often performative, we posit that indeed under-
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standing and predicting biological function checks all the
boxes: no definitive problem statement — indeed, function
cannot be really defined in isolation of numerous interde-
pendent factors (e.g. molecular interactions); no clear path
to a solution — in the absence of a definitive answer to “what
is function?" all we see are numerous (but limited) advances
on related but isolated working definitions; multiple stake-
holders with different viewpoints, interests, and definitions
of success — check; entwinement with other problems — “solv-
ing" one aspect of function can create new problems or ex-
acerbate existing ones in other biological system areas.
We posit key questions for the community:

« If we can not predict the function of a given protein
sequence, is it safe to assume that we can design a new
sequence with the desired functionality?

« How specific do we have to be in understanding and
annotations to be able to design with precise control?

« What same things do we need to measure for a shared
understanding and evaluation of our capabilities?

+ What level of precision in the silicon leads to guaran-
teed viability in the petri dish?

It is worth instantiating these questions in hallmark
wicked problems in bioinformatics. One such is variant ef-
fect prediction. It has been disheartening to see this prob-
lem reduced to overly-simplified (and in so doing, largely
irrelevant) versions in the frenzy of claiming wins and flag
poles for GenAI/PLMs. In [25] the authors remind the scien-
tific community of what missense variant effect prediction
is: the analysis of the impact of single amino acid substi-
tutions resulting from single-nucleotide variants in genome
coding regions. There is perhaps no more wicked word than
“impact!" How do you define impact? How do you measure
it? How do you annotate sequence data with impact?

These questions need to be formulated and answered
precisely, as they affect the data, and through the data the
models, and through the models the results. The latter can
then either represent true advances, or fool us into thinking
we are making progress, or, perhaps worse, obfuscate and
confuse and stifle true advances and scientific research.

Specifically, work in [25] argues that the historical fo-
cus on high-impact and (human) pathogenic variants in
experimental analyses used as training data has led to a
skewed perception of variant effects. The authors explic-
itly ask whether the tools available today can annotate vari-
ants accurately and comprehensively across related, but di-
verse categories of effect: evolutionary fitness, pathogenic-
ity, and functional change. They demonstrate that while
traditional supervised methods are effective, they are con-
strained by biases in training data that disproportionately
represent high-impact and pathogenic variants. In con-
trast, unsupervised PLMs perform comparably or even bet-
ter than supervised methods in identifying functional and

pathogenic variants, but further refinement and optimiza-
tion are needed to establish a comprehensive understand-
ing of variant effects and to enhance the precision of pre-
dictions, especially for less-studied organisms. The authors
argue that achieving a “gold standard" predictor requires a
clearer definition of variant effect in the first place, a move
away from simplistic binary classifications and towards the
development of larger, more balanced training sets that bet-
ter represent the full spectrum of life and allow for inference
of subtle or context-dependent impacts.

The blue sky vision we propose in this paper cen-
ters around annotation, with two key dimensions to it:
broader annotation, as in expanding it to the diversity of
data/organisms (that we do not yet have); and precise an-
notation, as in formulating categories (on what to anno-
tate). This requires a whole-of-community approach and
starts with asking the right questions, agreeing on defini-
tions (what we are capturing through the annotations), and
challenging ourselves to increasingly deeper and more spe-
cific categories of annotations (away from binary categories
and deeper into the increasingly more precise and difficult
instantiations of function, effect, impact, etc.). We hold that
this approach is critical to truly advance biology in silico
in all its beautifully wicked complexity. Before we rush to
claim that we understand the rules of life (when we cannot
even agree on fundamental properties), we need to proceed
with caution (or in the words of philosophers, “epistemic
humility"), critically reflecting on what is missing.

To ground this in yet another concrete setting: how do
we know that AlphaFold has learned physics rather than
memorized sequence patterns? If life has no other means of
folding sequences than the ones we see (and research seems
to point in this direction [26]), answering this question does
not matter. Yet, if somewhere in the deep ocean there are
sequences that are unlike anything we have seen at this
point, then how do we know that AlphaFold can predict
their structure? Could there be sequences out there that fold
differently, that bind differently, that behave differently?

We need to lay a solid foundation for future advances
in biological design, and we hold that this is only possible
with a strategic shift toward comprehensive and precise se-
quence annotation and predictive understanding. Our vi-
sion is not more data is better; we are indeed proposing a
deliberate approach for both diversity and precision. We
underscore the importance of equally valuing and even per-
haps prioritizing robust predictive models over premature
generative efforts. This can be accomplished in many ways,
from creating and sustaining specific communities, to be-
ing clear eyed as to what constitute true advances in peer
reviewing, to valuing the things that matter in study sec-
tions and review panels. As we map out what nature has
for us, we will be better positioned to design what nature
has missed in its ~4 billion year experiment.
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