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Abstract Following the auroral substorm onset, the active aurora undergoes expansion, which can vary in
spatial and temporal extent. The spatiotemporal development of the expansion phase active aurora is controlled
by new auroral intensifications that often follow the initial onset. Using seven examples, we investigate the
nature of these new auroral intensifications and address a question: are they new auroral onsets, that is,
“successive onsets” or poleward‐boundary intensifications (PBIs) and ensuing auroral streamers? We observed
events that included both types of auroral features—successive onsets and PBIs—and their combinations. For
multiple‐onset substorms, successive onsets may occur eastward, westward, and poleward of the initial onset,
resulting in a diverse range of expansion phase spatial extent and durations. Single‐onset substorms show only
one auroral onset, but their spatiotemporal development can resemble that of multiple‐onset substorms.
However, the additional activations are mainly PBIs and subsequent streamers. In some cases, PBIs undergo
explosion, leading to a rapid poleward and azimuthal expansion of the aurora, resembling the auroral substorm
onset. A prolonged sequence of PBIs and its longitudinal extension can contribute significantly to the
spatiotemporal development of substorms expansion phase. Results suggest that post‐onset flow channels drive
the spatiotemporal development of the substorm expansion phase by (a) triggering successive onsets and (b)
inducing bursts of PBIs and their prolonged sequence. We speculate that post‐onset flow channels likely
originate from the polar cap, but more evaluation is required. Our findings highlight the significance of
examining imager data before solely relying on magnetometers to identify substorm onsets.

1. Introduction
Auroral substorms, the visible part of magnetospheric substorms, are a phenomenon through which magneto-
spheric energy is deposited in the auroral ionosphere. Auroral substorm onset is identified by a sudden bright-
ening of an auroral arc that lies near the equatorward boundary of the auroral oval in the midnight sector, followed
by auroral breakup. Subsequently, the aurora intensifies and expands poleward, constituting the substorm
expansion phase. The poleward expansion gives rise to a bulge of active aurora that often extends toward the west,
forming the westward traveling surge (WTS) (Akasofu et al., 1965). Sometime after the disturbed auroral region
reaches its maximum poleward position, auroral activity decreases, and the recovery phase begins. Different from
auroral substorm, pseudo‐breakups have a weak poleward expansion (<2° magnetic latitude, Aikio et al., 1999)
that lasts only for a few minutes (<3 min, Nishimura, Lyons, Zou, Angelopoulos, & Mende, 2010).

The expansion phase activity is known to continue for a wide range of periods, ranging from several minutes to
tens of minutes, and can extend over spatial areas varying from limited latitudinal and longitudinal extents to more
than 10° of latitude and 100° longitude. This variety can be seen from numerous published examples (e.g.,
Despirak et al., 2011; Gjerloev et al., 2007; Ieda et al., 2016; Lyons, Nishimura, Donovan, & Angelopoulos, 2013;
Lyons, Nishimura, Gallardo‐Lacourt, et al., 2013; Nishimura et al., 2020; Perraut et al., 2003). Based on the
ground magnetometer data, on average, the substorm expansion phase duration is typically 20–30 min (Chu
et al., 2015; Forsyth et al., 2015; Gjerloev et al., 2007) and the recovery phase lasts 30–40 min on average (Chu
et al., 2015; Forsyth et al., 2015). The larger the duration and spatial extent of a substorm expansion phase is, the
larger should be the disturbances in the Earth's ionosphere‐thermosphere system in terms of total energy
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deposition; therefore, it is important to understand the factors that control the spatiotemporal development of
substorm expansion. Despite its importance, this topic has received only very limited attention in the past (Lyons
& Nishimura, 2020 and reference therein).

During the expansion phase of a substorm, new auroral brightenings may occur, resulting in further discrete
expansion of the substorm activity. This phenomenon is known as multiple‐onset substorms (e.g., McPher-
ron, 1979; Pytte et al., 1976; Rostoker et al., 1980). The auroral brightenings following the main onset have often
been called “substorm intensifications” (Rostoker et al., 1980), though these intensifications may be new onsets,
poleward boundary intensifications (PBIs, Lyons et al., 1999), or auroral streamers (e.g., Montbriand, 1971;
Nakamura et al., 1993; Sergeev et al., 1999). Here, we refer to new auroral onsets following the main onset as the
“successive onsets,” and distinguish between such onsets, PBIs, and ensuing streamers. Another scenario is when
more than one auroral substorm develops nearly simultaneously at different magnetic local times (MLT), forming
double auroral bulges, which later merge into one large bulge (Ohtani et al., 2021). Multiple‐onset substorms may
lead to auroral expansions that progress poleward in a stepwise manner (Aikio et al., 2006; Ieda et al., 2016;
Kisabeth & Rostoker, 1971, 1974; Sergeev & Yahnin, 1979; Wiens & Rostoker, 1975). Successive substorm
onsets influence the intensity, duration, and spatial extent of the expansion phase aurora. On the other hand,
auroral substorms that are not followed by any succeeding auroral onsets are referred to here as single‐onset
substorms.

PBI is a recurrent form of auroral intensification at the poleward boundary of the nightside auroral oval, a region
often considered a proxy for the open‐closed boundary. Auroral features that often extend equatorward from PBIs
to lower latitudes are referred to as auroral streamers, which can be almost north‐south aligned, and are considered
as a crucial component of the expansion phase (Elphinstone et al., 1996; Henderson, 2012; Henderson et al., 1994,
1998; Montbriand, 1971; Nakamura et al., 1993, 2001; Nishimura, Lyons, Zou, Angelopoulos, & Mende, 2010;
Sergeev et al., 1999, 2000, 2004; Yadav et al., 2022). They not only extend equatorward from the PBIs but also
from the poleward boundary of the auroral bulge if the bulge has not yet reached the auroral poleward boundary.
Abrupt and large ground magnetic field drops that occur during the expansion phase are often associated with
PBIs and ensuing equatorward extending auroral streamers (Lyons, Nishimura, Donovan, & Angelopoulos, 2013;
Yadav et al., 2022 and reference therein), and these extend westward with the westward propagating surge
(Lyons, Nishimura, Gallardo‐Lacourt, et al., 2013). The prolonged occurrence of PBIs and auroral streamers may
influence the duration of the substorm expansion phase, a topic that has remained largely unexplored thus far.

One of the characteristic features of substorms is the occurrence of Pi2 pulsations (Olson, 1999; Saito et al., 1976),
an ultralow‐frequency phenomenon with periods ranging from 40 to 150 s (Jacobs et al., 1964). However, Pi2
pulsations observed from high to low latitudes appear to not be directly linked to substorm onset, but are asso-
ciated with the onset of PBIs and auroral streamers, which often occurs soon after substorm onset (Kim
et al., 2005; Lyons, Nishimura, Donovan, & Angelopoulos, 2013; Nishimura et al., 2012; Sutcliffe &
Lyons, 2002; Yadav et al., 2022), indicating their connection to disturbances originating in the near‐Earth
magnetotail (Keiling & Takahashi, 2011). This highlights the importance of auroral observations in identi-
fying substorm onset and auroral features such as PBIs and auroral streamers. In this study, we reinforce PBI and
streamer observations with their associated Pi2 pulsations.

The highly variable spatial extent and duration of substorm expansion phase raises several unanswered questions:
(a) What factors determine the spatial extent and duration of the substorm expansion phase? (b) Is multiple‐onset
the only plausible reason for the large spatial extent and duration of substorms? (c) Is a single‐onset substorm
longitudinally confined compared to multiple‐onset substorms, or is it possible for a single‐onset substorm to
demonstrate a large spatial extent and duration of the expansion phase aurora? Addressing these questions is
crucial for enhancing our understanding of substorms and the underlying phenomena that control their duration
and spatial extent.

Although a stepwise evolution of the expansion phase aurora seems to be a common feature, to our knowledge,
studies describing the characteristics of these substorm auroral intensifications and their role in driving the spatial
extent (both azimuthal and poleward) and duration of substorms expansion phase are sparse. In this paper, we take
advantage of the coverage of the North American auroral oval by the ground‐based Time History of Events and
Macroscale Interactions during Substorms (THEMIS) all‐sky‐imager (ASI) array (Donovan et al., 2006; Mende
et al., 2008) of NASA's THEMIS program (Angelopoulos, 2008), which enables resolving the finer details of the
auroral activity over a large area. We emphasize the role of successive onsets in spatiotemporal development of
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the substorm expansion phase. We evaluate seven events, including, for comparison, examples of single onset
substorms, with one having a broad and long duration substorm expansion phase without successive onsets but
with a prolonged periods of expansion phase streamers and PBIs.

It is widely accepted that streamers are auroral manifestations of equatorward moving ionospheric flow channels
(e.g., Gallardo‐Lacourt et al., 2014), which correspond to earthward‐moving flow bursts in the plasma sheet
(Henderson et al., 1998; Kauristie et al., 2000; Nakamura et al., 2001; Sergeev et al., 1999; Zesta et al., 2000). Pre‐
onset streamers (Lyons et al., 2010; Nishimura, Lyons, Zou, Angelopoulos, & Mende, 2010; Nishimura, Lyons,
Zou, Xing, et al., 2010) and their associated flow channels (Lyons, Gallardo‐Lacourt, & Nishimura, 2022; Lyons,
Liu, Nishimura, Reimer, et al., 2021; Lyons, Nishimura, et al., 2022) have been found to be a crucial element of
the sequence of events that lead to substorm onset, indicating that the earthward penetration of flow bursts triggers
substorms. It is known that earthward‐propagating flow bursts are persistently injected from the magnetotail
during substorms. Post‐onset auroral streamers serve as a tool to track these expansion‐phase flow bursts using
ground‐based measurements. The post‐onset equatorward‐extending auroral streamers have been shown to
correlate with abrupt and significant decreases in the ground magnetic field (Yadav et al., 2022). However, the
role of post‐onset streamers in triggering successive substorm onsets has not yet been thoroughly explored.

2. Data Set and Methodology
We use THEMIS ASI images to identify auroral features. With 21 cameras, the THEMIS ASIs cover a large
portion of the auroral oval in North America. Each imager has a latitudinal coverage of ∼9° and longitudinal
coverage of ∼2.5 hr MLT. These imagers provide high spatial and temporal resolution (∼1 km spatial at the zenith
and 3s temporal), allowing detection of weak, fast‐evolving auroral forms and spatially extended auroral struc-
tures. To study the temporal variation of auroral features and their latitudinal motion, north‐south (N‐S) keograms
are made using slices of auroral images along the central longitude of a station.

To examine the perturbations in the horizontal (H) component of magnetic field near the auroral activity, we used
1‐min daily baseline subtracted ground magnetic field data from the SuperMAG (http://supermag.jhuapl.edu)
database (Gjerloev, 2012). High‐resolution magnetometer data (≤1 s) from the THEMIS ground‐based magne-
tometer array are used to study the Pi2 pulsations at mid‐latitudes in association with auroral activity. The Pi2
pulsations are derived by band‐pass filtering of the H‐component data with a passband of 40–150 s.

The solar wind parameters (interplanetary magnetic field (IMF) Bz, By) are obtained from the OMNI database.
We used the SuperMAG auroral indices SML (analogous to AL, Gjerloev, 2012; Newell & Gjerloev, 2011) at a 1‐
min cadence. We used the Space Physics Environment Data Analysis Software (SPEDAS) tool (Angelopoulos
et al., 2019) to download and analyze the geomagnetic indices and THEMIS ground‐based magnetic field. Table
S1 in Supporting Information S1 indicates the name, code, and geomagnetic coordinates of all the ground
magnetometer stations used in this study.

3. Observations
We present seven examples with good auroral viewing selected to study the spatiotemporal development of
single‐onset and multiple‐onset substorms. Substorm auroral onset is identified using auroral images, with the
auroral onset marked by the initial brightening near the equatorward boundary of the auroral oval, often along a
preexisting growth phase arc. Substorm auroral onsets occurring after the initial onset are referred to as successive
onsets, and such events are termed “multiple‐onset substorms.” Apart from substorm onset, new auroral
brightenings may occur, which could be associated with PBIs or auroral streamers. Rapid, latitudinally localized
brightenings or the formation of new arcs along the poleward boundary of the auroral oval have been identified as
PBIs. Auroral streamers are identified as approximately north‐south aligned arcs that originate from the poleward
boundary of the auroral oval or auroral bulge and extend equatorward. On some occasions, we observed auroral
intensifications characterized by the rapid poleward and azimuthal expansion of the ongoing expansion phase
aurora. These events have been referred to as auroral re‐intensifications.

This section is subdivided into two parts: the first part describes the substorm onset consisting of just one onset,
known as the single‐onset substorm. The second part elaborates on the multiple‐onset substorm resulting in the
stepwise evolution of the expansion phase aurora. The first two single‐onset substorms are not followed by
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prolonged auroral streamers, whereas the third single‐onset substorm consists of a sequence of PBIs and auroral
streamers causing larger azimuthal and poleward expansion. For each event, we present observations from ASIs
and ground magnetometers. Mosaic images from THEMIS are presented first to provide an overview of the
auroral activity. Then the keograms and ground‐based magnetometer observations are presented along with IMF‐
By/Bz and SML index to examine the auroral activities and substorm signatures in detail.

3.1. Single‐Onset Substorms

3.1.1. Event 1, 29 March 2014

Figure 1 shows selected merged images from the THEMIS ASIs for the period covering a substorm on 29 March
2014. The light contamination in the images is highlighted by white arrows in Figure 1a. A movie of the merged
images every 10 s is given as Movie S1. Figure 2 shows the N‐S keograms of auroral intensity versus magnetic
latitude, SML index, and ground magnetic field data (H‐component). The last panel of Figure 2 shows the
midlatitude Pi2 pulsations at a station close to the longitude of the auroral activity. The IMF‐Bz turned southward
at ∼09:02 UT and remained southward for the rest of the considered period. A growth‐phase arc at ∼68.5° MLAT
and a poleward boundary arc (PBA) were already present at the beginning of the event in the FSMI and INUV
imager FOV, respectively. The PBA continuously tilted equatorward to reach close to the growth‐phase arc (see
Movie S1). As the tilted PBA approached the growth‐phase arc near the FSIM and WHIT imager FOV, a sub-
storm onset occurred at ∼09:14:20 UT, identified by the brightening near the western FOV of the FSIM imager at
∼68.5 MLAT near midnight. The onset was followed by the start of Pi2 pulsations at FRN. By ∼09:19 UT, the
brightening expanded eastward and westward, covering FYKN and FSIM imager FOV and around ∼2 MLT wide
region. The poleward expansion was ∼2° at FSIM and INUV. The stations away from the onset did not show
significant poleward expansion, suggesting the smaller spatial scale of the substorm. The onset was accompanied
by the maximum H drop of ∼−30 nT at FSMI, ∼−40 nT at FSIM, and ∼−15 nT at FYKN. The active onset aurora
diminished after 09:30 UT, reflected in the local magnetometers and the SML index. The expansion phase of this
substorm lasted for ∼15 min without additional major intensifications. Thus, this event was a single‐onset
substorm, not followed by a prolonged period of PBIs and streamers.

Figure 1. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐
imagers (ASIs) for the period covering an auroral substorm on 29 March 2014. Yellow arrows identify auroral activities
including auroral onset. Panel (a) highlight the name of ASI stations. White lines represent isocontours of magnetic latitude
(every 10° in solid lines) and longitude (every 15°).
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3.1.2. Event 2, 25 February 2008

Figure 3 shows selected merged images from the THEMIS ASIs for the period covering a substorm on 25
February 2008. A movie of the merged images every 10 s is given as Movie S2. Figure 4 shows the N‐S keograms
of auroral intensity versus magnetic latitude, SML index, and ground magnetic field data. The IMF‐Bz was
continuously southward for the time duration. The event of 25 February 2008 was originally reported by Kepko
et al. (2009) and later in other substorm sequence studies (e.g., Nishimura et al., 2013; Ohtani et al., 2022). The
event began with the appearance of a growth‐phase arc at GILL and a pre‐onset streamer, highlighted in Figure 3a.
An auroral substorm onset occurred at ∼05:29:30 UT, identified by the brightening and beading in the eastern
FOV of the GILL imager at ∼67.5° MLAT (see Figures 3b and 3c). The onset was followed by a poleward
expansion of ∼2.5° (as seen in the keograms in Figure 4) and associated with the Pi2 pulsations at LYFD

Figure 2. (a) Interplanetary magnetic field in the GSM coordinates for 29 March 2014. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of FSMI, FSIM,
INUV, and FYKN. (g–j) H‐components magnetic field at FSMI, FSIM, INUV, and FYKN. (k) Filtered Pi2 (40–150 s
passband) magnetic field data for FRN. Dashed vertical black line identifies the onset.
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(Figure 4h). A small decrease in H of ∼−15 nT at GILL began around 2 min before the onset, followed by a sharp
positive perturbation of ∼−25 nT after the onset, suggesting the presence of eastward electrojet or positive FACs.
The maximum drop was observed at SNKQ, located east of the onset. Unfortunately, due to clouds, the expansion
of the aurora at SNKQ could not be observed. Although there was a decreasing trend in the SML index before the
onset, the onset was associated with a sharp decrease in SML of approximately −25 nT. Thus, this event was a
single‐onset substorm with an expansion phase that persisted for only about 4 min.

3.1.3. Event 3, 16 February 2010

Figure 5 shows selected merged images from the THEMIS ASIs for the period covering a substorm on 16
February 2010. A movie of the merged images every 10 s is given as Movie S3. Figure 6 shows the N‐S keograms
of auroral intensity versus magnetic latitude, SML index, and ground magnetic field data. The IMF‐Bz was
consistently negative, attaining the values of ≤5 nT, throughout the considered period. The brief event in the FOV
of the FSMI imager at 07:04:30 UT (Movie S3) was not followed by poleward expansion and quickly faded. We
thus classify this event as pseudo‐breakup, and do not consider it further.

Figure 3. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐
imagers (ASIs) for the period covering an auroral substorm on 25 February 2008. Yellow arrows identify the auroral
activities including streamer and auroral onset. Panel (a) highlight the name of ASI stations. White lines represent
isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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An auroral substorm onset, characterized by an auroral brightening in the FOV of FSIM imager at ∼22.2 MLT and
65.5° MLAT, initiated at 07:17:50 UT (Figure 5a). By 07:18:50 UT (1 min after the onset; Figure 5b), the
brightening rapidly expanded westward and eastward, spanning between approximately 21.7 and 23.2 MLT, and
accompanied by Pi2 pulsations (Figure 6). The auroral brightening was followed by a poleward expansion. As the
poleward expanding aurora reached the PBA, an abrupt poleward expansion occurred after ∼07:24 UT (∼6 min
after the onset) at FSMI and FSIM followed by the streamers (Figures 5c–5e and Movie S3), associated with the
second set of amplification in the Pi2 pulsations and the start of a sharp magnetic field drop at FSIM (∼−500 nT),
FSMI (∼400 nT), and YKNF (∼−550 nT). The interaction of PBA with the onset aurora and the subsequent
poleward expansion is clear in the FSMI and FSIM keograms (Figures 6d and 6e). By ∼07:30 UT (12 min after
the onset), the aurora had expanded poleward by >5° at FSMI and FSIM, reaching >71° MLAT (see Figures 6d
and 6e). The poleward expansion was followed by a prolonged period of equatorward extending streamers,

Figure 4. (a) Interplanetary magnetic field in the GSM coordinates for 25 February 2008. (b) SuperMAG SML index, (c, d)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of RANK and
GILL. (e–g) H‐components magnetic field at RANK, GILL, and SNKQ. (h) Filtered Pi2 (40–150 s passband) magnetic field
data for LYFD. Vertical dashed black line identifies the auroral onset.
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highlighted in Figures 5d–5h. Note that the sharp drop in the SML index and local H‐component began ∼6 min
after the auroral onset and was associated with the abrupt poleward expansion and ensuing streamers.

As the auroral intensity decreased (Figure 5g), an auroral activation began at 71° MLAT at 07:38:50 (Figure 5h),
which was presumably close to the polar cap boundary and, therefore, represents a PBI, associated with the onset
of the third set of Pi2 pulsations. Another auroral activation, which again may be a PBI, started at ∼07:45:30
(Figure 5j) in the FSIM imager FOV, associated with the fourth set of Pi2 pulsations. Previous studies have shown
that Pi2 pulsations are associated with PBIs (Kim et al., 2005; Sutcliffe & Lyons, 2002). The auroral activation
associated with PBIs was followed by the poleward and azimuthal expansion and filled the upper FOV of the
FSMI and FSIM imagers. The PBI extended azimuthally, and the formation of a westward expanding surge was
detected in the FOV of INUV and FYKN imagers (Figures 5k and 5l). The prolonged PBI and its longitudinal
extension can also be identified in the FYKN keogram (Figure 6f) as a patch of intense auroral emission. The
longitudinal extension of PBIs was also reported by Ohtani et al. (2018). The PBI and subsequent auroral
expansion were accompanied by the gradual drop in the magnetic field at GILL, FSMI, FSIM, and FYKN. The
westward expanding surge was detected after ∼08:04 UT at FYKN (Figure 5l), associated with the sudden drop of
∼−50 nT at FYKN. The active aurora continued until ∼08:40 UT at FYKN (Movie S3).

Figure 5. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐imagers (ASIs) for the period covering an
auroral substorm on 16 February 2010. Yellow arrows identify the ensuing auroral activities including streamers and auroral onset. Panel (a) highlight the name of ASI
stations. White lines represent isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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In summary, this event shows that a single substorm onset could lead to a significant expansion of both poleward
(>5°) and azimuthal (>6 MLT) extents of the active aurora and prolonged expansion phase duration. For this
event, during the expansion phase of the substorm, there was an approximately 50‐min‐long intensification
sequence along the poleward boundary (68°–72° MLAT), consisting of two discrete PBI events. After formation,
the PBI extended both poleward and azimuthally, and formed a westward‐expanding surge. The longitudinally
extended PBI covered approximately a 3 MLT‐wide region. Note that the full poleward extent of the aurora could
not be determined because of the absence of imagers poleward of FSMI and FSMI. Thus, this event effectively
demonstrates the role of prolonged auroral streamers and PBIs in the spatiotemporal development of the
expansion phase aurora.

Figure 6. (a) Interplanetary magnetic field in the GSM coordinates for 16 February 2010. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of GILL, FSMI,
FSIM, and FYKN. (g–j) H‐components magnetic field at GILL, FSMI, FSIM, and FYKN. (k) Filtered Pi2 (40–150 s
passband) magnetic field data for TUC. Vertical dashed black line identifies the auroral onset.
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3.2. Multiple‐Onset Substorms

3.2.1. Event 4, 11 March 2008

Figure 7 shows selected merged images from the THEMIS ASIs for the period covering a substorm on 11 March
2008. A movie of the merged images every 10 s is given as Movie S4. Figure 8 shows the N‐S keograms of auroral
intensity versus magnetic latitude, SML index, and ground magnetic field data. The dashed lines in Figure 8
indicate the auroral substorm onset. The IMF‐Bz was slightly positive during the onset of the first substorm,
turned a few nT negative at ∼05:45 UT, and maintained negative values until ∼06:45 UT. Initially, a pre‐existing
azimuthally extended growth phase arc appeared clearly in the FOV of the SNKQ, GILL, FSMI, and FSIM
imager (Figure 7a). The brightness in the poleward FOV of the SNKQ imager is due to light contamination. The
first auroral onset, identified by the brightness of the pre‐existing arc in the FOV of the GILL imager, initiated
around 05:32 UT at ∼23 MLT and ∼67° MLAT (Figures 7a and 7b), triggered by an eastward‐tilted pre‐onset
streamer, indicated by an arrow in Figure 7a. This onset was followed by a localized, minor poleward expan-
sion of ∼2.5° at GILL (see Figure 8d), and ensuing auroral streamers (Figure 7c). In association with this localized
onset, no considerable disturbance was observed in the H at GILL (Figure 8h) or the SML index (Figure 8b). The
Pi2 pulsations at ∼05:41 UT in Figure 8l were correlated with auroral streamers, not with the auroral substorm
onset. Another strong Pi2 pulsation at ∼05:50 UT can be linked with the PBI, followed by ensuing streamer at
GILL (Movie S4).

Approximately 21 min after and to the east of the previous onset, a successive auroral substorm onset occurred.
This was identified by a brightening of the arc at 0.8 MLT and 67.5° MLAT in the SNKQ imager FOV, starting
around 05:53 UT (Figure 7d) and identified by the second dashed line in Figure 8. Due to clouds at SNKQ, it is not
clear if this auroral substorm onset was preceded by a pre‐onset streamer. Simultaneously with the onset, a PBI
occurred at GILL (Figure 7e) at ∼68° MLAT and 22.4 MLT, near the onset location of the previous substorm,
followed by the formation of an auroral bulge. At ∼05:55:50 (Figure 7f), two bulges emerged, one at GILL at the

Figure 7. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐imagers (ASIs) for the period covering an
auroral substorm on 11 March 2008. Yellow arrows identify the auroral activities including streamers and the auroral onset. Panel (a) highlight the name of ASI stations.
White lines represent isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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location of the initial onset and the other at SNKQ related to the successive onset. Subsequently, the two bulges
merged, resulting in a significantly spread active aurora, spanning approximately 4 MLT with a poleward
expansion of >3° at GILL (see Figures 7h and 8d and Movie S4). This led to a surge detected at FSMI, highlighted
in Figures 7f and 7g. After that, several streamers emerged out from the poleward boundary of the auroral oval,
apparent primarily in the GILL imager FOV (Figure 7i), associated with Pi2 pulsations and a drop of ∼−200 nT in
H at GILL (Figure 8h). The amplification of Pi2 pulsations at ∼06:09 UT may be associated with the PBI, evident
in the FOV of the SNKQ imager (Movie S4).

As the recovery phase of the previous substorm was in progress, abrupt brightening occurred at 06:23:20 UT in
the FSMI imager FOV at 67.5° MLAT and 22.3 MLT (Figure 7j). Since this brightening occurred along the
poleward boundary, it is more likely to be a PBI intensification rather than a successive onset. After that the aurora

Figure 8. (a) Interplanetary magnetic field in the GSM coordinates for 11 March 2008. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of SNKQ, GILL,
FSMI, and FSIM. (g–k) H‐components magnetic field at SNKQ, GILL, FSMI, and FSIM. (l) Filtered Pi2 (40–150 s
passband) magnetic field data for FRN. Vertical dashed black lines identify the auroral onset.
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reached its highest latitude of >∼72° MLAT within 2 min (Figures 7k and 8e). The PBI and abrupt poleward
expansion was accompanied by a third‐step decrease in the SML index of ∼−200 nT, and a notable decrease in the
local magnetometers.

Another brightening began at 06:38:50 UT along the auroral poleward boundary in the FSMI imager FOV
(22.4 MLT and 66° MLAT). The brightened arc gradually diminished without any subsequent auroral breakup.
However, during this fading period, a sudden brightening of the PBI occurred around 06:41 UT (Figure 7m),
followed by a rapid and abrupt poleward expansion (poleward explosion) starting from around 06:44 UT
(Figure 7n and Movie S4). This expansion extended across the upper FOV of FSMI and FSIM imagers
(Figures 7n–7p, 8e and 8f). Due to the absence of imagers poleward of FSMI, it is not possible to ascertain the
poleward extent of the active aurora. The sudden poleward expansion coincided with the sharp positive pertur-
bation (of ∼250–300 nT) at FSMI and FSIM, indicating intensification of the eastward electrojet or positive FACs
equatorward of the brightening. Therefore, the new auroral activation coincided with the sudden brightening and
poleward explosion of the PBI. Following this activity, the auroral surge was detected in the eastern FOV of the
FYKN imager (Figure 7o), also evident by the onset of the negative bay at FYKN. The auroral activation due to
PBIs persisted for ∼20 min (keograms and Movie S4), covering a longitudinal region ∼3 MLT wide. Thus, the
further azimuthal (>5 MLT) and poleward expansion of the active aurora was associated with the longitudinal
extension of PBI, not with the new subsequent auroral onset. The fourth‐step decrease of ∼−200 nT in the SML
index coincided with the onset of PBI at ∼06:41 UT.

In summary, this event illustrates that the sudden intensification of the poleward boundary, followed by poleward
explosion and westward expansion, can further contribute to the expansion of the active aurora. It's worth noting
that relying solely on magnetometer data, the event of a long brightening sequence of PBI followed by an abrupt
poleward expansion might be mistaken for a new successive onset. The two successive onsets followed by two
events of long intensification sequence of the poleward boundary, which also consists of poleward explosion of
the active aurora, led to prolonged expansion phase activity lasting for 1 hr, covering a wide MLT region of over
6 hr and poleward expansion of >5°. The successive onsets and prolonged PBIs were accompanied with stepwise
development of the SML index.

3.2.2. Event 5, 02 February 2008

Figure 9 shows selected merged images from the THEMIS ASIs for the period covering a substorm on 02
February 2008. A movie of the merged images every 10 s is given as Movie S5. Figure 10 shows the N‐S
keograms of auroral intensity versus magnetic latitude, SML index, and ground magnetic field data. The
dashed lines in Figure 10 indicate the auroral substorm and successive auroral onsets. The IMF‐Bz fluctuated
between northward and southward orientations throughout the considered time and exhibited a southward turn
before all the auroral onsets. The event begins with the appearance of a bright growth‐phase arc, prominently
visible within the FSMI and GILL imager FOV, alongside an eastward tilted pre‐onset streamer at GILL, indi-
cated by an arrow in Figure 9a. The substorm auroral onset, characterized by the brightening of pre‐existing arc,
initiated at ∼07:38:50 UT (∼0.5 MLT and ∼65° MLAT) near the western FOV of the GILL imager. The
brightened onset arc expanded westward, reaching the FOV of GAKO by around 07:44 UT (5 min after the onset;
Figure 9b), covering ∼4 MLT. The onset is followed by the poleward expansion of ∼3° at GILL and ∼2° at FSMI
and FSIM (Figure 10). The onset was soon followed a sharp H bay at GILL of ∼−250 nT, ∼−150–200 nT at
FSMI and FSIM, and ∼−100 nT in the SML index, associated with the onset of auroral poleward expansion and
activity within the bulge.

As the auroral activity began to diminish, a successive auroral onset, evident by the brightening near the eastward
edge of the FSMI imager FOV, initiated at ∼07:57:30 UT (∼0.3 MLT and ∼65.5° MLAT), westward of the
previous onset (Figures 9c and 9d). Occurring 19 min after the first onset, this successive onset appeared to be
triggered by the westward tilted PBA, taking the form of a streamer (see Movie S5). The streamer persisted even
after the onset and appeared to pull the onset aurora poleward, forming a small auroral bulge (Figure 9e), apparent
near the eastern edge of the FSMI imager FOV. The bulge exhibited no westward propagation and, therefore, is
not observable in the FSMI keogram because the keogram is made by slicing the images at the central meridian.
This successive onset did not cause considerable poleward expansion and was relatively localized, resulting in
auroral intensification primarily within the FSMI and GILL imager FOV, covering ∼2.5 MLT region.
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Consequently, the H showed a drop at GILL (∼−150 nT), FSMI (∼−30 nT), and the SML index showed a
second‐step drop of ∼−100 nT.

While the expansion phase of the previous substorm onset was in progress, a new successive onset was initiated at
∼08:13 UT (∼00 MLT and ∼65.5° MLAT), evident as a brightening of the arc at FSMI, highlighted in Figure 9f.
The new successive onset initiated equatorward of the post‐onset streamer, highlighted by an arrow in Figure 9f.
Occurring 15 min after the previous onset, the new onset was followed by an abrupt poleward expansion at FSIM
and FSMI (Movie S5). The aurora reached its highest latitude of ∼69° at ∼08:16 UT, 3 min after the onset
(Figure 10). This caused an abrupt decrease of ∼450 nT at FSMI and ∼−300 nT at FSIM and a third‐step decrease
of ∼200 nT in the SML index (Figure 10).

As the auroral activity from the earlier successive auroral onset decreased, another successive onset, identified by
the brightening of arc within the FOV of the FSIM imager, began at 08:35 UT (23.5 MLT and ∼66° MLAT),
westward of the previous onset (Figure 9h) and 23 min after the previous onset. Like the previous onsets, this
onset was also initiated by the post‐onset streamer, highlighted by an arrow in the FOV of the FSIM imager
(Figure 9h). The onset was followed by the poleward expansion, ensuing streamers, and the formation of the
surge, which reached INUV and GAKO imagers FOV by 08:37 UT (Figure 9i). The aurora reached its highest
latitude of >71° MLAT within 1 min after the onset. This leads to a sharp decrease of ∼−300 nT at FSIM and a

Figure 9. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐imagers (ASIs) for the period covering an
auroral substorm on 02 February 2008. Yellow arrows identify the streamers, poleward boundary arc, and ensuing auroral activities including the auroral onset. Panel
(a) highlight the name of ASI stations. White lines represent isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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corresponding drop in the SML index (Figure 10). The active aurora from the new successive onset merged with
the aurora from the previous onset, causing the azimuthal expansion of >4 MLT.

From 08:40 to 09:10 UT, within the FOV of the FSMI imager (Figures 9j and 9k), a 30‐min‐long intensification
sequence occurred along the poleward boundary (>67° MLAT), consisting of multiple episodes of PBI,
accompanied by Pi2 pulsations during this period (Figure 10j). Then, another successive onset, characterized by
the brightening in the FOV of the GAKO imager, occurred at 09:03 UT (∼22.7 MLT and >∼66.5° MLAT),
westward of the previous onset and 28 min after the earlier onset. It is not clear if a streamer triggered this onset
due to the already bright aurora just poleward of the onset. The onset aurora reached its highest latitude of >∼71°
MLAT within 2 min after the onset (Figures 9k and 10f). The aurora from the new onset merged with that from the
previous one, further expanding the active aurora azimuthally (as evidenced by the intensification of aurora at

Figure 10. (a) Interplanetary magnetic field in the GSM coordinates for 02 February 2008. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of GILL, FSMI,
FSIM, and GAKO. (g–j) H‐components magnetic field at GILL, FSMI, FSIM, and INUV. (k) Filtered Pi2 (40–150 s
passband) magnetic field data for FRN. Vertical dashed black line identifies the auroral onset.
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INUV and GAKO), thereby extending the expansion phase aurora to cover a region wider than 5 MLT. The onset
was followed by a decrease of ∼−100 nT in the SML index. Unfortunately, the H data at GAKO was unavailable
for this event. The strong Pi2 pulsations after the onset at ∼09:06–09:08 were associated with the auroral
streamers observed at FSIM and FSMI (Figure 9l).

In summary, five successive onsets occurred within a span of 90 min. Each onset occurred westward and poleward
of the previous one, except for one that occurred equatorward of the preceding onset. All onsets were accom-
panied by Pi2 pulsations and intensification of the SML index. This systematic westward and poleward occur-
rence of successive onsets led to the stepwise westward and poleward expansion of the onset aurora. The aurora
from the new onsets merged with that from the previous onset, furthering the westward expansion of the active
aurora. These successive westward‐occurring onsets fed the westward and poleward expansion of auroral activity,
resulting in the active aurora over a >5 hr MLT wide region for approximately 1.5 hr with the maximum poleward
extent of >6°. Furthermore, a prolonged (∼30 min) sequence of PBIs contributes to the poleward expansion of the
aurora in addition to successive onsets.

3.2.3. Event 6, 12 February 2010

Figure 11 presents the selected snapshots of the merged images from THEMIS ASIs showing the auroral
activity for the event on 12 February 2010. A movie of the merged images at every 10s is given as Movie S6.

Figure 11. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐imagers (ASIs) for the period covering an
auroral substorm on 12 February 2010. Yellow arrows identify the auroral activities including the auroral onset and streamers. Panel (a) highlight the name of ASI
stations. White lines represent isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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Figure 12 shows the N‐S keograms of auroral intensity at KUUJ, SNKQ, GILL, and FSMI along with the H
magnetic field variation, Pi2 pulsations, IMF By/Bz, and SML index. The IMF‐Bz remained consistently
negative throughout the entire duration under consideration. Initially, a pre‐existing azimuthally extended
growth phase arc appeared in the KUUJ, SNKQ, and GILL imager FOV (Figure 11a). The brightness in the
poleward side of the KUUJ imager FOV is light contamination. Despite the light contamination, a bright,
equatorward, and westward propagating streamer (Figure 11b) emerged from the poleward side of the KUUJ
imager after ∼04:15 UT. This streamer can be identified as a bright V‐shaped structure in the KUUJ keogram.
As this streamer touched the growth phase arc, it triggered a pseudo‐breakup at the meridian of the streamer at
00 MLT (66.5° MLAT) and ∼04:19 UT (Figure 11c). The bright incident streamer remained connected with the
active aurora even after the breakup (Figure 11d and Movie S6). This localized activity was accompanied by a
poleward expansion of ∼1.5° at KUUJ. The onset of negative bay of ∼−150 nT at KUUJ and SNKQ of

Figure 12. (a) Interplanetary magnetic field in the GSM coordinates for 12 February 2010. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of GILL, FSMI,
and FSIM. (g–j) H‐components magnetic field at GILL, FSMI, and FSIM. (k) Filtered Pi2 (40–150 s passband) magnetic
field data for DRBY. Vertical dashed black line identifies the auroral onset.
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∼−100 nT, and Pi2 pulsation at KUUJ coincided with the onset of streamer at ∼04:15 UT, not with the onset of
pseudo‐breakup.

Between 04:27 and 04:34 UT, a bright streamer emerged from the PBI occurred along the westward boundary of
the RANK ASI FOV. The streamer transitioned into the GILL ASI FOV without initiating any new auroral
activity, consistent with the expectation that not all streamers lead to new onset. Another PBI started to occur in
the RANK ASI FOV at ∼04:36 UT. The PBI tilted southwest, and a streamer began to appear clearly at the eastern
portion of the tilted PBI from 04:40 UT. As this streamer (highlighted by an arrow in Figure 11e) transition from
the RANK to SNKQ imager FOV and came close to the growth phase arc, an auroral onset triggered at 04:42 UT
(∼22.7 MLT and 65° MLAT) near the western/eastern edge of the SNKQ/GILL imager FOV (Figure 11e).
Around 10 min after the onset, the active aurora reached its highest latitude of >∼70° MLAT (>5°), with the
azimuthal extent of ∼3 MLT (Figures 11g and 12e). This auroral substorm onset was followed by the mid‐latitude
Pi2 pulsations, start of a sharp negative bay of ∼300 nT at GILL, −60 nT at SNKQ, and −120 nT in the SML
index in association with the ensuing auroral expansion.

While the expansion phase from the above onset was in progress, an east‐west aligned auroral structure appeared
covering the FOV of SNKQ and KUUJ imager at ∼04:49 UT (Figure 11f). By ∼04:51 UT, an equatorward
propagating, westward tilted auroral streamer (Figure 11g) emerged from the poleward FOV of the KUUJ imager
and merged with the east‐west aligned auroral structure (Movie S6). Immediately equatorward of the westward
edge of the east‐west aligned portion of auroral streamer, a successive substorm auroral onset initiated in the
SNKQ imager FOV at ∼04:55 UT (∼23.6 MLT and 66° MLAT), 13 min after and to the east of previous substorm
onset (Figure 11i). The subsequent expansion phase aurora rapidly expanded in both the eastward and westward
directions (evident from the intensified auroral activity observed in the keogram at KUUJ, SNKQ, and GILL
(Figure 12)), spanning an azimuthal extent of approximately 4 MLT. The successive onset was accompanied by
an abrupt decrease in H at SNKQ (∼250 nT), GILL (∼100 nT), and −150 nT in SML index. Note that high‐
amplitude Pi2 pulsations started at ∼04:49 UT, before the onset, coincided with the onset of streamer at KUUJ.

Close to midnight, after ∼05:04 UT, a bright auroral structure appeared in the poleward FOV of the SNKQ and
GILL imager and equatorward FOV of RANK imager (Movie S6). The poleward and equatorward portion of this
structure turned eastward and westward, respectively, leading to the formation of clockwise rotated structure
(Harang aurora). A new longitudinally expanded (∼3 MLT wide) brightening of the arc occurred immediately
equatorward of this clockwise rotated streamer in the SNKQ imager FOV at ∼05:09 UT (67° MLAT)
(Figure 11k), 14 min after the previous substorm onset. As this brightening appeared nearly simultaneously across
a broad longitudinal range, we construed it as the initial brightening, which is used to mark the auroral onset. The
onset is followed by the poleward expansion of ∼3.5° at GILL within ∼4 min of the onset. The new successive
onset further fed the ongoing expansion phase and cased a westward expansion of the active aurora, which can be
identified by the enhanced aurora at FSMI (Figure 12f). The new successive onset was followed by a decrease of
∼−100 and ∼−60 nT in the H component at GILL and FSMI, respectively, as well as perturbations in the SML
index of ∼−50 nT.

In summary, this event effectively illustrates the role of post‐onset streamers in triggering successive onsets, both
westward and eastward of the initial auroral substorm onset, resulting in spatial expansion in both directions.
Additionally, the new onsets occurred poleward of the previous one, contributing to further poleward expansion
of the active aurora. As a result of the successive onsets, the active aurora persisted for approximately 40 min,
spanning an approximate 4.5 MLT range.

3.2.4. Event 7, 21 March 2015

Figure 13 presents the selected snapshots of the merged images from THEMIS ASIs showing the auroral activity
for the event on 21 March 2015. A movie of the merged images at every 10s is given as Movie S7. Figure 14
shows the N‐S keograms of auroral intensity at GILL, FSMI, FSIM, and FYKN along with the H magnetic field
variation, Pi2 pulsations, IMF By/Bz, and SML index. Unfortunately, the H data at FSIM was unavailable for this
event. The event begins with the occurrence of a pseudo‐breakup at GILL at ∼06:18 UT (Figure 13a), charac-
terized by beading followed by no considerable poleward expansion. As the brightness associated with the
pseudo‐break decreased, an auroral substorm onset, identified by the brightness and subsequent beading at ∼64°
MLAT and 22.3 MLT, initiated at around 06:23:20 UT (Figure 13b) in the FSMI imager FOV. Within 1.5 min
after the onset, the brightening expanded to cover ∼2 MLT wide region and expanded poleward by ∼1°
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(Figures 13c and 14d). The onset, which occurred immediately equatorward of the eastern portion of the
azimuthally extended streamer (highlighted by an arrow in Figure 13b), was not associated with any considerable
H response (Figure 14).

Again, as the auroral activity at FSIM began to reduce, a successive substorm auroral onset, identified by the
brightening in the FOV of GILL imager at ∼23.8 MLT and ∼64° MLAT, initiated at ∼06:28:20 UT (5 min after
the previous onset; Figure 13d). Occurring east of the previous onset, the new successive onset at GILL appeared
to be triggered by the post‐onset streamer, highlighted by an arrow in Figure 13d. The brightening arc rapidly
expanded and merged with the aurora of the previous onset in the west, causing the brightened arc to cover a
3 MLT region just 1 min afterward. The brightening was followed by poleward expansion, which intensified at
FSMI after 06:33 UT when an east‐west aligned streamer, which seemingly detached from the PBA, contacted the
bulge, clearly seen in the FSMI keogram (highlighted by a white solid line Figures 13e, 13f, and 14d, and
Movie S7). This caused a poleward expansion of ∼3° at GILL and ∼1.5° FSMI (see keograms). The successive
onset was accompanied by the H decrease at FSMI (∼−50 nT) and GILL (∼−100 nT) and start of negative bay in
SML index. Thus, two substorm auroral onsets occurred within a span of ∼10 min within 10° longitude, each
associated with Pi2 pulsations and poleward expansion.

At ∼06:38:50 UT (∼10 min after onset2), an abrupt auroral intensification extending eastward began at the
poleward boundary of the active auroral bulge in the FSMI imager FOV (Figures 13g and 13h and Movie S7).
Since this intensification occurred on the same arc and was not separated from the prevailing bulge, we believe it
may represent the re‐intensification of the previous onset. Interestingly, this re‐intensification occurred imme-
diately equatorward of the PBA, highlighted by an arrow in Figure 13g. The equatorward propagating PBA and
re‐intensification of the existing bulge is clear in the FSMI keogram (Figure 14d, second white line). These
activities resulted in further poleward expansion of the active aurora at GILL, FSMI, and FSIM (Figures 14c–14e
and Movie S7). This successive onset was accompanied by the negative H‐response at FSMI (−200 nT) and GLL
(∼−50 nT).

Figure 13. Selected merged images from the Time History of Events and Macroscale Interactions during Substorms all‐sky‐imagers (ASIs) for the period covering an
auroral substorm on 21 March 2015. Yellow arrows identify the streamers and auroral activities including the auroral onset. Panel (a) highlight the name of ASI stations.
White lines represent isocontours of magnetic latitude (every 10° in solid lines) and longitude (every 15°).
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At ∼06:48 UT, a new successive auroral substorm onset occurred in the FSIM imager FOV at ∼66° MLAT and
21.9 MLAT. Interestingly, this onset occurred after the continuously equatorward propagating PBA merged with
the active aurora (Movie S7). The interaction of equatorward moving PBA and aurora can be clearly seen in the
keogram at FSIM (highlighted by white line in Figure 14e). Occurring equatorward of the previous subsequent
onset and associated with Pi2 pulsations, the onset aurora of the new successive onset merged with the aurora
from the previous onset, causing the further intensification of the active aurora (Figures 13l and 13m).

While the active aurora from the previous substorm onsets was persisting, another successive onset, identified by
the brightening and beading in the FOV of FSMI at ∼67° MLAT and 23 MLT, initiated at ∼07:01:30 UT,
eastward of the previous onset (Figure 13n). Occurring ∼16 min after the previous onset, this onset caused further

Figure 14. (a) Interplanetary magnetic field in the GSM coordinates for 21 March 2015. (b) SuperMAG SML index, (c–f)
Time History of Events and Macroscale Interactions during Substorms all‐sky‐imager north‐south keogram of GILL, FSMI,
FSIM, and FYKN. (g–i) H‐components magnetic field at GILL, FSMI, and FYKN. (j) Filtered Pi2 (40–150 s passband)
magnetic field data for FRN. Solid vertical black line identifies the auroral onset. The equatorward motion of poleward
boundary arc is highlighted by solid white lines.
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azimuthal and expansion of the active aurora, evident by the intensification of the active aurora at GILL, FSMI,
FSIM, and FYKN (Figures 13o, 13p, and 14). The recurring PBIs were also observed in the FOV of FYKN and
RANK imager after the onset.

In summary, this event effectively illustrates how successive onsets influence both the azimuthal (both eastward
and westward) and poleward extent of the expansion phase aurora, as well as its duration. Apart from the auroral
substorm onsets, this event also showed auroral re‐intensifications (re‐intensification of the previous onset), likely
triggered by flow channels associated with the PBA (Lyons, Liu, Nishimura, Wang, et al., 2021). The obser-
vations indicate that auroral re‐intensifications occurred when the PBA approached the expansion phase aurora.
These findings suggest that flow channels associated with PBAs may supply new plasma to the auroral surge,
leading to further auroral re‐intensifications. It is interesting to note the stepwise poleward expansion of the active
aurora due to auroral substorm onsets and auroral re‐intensifications, clearly observed in the FSMI keogram
(Figure 14d). As a result of four successive onsets and auroral re‐intensifications, the active expansion phase
aurora persisted for more than 1 hr and spanned a region of over 6 MLT, with a poleward extent of approxi-
mately ∼5°.

4. Discussion and Summary
Numerous studies have investigated the onset process of substorms, but limited studies have focused on the
spatiotemporal development of the substorm expansion phase (e.g., Lyons & Nishimura, 2020 and reference
therein). Given that the expansion phase is highly variable in both spatial and temporal domains and is a period of
large‐scale energy dissipation in the ionosphere, it is crucial to study the spatiotemporal development of
expansion phase aurora in detail. Taking advantage of the continent‐scale THEMIS ASIs and extensive coverage
of magnetometers, we investigated the spatiotemporal evolution of substorm expansion phase aurora during both
single‐onset and multiple‐onset auroral substorms. By analyzing seven events, we aimed to investigate the auroral
enhancements contributing to the prolonged expansion phase, determining whether these enhancements are new
auroral onsets, prolonged PBIs, or expansion‐phase auroral streamers.

In multiple‐onset auroral substorms, the initial auroral substorm onset is followed by successive auroral onsets.
The active aurora from the successive onset merges with the active aurora from the previous onset, enhancing the
spatial extent and duration of the aurora. The successive onsets may appear similar to the initial onset and can
occur anywhere between 5 and 30 min after the previous auroral onset. They can occur eastward, westward, and
poleward of the initial onset, resulting in step‐wise azimuthal and poleward expansion of the onset aurora. The
successive onsets were accompanied by the Pi2 pulsations and may be associated with a step‐like decrease in the
SML index during the expansion phase, resulting in the prolonged occurrence of negative bay in the SML index.
Based on the analysis of seven events, we could not ascertain a distinct preference for specific IMF conditions that
distinguish single‐onset from multiple‐onset substorms. A more comprehensive study involving a larger data set
or different IMF parameters might provide further insight into any IMF preference for single and multiple‐onset
substorms.

If successive onsets are the only process determining the spatiotemporal development of the substorm expansion
phase, then single‐onset substorms may be expected to be of smaller scale (in both spatial and temporal domains)
compared to multiple‐onset substorms. For instance, the expansion phase of Event#1 and 2, which were not
accompanied by prolonged PBIs and streamers, were of short duration (last for ∼5–10 min), longitudinally
localized (remain confined around the onset longitude) and showed smaller drop in the SML index. However, the
spatiotemporal development of single‐onset substorms (Event 3# 16 February 2010) can resemble the multiple‐
onset substorms. Such single‐onset auroral substorm may exhibit a large expansion phase that consists of pro-
longed expansion phase auroral streamers, creating a large drop in the magnetic field. In addition, for the single‐
onset substorm of Event#3, the auroral observations revealed a 50 min long sequence of PBIs comprising two
distinct PBI events, feeding the substorm expansion phase. The multiple‐onset substorms also consisted of
multiple episodes of prolonged PBIs, suggesting the crucial role of prolonged PBIs and streamers in shaping the
substorm expansion phase. The selected examples presented in this study illustrate the role of prolonged PBIs and
ensuing streamers, alongside successive onsets, and the frequent occurrence of various combinations of these
features.

Observations reveal some PBIs exhibit an abrupt poleward expansion (poleward explosion) and contributed to the
formation of a westward‐expanding surge, resulting in the development of a longitudinally extended PBI covering
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approximately a 3 MLT wide region. For instance, in the case of multiple‐onset substorm event on 11 March
2008, a sudden brightening and explosion of PBI triggered an abrupt poleward expansion, followed by the
formation of a longitudinally extended (∼3 MLT wide) PBI. The poleward explosions of PBIs were associated
with a drop in the magnetic field, SML index, and Pi2 pulsations, similar to the characteristics observed during
substorm auroral onsets. It's worth reiterating that relying solely on magnetometer data, the event of poleward
explosion and prolonged sequence of PBIs might be mistaken for a new successive onset. These results further
suggest that the large‐scale magnetospheric energy release during substorms can occur in two ways: (a) by
causing multiple onsets and (b) by inducing PBIs and ensuing auroral streamers. It could be a subject for future
investigation to determine (a) why certain substorms exhibit a large expansion phase with a broader MLT extent,
while others begin with a smaller expansion phase and evolve into a broader MLT extent through successive
onsets or prolonged PBIs, leading to step‐wise poleward/azimuthal expansion, (b) what are the conditions under
which prolonged PBIs accompany substorm expansion phase.

Previous studies have shown that PBIs are associated with equatorward‐directed flow channels traversing the
poleward boundary of the auroral oval from the polar cap (de la Beaujardière et al., 1994; Shi et al., 2012; Zou
et al., 2014). Ohtani et al. (2018) demonstrated the formation of longitudinally extended PBIs and proposed that
longitudinal ionospheric convection is crucial in their formation and development. Lyons et al. (2011) used radar
observations to reveal meso‐scale flows within the polar cap, moving toward the nightside boundary before
substorm onset. They suggested that these flows contribute to triggering PBIs and streamers. Flow channels from
the polar cap can reach the nightside open‐closed boundary, potentially triggering plasma sheet flow bursts, and
may play a key role in both pre‐ and post‐onset auroral activity (Nishimura et al., 2013). These studies proposed
the possibility that such flow channels occurring after substorm onset play a significant role in the post‐onset
auroral poleward expansion and the duration of post‐onset auroral activity—a proposal that has remained un-
explored so far. The auroral observations presented in our study evidently show that the post‐onset PBIs and
streamers play a crucial role in driving the spatiotemporal development of the substorm expansion phase.
Therefore, our findings contribute to advancing our understanding of the factors influencing the spatiotemporal
evolution of the substorm expansion phase, taking a significant step toward addressing this longstanding question.
Future studies should use radar data to confirm the role of flow channels originating from the polar cap in the
formation of longitudinally extended PBIs, which contribute to sustaining the expansion phase aurora.

Another interesting aspect this study highlights is the re‐intensification of active auroral bulge (Event#7)
immediately equatorward of the PBA. Lyons, Liu, Nishimura, Wang, et al. (2021) demonstrated the presence of
flow channels adjacent to the PBA. Ma et al. (2021) suggested that flow channels originating from the polar cap
feed the surge formation and drive the WTS. They showed that auroral streamers with an adjacent flow channel
that feed the low‐entropy plasma into surge development are connected to the auroral polar boundary. That the
localized polar cap flow adjacent to the polar boundary arc set off the WTS was also illustrated by Lyons,
Nishimura, Gallardo‐Lacourt, et al. (2013) and Lyons, Liu, Nishimura, Wang, et al. (2021). However, what we
observed in the present study is that the re‐intensification of active substorm auroral bulge occurred immediately
equatorward of the PBA. These findings suggest that flow channels associated with PBAs may supply new
plasma to the auroral surge, leading to further intensifications. In addition, we observed the onset of substorm
when the equatorward moving PBA approached the growth‐phase arc (Event#1 and 7). While our observations
offer new insight into the role of auroral poleward boundary in driving spatiotemporal development of substorm
expansion phase, further investigation on this aspect is warranted. A dedicated study focusing on this aspect is
currently underway.

In this study, we also examined whether the successive onsets were preceded by the post‐onset streamers, like the
substorm onset, which is generally preceded by pre‐onset streamers (Lyons et al., 2010; Nishimura, Lyons, Zou,
Angelopoulos, & Mende, 2010; Nishimura, Lyons, Zou, Xing, et al., 2010). Previous studies showed that the
equatorward flow channels lie east of the streamer (Gallardo‐Lacourt et al., 2014; Lyons, Gallardo‐Lacourt, &
Nishimura, 2022; Lyons, Nishimura, et al., 2022; Sergeev et al., 2004). The auroral observations presented in this
study show that the post‐onset streamers during the substorm expansion phase may trigger multiple onsets at
different longitudes. As discussed above, these onsets lead to substantial azimuthal broadening of expansion
activity as well as prolonging the expansion phase duration. This is likely an important cause of the large variety
of expansion phase coverage areas and durations. However, not all post‐onset streamers trigger successive onsets,
as clearly observed in the present study, such as event #6. Previous research (e.g., Nishimura et al., 2011) has
shown that pre‐onset streamers do not always lead to substorm onset. Therefore, it is important to investigate the
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underlying conditions under which post‐onset streamers result in successive onsets. Further, in some cases, it is
not clear if the streamer contacted the growth phase arc, the onset occurring somewhat equatorward of the
streamer. Consistent with this, the onset of substorms may occur when the pre‐onset streamer does not reach all
the way to the growth‐phase arc (e.g., Nishimura et al., 2011). This is as expected, because an optical contact
between the streamer and growth phase arc is not necessary. A streamer demarcates an adjacent flow channel, and
the plasma within the flow channel is expected to directly connect to the onset location along the growth phase arc
(Lyons & Nishimura, 2020).

Data Availability Statement
• THEMIS data can be obtained online at https://cdaweb.gsfc.nasa.gov/pub/data/themis/.
• SuperMAG ground magnetometer and SML data can be obtained at supermag.jhuapl.edu.
• Solar wind parameters (IMF Bz) were obtained from the SPDF, NASA, USA at http://omniweb.gsfc.nasa.gov.
• Space Physics Environment Data Analysis Software (SPEDAS) tool, which is used to download and analyze

the data, can be downloaded from https://spedas.org/blog/.
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