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Abstract

We study the process of laser-assisted radiative recombination of an electron with a proton in

a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation

of classical trajectories in combined laser and Coulomb fields and the use of the correspondence

principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial

electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the

cross section, as compared to the laser-free case, is observed in this case. With increasing angle

between the electron momentum and polarization, the recombination cross section drops. However,

even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of

the recombination rate constant, as compared to the zero-field case. For the field intensities in the

range 30-350 MW/cm2, the enhancement occurs in the region of the radiation wavelength from 5

to 20 µm and for the plasma temperature from 20 to 300 K.
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I. INTRODUCTION

The processes of low-energy laser-assisted few-body collisions and reactions have been

explored in several recent works [1–3]. In the present paper we investigate the laser-assisted

radiative recombination (LARR) process

e− + A+(n) + nh̄ω → A+(n−1) + n′h̄ω + h̄Ω

which at high intensities (occupation numbers n and n′ are large) can be treated as a

spontaneous radiative recombination in the presence of a classical field of frequency ω. It

is a nonresonant process since the frequency of the laser field ω is not equal to the emitted

photon frequency Ω which is typically much greater than ω.

The LARR is the final step of the high-order harmonic generation process (HHG) [4–6]

when electron is captured by an ion by emitting high-frequency photon in an infrared field.

The LARR process could be also of interest for antihydrogen studies [7], particular for the

ALPHA collaboration studies where a similar charge-conjugated process

e+ + p̄→ H̄ + h̄Ω

is one of the main mechanisms of the antihydrogen formation [8–13], the other being three-

body recombination

p̄+ e+ + e+ → H̄ + e+.

The two reactions have very different dependencies on the temperature of the positron cloud

or plasma and on the positron density [9, 11, 13, 14], and produce very different antihydrogen

states. Whereas the three-body recombination tends to produce highly excited states of H̄,

the radiative recombination results in formation of mostly ground state. Studies which have

been conducted so far indicate that RR plays some role in these conditions, but, as far as

we are aware, there is no quantitative estimates of the relative significance of RR. However,

if its contribution is small, laser-assisted process can enhance it, particularly for electron

capture into the ground and low-excited states since the three-body process is dominated

by capture into highly-excited states. Therefore studies of both reactions are of paramount

importance for understanding of antihydrogen formation.

In our two previous papers [15, 16] we have shown that for low enough electron energies

the radiative recombination and related bremsstrahlung process can be strongly enhanced
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by infrared laser radiation in the range of intensities between 1 GW/cm2 and 1 TW/cm2

due to the Coulomb focusing effect. The direction of the electron velocity chosen in these

calculation was parallel to the field polarization. Intuitively it is clear that for this geometry

the enhancement is most efficient. However, in experimental conditions of storage rings [17–

21] the electron beam has a component perpendicular to the polarization vector. Moreover,

in antihydrogen studies [7, 8, 11, 13] the trapped positron-antiproton clouds form a plasma,

therefore for calculation of the reaction rate, the rate constant should be averaged over the

Maxwellian velocity distribution.

In the present paper we consider electron-proton (or positron-antiproton) plasma in a

trap at the temperatures varying from 10 to 300 K. To be specific, we will be discussing

electron-proton recombination, but the same conclusion will be applicable to the charge-

conjugated process. It is well known that the spontaneous radiative recombination process

in this case

e+ p→ H + h̄Ω

has a rather low rate, therefore we explore the possibility to enhance it by placing the system

in an infrared field. The idea to use the resonance process of laser-stimulated recombination

for antihydrogen formation was explored in [17–23]. In contrast we use a nonresonant field

frequency which is much lower than the frequency of radiated photon, and lies in the infrared

or far infrared region. One of the advantages of this approach is that the reionization process

is suppressed unless the field intensity is high enough to induce the tunneling ionization.

Therefore in the present studies we employ a relatively weak field with intensity less than

350 MW/cm2 for which multiphoton or tunneling ionization from the ground or low-excited

states is negligible [16].

The ratio of the laser-assisted recombination cross section to the zero-field cross section,

or the gain factor, is strongly dependent on the parameter [16]

χ =
ωv0
F0

, (1)

where v0 is the electron velocity before entering the laser field region, and F0 is the electric

field amplitude. (Atomic units are used throughout the paper.) To understand the physical

significance of this parameter, consider one-dimensional electron motion in a pure laser field

F = F0 cos(ωt+ φ0)
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with the mean velocity

v̄ = v0 −
F0

ω

where v0 > 0 is the speed at t = 0. The electron will approach the target if v̄ > 0, i.e.,

0 < φ0 < φ1 or π − φ1 < φ0 < 2π where φ1 = arcsinχ where χ is given by Eq. (1). In this

range of φ0 the probability is nonzero, and it peaks at values of φ0 close to φ1 or π − φ1.

Therefore the gain factor is large for χ ≤ 1 or χ slightly exceeding 1. After going through

maximum in the vicinity of χ = 1 it drops sharply. The physical reason for this is that at

low v̄ a strong Coulomb focusing [15, 16] occurs which makes the electron to approach very

close to the proton even for large impact parameters. Since the efficient radiation occurs

only at very close distances between charged particles, the Coulomb focusing effect leads

to a strong enhancement of radiation in both bremsstrahlung and radiative recombination

processes. For a typical electron velocity in a 20 K electron-proton plasma and the infrared

radiation with frequency ω = 0.0043 a.u. (λ = 10.6µm) this implies that the laser intensity

should be higher than 100 MW/cm2. By further increasing the wavelength we can achieve

efficient recombination even for lower laser intensity. In the present paper we explore the

infrared field in the intensity range between 14 and 350 MW/cm2 and the frequency range

between 0.001 and 0.007 a.u. (wavelength between 45 and 6.5 µm). In the following we will

be using atomic units, unless stated otherwise.

II. THEORY

Our theory [16] is based on the semiclassical approach of Kramers [24] developed even

before the creation of quantum mechanics. It uses the classical theory of radiation and the

Bohr’s correspondence principle. In the absence of the external field, the Kramers’ formula

works very well even for the capture into the ground state, and we assume the same accuracy

in the presence of the field. We will start with outlining the Kramers’ aproach for the zero

field [16]. Suppose an electron collides with a Coulomb center of charge Z. Since most of

the radiation occurs when the electron is close to the center, we assume motion along a

parabolic orbit with eccentricity ε close to 1. Then, using the classical theory of radiation

[25], we obtain for the power radiated

Is =
64 · 22/3s4/3E4

3c3Z2

{
(1− ε2)Ai2(u) +

(
2

s

)2/3

(Ai′)2(u)

}
(2)
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where s is the harmonics order, s = ωT/2π, ω is the frequency of the emitted radiation, and

T is the period of revolution of the electron on the orbit, E is the electron energy on the

orbit, and

u =
(
s

2

)2/3

(1− ε2).

Using the Bohr’s correspondence principle [16], we obtain for the probability Pn of emis-

sion of a photon for a given electron angular momentum l accompanied by electron capture

into the state with the principal quantum number n

Pn =
8π · 24/3

3c3n3Ω
1/3
n

[(Ai′)2(u) + uAi2(u)], u =
(

Ωn

2

)2/3

l2, (3)

where the classical orbital angular momentum l is related to the impact parameter b as

l = (2E)1/2b, and Ai is the Airy function. Summing over all l we obtain theKramers’ result

for the radiative recombination cross section

σn(E) =
βn

(E + εn)E
,

where E is the initial electron energy, εn is the absolute value of the energy of the final

(bound) state, so that the frequency of the emitted photon Ωn = E + εn, and

βn =
8π

3
√

3c3n3
,

where c = 137.04 a.u. is the speed of light, and n is the principal quantum number of the

final hydrogen state. The corresponding recombination rate constant is

αn(T ) =
∫
σn(E)(2E)1/2f(T,E)dE,

where f(T,E) is the Maxwellian distribution function

f(T,E) =
2E1/2

π1/2T 3/2
e−E/T ,

and T is the temperature in energy units.

The integration results in

αn(T ) =
βn
π1/2

(
2

T

)3/2

eεn/TE1

(
εn
T

)
,

where E1(x) is the exponential integral. Since in our case εn � T , we can use the asymptotic

expression for E1 with the result

αn(T ) =
23/2βn

(πT )1/2εn
.
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To extract the explicit dependence on the principal quantum number n, we use

βn = β0ε
3/2
n , β0 =

16π
√

2

3
√

3c3
, εn =

1

2n2
.

Then

αn(T ) =
2β0

(πT )1/2n
. (4)

For a temperature T = 20 K and n = 1 we get α1 = 0.553× 10−3 a.u.=3.39× 10−12 cm3/s,

and α1(T ) decreases with the growth of T and n according to (4). Bell and Bell [26] obtained

analytical expressions for the cross section summed over all n, but the process is dominated

by n = 1, in contrast to the three-body recombination dominated by capture into states

with high n [14].

Switching now to LARR, we consider the electron motion in the electric field (linearly

polarized along the z axis)

F (t) = F0 cos(ωt+ φ0). (5)

The theory developed in [16] was restricted to the case when the incident electron velocity

is parallel to the electric-field polarization vector, therefore it should be modified to account

for a general geometry.

In the presence of the laser field we integrate numerically the classical trajectory with the

initial impact parameter vector b until electron approaches close enough to the Coulomb

center (proton) where it acquires angular momentum lmin(b). The distance of the closest

approach and lmin also depend on the orientation of the initial velocity v relative to the field

vector F. In the vicinity of the Coulomb center the laser field can be neglected, and the

radiation probability is calculated according to Eq. (3) with l = lmin.

Since the radiation probability is substantial only when the electron is close to the pro-

ton, it is of paramount importance to take into account the full electron-proton interaction

including the Coulomb singularity, without its softening. It is well known that the numerical

solutions for the equations of motion near the Coulomb center become highly unstable due to

this singularity. This problem is solved by the regularization of Coulomb trajectories based

on the formalism of extended Hamiltonian [27]. This method was previously developed and

applied to the process of bremsstrahlung in the Coulomb field [15]. A similar method was

applied to the strong-field ionization of H2 [28] and classical treatment of the electron-impact

ionization problem [29, 30].
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Let us introduce two coordinate systems: unprimed with the z axis along F, and primed

with the z′ axis along v as shown in Fig. 1. The orientation of v in the unprimed system

is characterized by angles θv and φv By choosing y′ axis in the xy plane, we have for the

Cartesian coordinates of the base primed vectors

x̂′ = (cos θv cosφv, cos θv sinφv,− sin θv), (6)

ŷ′ = (− sinφv, cosφv, 0), (7)

ẑ′ = (sin θv cosφv, sin θv sinφv, cos θv). (8)

We start a trajectory with the following initial conditions in the cylindrical coordinates

(ρ′, z′, φ′)

ρ′ = b, z′ = −d, φ′ = φ′i,

ż′ = v, ρ̇′ = φ̇′ = 0,

where b is the impact parameter, and d is a large distance such that the Coulomb interaction

can be neglected as compared to the interaction with the laser field. Trajectory calculations

are done more conveniently in the unprimed system where the initial conditions are given

by the transformation (see Fig. 1 and Appendix A)

z = −d cos θv − b cosφ′ sin θv,

x = −d sin θv cosφv + b cosφ′ cos θv cosφv − b sinφ′ sinφv,

y = b sinφ′ cosφv + b cosφ′ cos θv sinφv − d sin θv sinφv.

We calculate then the initial unprimed cylindrical coordinates as

ρ = (x2 + y2)1/2, φ = arctan
y

x
, (9)

ρ̇ =
xvx + yvy

ρ
, ż = vz, φ̇ =

xvy − vxy
ρ2

, (10)

where vx = v sin θv cosφv, vy = v sin θv sinφv, vz = v cos θv.

The cross section for a fixed velocity orientation is given by

σn(θv, φv, φ0) =
∫ ∞
0

dbb
∫ 2π

0
dφ′Pn(b, φ′, v, θv, φv, φ0).

Integration over φ′ makes the result cylindrically symmetric, therefore σn is independent

of φv, and the integral can be calculated for any value of φv. The probability depends on
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FIG. 1. Geometry of the problem. The initial velocity v is directed along the z′ axis whose orien-

tation in the unprimed system is given by the spherical angles θv and φv. The impact parameter

vector b lies in the plane parallel to the x′y′ plane. Its orientation in this plane characterized by

the angle φ′. y′ axis is chosen to lie in the xy plane.

the phase φ0 entering Eq. (5) for the electric field, and should be averaged over it. This is

equivalent to averaging over the electron position when it enters the field region:

σ̄n(θv) =
1

2π

∫ 2π

0
dφ0

∫ ∞
0

dbb
∫ 2π

0
dφ′Pn(b, φ′, v, θv, φv, φ0). (11)

The averaged cross section is apparently symmetric with respect to transformation θv → π−

θv, therefore θv integration can be carried out from 0 to π/2 with subsequent multiplication

by 2.

For plasma applications we have to calculate the rate constant averaged over all orienta-

tions of the velocity vector v, and also over the Maxwellian distribution in v:

αn(T ) =
∫ 2π

0
dφ0

∫ ∞
0

dvf(T, v)v
∫ ∞
0

dbb
∫ 2π

0
dφ′

∫ π

0
dθv sin θvPn(b, φ′, v, θv, φv, φ0), (12)
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where

f(T, v) = (2πT )−3/2v2 exp(−v2/2T )

is the normalized Maxwellian distribution, and the extra 2π factor in (12) is due to integra-

tion over φv.

Integrals (11) and (12) are calculated by the Monte Carlo (MC) method with the number

of points in the integrand varied from 2× 105 to 106 to achieve convergence. Since classical

scattering in combined fields is chaotic [31–33], the emission probability is a random function

of the impact parameter and the constant phase of the laser field [16]. This feature increases

the statistical uncertainty in calculation of integrals which was estimated by standard meth-

ods. In addition, a very large range of impact parameters is contributing to the integral. In

this situation an efficient integration can be achieved by partitioning the whole range of b

into several segments (5 to 10) and performing MC integration in each segment. For θv close

to 0 or π, because of the Coulomb focusing effect, the range of b contributing to the LARR

cross section is infinite, and the cross section is infinite accordingly [16]. To make the cross

section and the rate constant finite, we make the duration of the laser pulse tp finite, in the

5 ps - 20 ps range. In this case the trajectories corresponding to impact parameter higher

than bmax(tp) do not have enough time to reach the Coulomb center. Calculations show that

for θv close to 0 convergent results can be obtained with ρmax = 4200 a.u. if tp = 5 ps, and

with ρmax = 7000 a.u. if tp = 25 ps. However, the rate constant, Eq. (12), is convergent

even when tp → ∞ because contribution of θv close to 0 is suppressed due to the factor

sin θv in the integrand. Another factor limiting the cross section is the plasma screening

effect which makes the effective cut-off of the Coulomb interaction at distances of the order

of the Debye screening length. A typical Debye screening length in the antihydrogen plasma

is about 10-100 µm [7], or about 105−106 a.u. Although it is large on the microscopic scale,

it can still play a role as a limiting factor making the LARR cross section finite. Also, in

other plasma applications, the effect of screening might be more significant.

III. RESULTS AND DISCUSSION

All results presented below are for recombination into the ground state since this branch

is dominant. In Fig. 2 we present the LARR cross section as a function of the angle θv,

Eq. (11), for four values of the electron velocity. The general trend is clear: cross section
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FIG. 2. LARR cross section as a function of the incident angle θv averaged over the initial phase φ0

for selected values of electron velocity v, field amplitude F0 = 0.2× 10−4, field frequency ω = 10−3

a.u., except the case v = 0.014 when F0 = 0.6 × 10−4 a.u., ω = 3.5 × 10−3 a.u. The calculated

values are represented by open symbols, and are joined by dashed lines for a better view. Zero-field

cross sections are marked by corresponding full symbols at the left side of the graph. They are

independent of θv.

achieves maximum when F is parallel to the initial velocity v, and goes through minimum

when θv is close to π/2. For some values of the field parameters there is a shallow maximum

in the region between θv = 0.7 and 1.1 rad. The cross section is symmetric with respect to

the transformation θv → π − θv. The enhancement (gain factor) is very large for θv close to

0, but drops substantially when θv approaches π/2 becoming close to 1.

To understand this behavior, in Fig. 3 we present typical trajectories for θv = 0, π/6,

π/4, and π/2. The chosen parameters are v = 0.017 a.u., F0 = 0.6 × 10−4 a.u., ω =

10−3 a.u., impact parameter b = 50 a.u., φ′ = 1 rad, φ0 = 1 rad, φv = 1.28 rad. Each

trajectory represents a class of trajectories with the same angle of incidence but different
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FIG. 3. Electron trajectory in the z − ρ plane in the field F = 0.6 × 10−4 for the initial electron

velocity making angle θv with the field polarization vector, impact parameter b = 50 a.u. The

proton is placed at the origin of the coordinate system (ρ, z) = (0, 0). The arrows indicate the

launching points for each trajectory. See the text regarding the negative values of ρ.

impact parameters. Due to the chaotic dependence of the radiation probability on the

impact parameter not all trajectories from this class lead to radiation. The contribution of

“successful” trajectories to the total LARR cross section can be seen from Fig. 2 of Ref.

[16]. The Coulomb focusing effect is mostly pronounced at θv = 0, and it occurs in a very

broad range of impact parameters as long as parameter χ, Eq. (1), is less or close to 1

[15, 16]. In this case the electron performs several oscillations due to the laser field which

allows a longer action of the Coulomb field pulling the electron to its site. In contrast, in

the absence of the laser field, for large impact parameters, the electron moves along almost

rectilinear trajectory with virtually no displacement towards the Coulomb center.

For θv = 0 the trajectory is planar corresponding to a fixed polar angle φ. However, for

θv > 0 trajectories become three-dimensional, and we show their projection on the ρ − z
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FIG. 4. A sample of planar trajectories for F = 0.2× 10−4 a.u., v = 0.1 a.u., ω = 0.2× 10−3 a.u.,

b = 50 a.u., φ′ = 0, φ0 = 2.5, φv = 1.28 and different values of the angle θv.

plane. Note that when the trajectory is planar, the polar angle φ is constant, and the

trajectory can cross the z axis corresponding to a sudden change of the polar angle from φ

to φ + π. It is more convenient to represent this change by changing the sign of the polar

coordinate ρ. In particular the first trajectory in Fig. 3 is a planar trajectory involving

negative values of ρ. In this case the vector of the initial velocity v is parallel to the field

polarization vector, but there are more cases of planar trajectories discussed in Appendix B.

A sample of this kind of trajectories for three values of θv is presented in Fig. 4 for b = 50

a.u., φ′ = 0, φ0 = 2.5 and φv = 1.28. In all figures the same pattern is observed: with the

increase of θv the probability for electron to hit the proton is decreasing. It is apparent that

the Coulomb focusing is most efficient for θv close to 0. With increasing θv large impact

parameters do not lead to close approach, similar to the case F0 = 0.

In Figs. 5 and 6 we present the ratio of the laser-assisted recombination rate constant to

the zero-field rate constant (the gain factor) as a function of the field frequency ω for several
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FIG. 5. The ratio of the RR rate constant for laser-assisted recombination to the zero-field rate as

a function of laser frequency for several values of the field strength and low electron temperatures.

Typical error bars are shown for selected points.

selected values of field intensities and temperatures. Uncertainties of the results are partly

due to the chaotic dependence of the radiation probability on the impact parameter [16, 31],

and partly due to the MC integration error. Estimated uncertainties are represented by

the error bars for a few points. The obtained dependencies are controlled by parameter χ

which should be close to one to achieve the maximum enhancement effect. For the Maxwell-

averaged rates the velocity in Eq. (1) should be replaced by the r.m.s. velocity vrms =

(3T/m)1/2. Therefore the rate peaks at the frequency which is proportional to the field

amplitude and inversely proportional to the square root of temperature. In order to shift

the optimal frequency to the near infrared region, we should either increase the field or

decrease the temperature.

At lower temperatures the most favorable frequency for enhancement is in the range

0.003-0.005 a.u. (the wavelength in the range 9-15 μm), and the peak frequency increases
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FIG. 6. The same as in Fig. 5 for higher temperatures.

with the increase of the field in accordance with the decrease of χ with the increase of F0. As

the temperature grows, so does the mean electron velocity, and the peak value of ω decreases

further into far infrared, ω = 0.001 a.u. (wavelength 45 μm). In general the gain factor is

strongly suppressed due to the sin θv factor in the integral (12), since the gain is the largest

for θv = 0 and π. Still, the gain factor can be substantial, about 2.5-3, for rather moderate

fields in the range between 20 and 350 MW/cm2.

IV. CONCLUSION AND OUTLOOK

The Coulomb focusing effect in LARR has been explored in the present paper for non-

parallel geometries, that is for initial electron velocity nonparallel to the polarization of the

laser field. The gain factor drops substantially with the increasing angle θv. The Maxwell-

averaged rate constant for LARR is suppressed further because of the sin θv factor in the

phase space volume. However, even after all these reductions the gain factor can remain sub-

stantial, up to the factor 3, even for relatively moderate field of intensity 20 MW/cm2. Field
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frequencies used in the present work correspond to the far infrared radiation. However, it is

possible to increase the frequency and achieve the same effect, if the field is increased as well,

or the temperature/velocity is decreased, so that the χ parameter, Eq. (1) does not exceed

1. Our results might be important for various applications, particularly for antihydrogen

formation in antiproton-positron plasma.

Although our studies are aimed at ultracold Maxwellian antihydrogen plasma, the present

approach can be applied to other plasma conditions. First, it can be extended to plasmas

formed by heavier elements. Provided that the atoms remain singly ionized, the bound

electrons of larger elements would strongly influence the dynamics of LARR, and this will

require a separate investigation. The assumption of Maxwellian distribution is relevant in

the case of antihydrogen plasma [7, 8]. On the other hand large LARR cross sections in the

low-energy region can deplete plasma of low-energy electrons (positrons) and lead to a non-

Maxwellian distribution. There are other examples of non-Maxwellian cases, for example

electron velocity distribution in storage ring experiments on RR [17–20]. These will also

require separate studies.
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APPENDIX A: THE TRANSFORMATION MATRIX

Using the coordinates of the basis vectors in the primed reference frame, Eqs. (6), (7),

(8), we obtain the transformation matrix
x̂ · x̂′ x̂ · ŷ′ x̂ · ẑ′

ŷ · x̂′ ŷ · ŷ′ ŷ · ẑ′

ẑ · x̂′ ẑ · ŷ′ ẑ · ẑ′

 =


cos θv cosφv − sinφv sin θv cosφv

cos θv sinφv cosφv sin θv sinφv

− sin θv 0 cos θv



Acting by this matrix on the column


b cosφ′

b sinφ′

−d

, we arrive at the transformation (9), (10).
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APPENDIX B: PLANAR TRAJECTORIES

The obvious case of a planar trajectory occurs when the initial velocity is parallel to the

laser field polarization vector. We will discuss here a more nontrivial case when the impact

parameter angle φ′ = 0, see Fig. 1. In this case, according to Eq. (9) the initial x and y

coordinates are

x = cosφv(b cos θv − d sin θv), y = sinφv(b cos θv − d sin θv),

therefore xvy − yvx = 0, the component of the angular momentum along the laser field

Lz(0) = 0, and dφ/dt = 0. The variation of Lz at a later time is given by the Newton’s

equation
dLz
dt

= (r× F)z

Since the Coulomb field is central, its contribution to the cross product is 0, and since the

external field is directed along the z axis, its contribution to the z component to the cross

product is 0 too, therefore dLz/dt = 0, and Lz = 0 for all times. As a result dφ/dt = 0 and

the trajectory is planar. Generally Lz is a constant of the motion, but since Lz 6= 0, the

trajectory is not planar.
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[3] K. Lévêque-Simon and P.-A. Hervieux, Phys. Rev. A 107, 052813 (2023).

[4] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).

[5] P. Agostini and L. F. DiMauro, Reports on Progress in Physics 67, 813 (2004).

[6] P. B. Corkum and F. Krausz, Nature Physics 3, 381 (2007).

[7] M. Charlton and D. P. V. D. Werf, Science Progress 98, 34 (2015).

[8] W. A. Bertsche, E. Butler, M. Charlton, and N. Madsen, Journal of Physics B: Atomic,

Molecular and Optical Physics 48, 232001 (2015).

[9] M. H. Holzscheiter, M. Charlton, and M. M. Nieto, Physics Reports 402, 1 (2004).

[10] G. Gabrielse, Advances in Atomic, Molecular and Optical Physics 50, 155 (2005).

[11] F. Robicheaux, Journal of Physics B: Atomic, Molecular and Optical Physics 41, 192001

(2008).

16

https://doi.org/10.1103/PhysRevA.103.053115
https://doi.org/10.1103/PhysRevA.105.043111
https://doi.org/10.1103/PhysRevA.107.052813
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1088/0034-4885/67/6/R01
https://doi.org/10.1038/nphys620
https://doi.org/10.3184/003685015X14234978376369
https://doi.org/10.1088/0953-4075/48/23/232001
https://doi.org/10.1088/0953-4075/48/23/232001
https://doi.org/https://doi.org/10.1016/j.physrep.2004.08.002
https://doi.org/https://doi.org/10.1016/S1049-250X(05)80009-6
https://doi.org/10.1088/0953-4075/41/19/192001
https://doi.org/10.1088/0953-4075/41/19/192001


[12] M. Ahmadi et al., Nature Communications 8, 681 (2017).

[13] E. K. Anderson et al., Nature 621, 716 (2023).

[14] D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proceedings of the Royal Society of

London. Series A. Mathematical and Physical Sciences 267, 297 (1962).

[15] H. B. Ambalampitiya and I. I. Fabrikant, Phys. Rev. A 99, 063404 (2019).

[16] I. I. Fabrikant and H. B. Ambalampitiya, Phys. Rev. A 101, 053401 (2020).

[17] R. Neumann, H. Poth, A. Winnacker, and A. Wolf, Zeitschrift für Physik A Atoms and Nuclei

313, 253 (1983).

[18] U. Schramm, J. Berger, M. Grieser, D. Habs, E. Jaeschke, G. Kilgus, D. Schwalm, A. Wolf,

R. Neumann, and R. Schuch, Phys. Rev. Lett. 67, 22 (1991).

[19] A. Wolf, Hyperfine Interactions 76, 189 (1993).

[20] A. Scrinzi, N. Elander, and A. Wolf, Zeitschrift für Physik D Atoms, Molecules and Clusters

34, 185 (1995).

[21] A. Müller and A. Wolf, Hyperfine Interactions 109, 233 (1997).

[22] M. L. Rogelstad, F. B. Yousif, T. J. Morgan, and J. B. A. Mitchell, Journal of Physics B:

Atomic, Molecular and Optical Physics 30, 3913 (1997).

[23] M. Amoretti et al. (ATHENA Collaboration), Phys. Rev. Lett. 97, 213401 (2006).

[24] H. A. Kramers, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science 46, 836 (1923).

[25] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 3rd ed. (Pergamon, Oxford,

1971).

[26] M. Bell and J. S. Bell, Part. Accel. 12, 49 (1982).

[27] V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic Press,

New York, 1967).

[28] H. Price, C. Lazarou, and A. Emmanouilidou, Phys. Rev. A 90, 053419 (2014).

[29] G. P. Katsoulis, M. B. Peters, A. Staudte, R. Bhardwaj, and A. Emmanouilidou, Phys. Rev.

A 103, 033115 (2021).

[30] A. Emmanouilidou, M. B. Peters, and G. P. Katsoulis, Phys. Rev. A 107, L041101 (2023).

[31] L. Wiesenfeld, Physics Letters A 144, 467 (1990).

[32] L. Wiesenfeld, Acta Phys. Pol. B 23, 271 (1992).

[33] L. Wiesenfeld, Journal of Physics B: Atomic, Molecular and Optical Physics 25, 4373 (1992).

17

https://doi.org/10.1038/s41467-017-00760-9
https://doi.org/10.1038/s41586-023-06527-1
https://doi.org/10.1098/rspa.1962.0101
https://doi.org/10.1098/rspa.1962.0101
https://doi.org/10.1103/PhysRevA.99.063404
https://doi.org/10.1103/PhysRevA.101.053401
https://doi.org/10.1007/BF01439477
https://doi.org/10.1007/BF01439477
https://doi.org/10.1103/PhysRevLett.67.22
https://doi.org/10.1007/BF02316718
https://doi.org/10.1007/BF01437687
https://doi.org/10.1007/BF01437687
https://doi.org/10.1023/A:1012617803666
https://doi.org/10.1088/0953-4075/30/17/018
https://doi.org/10.1088/0953-4075/30/17/018
https://doi.org/10.1103/PhysRevLett.97.213401
https://doi.org/10.1080/14786442308565244
https://doi.org/10.1080/14786442308565244
https://doi.org/10.1103/PhysRevA.90.053419
https://doi.org/10.1103/PhysRevA.103.033115
https://doi.org/10.1103/PhysRevA.103.033115
https://doi.org/10.1103/PhysRevA.107.L041101
https://doi.org/https://doi.org/10.1016/0375-9601(90)90516-Q
https://www.actaphys.uj.edu.pl/R/23/3/271/pdf
https://doi.org/10.1088/0953-4075/25/21/007

	Laser-assisted radiative recombination in a cold hydrogen plasma
	Abstract
	Introduction
	Theory
	Results and discussion
	Conclusion and Outlook
	Acknowledgments
	Appendix A: the transformation matrix
	Appendix B: planar trajectories
	References


