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Abstract

We study the scaling limit of the rank-one truncation of various beta ensemble gener-
alizations of classical unitary/orthogonal random matrices: the circular beta ensemble,
the real orthogonal beta ensemble, and the circular Jacobi beta ensemble. We derive
the scaling limit of the normalized characteristic polynomials and the point process
limit of the eigenvalues near the point 1. We also treat multiplicative rank one per-
turbations of our models. Our approach relies on a representation of truncated beta
ensembles given by Killip-Kozhan [24], together with the random operator framework
developed in [42, 43, 44] to study scaling limits of beta ensembles.
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1 Introduction

For the classical unitary and orthogonal random matrix ensembles the point process
scaling limit of the eigenvalues is well understood. The eigenvalues are on the unit circle,
and if one scales the eigenangles appropriately, one obtains a point process limit on the
real line. More recently the scaling limit of the (normalized) characteristic polynomials
of these classical ensembles has been derived and characterized as well, these limits
lead to random entire functions where the zero set is given by the point process limit of
the eigenvalues.
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Edge limits of truncated circular beta ensembles

If we remove the first row and first column of a unitary (or orthogonal) matrix then
the eigenvalues of the resulting matrix are within the unit disk. It is natural to ask
what one can say about the limits of the eigenvalues and the characteristic polynomial
if one studies the truncated random matrices, and what connections can be shown
between the limit objects of the original and the truncated models. Our main goal is to
investigate these questions for beta-generalizations of classical orthogonal and unitary
ensembles introduced by [24]. We also consider similar questions for multiplicative rank
one perturbations of these models. We demonstrate how the random operator framework
developed in [42, 43, 44] to study circular ensembles can be used to derive scaling limits
for truncated and the perturbed versions of circular and orthogonal beta ensembles. We
also introduce and study a new truncated beta ensemble model constructed from the
circular Jacobi beta ensemble. Non-normal perturbations of classical ensembles have a
rich history, see e.g. the surveys [19] and [12] and the references within. Our results
provide the first examples of point process limits of non-normal perturbations of beta
ensembles.

1.1 Haar unitary matrices and their truncations

To start with a concrete example, we first consider the case of Haar unitary matrices.
Let Mn be an n × n uniformly chosen unitary matrix. With probability one Mn has n

distinct eigenvalues eiθk , 1 ≤ k ≤ n, all on the unit circle. The joint eigenvalue density is
given by

1

Zn

∏
1≤j<k≤n

|eiθj − eiθk |2, θj ∈ [−π, π), (1.1)

where Zn is an explicit normalizing constant (see e.g. [11]). The distribution given
by (1.1) is called the size n circular unitary ensemble. Because of the appearance
of the squared Vandermonde determinant in the probability density, this ensemble is
determinantal ([2, 21]), all finite dimensional marginal densities can be expressed via
determinants built from a fixed kernel function. (We will provide more detail on the
results discussed within this section in the Appendix.) The point process scaling limits of
finite determinantal ensembles can be derived by studying the corresponding scaling
limits of the determinantal kernel. It is a classical result due to Gaudin, Mehta, Dyson
[2, 32] that if we scale the eigenangles of Mn by n then we get a translation invariant
determinantal point process in the limit. We call this point process the Sine2 process.

In a more recent result, Chhaibi, Najnudel and Nikeghbali [7] studied the scaling
limit of the (normalized) characteristic polynomial

pn(z) :=
det(In − zM−1

n )

det(In −M−1
n )

=

n∏
j=1

1− ze−iθj

1− e−iθj

of the circular unitary ensemble. They showed that under the scaling of the Gaudin-
Mehta-Dyson theorem one obtains a random entire function ζ (named the stochastic
zeta function) with zero set given by the Sine2 process.

For a square matrix M we denote by Trunc(M) the matrix obtained by removing the
first row and column from M . Note that we can write Trunc(M) as Π†MΠ where Π is
the appropriate projection matrix, and † denotes the transpose.

Now consider the truncated version of a uniformly chosen (n+ 1)× (n+ 1) unitary
matrix, i.e. Trunc(Mn+1). With probability one this matrix has eigenvalues in the open
unit disk D = {z ∈ C : |z| < 1}. The obtained random matrix has been studied in the
physics literature because of its connection to chaotic scattering problems (see [17, 23]
for further discussion and references). In [47] Życzkowski and Sommers proved that the

EJP 30 (2025), paper 13.
Page 2/46

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1270
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Edge limits of truncated circular beta ensembles

joint eigenvalue density of Trunc(Mn+1) with respect to the Lebesgue measure in the
unit disk is given by

1

πn

∏
1≤j<k≤n

|zj − zk|2, zj ∈ D. (1.2)

We call this distribution the truncated circular unitary ensemble. (Note that the [47]
provides a description for the eigenvalue distribution for general rank-k truncation as
well.) The squared Vandermonde term in (1.2) indicates that this is also a determinantal
point process. By studying the determinantal kernel one can show that the point
process limit of the eigenvalues of Trunc(Mn+1) without any additional scaling leads to
a determinantal point process limit in D. We may call the resulting process the bulk
scaling limit of the truncated circular unitary ensemble.

It is reasonable to ask if this point process can be connected to the zeroes of a ‘nice’
random analytic function, since it is the scaling limit of the zeros of the characteristic
polynomial of Trunc(Mn+1). In Peres-Virág [34] it was shown that this is indeed the case,
the bulk scaling limit of the eigenvalues of Trunc(Mn+1) has the same distribution as the
zero set of the so-called Gaussian analytic function.

One can treat the eigenvalues of Trunc(Mn+1) as perturbations of the original eigen-
values ofMn+1. This leads to the study of the behavior of the eigenvalues of the truncated
matrix under the scaling

z 7→ −ni log z, (1.3)

since this corresponds to the scaling eiθ 7→ nθ that takes the original (unit length)
eigenvalues to the Sine2 process.1 See Figure 1 for an illustration. It was shown in [1]
that under this scaling the kernel of the truncated circular unitary ensemble (and hence
the ensemble itself) indeed has a limit. The limiting point process is determinantal, and
it is supported in the open upper half plane H = {z ∈ C : =z > 0}. We call this the (hard)
edge scaling limit of the truncated model, since we zoom in near z = 1.

The point process obtained as the edge limit of the truncated circular ensembles
limit process in [1] appeared before in [15] and [18] as the point process limit of the
rank-one additive anti-Hermitian perturbation for the Gaussian unitary ensemble under
the appropriate scaling. See also [16, 8, 9] for recent results on this model.

2

4

6

Figure 1: The picture on the left shows the eigenvalues of a truncated uniformly chosen
100× 100 unitary matrix. The picture on the right shows the same eigenvalues under the
edge scaling (1.3).

1Throughout the paper we are considering the branch of logarithm that is defined on C \ (−∞, 0] and
satisfies log(1) = 0.
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Edge limits of truncated circular beta ensembles

As in the bulk case, we can ask if one can connect the edge limit of the truncated
circular ensemble to the zero set of a random analytic function, and whether one can
characterize this random function in a natural way. We answer this question in the
affirmative in our main result, Theorem 1.2 below. We provide a scaling limit for the
normalized characteristic polynomial of the truncated model under the edge scaling,
and describe the limiting random entire function. In fact, our goal is to study this and
related questions in a more general setting: for the beta-generalizations of the circular
unitary and other random unitary and orthogonal ensembles.

1.2 CMV matrices, beta ensembles, and their truncations

The size n circular beta ensemble with β > 0 is the distribution of n points {eiθj , 1 ≤
j ≤ n} on the unit circle with joint probability density given by

1

Zn,β

∏
j<k≤n

|eiθj − eiθk |β , θj ∈ [−π, π). (1.4)

Here Zn,β is an explicit normalizing constant, see [11]. When β = 2 we get the circular
unitary ensemble. The cases when β = 1 and 4 correspond to symmetric/self-dual
random unitary matrices, but for general β > 0 there is no known invariant random
matrix ensemble with the appropriate joint eigenvalue distribution. Note however
that (1.4) has a natural interpretation as the Gibbs measure corresponding to a log-gas
of n-points restricted to the unit circle and interacting via a logarithmic potential.

In [25] Killip and Nenciu (motivated by the results of [10]) constructed a family of
sparse random unitary matrix models {Circn,β , n ≥ 1} with joint eigenvalue distribution
given by (1.4). Their construction is based on the theory of orthogonal polynomials
on the unit circle. We provide here a quick overview of their approach, the precise
statements will be reviewed in Section 3.

Suppose that µ is a discrete probability measure on the unit circle ∂D with a finite
support of n points. The probability measure µ can be encoded with its system of monic
orthogonal polynomials. These polynomials satisfy the so-called Szegő recursion, which
can be parameterized with a finite collection of complex numbers α0, . . . , αn−1, called the
Verblunsky coefficients. In [5] Cantero, Moral, and Velasquez provided a construction
for a ‘canonical’ sparse (five-diagonal) n× n unitary matrix (called the CMV matrix)

C = C(α0, . . . , αn−1)

in terms of the Verblunski coefficients, so that the spectral measure of C with respect
to the unit vector e1 = (1, 0, . . . , 0)† is exactly µ. Moreover, if the probability measure µ

is the spectral measure of an n × n unitary matrix U with respect to e1 then the CMV
matrix C corresponding to µ is unitary equivalent to U . Note that the CMV matrix is
the analogue of the tridiagonal (Jacobi) matrix constructed from the coefficients of the
three-term recursion of the orthogonal polynomials of a finitely supported probability
measure on R.

Let Mn be an n × n Haar unitary matrix, and consider its spectral measure µn

with respect to e1. This is a (random) probability measure with support given by the
circular unitary ensemble (1.1). Using unitary invariance one can show that the joint
distribution of the weights of µn is given by a particular Dirichlet distribution, and
that the weights are independent of the support of µn. Moreover, the Verblunsky
coefficients of µn are independent random variables, and their distributions can be
computed explicitly. This motivated Killip and Nenciu in [25] to study the random
probability measure µKN

n,β with support given by the circular beta ensemble (1.4) and
weights chosen independently from a particular (β-dependent) Dirichlet distribution.
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Edge limits of truncated circular beta ensembles

[25] showed that the Verblunsky coefficients of µKN
n,β are still independent, with explicitly

given distributions. The corresponding CMV matrix Circn,β := C provides a natural
sparse random unitary matrix with spectrum given by the circular beta ensemble (1.4).
For β = 2 this matrix is unitary equivalent to the Haar unitary matrix Mn, and their
spectral measures with respect to e1 have the same distribution.

In [24] Killip and Kozhan studied how removing the first row and column changes the
spectrum of classical random unitary and orthogonal matrices. An important observation
of [24] (which is crucial for our paper as well) is the following: if U is an n× n unitary
matrix then the truncated matrix Trunc(U) is unitary equivalent to the truncated version
of the CMV matrix C corresponding to U , which in turn is unitary equivalent to an
(n − 1) × (n − 1) CMV matrix built from a simple transformation of the Verblunsky
coefficients of U . This means that if we know the Verblunsky coefficients of U then we
can construct a sparse matrix whose spectrum is the same as that of Trunc(U).

This observation allowed [24] to provide a sparse matrix model with spectrum dis-
tributed as (1.2). Their approach also allowed them to study the matrix models Circn,β
of [25] with the first row and column removed. They proved that the joint eigenvalue
density of the truncated matrix Trunc(Circn+1,β) is given by

βn

(2π)n

∏
1≤j,k≤n

(1− zj z̄k)
β
2 −1

∏
j<k≤n

|zj − zk|2, zj ∈ D. (1.5)

We call the resulting distribution the size n truncated circular beta ensemble. Note that
for β = 2 we recover (1.2). (We remark that [24] also provided a log-gas interpretation
for (1.5).) Our goal is to study this ensemble (together with some other related models)
under the edge scaling (1.3).

The approach of Killip and Nenciu [25] can be extended to provide random matrix rep-
resentations of beta-generalizations of other random unitary and orthogonal ensembles
where the joint distribution of the Verblunsky coefficients can be described explicitly. The
results of Killip and Kozhan [24] then provide a natural random matrix representation of
the truncated version of these beta ensembles. Our main results provide descriptions of
the edge scaling limits of these truncated ensembles.

1.3 Scaling limits of circular beta ensembles and their truncations

Using the Killip-Nenciu representation Killip and Stoiciu in [26] showed that under the
scaling (1.3) the circular beta ensemble has a point process limit. They characterized the
limiting point process via its counting function using a system of stochastic differential
equations. This limit process was later shown to be the same as the Sineβ process,
the bulk scaling limit of the Gaussian beta ensemble ([33, 42]). Note that Sineβ is not
determinantal for general β, in fact there is no known description for its joint intensity
functions in the general case.

In a series of papers [42, 43, 44] Valkó and Virág developed a framework to study the
scaling limits of beta ensembles using Dirac-type differential operators (see Section 2
for a more detailed discussion). [42] showed that the spectra of unitary CMV matrices
and some of their point process limits (including the Sineβ process) can be represented
as the eigenvalues of random Dirac-type differential operators. A Dirac-type differential
operator can be parametrized by a path in the upper half plane H := {z : =z > 0}
together with two boundary points in ∂H = R ∪ {∞}. In the case of a unitary CMV
matrix these parameters can be built from the Verblunsky coefficients. [43] showed
how this representation can be used to prove operator level convergence of the circular
beta ensemble to the Sineβ process. The path parameter of the random differential
operator corresponding to Circn,β is a random walk, which under the appropriate scaling
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Edge limits of truncated circular beta ensembles

converges to a time-changed hyperbolic Brownian motion. This process is the path
parameter of the random Dirac operator corresponding to the Sineβ process.

[44] developed a framework to study scaling limits of normalized characteristic
polynomials of beta ensembles. In particular, [44] proved that the normalized and
scaled characteristic polynomials of the Circn,β converge to a random entire function ζβ

with zero set given by Sineβ. (For β = 2 this random entire function is the stochastic
zeta function introduced in [7].) The random function ζβ is characterized via various
equivalent ways, in particular as the solution of the following random shooting problem.

Theorem 1.1 ([44]). Let b1, b2 be independent two-sided standard Brownian motion, and
q an independent standard Cauchy random variable. Consider the unique strong solution
Hβ : (−∞, 0]× C→ C2 of the stochastic differential equation

dHβ =

(
0 −db1
0 db2

)
Hβ − z

β

8
e

β
4 u

(
0 −1
1 0

)
Hβdu, u ≤ 0, (1.6)

subject to the initial condition limu→−∞ sup|z|<1 |Hβ(u, z) −
(
1
0

)
| = 0. Then ζβ has the

same distribution as the random function Hβ(0, z)
†( 1

−q

)
.

Our main result gives the edge scaling limit of the truncated circular beta ensem-
ble (1.5) together with the scaling limit of its normalized characteristic polynomial.
This result also provides a connection to the limit objects of the original circular beta
ensemble.

Theorem 1.2. Under the edge-scaling (1.3) the truncated circular beta ensemble con-
verges in distribution to a point process Xβ , which has the same distribution as the zero
set of the random entire function Eβ = Hβ(0, ·)†

(
1
−i

)
defined via (1.6). Moreover, Eβ is

the scaling limit of the normalized characteristic polynomials of the truncated circular
beta ensemble.

Theorem 1.2 is proved in Section 6.1. In fact, we will show that there is a coupling of
the finite ensembles and the limiting object so that the stated limits hold with probability
one with effective (random) error bounds (see Proposition 6.4). The proof of the theorem
uses the random operator framework to analyze the scaling limit of the normalized
characteristic polynomial of truncated CMV matrices.

Theorem 1.2 provides a connection between the scaling limits of the full and the
truncated circular beta ensemble that is new even in the classical β = 2 case. It shows
that the scaling limit of the characteristic polynomials of the circular beta ensemble can
be obtained from the corresponding limit of the truncated model and an independent
Cauchy random variable. Both ζβ and Eβ are random entire functions, and hence they
are determined by their restriction to R. By Theorems 1.1 and 1.2 we have the following
equality in distribution:

{ζβ(s) : s ∈ R} d
= {<Eβ(s) + q=Eβ(s) : s ∈ R},

where q is a Cauchy random variable independent of Eβ .

If M is a square matrix then the spectrum of Trunc(M) can also be studied by
considering the spectrum of the rank one multiplicative perturbation

M · diag(0, 1, 1, . . . , 1)

instead. (Of course, this also adds an additional zero eigenvalue.) This motivates the
study of general rank one multiplicative perturbations. For r ∈ R define

M [r] := M · diag(r, 1, 1, . . . , 1). (1.7)
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Edge limits of truncated circular beta ensembles

If M is a Haar unitary matrix then the eigenvalue distribution of M [r] has been studied in
[14]. See also [13], where this problem was studied in the case when r decays as n−1/2

as n→∞. (See also [15] and [18] for related results on rank-one additive anti-Hermitian
perturbations for the Gaussian unitary ensemble.) Note that because of the various
symmetries of the model, we may assume r ∈ [0, 1].

Following the definition of the truncated circular beta ensemble, it is natural to define
the appropriate rank-one multiplicative perturbation of the circular beta ensemble as the
spectrum of Circ[r]n,β . In [24] Killip and Kozhan derived the joint eigenvalue distribution of

Circ
[r]
n,β. Moreover, they showed that if C is a unitary CMV matrix then the spectrum of

C[r] is the same as a certain explicitly determined CMV matrix. Using their results we
are able to extend the results of Theorem 1.2.

Theorem 1.3. Fix r ∈ [0, 1]. Consider the random function Hβ defined via (1.6), and
let q be a standard Cauchy random variable independent of b1, b2 appearing in (1.6).
Under the edge-scaling (1.3) the eigenvalues of Circ[r]n,β converge in distribution to a
point process Xr,β , which has the same distribution as the zero set of the random entire
function Er,β = Hβ(0, ·)†

(
1

−cr

)
with

cr =
q + i 1−r

1+r

1− iq 1−r
1+r

. (1.8)

Moreover, Er,β is the scaling limit of the normalized characteristic polynomials of Circ[r]n,β

under the same scaling.

Note that cr = q for r = 1 and cr = i for r = 0, so this result gives an interpolation
between the scaling limits of the unperturbed and the truncated circular beta ensemble.

Our approach extends to other matrix models as well. We provide versions of
Theorems 1.2 and 1.3 for the real orthogonal beta ensemble and the circular Jacobi beta
ensemble.

The real orthogonal beta ensemble was introduced in [25] (see also [24]) as a gener-
alization of the joint eigenvalue distributions of a certain class of the classical compact
random matrix models. (See Section 4.1 for more detail.) The operator level limit of
the real orthogonal beta ensemble in the hard-edge limit was derived in [30]. The real
orthogonal beta ensemble can be naturally transformed into another classical model,
the (real) Jacobi beta ensemble, whose edge scaling limits were studied in [20]. The
truncated version of the real orthogonal beta ensemble was introduced in [24], where the
authors constructed a sparse matrix model and derived the joint eigenvalue distribution.
In Theorem 6.8 and Corollary 6.9 of Section 6.2, we will establish the scaling limit of
the truncated (and perturbed) real orthogonal beta ensemble, together with the scaling
limit of its normalized characteristic polynomial.

The circular Jacobi beta ensemble is a one-parameter extension of the circular beta
ensemble. For a complex parameter δ with <δ > −1/2 it is given by the joint density
function

1

ZCJ
n,β,δ

∏
j<k≤n

∣∣eiθj − eiθk
∣∣β n∏

k=1

(1− e−iθk)δ(1− eiθk)δ̄ (1.9)

with respect to the uniform measure on the unit circle. For δ = 0 this is just the circular
beta ensemble. When δ = β k

2 with a positive integer k then this model can be viewed as
the circular beta ensemble conditioned to have k particles at eiθ = 1. (See Section 4.1 for
additional details.) In [4] the authors constructed a family of unitary matrix models whose
eigenvalues are distributed according to (1.9). Following the Killip-Nenciu approach they
studied a random probability measure where the support is given by the circular Jacobi
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Edge limits of truncated circular beta ensembles

beta ensemble, and the weights are given by an independently chosen beta-dependent
Dirichlet distribution. [4] showed that although the Verblunsky coefficients for this
measure are usually not independent, a modified version of these coefficients are in
fact independent, and their distributions can be described explicitly. [30] used this
representation to derive the point process and operator level scaling limit of the circular
Jacobi beta ensemble. We build on these results, together with the ideas of [24], to
define the truncated (and the perturbed) version of the circular Jacobi beta ensemble
(see Section 7.1). We show that the joint density of the truncated circular beta ensemble
is given by a constant multiple of

n∏
j,k=1

(1− zj z̄k)
β
2 −1

∏
j<k

|zk − zj |2
n∏

j=1

(
(1− zj)

δ̄(1− z̄j)
δ
)
, (1.10)

generalizing (1.5). We then derive the point process scaling limit of these new models,
together with the scaling limit of their normalized characteristic polynomial. See
Theorem 7.13 and Corollary 7.14 of Section 7.2 for the precise statements.

1.4 Outline of the paper

Sections 2–4 provide the necessary background on Dirac-type operators and beta en-
sembles. Our goal was to present this material in a self-contained manner. In Section 2
we review the required background for the considered Dirac-type differential operators.
In Section 3 we give an overview of how finitely supported probability measures on the
unit circle can be represented with CMV matrices and Dirac-type differential operators.
Section 4 describes the considered finite beta ensembles and their operator level limits,
and summarizes the known results on scaling limits of characteristic polynomials of
these models.

Sections 5–7 include the proofs of our new results. In Section 5 we provide general
results regarding the convergence of the eigenvalues of truncated and perturbed CMV
matrices. Section 6 provides the proofs for Theorems 1.2 and 1.3 on the scaling limits of
the truncated and the perturbed circular beta ensemble, and proves the corresponding
results for the real orthogonal beta ensemble. Section 7 proves our results on the
truncated and the perturbed circular Jacobi beta ensemble.

Section 8 is an appendix that contains a more detailed discussion of the determinantal
point processes mentioned in the Introduction, together with a few open problems.

2 Dirac-type differential operators

This section provides a brief overview of Dirac-type operators. A more detailed
discussion can be found in [42], [44], and [46].

2.1 Basics of Dirac operators

Let I be [0, 1) or (0, 1]. Suppose x+ iy : I 7→ H = {z ∈ C : =z > 0} is a locally bounded
measurable function, we define

R =
X†X

2 detX
, X =

(
1 −x
0 y

)
(2.1)

to be the positive definite matrix-valued function that encodes x + iy. We consider
differential operators of the form

τ : f → R−1(t)Jf ′, f : I 7→ R2, J =

(
0 −1
1 0

)
. (2.2)
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Edge limits of truncated circular beta ensembles

We call τ a Dirac-type operator, x + iy the generating path of τ , and R(t) the weight
function of τ .

The boundary conditions for τ at t = 0, 1 are given by two non-zero, non-parallel
vectors u0, u1 ∈ R2. We assume that these vectors are normalized and satisfy certain
integrability conditions with respect to the weight function.

Assumption 2.1. We assume that

u†0Ju1 = 1, (2.3)∫ 1

0

∫ t

0

u†0R(s)u0 u
†
1R(t)u1dsdt <∞, (2.4)

and ∫ 1

0

‖R(s)u1‖ds <∞ if I = [0, 1), and

∫ 1

0

‖u†0R(s)‖ds <∞ if I = (0, 1].

Let L2
R denote the L2 space of functions f : I 7→ R2 with the L2-norm

‖f‖2R :=

∫
I
f(s)†R(s)f(s)ds.

Under Assumption 2.1, the operator τ defined according to (2.1) and (2.2) is self-adjoint
on the following domain:

dom(τ) = {v ∈ L2
R ∩ AC : τv ∈ L2

R, lim
s→0

v(s)†Ju0 = 0, lim
s→1

v(s)†Ju1 = 0}. (2.5)

Here AC(I) is the set of absolutely continuous real functions on I.
Throughout the paper, we use the notations Dir(R, u0, u1) or Dir(x + iy, u0, u1) in-

terchangeably for the operator τ defined via (2.2) and (2.1) on the domain (2.5). We
can identify a nonzero vector in R2 with a boundary point in ∂H = R ∪ {∞} using the
projection operator

P
(
x1

x2

)
=

{
x1/x2 if x2 6= 0,

∞ if x2 = 0.
(2.6)

Using this identification the boundary conditions can be parametrized by two points in
∂H.

Under Assumption 2.1, the operator τ is invertible, and τ−1 is a Hilbert-Schmidt
integral operator.

Proposition 2.2. Suppose that τ = Dir(R, u0, u1) satisfies Assumption 2.1. Then

‖τ−1‖2HS = 2

∫ 1

0

∫ t

0

u†0R(s)u0 u
†
1R(t)u1dsdt <∞,

and τ−1 is a Hilbert-Schmidt integral operator on L2
R given by

τ−1f(s) =

∫
I
Kτ−1(s, t)f(t)dt, Kτ−1(s, t) =

(
u0u

†
11s<t + u1u

†
01s≥t

)
R(t). (2.7)

Consider the conjugated operator XτX−1, where X is defined as in (2.6). We denote
the inverse of this operator by r τ :=

(
XτX−1

)−1
, this is an integral operator on L2(I)

with kernel

Kr τ (s, t) =
1
2

(
a0(s)a1(t)

†1s<t + a1(s)a0(t)
†1s≥t

)
, aj(s) =

X(s)uj√
detX

, j = 0, 1. (2.8)

The conjugated operator XτX−1 has the same spectrum as the operator τ , and ‖r τ‖HS =

‖τ−1‖HS.
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Proposition 2.2 and the fact that τ is self-adjoint implies that τ has a discrete spectrum,
with countably many eigenvalues that are all nonzero real numbers, and can only
accumulate near ±∞. We label the eigenvalues of τ in increasing order by λk, k ∈ Z so
that λ−1 < 0 < λ0.

Let us remark that if τ = Dir(R, u0, u1) satisfies Assumptions 2.1, then for any
σ ∈ (0, 1), the operator τ restricted in I ∩ [0, σ] is well-defined with boundary conditions
u0, u1 at endpoints t = 0, σ and the restricted weight function R|t∈I∩[0,σ]. We denote the
restricted operator and its resolvent as τσ, r τσ respectively.

2.2 Canonical systems and the secular functions

In order to study scaling limits of characteristic polynomials, [44] introduced the
secular function and structure function of a Dirac-type operator. We briefly review the
required definitions and results.

Suppose that I = (0, 1] and consider the eigenvalue equation of a Dirac operator
τH = zH as a canonical system, i.e.,

J
d

dt
H(t, z) = zR(t)H(t, z).

[44] showed that this system has a unique solution under our assumptions if we set the
initial condition to be u0.

Proposition 2.3. Suppose that I = (0, 1] and τ = Dir(R, u0, u1) satisfies Assumptions 2.1.
Then there exists a unique vector valued function H : I ×C 7→ C2 so that for every z ∈ C,
the function H(·, z) solves the following ordinary differential equation

J
d

dt
H(t, z) = zR(t)H(t, z), t ∈ I, lim

t→0
H(t, z) = u0. (2.9)

Write H =
(
A
B

)
. For any t ∈ I, the function H(t, z) satisfies ‖H(t, z)‖ ≥ 0, and its

components A(t, ·), B(t, ·) are analytic functions such that A(t, x), B(t, x) ∈ R for x ∈ R.

Definition 2.4. Under the assumptions of Proposition 2.3, we define the secular function
of τ as

ζτ (·) = H(1, ·)†Ju1, (2.10)

and the structure function of τ as

Eτ (·) = H(1, ·)†
(

1

−i

)
= A(1, ·)− iB(1, ·). (2.11)

We define the integral trace of r τ as the integral of the trace of the kernel Kr τ , and
denote it by tτ :

tτ =

∫ 1

0

trKtτ (s, s)ds =
1
2

∫ 1

0

a0(s)
†a1(s)ds =

∫ 1

0

u†0R(s)u1ds. (2.12)

It was proved in [44] that the secular function ζτ can be represented as

ζτ (z) = e−ztτdet2(I − z r τ) = e−
z
2

∫ 1
0
a0(s)

†a1(s)ds
∏
k

(1− z/ λk)e
z/λk , (2.13)

where det2 is the second regularized determinant, see [39]. Note that the integral trace
is finite under Assumption 2.1, and the secular function ζτ is an entire function with
zero set given by spec(τ), the spectrum of τ . We refer to [44] for additional details. The
secular function of τ can be viewed as a generalization of the normalized characteristic
polynomial of a matrix.

The next proposition provides comparisons for the solutions of two canonical systems
of the form (2.9). It also shows that H(t, ·) is continuous on compacts in z ∈ C at t = 0.
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Proposition 2.5 (Proposition 12 of [45]). Suppose that I = (0, 1] and τ = Dir(R, u0, u1),
τ̃ = Dir(R̃, u0, ũ1) satisfy Assumption 2.1. Let H, H̃ be the solutions of the corresponding
canonical systems (2.9), and define a0, ã0 according to (2.8). Recall that τt is the operator
τ restricted to (0, t]. Then there is an absolute constant c > 1 depending only on u0 so
that for all t ∈ I, z ∈ C we have

|H(t, z)− H̃(t, z)| ≤

(
c
|z|

(
|tτt−t̃τt |+‖r τt−r τ̃t‖+

√∫ t
0
|a0(s)−ã0(s)|2ds

∫ t
0
(|a0(s)|2+|ã0(s)|2)ds

)
− 1

)
× c

(
|z|(|tτt |+|tτ̃t |+‖r τt‖+‖r τ̃t‖+

∫ t
0

(
|a0(s)|2+|ã0(s)|2

)
ds)+1

)2
.

(2.14)

Moreover, we have for all t ∈ I, z ∈ C

|H(t, z)− u0| ≤
(
c|z|(|tτt |+‖r τt‖+

∫ t
0
|a0(s)|2ds) − 1

)
c
(
|z|(|tτt |+‖r τt‖+

∫ t
0
|a0(s)|2ds)+1

)2
. (2.15)

Proposition 2.5 together with the Hoffman-Wielandt inequality in infinite dimensions
(see e.g. [3]) provide similar comparisons for the secular functions and the spectra of
two Dirac operators.

Remark 2.6. Let τ1, τ2 be two Dirac operators on I satisfying Assumption 2.1. Denote
by λk,i, ζi, r τi, tτi the eigenvalues, secular function, resolvent and integral trace of τi.
Then we have ∑

k

∣∣∣λ−1
k,1 − λ−1

k,2

∣∣∣2 ≤‖r τ1 − r τ2‖2HS, (2.16)

and there is an absolute constant c > 1 so that for all z ∈ C

|ζ1(z)− ζ2(z)| ≤
(
c|z||tτ1−tτ2 | − 1 + |z|

∥∥r τ1 − r τ2
∥∥)c|z|2(‖r τ1‖2+‖r τ2‖2

HS)+|z|(|tτ1 |+|tτ2 |)+1.

(2.17)

Transformations of Dirac-type operators

We finish this section with a short discussion on simple transformations of Dirac-type
operators. First note that the two cases I = (0, 1] and I = [0, 1) can be connected by a
time reversal transformation ρ on functions defined on (0, 1] or [0, 1) by ρf(t) = f(1− t).
Let r : H→ H be the reflection with respect to the imaginary axis defined by r(x+ iy) =

−x+ iy. The next statement provides a description of the effect of the composition of
the time reversal ρ and the reflection r, see [44] or [45].

Lemma 2.7 ([44]). Suppose that the Dirac operator τ = Dir(R, u0, u1) satisfies Assump-
tion 2.1. Set S = diag(1,−1), then the operator ρ−1SτSρ also satisfies Assumption 2.1
with boundary conditions Su1, Su0, weight function ρSRS, and generating path rρz. The
operators τ and ρ−1SτSρ are orthogonally equivalent in the respective L2 spaces, and
they have the same integral traces and secular functions.

Consider the projection operator P defined in (2.6). It can be naturally generalized to
the projection operator on non-zero two-dimensional complex vectors with P

(
z1
z2

)
= z1/z2

given z2 6= 0. In this way, a 2× 2 non-singular matrix A can be identified with a linear
fractional transformation via z → PA

(
z
1

)
. When A is real, the corresponding linear

fractional transformation is an isometry of H. The next lemma describes the effect of a
hyperbolic isometry on a Dirac operator.

Lemma 2.8 ([44]). Let Q be a 2×2 orthogonal matrix with determinant 1. LetQ : H→ H

be the corresponding linear isometry of H mapping z ∈ H to the ratio of the entries of
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Q
(
z
1

)
. Suppose that the Dirac operator τ = Dir(R, u0, u1) satisfies Assumption 2.1. Then

the operator QτQ−1 also satisfies Assumption 2.1, with boundary conditions Qu0,Qu1
and generating path Q(x+ iy). The two operators are orthogonally equivalent, they have
the same integral traces and secular functions.

3 Finitely supported measures on the unit circle

In this section we provide an overview of the CMV construction for finitely supported
probability measures on the unit circle, and review how Dirac-type operators can be
used to study them.

3.1 CMV matrices

We briefly review some of the needed facts from the theory of orthogonal polynomials
on the unit circle, together with some properties of CMV matrices. See [38] for a
comprehensive treatment of the subject, or [37] for a shorter summary.

Let ν be a probability measure on ∂D with a support of n distinct points eiλj , 1 ≤ j ≤ n.
Let Φk, k = 0, . . . , n be the Gram-Schmidt orthogonalization of the polynomials 1, z, · · · , zn
with respect to ν. Then Φk, k = 0, . . . , n− 1 are the monic orthogonal polynomials with
respect to ν, and Φn(z) :=

∏n
j=1(z − eiλj ). Together with the reversed polynomials

Φ∗
k(z) := zkΦk(1/z̄),

these polynomials satisfy the famous Szegő recursion (see e.g. Section 1.5, vol. 1 of
[38]):(

Φk+1

Φ∗
k+1

)
=

(
1 −ᾱk

−αk 1

)(
z 0

0 1

)(
Φk

Φ∗
k

)
,

(
Φ0

Φ∗
0

)
=

(
1

1

)
, 0 ≤ k ≤ n− 1. (3.1)

The constants αk, 0 ≤ k ≤ n−1 are called the Verblunsky coefficients, they satisfy |αk| < 1

for 0 ≤ k ≤ n− 2 and |αn−1| = 1. The map between the probability measures supported
on n points on ∂D and the possible Verblunsky coefficients (α0, . . . , αn−1) ∈ Dn−1 × ∂D

is invertible, and both the map and its inverse are continuous. (See e.g. Theorem 1.7.11
of [38].)

The next definition introduces the CMV matrix.

Definition 3.1. For fixed n ≥ 1, let {αk, 0 ≤ k ≤ n − 1} be a sequence of complex
coefficients with |αk| ≤ 1. Define

Ξk =

(
ᾱk ρk
ρk −αk

)
, ρk =

√
1− |αk|2, 0 ≤ k ≤ n− 2

and set Ξ−1 = (1) and Ξn−1 = (ᾱn−1) to be 1× 1 matrices.
For n ≥ 2 we define the CMV matrix corresponding to {αk, 0 ≤ k ≤ n− 1} as

C(α0, · · · , αn−1) := LM, (3.2)

where L,M are n× n block-diagonal matrices

L = diag

(
Ξ0,Ξ2 · · · ,Ξ

2bn−1
2 c

)
, M = diag

(
Ξ−1,Ξ1 · · · ,Ξ2bn2 c−1

)
.

For n = 1 we define the 1× 1 CMV matrix as C(α0) = (ᾱ0).

Note that C(α0, . . . , αn−1) is unitary if and only if |αn−1| = 1. The following proposition
provides a crucial link between CMV matrices and orthogonal polynomials of a discrete
probability measure on ∂D.
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Proposition 3.2 ([24, 38]). Suppose that ν is a probability measure with a support of n
distinct points on ∂D, and let αk, 0 ≤ k ≤ n− 1 be its sequence of Verblunsky coefficients.
Then for any 1 ≤ k ≤ n we have

det(zIk − C(α0, . . . , αk−1)) = Φk(z). (3.3)

Suppose that U is an n× n unitary matrix for which e1 = (1, 0, . . . , 0)† is cyclic. The
spectral measure of U with respect to e1 is given by the following discrete probability
measure:

µ =
n∑

k=1

δλk
· |〈e1,vk〉|2 . (3.4)

Here λk, 1 ≤ k ≤ n are the eigenvalues of U , and vk, 1 ≤ k ≤ n are the corresponding
unit length (right) eigenvectors. The following proposition summarizes how a unitary
matrix and the CMV matrix of its spectral measure are connected.

Proposition 3.3 ([5]). Suppose that U is an n× n unitary matrix for which e1 is cyclic.
Let the spectral measure of U with respect to e1 be ν, and denote the Verblunsky
coefficients of ν by αk, 0 ≤ k ≤ n− 1. Then there is a unitary matrix V with V e1 = e1 and
U = V C(α0, . . . , αn−1)V

−1. In particular, U and C are unitary equivalent, and they have
the same spectral measure with respect to e1.

The next definition introduces a simple transformation on a collection of Verblunsky
coefficients and on the corresponding CMV matrix.

Definition 3.4. Suppose that (α0, . . . , αn−1) ∈ Dn−1 × ∂D is the sequence of Verblunsky
coefficients of the discrete probability measure ν on ∂D. Let C denote the CMV matrix
corresponding to these Verblunsky coefficients. We define the ‘reversed’ version of the
Verblunsky coefficients as

(α̃0, α̃1, . . . , α̃n−1) := (−αn−1ᾱn−2,−αn−1ᾱn−3, . . . ,−αn−1ᾱ0, αn−1). (3.5)

We denote by ν̃ and C̃ the probability measure and CMV matrix corresponding to the
sequence α̃k, 0 ≤ k ≤ n− 1, and call these the reversed version of µ and C, respectively.

Note that since |αn−1| = 1, the reversal operation is an involution. This operation
appeared in [25] where it was shown that C̃ is unitary equivalent to C (if n is even), and
to C† (if n is odd). This implies that C and C̃ have the same eigenvalues, or equivalently, µ
and µ̃ have the same support. In fact, the arguments of Proposition B.2 of [25] also imply
that µ̃ is the spectral measure of C with respect to the unit vector en = (0, 0, . . . , 0, 1)†.

The following results were proved in [24]. They provide key ingredients for our study
of truncated and perturbed unitary matrices.

Proposition 3.5 ([24]). Consider the same setup as in Proposition 3.3. Then if n ≥ 2

then the truncated matrix Trunc(U) is unitary equivalent to Trunc(C), which in turn is
unitary equivalent to

C(α̃0, . . . , α̃n−2), if n is even, and C(α̃0, . . . , α̃n−2)
†, if n is odd. (3.6)

For r ∈ [0, 1] the perturbed matrix U [r] (as defined in (1.7)) is unitary equivalent to

C(α̃0, . . . , α̃n−2, rα̃n−1), if n is even, and C(α̃0, . . . , α̃n−2, rα̃n−1)
†, if n is odd. (3.7)

3.2 Connection to Dirac-type operators

In this section, we show how the Dirac operator framework introduced in [42, 43, 44]
can be used to study finitely supported probability measures on ∂D.

The following definition constructs a Dirac-type differential operator corresponding
to a finitely supported probability measure on ∂D.
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Definition 3.6. Suppose that µ is a probability measure on ∂D supported on n distinct
points {eiλj , 1 ≤ j ≤ n}, and let αk, 0 ≤ k ≤ n − 1 be the corresponding Verblunsky
coefficients. For 0 ≤ k ≤ n we define

b0 = 0, bk = P
(

1 ᾱ0

α0 1

)
· · ·
(

1 ᾱk−1

αk−1 1

)(
0

1

)
for 1 ≤ k ≤ n. (3.8)

Set zk = U−1(bk), where U is the Cayley transform mapping H to D defined via

U(z) = PU
(
z

1

)
=

z − i

z + i
, U =

(
1 −i
1 i

)
. (3.9)

We call bk, 0 ≤ k ≤ n and zk, 0 ≤ k ≤ n the (discrete) path parameters of µ in D and
in H, respectively. We say that z : [0, 1) → H defined via z(t) = (x + iy)(t) := zbntc
is the generating path associated to µ. We set u0 =

(
1
0

)
, u1 =

(−zn
−1

)
, and we call

τ = Dir(z(·), u0, u1) the Dirac-type operator corresponding to µ.

We may call τ the Dirac-type operator corresponding to the Verblunsky coefficients
αk, 0 ≤ k ≤ n− 1, or the path b0, . . . , bn. We may use the notation τ = Dir(b−1, b0, . . . , bn)

with b−1 = PU−1u0 = 1 to emphasize the path dependence. We call b−1 and bn the left
and right boundary point of τ , respectively.

As the next proposition shows, the Dirac-type operator corresponding to µ encodes
the support of µ in the spectrum.

Proposition 3.7 ([44, 45]). Suppose that µ is a probability measure on ∂D supported
on n distinct points eiλj , 1 ≤ j ≤ n, with µ({1}) = 0. Then the Dirac-type operator τ

corresponding to µ satisfies Assumption 2.1 with I = [0, 1), and its spectrum is given by

spec(τ) = nΛn + 2πnZ, Λn = {λ1, . . . , λn}.

In [42, 45] it was observed that the Dirac operator representation for µ can be
simplified using the modified Verblunsky coefficients. These are defined in terms of the
Verblunsky coefficients via the recursion

γk = ᾱk

k−1∏
j=0

1− γ̄j
1− γj

, 0 ≤ k ≤ n− 1. (3.10)

Note that the modified Verblunsky coefficients satisfy |γk| = |αk|. Denote by T the map-
ping from the Verblunsky coefficients to the modified ones. This mapping is invertible, in
fact for any k ≥ 1 it provides a one-to-one correspondence between the first k Verblunsky
coefficients and the first k modified Verblunsky coefficients. We will use the notation Tk
for this restricted map.

The modified Verblunsky coefficients of a discrete probability measure µ are con-
nected to its normalized orthogonal polynomials (with normalization at 1). Let Φk be the
monic orthogonal polynomials of µ, with Φ∗

k being the reversed polynomials. We set

Ψk(z) =
Φk(z)

Φk(1)
, Ψ∗

k(z) =
Φ∗

k(z)

Φ∗
k(1)

. (3.11)

These are always well defined for 0 ≤ k ≤ n− 1, and Ψn is defined as long as µ({1}) = 0.
The polynomials Ψ,Ψ∗ satisfy the following modified version of the Szegő recursion (3.1):(

Ψk+1

Ψ∗
k+1

)
=

(
1

1−γk
− γk

1−γk

− γ̄k

1−γ̄k

1
1−γ̄k

)(
z 0

0 1

)(
Ψk

Ψ∗
k

)
,

(
Ψ0

Ψ∗
0

)
=

(
1

1

)
, 0 ≤ k ≤ n− 1.

(3.12)
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The matrices appearing in this recursion correspond to affine transformations.
Affine transformations of H can be parametrized by the elements of H as follows.

For z = x + iy ∈ H we define the matrix Az and the corresponding linear fractional
transformation Az,H : H 7→ H as follows:

Ax+iy,H =

(
1 −x
0 y

)
, Ax+iy,H(w) = PAx+iy,H

(
w

1

)
. (3.13)

Note that x+ iy is the pre-image of i under Ax+iy,H.
The transformations Az,H are isometries of the half-plane model of the hyperbolic

plane. The corresponding transformations on the unit-disk model of the hyperbolic plane
can be obtained by conjugating with the Cayley transform. For γ ∈ D we set

Aγ,D = UAU−1(γ),HU
−1, Aγ,D = U ◦ AU−1(γ),H ◦ U−1, (3.14)

which leads to

Aγ,D =

(
1

1−γ
γ

γ−1
γ̄

γ̄−1
1

1−γ̄

)
, Aγ,D(z) = PAγ,D

(
z

1

)
. (3.15)

Note that the matrix coefficient in (3.12) is exactly Aγk,D, and Aγ,D maps γ to 0.
The following proposition shows that the generating path of a discrete probability

measure µ can be expressed via a simple (affine) recursion using the modified Verblunsky
coefficients. Define wk, vk ∈ R from the modified Verblunsky coefficients as

vk + iwk :=
2iγk
1− γk

= U−1(γk)− i. (3.16)

Proposition 3.8 ([44, 45]). Suppose that µ is a probability measure on ∂D supported
on n distinct points eiλj , 1 ≤ j ≤ n, and µ({1}) = 0. Let γk, 0 ≤ k ≤ n− 1 be the modified
Verblunsky coefficients of µ. Let bk, zk, 0 ≤ k ≤ n be the path parameters of µ defined as
in Definition 3.6. Then the following identities hold for 0 ≤ k ≤ n− 1:

zk+1 = zk + (vk + iwk)=zk, (3.17)

with vk, wk defined in (3.16), and

bk+1 =
bk + γk

1−bk
1−b̄k

1 + b̄kγk
1−bk
1−b̄k

. (3.18)

We also have

bk = A−1
γ0,D
◦ · · · ◦ A−1

γk−1,D
(0). (3.19)

The normalized orthogonal polynomials of µ can be expressed using the canonical
system (2.9) of the Dirac operator τ corresponding to µ.

Proposition 3.9 ([44, 45]). Under the same setup as in Proposition 3.7, consider the
solution to the canonical system (2.9)

τH = λH, H(0, λ) =

(
1

0

)
, (t, λ) ∈ [0, 1]× C.

Then the normalized orthogonal polynomials Ψk,Ψ
∗
k of µ (defined via (3.11)) satisfy(

Ψk(e
iλ/n)

Ψ∗
k(e

iλ/n)

)
= eiλk/(2n)

(
1 −zk
1 −z̄k

)
H(k/n, λ), 0 ≤ k ≤ n. (3.20)
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Note that Proposition 3.9 applied with k = n gives

e−iλ/2Ψn(e
iλ/n) =

(
1

−zn

)†

H(1, λ) = H(1, λ)†J

(
1

zn

)
. (3.21)

Recall that Ψn(·) is just the normalized characteristic polynomial corresponding to the
support of µ:

Ψn(z) =
Φn(z)

Φn(1)
=

n∏
j=1

z − eiλj

1− eiλj

Hence (2.10) and (3.21) imply that the scaled and normalized characteristic polynomial
of µ is the same as the secular function of the Dirac-type operator corresponding to µ.

4 Beta ensembles from classical unitary and orthogonal random
matrices

This section collects the matrix models for various beta-generalizations of unitary
and orthogonal random matrices, along with their Dirac operator representations and
operator limits.

4.1 Finite ensembles and their Dirac operator representations

Circular beta ensemble

Recall the definition of the size n circular beta ensemble with density function (1.4) and
the spectral measure with respect to e1 (3.4). Recall also that for a1, . . . , an > 0 the
Dirichlet (a1, . . . , an) distribution is a probability measure on the set

{(x1, x2, . . . , xn) ∈ [0, 1]n :

n∑
i=1

xi = 1}

with joint probability density function

Γ(
∑n

i=1 ai)∏n
i=1 Γ(ai)

n∏
i=1

xai−1
i .

We define the size n Killip-Nenciu measure as a random probability measure on ∂D as

µKN
n,β =

n∑
j=1

πjδeiλj , (4.1)

where the support is distributed as the size n circular beta ensemble, and the weights
πj , 1 ≤ j ≤ n are chosen according to Dirichlet (β/2, . . . , β/2) distribution, independently
of the support. The joint distribution of the Verblunsky coefficients with respect to µKN

n,β

was computed in [25].

Definition 4.1. For a > 0 we denote by Θ(a+1) the distribution on D that has probability
density function

a
2π (1− |z|

2)a/2−1. (4.2)

The definition is extended for a = 0 as follows: Θ(1) is the uniform distribution on ∂D.

Proposition 4.2 ([25]). For a fixed n and β > 0, the sequence of Verblunsky coefficients
αk, 0 ≤ k ≤ n− 1 of µKN

n,β are independent, and αk ∼ Θ(β(n− k− 1)+ 1) for 0 ≤ k ≤ n− 1.

Definition 4.3. For fixed n and β > 0, we denote by Circn,β and Circn,β the CMV matrix
and Dirac-type operator corresponding to µKN

n,β .
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Real orthogonal beta ensemble

The real orthogonal beta ensemble is a family of distributions supported on conjugated
pairs of points on the unit circle indexed by real parameters β > 0, a > −1, b > −1. If
we parametrize the size 2n real orthogonal beta ensemble as {±eiθ1 , . . . ,±eiθn} with
θj ∈ (0, π) then the joint density for (θ1, . . . , θn) is proportional to∏

j<k≤n

| cos(θj)− cos(θk)|β ×
n∏

k=1

|1− cos(θk)|
β
2 (a+1)−1/2|1 + cos(θk)|

β
2 (b+1)−1/2. (4.3)

The ensemble was introduced in [25], it can be viewed as a generalization of joint
eigenvalue distributions of some classical orthogonal ensembles. For example when
β = 2, a = b = 1

β − 1, (4.3) describes the joint eigenvalue distribution of a 2n× 2n special
orthogonal matrix chosen uniformly with respect to the Haar measure on SO(2n).

Consider the probability measure

µRO
2n,β,a,b =

n∑
j=1

1

2
πj(δeiθj + δe−iθj ) (4.4)

on the unit circle, where the support is distributed as a 2n real orthogonal beta ensemble,
and the weights (π1, . . . , πn) is an independent random vector that has a Dirichlet
(β/2, . . . , β/2) distribution. The joint distribution of the Verblunsky coefficients of µRO

2n,β,a,b

was derived in [24].

Definition 4.4. For s, t > 0 let B̃(s, t) denote the scaled (and flipped) beta distribution
on (−1, 1) that has probability density function

21−s−tΓ(s+t)
Γ(s)Γ(t) (1− x)s−1(1 + x)t−1.

Proposition 4.5 (Theorem 2 of [25], Proposition 4.5 in [24]). For given β > 0, a, b > −1
and fixed n, the Verblunsky coefficients αk, 0 ≤ k ≤ 2n − 1 of the random probability
measure µRO

2n,β,a,b are independent with α2n−1 = −1, and for 0 ≤ k ≤ 2n− 2

αk ∼

{
B̃
(
β
4 (2n− k + 2a), β

4 (2n− k + 2b)
)
, if k is even,

B̃
(
β
4 (2n− k + 2a+ 2b+ 1), β

4 (2n− k − 1)
)
, if k is odd.

Definition 4.6. For fixed n ≥ 1, a, b > −1 and β > 0, we define RO2n,β,a,b and RO2n,β,a,b
as the CMV matrix model and the Dirac-type operator corresponding to µRO

2n,β,a,b, respec-
tively.

Circular Jacobi beta ensemble

The circular Jacobi beta ensemble can be viewed as a one-parameter generalization of
the circular beta ensemble. Let δ be a complex parameter such that <δ > −1/2. The size
n circular Jacobi beta ensemble is defined as the probability measure on the n distinct
points {eiθ1 , . . . , eiθn} with θj ∈ [−π, π), where the joint density function of the angles θj
is given by (1.9). For β = 2 the distribution was studied by Hua [22] and Pickrell [35],
this special case is sometimes called the Hua-Pickrell measure.

Consider the random probability measure

µCJ
n,β,δ =

n∑
j=1

πjδeiθj (4.5)

on the unit circle, where the support is distributed as the size n circular Jacobi beta
ensemble, the weights are Dirichlet (β/2, . . . , β/2) distributed and are independent
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of the support. In [4] the authors showed that the modified Verblunsky coefficients
γk, 0 ≤ k ≤ n−1 of µCJ

n,β,δ are independent and described explicitly their joint distribution.

We first introduce a generalization of the Θ(a+1) distribution defined in Definition 4.1.

Definition 4.7. For a > 0 and <δ > −1/2 let Θ(a+1, δ) be the distribution on D that has
probability density function

ca,δ(1− |z|2)a/2−1(1− z)δ̄(1− z̄)δ, ca,δ = Γ(a/2+1+δ)Γ(a/2+1+δ̄)

πΓ(a/2)Γ(a/2+1+δ+δ̄)
. (4.6)

For the a = 0, <δ > −1/2 case we define Θ(1, δ) to be the distribution on ∂D = {|z| = 1}
with probability density function

Γ(1+δ)Γ(1+δ̄)

Γ(1+δ+δ̄)
(1− z)δ̄(1− z̄)δ. (4.7)

Proposition 4.8 ([4]). For given n ≥ 1, β > 0,<δ > −1/2, the sequence of modified
Verblunsky coefficients γk, 0 ≤ k ≤ n− 1 of µCJ

n,β,δ are independent with γk ∼ Θ(β(n− k−
1) + 1, δ) for 0 ≤ k ≤ n− 1.

Note that for δ 6= 0 the Verblunsky coefficients αk, 0 ≤ k ≤ n− 1 are not independent.

Definition 4.9. For given n ≥ 1, β > 0,<δ > −1/2, we define CJn,β,δ and CJn,β,δ as the
CMV matrix model and the Dirac-type operator corresponding to µCJ

n,β,δ, respectively.

4.2 Random operator limits from beta ensembles

This section discusses the operator limits of the finite ensembles in Section 4.1. The
main idea is that under the appropriate scaling, the piece-wise constant generating
paths of the Circn,β , RO2n,β,a,b and CJn,β,δ operators converge to certain diffusions in
the hyperbolic plane. Then one can construct random differential operators in terms of
these diffusions. These limiting operators will be denoted as Sineβ , Bessβ,a and HPβ,δ,
respectively. For convenience, we will define the limiting operators with generating
paths that lie in H. We also set

v(t) = vβ(t) = −
4

β
log(1− t)

be the logarithmic time change function.

The Sineβ operator was introduced in [42] as the n→∞ limit of the Circn,β operator.
The operator level convergence was proved in [43] with an explicit rate of convergence,
see Proposition 6.3 below.

Definition 4.10. Fix β > 0. Let B1, B2 be independent standard Brownian motion, and
let xv + iyv, v ≥ 0 be the strong solution of the SDE

dy = ydB1, dx = ydB2, y(0) = 1, x(0) = 0. (4.8)

For t ∈ [0, 1) define z(t) = x(t) + iy(t) = xv + iyv where v = v(t). Let u0 =
(
1
0

)
, u1 =

(−q
−1

)
,

where q = limt→∞ x(t). Set Sineβ = Dir(z(·), u0, u1).
Note that xv + iyv, v ≥ 0 is just a hyperbolic Brownian motion in H, started from i.

The hard-edge Dirac operator Bessβ,a and the Hua-Pickrell operator HPβ,δ were also
introduced in [42]. It has been shown in [30] that they are indeed the operator level
limits of the RO2n,β,a,b and CJn,β,δ operators, respectively.

Definition 4.11. Fix β > 0, a > −1, and let B be a standard Brownian motion. Set
y(t) = e−

β
4 (2a+1)t−B(2t), y(t) = y(v(t)), u0 =

(
1
0

)
, and u1 =

(
0
−1

)
. Define the hard-edge

operator as Bessβ,a := Dir(iy, u0, u1).
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Definition 4.12. Fix β > 0 and δ ∈ C with <δ > −1/2. Let B1, B2 be independent
standard Brownian motion, and let xv + iyv, v ≥ 0 be the strong solution of the SDE

dy = (−<δdt+ dB1) y, dx = (=δdt+ dB2) y, y(0) = 1, x(0) = 0. (4.9)

For t ∈ [0, 1) define z(t) = x(t) + iy(t) = xv + iyv where v = v(t). Let u0 =
(
1
0

)
, u1 =

(−q
−1

)
,

where q = limv→∞ x(v). Set HPβ,δ = Dir(z(·), u0, u1).
Note that the SDE (4.9) can be solved explicitly and the solution is given by

y(v) = eB1(v)−(<δ+ 1
2 )v, x(v) =

∫ v

0

y(s)dB2(s) + =δ
∫ v

0

y(s)ds. (4.10)

In the case when δ = 0 the equation reduces to (4.8). In particular, the HPβ,δ operator
can be viewed as the δ-generalization of Sineβ , and we have HPβ,0 = Sineβ .

4.3 Random analytic functions from beta ensembles

As explained in Section 2.2, the Hilbert–Schmidt convergence of the resolvents of
Dirac-type operators and the convergence of the integral traces imply the uniform on
compacts convergence of the secular functions. In Section 3.2 we saw that we can
express the characteristic polynomials of finite ensembles on the unit circle via the
secular function of an associated Dirac-type operator. The operator level limits discussed
in the previous section lead then lead to convergence statements regarding the scaled
and normalized characteristic polynomials of the respective finite ensembles.

In this section, we briefly review the secular functions and structure functions arising
from the limits of the considered beta ensembles. The constructions rely on certain time-
reversed and transformed versions of the limiting operators introduced in Section 4.2.
Recall the transformations introduced in Section 2.2.

In [44] Valkó and Virág constructed the following Dirac-type operator on (0, 1] and
showed that it is orthogonally equivalent to the Sineβ operator. Consider the time change

u(t) = uβ(t) =
4

β
log t, t ∈ (0, 1]. (4.11)

Definition 4.13. Let b1, b2 be independent two-sided standard Brownian motion, and set

yu = eb2(u)−u/2, xu = −
∫ 0

u

eb2(s)−
s
2 db1, (4.12)

For t ∈ (0, 1] set ẑ(t) = (x̂+ iŷ)(t) := xu+ iyu, u0 =
(
1
0

)
, and u1 =

(−q
−1

)
, where q is a Cauchy

distributed random variable independent of b1, b2. Define τβ = τSineβ = Dir(ẑ(·), u0, u1),
and denote by ζβ := ζτβ and Eβ := Eτβ the corresponding secular and structure function
according to Definition (2.4).

Proposition 4.14 ([44]). Let q and τβ be defined as in Definition 4.13. Then the τβ
operator satisfies Assumption 2.1, and the orthogonally equivalent operator

ρ−1SQτβQ
−1Sρ, Q =

1√
1 + q2

(
q 1

−1 q

)
,

has the same distribution as Sineβ. Let Hβ(t, z) be the solution to the canonical sys-
tem (2.9) of the τβ operator, and let xu and yu be defined according to (4.12). Set

Hβ(u, z) =

(
1 −xu
0 yu

)
Hβ(t(u), z), t = t(u) = eβu/4, (4.13)

then H satisfies the stochastic differential equation (1.6). Since Hβ(0, z) = Hβ(1, z), the
structure-function Eβ(z) can be represented as Eβ(z) = Hβ(0, z)

†( 1
−i

)
.
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Using the results of Proposition 4.14 [44] showed the convergence of the scaled and
normalized characteristic polynomials of the circular beta ensemble to the stochastic
zeta function.

Proposition 4.15 ([44]). Consider the size n (unperturbed) circular beta ensemble,
i.e., the eigenvalues of Circn,β, and its normalized characteristic polynomial pn,β(z) :=
det(zI−Circn,β)
det(I−Circn,β)

. There exists a coupling of pn,β(z), n ≥ 1, the secular function ζβ(z) =

Hβ(0, z)
†( 1

−q

)
, and an a.s. finite C so that for all z ∈ C we have

|pn,β(eiz/n)e−iz/2 − ζβ(z)| ≤ C |z|2+1

(
e
|z| log

3 n√
n − 1

)
.

The time-reversed and transformed version of the Bessβ,a and HPβ,δ operators were
constructed in [30] in a similar spirit.

Definition 4.16. Let B be a standard two-sided Brownian motion. Let yu =

e−
β
4 (2a+1)u+B(2u) and ŷ(t) = y(u(t)) for t ∈ (0, 1], where u is defined in (4.11). Set

u0 =
(
1
0

)
, u1 =

(
0
−1

)
and define τβ,a = τBessβ,a = Dir(iŷ(t), u0, u1). We also define ζβ,a = ζτβ,,a

and Eβ,a = Eτβ,a
as the secular and structure function of the τβ,a operator via Defini-

tion 2.4.

Proposition 4.17 ([30]). The operator τβ,a satisfies Assumption 2.1, and we have

ρ−1Jτβ,aJρ
d
= Bessβ,a, J =

(
0 −1
1 0

)
.

Let Hβ,a(t, z) be the solution to the canonical system (2.9) of the τβ,a operator and

set Hβ,a(u, z) = diag(1, yu)Hβ,a(e
β
4 u, z) for u ≤ 0, z ∈ C, where yu is defined as in

Definition 4.16. Then Hβ,a is the unique strong solution to the SDE

dH =

(
0 0

0
√
2dB + (1− β

4 (2a+ 1))du

)
H− z

β

8
eβu/4

(
0 −1
1 0

)
Hdu, (4.14)

with boundary conditions lim
u→−∞

sup|z|<1

∣∣H(u, z)− (10)∣∣ = 0. Since Hβ,a(0, z) = Hβ,a(1, z),

we have Eβ,a(z) = Hβ,a(0, z)
†( 1

−i

)
and ζβ,a = Hβ,a(1, z)

†(1
0

)
.

[30] showed that the secular function ζβ,a of the Bessβ,a operator is the limit in
distribution of the normalized characteristic polynomial of the real orthogonal beta
ensemble under the edge scaling (1.3).

Definition 4.18. Let B1, B2 be independent two-sided standard Brownian motion, and
for u ≤ 0 define

yu = eB2(u)−(<δ+ 1
2 )u, xu = −

∫ 0

u

eB2(s)−(<δ+ 1
2 )sdB1 −=δ

∫ 0

u

eB2(s)−(<δ+ 1
2 )sds, (4.15)

For t ∈ (0, 1] let ẑ(t) = (x̂ + iŷ)(t) = xu + iyu with u = u(t) defined in (4.11). Set
u0 =

(
1
0

)
, and u1 =

(−q
−1

)
, where q ∼ Θ(1, δ) is independent of B1, B2. Define τβ,δ = τHPβ,δ =

Dir(ẑ(·), u0, u1), and denote by ζβ,δ = ζτβ,δ
and Eβ,δ = Eτβ,δ

the secular and structure
function of τβ,δ, respectively.2

Proposition 4.19 ([30]). Let q and τβ,δ be defined as in Definition 4.18. Then the τβ,δ
operator satisfies Assumption 2.1, and the orthogonally equivalent operator

ρ−1SQτβ,δQ
−1Sρ, Q =

1√
1 + q2

(
q 1

−1 q

)
,

2From the context it will always be clear if ζβ,·, Eβ,· refer to the objects related to the Bessβ,a or the HPβ,δ
operators.
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has the same distribution as HPβ,δ. Let Hβ,δ be the solution of the canonical system (2.9)
of the τβ,δ operator, and let xu, yu be defined as in (4.15). For u ≤ 0, z ∈ C set

Hβ,δ(u, z) =

(
1 −xu
0 yu

)
Hβ,δ(e

βu/4, z),

then Hβ,δ is the unique solution of the SDE

dH =

(
0 −dB1

0 dB2

)
H+

(
0 −=δdu
0 −<δdu

)
H− z

β

8
eβu/4

(
0 −1
1 0

)
Hdu, (4.16)

with the boundary condition lim
u→−∞

sup|z|<1

∣∣H(u, z)− (10)∣∣ = 0, and we have Eβ,δ(z) =

Hβ,δ(0, z)
†( 1

−i

)
.

[30] also showed that the secular function ζβ,δ = Hβ,δ(0, z)
†( 1

−q

)
of the HPβ,δ operator

is the limit in distribution of the normalized characteristic polynomials of the circular
Jacobi beta ensemble under the edge scaling (1.3).

5 Convergence of the truncated models

This section establishes general convergence results for the rank-one truncations and
multiplicative perturbations of the finite ensembles when the generating paths satisfy
certain path bounds. The statements in this section hold in the deterministic setting.

Throughout the section, we assume µn is a probability measure on ∂D supported on
n distinct points, with Verblunsky coefficients α0, . . . , αn−1. We denote by τn the Dirac
operator corresponding to µn.

Recall the reversed (discrete) probability measures defined in Definition 3.4. We first
introduce the reversed Dirac operator and its pulled-back version, which are closely
connected to the truncated ensembles.

Definition 5.1. Let µ̃n be the reversed version of µn, i.e., the probability measure
corresponding to the reversed Verblunsky coefficients (α̃0, α̃1, . . . , α̃n−1). We define τ̃n as
the Dirac operator corresponding to µ̃n and call it the reversed version of τn. We denote
by b̃k, 0 ≤ k ≤ n the path parameters of τ̃n in D.

Recall the affine transformation Aγ,D defined in (3.15).

Definition 5.2. Set
←↩

b k := Ab̃n−1,D
(̃bk) for 0 ≤ k ≤ n with the extension that

←↩

b−1 =

Ab̃n−1,D
(̃b−1) = 1. We define

←↩

τ n := Ab̃n−1,D
(τ̃n) := Dir(1,

←↩

b 0, . . . ,
←↩

b n−1,
←↩

b n) as the Dirac

operator with path parameters
←↩

b k, 0 ≤ k ≤ n in D. We call
←↩

τ n the pulled-back version of
τ̃n.

To summarize, we are considering three sets of path parameters corresponding to
µn, and each one has a Dirac-type operator associated to it. bk, 0 ≤ k ≤ n are the path
parameters constructed from the Verblunsky coefficients αk, 0 ≤ k ≤ n− 1 according to
Definition 3.6. The reversed path b̃k, 0 ≤ k ≤ n is constructed via the same definition,

but from the reversed Verblunsky coefficients (3.5). Finally, the path
←↩

b k, 0 ≤ k ≤ n can
be obtained from the reversed path by applying an affine transformation that maps b̃n−1

to 0 in D. See Table 1 for a summary of the defined objects.

Note that by the definition of Aγ,D and the recursion (3.18), we have
←↩

b n−1 = 0 and
←↩

b n = γ̃n−1, where γ̃n−1 is the last modified Verblunsky coefficient corresponding to µ̃n.

The next statement represents the orthogonal polynomial of degree n− 1 of µ̃n using
the operator

←↩

τ n.
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Table 1: Table of objects associated to a probability measure µ supported on n points on
∂D.

original objects reversed objects pulled-back objects

µ µ̃

discrete prob. measure on ∂D reversed measure

l (3.1) (3.5) ↑ (3.1)

αk, 0 ≤ k ≤ n− 1 ←→ α̃k, 0 ≤ k ≤ n− 1

Verblunsky coefficients reversed Verbl. coeffs

l (3.10)

γk, 0 ≤ k ≤ n− 1
y Def. 3.6

modified Verblunsky coeffs

l Def. 3.6 Def. 5.2

bk, 0 ≤ k ≤ n b̃k, 0 ≤ k ≤ n −→
←↩

b k, 0 ≤ k ≤ n

zk, 0 ≤ k ≤ n z̃k, 0 ≤ k ≤ n
←↩

z k, 0 ≤ k ≤ n

path parameters reversed path pulled-back path

↓ Def. 3.6 ↓ Def. 3.6 ↓ Def. 3.6, 5.2

τ = Dir(b−1, . . . , bn) τ̃ = Dir(̃b−1, . . . , b̃n)
←↩

τ = Dir(
←↩

b−1, . . . ,
←↩

b n)

Dirac-type operator reversed operator pulled-back operator

Proposition 5.3. Let µ̃n be the reversed version of µn, and τ̃n,
←↩

τ n be defined as in
Definitions 5.1 and 5.2. For 0 ≤ k ≤ n− 1, let Φ̃k(·) be the monic orthogonal polynomials
of degree k associated to µ̃n, and set Ψ̃k(·) = Φ̃k(·)/Φ̃k(1). Then we have

Ψ̃n−1(e
iz/n) = eiz(n−1)/(2n)

←↩

Hn

(
n−1
n , z

)†( 1

−i

)
,

where
←↩

Hn(t, z) is the solution of the canonical system (2.9) corresponding to the operator
←↩

τ n.

Proof. Let b̃k, 0 ≤ k ≤ n be the path parameters of τ̃n and set z̃k = U−1(̃bk), 0 ≤ k ≤ n

to be the corresponding path parameters in H. Here U is the Cayley transform defined
in (3.9). Consider the linear fractional transformation Az̃n−1,H (the upper half plane
representation of Ab̃n−1,D

) such that

Az̃n−1,H(w) = U−1 ◦ Ab̃n−1,D
◦ U(w) = w −<z̃n−1

=z̃n−1
, w ∈ H.

Define
←↩

z k =
←↩

xk + i
←↩

y k = Az̃n−1,H(z̃k) for 0 ≤ k ≤ n. Then by (3.14) we have
←↩

z k =

U−1(
←↩

b k), 0 ≤ k ≤ n with the extension that
←↩

z−1 = U−1(̃b−1) =∞.
Introduce the temporary notation

X̃k = Az̃k,H =

(
1 −x̃k

0 ỹk

)
,

←↩

Xk = A←↩
z k,H

=

(
1 −←↩

xk

0
←↩

y k

)
, 0 ≤ k ≤ n,

then we have
←↩

Xk = X̃k(X̃n−1)
−1, 0 ≤ k ≤ n. (5.1)
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For a matrix of the form

X =

(
1 −x
0 y

)
with y > 0 we have the identity

y−1X†J = JX−1.

Using this together with (2.1) and (2.2) we obtain

←↩

τ n = X̃n−1τ̃n(X̃n−1)
−1. (5.2)

Let
←↩

Hn(t, z) and H̃n(t, z) be the solutions to the canonical systems (2.9) of
←↩

τ n and τ̃n
respectively, then (5.2) leads to

H̃n(t, z) = (X̃n−1)
−1
←↩

Hn(t, z). (5.3)

Let Ψ̃∗
k(z) = zkΨ̃k(1/z̄) be the reversed polynomial of Ψ̃k(z). Using (3.9), (3.20), (5.1),

and (5.3) we get(
Ψ̃k(e

iz/n)

Ψ̃∗
k(e

iz/n)

)
= eizk/(2n)UX̃kH̃n(k/n, z) = eizk/(2n)U

←↩

Xk

←↩

Hn(k/n, z).

Since
←↩

z n−1 = Az̃n−1,H(z̃n−1) = i, and
←↩

Xn−1 = I, we have

Ψ̃n−1(e
iz/n) = eiz(n−1)/(2n)

←↩

Hn((n− 1)/n, z)†
(

1

−i

)
,

finishing the proof.

Suppose now that the probability measure µn is the spectral measure of an n × n

unitary or orthogonal matrix U with respect to e1. By Propositions 3.2 and 3.5, the
eigenvalues of the truncated matrix Trunc(U) are exactly the zeros of the normalized
orthogonal polynomial Ψ̃n−1(·), hence they can be expressed from the vector-valued

function
←↩

Hn.
Next we turn to the discussion of the scaling limit of the eigenvalues of the truncated

matrices. If we can prove uniform on compacts convergence of the normalized orthogonal
polynomials, then this leads to the convergence of the eigenvalues of the truncated
models. By Proposition 5.3 it is sufficient to show the convergence the convergence of
←↩

Hn. Using Proposition 2.5, this can be done if we have sufficient control of the integral
traces, resolvent norms, and the proper integrals of the kernels of r

←↩

τ n. We summarize
this idea in the following (deterministic) statement.

Proposition 5.4. Suppose that µn, n ≥ 1 is a sequence of probability measures on ∂D,
with µn supported on n distinct points. Consider the setup of Proposition 5.3 and denote
by
←↩

z n(·) the generating path of
←↩

τ n for n ≥ 1. Suppose that there exists a Dirac operator
τ∞ = Dir(z∞(·), u0, u1) with u0 =

(
1
0

)
and I = (0, 1] so that as n→∞

‖r←↩

τ n − r τ∞‖HS → 0, t←↩
τ n
− tτ∞ → 0,

∫ 1

0

|←↩

a 0,n(s)− a0,∞(s)|2ds→ 0, (5.4)

where
←↩

a 0,n(·) =
(=←↩

zn(·)−
1
2

0

)
, n ≥ 1 and a0,∞ =

(=z∞(·)−
1
2

0

)
are defined according to (2.8).

Let Ψ̃n−1,n be the normalized orthogonal polynomial of degree n − 1 of µ̃n, and let
E(z) := H(1, z)†

(
1
−i

)
be the structure function of τ∞. Then we have

|e−iz/2Ψ̃n−1,n(e
iz/n)− E(z)| → 0 uniformly on compacts in C as n→∞. (5.5)
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Edge limits of truncated circular beta ensembles

Note that (5.5) implies that the zeros of Ψ̃n−1,n converge to the zeros of E under the
edge scaling (1.3).

Proof of Proposition 5.4. Let
←↩

Hn, n ≥ 1 be the solution of the canonical system (2.9) of
←↩

τ n. By Proposition 5.3 and the triangle inequality, we have

|Ψ̃n−1,n(e
iz/n)e−iz/2 − E(z)| ≤ |e−iz/(2n)|

∣∣∣∣(←↩

Hn(
n−1
n , z)† −H(n−1

n , z)†
)
·
(

1

−i

)∣∣∣∣
+ |e−iz/(2n)|

∣∣∣∣(H(n−1
n , z)† −H(1, z)†

)
·
(

1

−i

)∣∣∣∣
+
∣∣∣e−iz/(2n) − 1

∣∣∣ ∣∣∣H(1, z)† ·
(

1

−i

)∣∣∣.
(5.6)

For z in a compact set of C and large enough n, the sum of the second and the third
term of the right-hand side of (5.6) is upper bounded by an error term of the order O(n−1).

Hence it remains to provide an upper bound for the difference |
←↩

Hn(
n−1
n , z)−H(n−1

n , z)|.
By Proposition 2.5, it suffices to control the terms

|tτ∞ − t←↩
τ n
|, ‖r τ∞ − r

←↩

τ n‖HS,
∫ 1

0

|a0,∞(s)− ←↩

a 0,n(s)|2ds.

Applying the assumptions (5.4) finishes the proof.

Next, we turn to the discussion of the rank-one multiplicative perturbation of the
matrix models. Suppose U is an n × n unitary or orthogonal matrix with CMV matrix
form C(α0, . . . , αn−1). Let r ∈ [0, 1] and U [r] = U · diag(r, 1, 1, . . . , 1) be its rank-one
multiplicative perturbation. Recall from Proposition 3.5 that the perturbed matrix U [r]

has the same eigenvalues as the CMV matrix

C[r]n := C(α̃0, . . . , α̃n−2, rα̃n−1). (5.7)

Note that this matrix is a function of the spectral measure of U . In particular, for any
probability measure µn on ∂D (supported on n points) we can define the matrix C[r]n from
its Verblunsky coefficients.

Suppose now that we have a sequence of probability measures µn, n ≥ 1, just as in
Proposition 5.4. Let γ̃n−1 be the last modified Verblunsky coefficient corresponding to
the Verblunsky coefficients α̃0, . . . , α̃n−1 of µ̃n. (Note the abuse of notation: we should
write α̃k,n, 0 ≤ k ≤ n − 1 here, but we drop the extra n from the notation.) The next
result shows that if γ̃n−1 converges and the assumptions of Proposition 5.4 hold, then

the eigenvalues of C[r]n converge as well.

Proposition 5.5. Consider the same setup as in Proposition 5.4. Fix r ∈ [0, 1], let

Ψ
[r]
n (z) =

∏n
i=1

z−λi

1−λi
be the normalized characteristic polynomial of C[r]n . Assume that the

convergence (5.5) holds, and assume further that limn→∞ γ̃n−1 = γ 6= 1. Then we have

|Ψ[r]
n (eiz/n)e−iz/2 − E [r](z)| → 0, E [r](z) = H(1, z)†

(
1

−i 1+rγ
1−rγ

)
(5.8)

uniformly on compacts in C as n→∞.

Note that (5.8) implies the convergence of the eigenvalues of Ψ[r]
n to the zeros of E [r]

under the edge scaling (1.3).

Proof of Proposition 5.5. By the modified Szegő recursion (3.12), we have

Ψ[r]
n (z) = 1

1−rγ̃n−1
zΨ

[r]
n−1(z)−

rγ̃n−1

1−rγ̃n−1
Ψ

[r],∗
n−1(z), (5.9)
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where Ψ
[r],∗
n−1(·) is the reversed polynomial of Ψ[r]

n−1(·). Note that the polynomials Ψ
[r]
n−1

and Ψ
[r],∗
n−1 do not depend on γ̃n−1.

Introduce E∗(z) = E(z̄), by the definition of the reversed polynomials, (3.20) and (5.5),
we have∣∣∣Ψ[r],∗

n−1(e
iz/n)e−iz/2 − E∗(z)

∣∣∣→ 0 uniformly on compacts as n→∞. (5.10)

Together with (5.9) and the convergence of γ̃n−1 → γ as n→∞, we get

lim
n→∞

Ψ[r]
n (eiz/n)e−iz/2 = 1

1−rγ E(z)−
rγ

1−rγ E
∗(z) = H(1, z)†

(
1

−i 1+rγ
1−rγ

)
,

uniformly on compacts in z.

In order to work with our probabilistic models, we present below a sufficient condition
for the convergence results in (5.4). The statement and its proof are similar to Corollary
30 of [30], where the convergence of the resolvents and integral traces of Dirac-type
operators was discussed in a similar context.

Corollary 5.6. Suppose that
←↩

τ n = Dir(
←↩

z n, u0,
←↩

u 1,n) and τ∞ = Dir(z∞, u0, u1) are random

Dirac-type operators with I = (0, 1], u0 =
(
1
0

)
,
←↩

u 1,n =
(−←↩

q n
−1

)
, and u1 =

(−q
−1

)
. Assume that

there is a coupling of these operators so that all of the following limits hold:

‖r←↩

τ n − r τ∞‖HS → 0, t←↩
τ n
− tτ∞ → 0,

←↩

zn → z∞ pointwise on (0, 1]. (5.11)

Assume also that there exists a constant c < 1 and a sequence of tight positive random
variables κn, n ≥ 1 so that for 0 < t ≤ 1

κ−1
n (bntc/n)c ≤ =←↩

z n(t), κ−1tc ≤ =z∞(t). (5.12)

Then there is a coupling of
←↩

τ n, n ≥ 1 and τ∞ so that the conditions in (5.4) hold almost
surely as n→∞.

Proof. Set

sn :=

∫ 1

0

|←↩

a 0,n(s)− a0,∞(s)|2ds =
∫ 1

0

∣∣∣∣(=←↩

zn(s)
)−1/2

− (=z∞(s))
−1/2

∣∣∣∣2 ds.
It is sufficient to prove that in the appropriate product space

(
←↩

z n, r
←↩

τ n, t←↩
τ n

, sn)→ (z∞, r τ∞, tτ∞ , 0) (5.13)

jointly in distribution, the Skorokhod representation theorem then implies the statement.
To show the convergence (5.13) in distribution, it is enough to show that any subsequence
nj , j ≥ 1 has a further subsequence nj(m),m ≥ 1 along which the appropriate limit holds.
Consider the coupling in the assumption and choose the second subsequence nj(m) so

that κnj(m)
→ κ∞ in distribution with an a.s. finite κ∞. Then (

←↩

z n,
←↩

q n, r
←↩

τ n, t←↩
τ n

, κn) →
(z∞, q∞, r τ∞, tτ∞ , κ∞) jointly in distribution (along our subsequence), so by Skorokhod’s
representation theorem there is a coupling where this limit holds in the a.s. sense as well.
The dominated convergence theorem together with the bounds (5.12) imply that we also
have sn → 0 a.s. along our subsequence, which means that (5.13) holds a.s. as well. This
implies the required joint convergence in distribution and completes the proof.
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Edge limits of truncated circular beta ensembles

6 Edge limits of the truncated circular and real orthogonal beta
ensembles

Our goal is to prove Theorems 1.2 and 1.3, the edge scaling limits of the rank-
one truncation and multiplicative perturbation of the circular beta ensemble using the
framework developed in Section 5. We will also prove the analogue results for the real
orthogonal beta ensemble.

In both cases we will check that the random measures associated to the respective
beta ensembles (introduced in Section 4.1) satisfy the conditions in Propositions 5.4
and 5.5.

6.1 The truncated circular beta ensemble

Recall the definition of the random probability measure µKN
n,β introduced in Section 4.1

and the corresponding CMV matrix Circn,β . Proposition 4.2 gives the distribution of the
Verblunsky coefficients αk, 0 ≤ k ≤ n− 1 corresponding to µKN

n,β . The truncated circular
beta ensemble is the joint distribution of the eigenvalues of the truncated CMV matrix
Trunc(Circn,β). The rank-one multiplicative perturbation of the circular beta ensemble
(corresponding to a parameter r ∈ [0, 1]) is defined as the distribution of the eigenvalues

of Circ[r]n,β .
Note that by Proposition 4.2 the Verblunsky coefficients αk, 0 ≤ k ≤ n− 1 are inde-

pendent and rotationally invariant. Hence from (3.5) we get the following distributional
identity:

(α̃0, α̃1, . . . , α̃n−2, α̃n−1)
d
= (αn−2, αn−3, . . . , α0, αn−1). (6.1)

Using this together with Proposition 3.5, we recover the following result of Killip and
Kozhan [24].

Proposition 6.1 ([24]). For fixed n and β > 0, let αk, 0 ≤ k ≤ n − 1 be distributed
according to Proposition 4.2. Then the joint eigenvalue distribution of the CMV matrix
C(αn−2, αn−3, . . . , α0) is the same as that of Trunc(Circn,β), which is given by the truncated
circular beta ensemble. For fixed r ∈ [0, 1], the matrix C(αn−2, αn−3, . . . , α0, rαn−1) has

the same distribution as Circ[r]n,β , in particular its joint eigenvalue distribution is given by
the rank-one multiplicative perturbation of the circular beta ensemble.

Note that [24] also proved that the joint density of the truncated circular beta
ensemble is given by (1.5), and described explicitly the joint eigenvalue distribution of
the perturbed matrix Circ

[r]
n,β (see Proposition 7.2 of [24]).

Recall the Dirac operator Circn,β in Definition 4.3. We denote by τ̃n,β the reversed

version of Circn,β, and by
←↩

τ n,β the pulled-back version of τ̃n,β (see Definitions 5.1

and 5.2). By studying the generating paths of the operators
←↩

τ n,β and Circn,β , we claim
that these operators are orthogonally equivalent. Indeed, this observation follows from
Proposition 52 of [45] using the rotational invariance of the models and a conditioning
argument. We will provide a different proof that holds for the circular Jacobi beta
ensemble (δ = 0 corresponding to the circular beta ensemble). To avoid repetition, we
will state the result without proof here.

Proposition 6.2. Recall the definitions of the operators ρ and S from Lemma 2.7. Denote

by
←↩

b k, 0 ≤ k ≤ n the path parameters of
←↩

τ n,β , and let

Q =
1√

1 + q2

(
q 1

−1 q

)
, q = U−1(

←↩

b n).

Then the operator ρ−1(SQ)
←↩

τ n,β(SQ)−1ρ has the same distribution as Circn,β .
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Recall the definition of the Sineβ operator from Definition 4.10, and its reversed
and transformed version τβ defined in Definition 4.13. Proposition 6.2 shows that one

can obtain the operators
←↩

τ n,β and τβ from Circn,β , n ≥ 1 and Sineβ under the same
orthogonal transformations. The final ingredient of proving Theorems 1.2 and 1.3 is
the following strong operator level convergence of Circn,β to the Sineβ operator. Let

dH(z1, z2) = arccosh(1 + |z1−z2|2
2=z1=z2

) denote the hyperbolic distance in H.

Proposition 6.3 ([43, 44]). There exists an explicit coupling of the operators Circn,β =

Dir(zn(·), u0, u(n)1 ), n ≥ 1 and Sineβ = Dir(z(·), u0, u1) such that u(n)1 = u1, and for large
enough n,

dH(zn(t), z(t)) ≤
log3−1/8 n√
(1− t)n

, 0 ≤ t ≤ tn := 1− log6 n

n
,

dH(zn(tn), z(t)) ≤ (log log n)4, tn ≤ t < 1.

(6.2)

Under this coupling, we have

‖r Circn,β − r Sineβ‖2HS ≤
log6 n

n
, |tCircn,β

− tSineβ | ≤
log3 n√

n
. (6.3)

Here the first inequality of (6.3) was proved in [43] and the second one follows
from the estimates used in the proof of Theorem 49 of [44] (in particular equations
(107)-(109)). ‘Large enough n’ means that there is a finite random variable N0 so that
the statements hold for n ≥ N0.

Proposition 6.3 provides us with the necessary ingredients so that we can apply
Proposition 5.4 to prove the convergence of the normalized characteristic polynomials of
the truncated circular beta ensemble.

Proposition 6.4. Let λi, 1 ≤ i ≤ n− 1 be the size n− 1 truncated circular beta ensemble
and set pn−1,β(z) =

∏n−1
i=1

z−λi

1−λi
be the normalized characteristic polynomial. Let Eβ be

the structure function of τβ defined via (2.11). Then there is a coupling of pn−1,β , n ≥ 2

and Eβ such that

|pn−1,β(e
iz/n)e−iz/2 − Eβ(z)| ≤

(
e
|z| log

3 n√
n − 1

)
C1+|z|2 (6.4)

for all z ∈ C and n ≥ 1, where C is an a.s. finite constant.

Proof. Let µ̃n be the reversed version of the Killip-Nenciu probablity measures µn := µKN
n,β ,

and let
←↩

τ n,β be the pulled-back operator. By Propositions 3.2 and 6.1, we can represent
pn−1,β as the monic orthogonal polynomial of degree n − 1 associated to µ̃n. Then by
Proposition 5.3, we have

pn−1,β(e
iz/n)e−iz/2 = e−iz/(2n)

←↩

Hn,β((n− 1)/n, z)†
(

1

−i

)
,

where
←↩

Hn,β solves the ODE (2.9) of
←↩

τ n,β . Recall that Eβ(z) = Hβ(1, z)
†( 1

−i

)
.

Consider the coupling of Proposition 6.3. Using the triangle inequality as in (5.6)
within the proof of Proposition 5.4, we have

|pn−1,β(e
iz/n)e−iz/2 − Eβ(z)| ≤ |e−iz/(2n)|

∣∣∣∣(←↩

Hn,β(
n−1
n , z)† −Hβ(

n−1
n , z)†

)
·
(

1

−i

)∣∣∣∣
+ |e−iz/(2n)|

∣∣∣∣(Hβ(
n−1
n , z)† −Hβ(1, z)

†
)
·
(

1

−i

)∣∣∣∣
+
∣∣∣e−iz/(2n) − 1

∣∣∣ ∣∣∣Hβ(1, z)
† ·
(

1

−i

)∣∣∣.
(6.5)

EJP 30 (2025), paper 13.
Page 27/46

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1270
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Edge limits of truncated circular beta ensembles

Note that for any compact subset of (0, 1] the operator norm of the weight function R(s)

of τβ is bounded by a finite random constant. Hence by the standard theory of ordinary
differential equations, for z in a compact set of C, the second term on the right hand
side of (6.5) can be upper bounded by Cn−1 where C is an a.s. finite constant. The third
term on the right side of (6.5) can also be bounded similarly, since z 7→ Hβ(1, z)

† ·
(

1
−i

)
is

a random entire function.
It remains to estimate the first term on the right hand side of (6.5). By Proposi-

tions 4.14 and 6.2, the operators
←↩

τ n,β , n ≥ 1 and τβ can be obtained from Circn,β , n ≥ 1

and Sineβ under the same orthogonal transformations. Hence in the coupling of Proposi-
tion 6.3, for large enough n we have

‖r τβ − r
←↩

τ n,β‖HS ≤
log3 n√

n
, |tτβ − t←↩

τ n,β
| ≤ log3 n√

n
, (6.6)

Let
←↩

z n(·) ≡
←↩

z n,β(·) and z(·) ≡ zβ(·) be the driving paths of the
←↩

τ n,β and τβ operators,
respectively. It has also been shown in the proof of Proposition 3 of [45] (see equations
(69)-(72) therein) that∫ 1

0

|←↩

a 0,n(s)− a0(s)|2ds =
∫ 2

0

∣∣∣(=←↩

z n(s))
− 1

2 − (=z(s))− 1
2

∣∣∣2ds ≤ log6 n

n
. (6.7)

The estimates (6.6) and (6.7) allow us to use Proposition 2.5 to bound |
←↩

Hn,β(
n−1
n , z) −

Hβ(
n−1
n , z)| for n large enough. From this it follows that (6.5) can be bounded from

above according to (6.4), which proves the proposition.

We are now ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. First note that by (4.13) we haveHβ(0, ·) = Hβ(1, ·), hence Eβ(·) =
Hβ(0, ·)†

(
1
−q

)
. Then by Proposition 6.4, we obtain the convergence of the normalized

characteristic polynomials of the truncated circular beta ensemble to the random analytic
function Eβ with an explicit error bound. Under the edge scaling (1.3), the size n

truncated circular beta ensemble has the same distribution as the zeros of the function
pn,β(e

iz/n) defined in Proposition 6.4. The weak convergence of the truncated circular
beta ensemble to Xβ := {z ∈ H : Eβ(z) = 0} follows directly from Proposition 6.4 and
Hurwitz’s theorem.

Proof of Theorem 1.3. Consider the coupling of
←↩

τ n,β and τβ described in Proposition 6.4
again, the right boundary condition of these operators are coupled together. By Propo-
sitions 5.5 and 6.4 we get the uniform-on-compacts convergence of the normalized
characteristic polynomials of Circ[r]n,β to Er,β with a similar error bound. This in turn gives

the weak convergence of the eigenvalues of Circ[r]n,β under the edge scaling and completes
the proof.

6.2 Edge limits of the truncated real orthogonal beta ensemble

This section discusses the edge limits of the rank-one truncation and multiplicative
perturbation of the real orthogonal beta ensemble. We will follow the same approach as
in Section 6.1.

Recall the size 2n real orthogonal ensemble with joint density (4.3) and the random
probability measure µRO

2n,β,a,b in (4.4). Proposition 4.5 describes the distribution of the
corresponding Verblunsky coefficients αk, 0 ≤ k ≤ 2n − 1. Since αk’s are all real and
α2n−1 = −1, from (3.5) we get that the reversed Verblunsky coefficients α̃k, 0 ≤ k ≤ 2n−1
satisfy

(α̃0, α̃1, · · · , α̃2n−2, α̃2n−1) = (α2n−2, α2n−3, · · · , α0, α2n−1). (6.8)
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The rank-one truncation and multiplicative perturbation of the real orthogonal beta
ensemble are defined as the joint eigenvalue distributions of the truncated CMV matrix
Trunc(RO2n,β,a,b) and the perturbed CMV matrix RO

[r]
2n,β,a,b (indexed by r ∈ [0, 1]), respec-

tively. Using (6.8) with Proposition 3.5 yields the following result of Killip and Kozhan
[24].

Proposition 6.5 ([24]). For given β > 0, a, b > −1 and n ≥ 1, let αk, 0 ≤ k ≤ 2n− 1 be
distributed according to Proposition 4.5. Then the CMV matrix C(α2n−2, α2n−3 . . . , α0)

has the same joint eigenvalue distribution as Trunc(RO2n,β,a,b). For fixed r ∈ [0, 1], the

CMV matrix C(α2n−2, . . . , α0,−r) has the same joint eigenvalue distribution as RO[r]
2n,β,a,b.

Note that the joint distributions of the rank-one truncation and multiplicative pertur-
bation of the real orthogonal beta ensemble were described explicitly in Theorem 6.4
and Proposition 7.2 (b) of [24].

Recall the Dirac operator RO2n,β,a,b in Definition 4.6. Denote by τ̃2n,β,a,b the reversed

version of RO2n,β,a,b, and by
←↩

τ 2n,β,a,b the pulled-back version of τ̃2n,β,a,b. Recall also the
limiting Bessβ,a operator in Definition 4.11 and its reversed version τβ,a in Definition 4.16.

By Proposition 4.17 we get that ρ−1Jτβ,aJρ
d
= Bessβ,a. The next result shows that

under the same transformations, the operators
←↩

τ 2n,β,a,b and RO2n,β,a,b are orthogonally
equivalent.

Proposition 6.6.

ρ−1J
←↩

τ 2n,β,a,bJρ
d
= RO2n,β,a,b.

Proof. Let αk, 0 ≤ k ≤ 2n−1 be distributed as in Proposition 4.5, and let γk, 0 ≤ k ≤ 2n−1
be the corresponding modified Verblunsky coefficients. Since αk’s are all real, from (3.10)
we have γk = αk for all 0 ≤ k ≤ 2n− 1.

Let zk, 0 ≤ k ≤ 2n and z̃k, 0 ≤ k ≤ 2n be the path parameters of RO2n,β,a,b and τ̃2n,β,a,b
in H, respectively. Using (3.17) and (6.8) we get for 0 ≤ k ≤ 2n,

zk = i
k−1∏
j=0

1 + γj
1− γj

, z̃k = i
k−1∏
j=0

1 + γ2n−2−j

1− γ2n−2−j
.

Recall the affine transformation Az,H in (3.13) and the corresponding transformation on
the uni-disk model Aγ,D in (3.15). By Definition 5.2 and (3.14), the path parameters of
←↩

τ 2n,β,a,b in H, denoted by
←↩

z k, 0 ≤ k ≤ 2n, are obtained from z̃k, 0 ≤ k ≤ 2n via the affine
transformation Az̃2n−1,H. More precisely, we have

←↩

z k = P
(

1 0

0 =z̃2n−1

)(
z̃k
1

)
= i

2n−2−k∏
j=0

1− γj
1 + γj

, 0 ≤ k ≤ 2n− 1,

with
←↩

z 2n = Az̃2n−1,H(z̃2n) = 0.
Note that conjugating with the permutation matrix J maps z 7→ −1/z for z ∈ iR.

Together with the time-reversal, we see that the path parameters of the operator
ρJ
←↩

τ 2n,β,a,bJρ are the same as the path parameters of RO2n,β,a,b. By Lemmas 2.7 and 2.8,

the left and right boundary points of ρ−1J
←↩

τ 2n,β,a,bJρ are given by 1 and −1, which
corresponds to the vectors u0 =

(
1
0

)
and u1 =

(
0
−1

)
as desired. This completes the

proof.

In the rest of the section, we aim to prove the convergence of the normalized charac-
teristic polynomials of the truncated real orthogonal beta ensemble using Proposition 5.4
and Corollary 5.6. The main ingredient will be the operator level convergence of RO2n,β,a,b
to its limit Bessβ,a and the corresponding path bounds proved in [30].
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Proposition 6.7 ([30]). Let u0 =
(
1
0

)
, u1 =

(
0
−1

)
. Consider the random Dirac-type

operators RO2n,β,a,b = Dir(zn(·), u0, u1), n ≥ 1 and Bessβ,a = Dir(z(·), u0, u1). There exists
a coupling of the operators RO2n,β,a,b, n ≥ 1 and Bessβ,a such that as n → ∞ we have
almost surely zn → z pointwise on [0, 1), and almost surely ‖r RO2n,β,a,b−r Bessβ,a‖HS → 0.

Moreover, for ε > 0 small there exists a sequence of tight random variables κn and
an a.s. finite random variable κ > 0 such that for 0 ≤ t < 1

=zn(t) ≤ κn(1− bntc/n)2a+1−ε, =z(t) ≤ κ(1− t)2a+1−ε. (6.9)

Now we are ready to prove the main result of this section.

Theorem 6.8. For fixed β > 0, a, b > −1 and n ≥ 1, let λi, 1 ≤ i ≤ 2n − 1 be the size
(2n − 1) truncated real orthogonal beta ensemble and set p2n−1,β,a,b(z) =

∏2n−1
i=1

z−λi

1−λi

be the normalized characteristic polynomial. Let Eβ,a be the structure function of τβ,a
defined via (2.11). Then there is a coupling of p2n−1,β,a,b, n ≥ 1 and Eβ,a such that almost
surely∣∣∣p2n−1,β,a,b(e

iz/(2n))e−iz/2 − Eβ,a(z)
∣∣∣→ 0 uniformly on compacts as n→∞. (6.10)

Consequently, the truncated real orthogonal beta ensembles converge weakly to the
zeros of Eβ,a(·) under the edge scaling (1.3) as n→∞.

Proof. Let µ̃2n be the reversed version of the random probability measures µ2n :=

µRO
2n,β,a,b, and let

←↩

τ 2n,β,a,b be the pulled-back operator. By Propositions 3.2 and 6.5, one
can represent p2n−1,β,a,b as the monic orthogonal polynomial of degree 2n− 1 associated
to µ̃2n. By Proposition 5.3, we have

p2n−1,β,a,b(e
iz/(2n))e−iz/2 = e−iz/(4n)

←↩

H2n,β,a,b((2n− 1)/(2n), z)†
(

1

−i

)
,

where
←↩

H2n,β,a,b solves the ODE (2.9) of
←↩

τ 2n,β,a,b. Recall that Eβ,a = Hβ,a(1, ·)†
(

1
−i

)
. It

suffices to provide a coupling of
←↩

τ 2n,β,a,b and τβ,a under which the uniform-on-compacts

convergence of
←↩

H2n,β,a,b(1, z) to Hβ,a(1, z) holds.

By Propositions 4.17 and 6.6, the generating paths
←↩

z n(·) of the
←↩

τ 2n,β,a,b operator

and zn(·) of the RO2n,β,a,b operator satisfy that
←↩

z n(t)
d
= −1/zn(1− t) for t ∈ (0, 1]. (Note

that an analogous relation also holds for the generating paths of the τβ,a and Bessβ,a
operators.) Hence the path bounds (6.9) can be translated into

κ−1
n (bntc/n)−2a−1+ε ≤ =←↩

z n(t), κ−1t−2a−1+ε ≤ (=z(1− t))−1

where κn = κn(ε) is a sequence of tight random variables. Here ε < 1 small is chosen so
that the condition −2a − 1 + ε < 1 in (5.12) holds. Note the driving paths for

←↩

τ 2n,β,a,b

and τβ,a are purely imaginary, and the integral trace t is zero. Applying Corollary 5.6
yields the a.s. convergence of the conditions in (5.4). Using Propositions 5.4 and 6.7
completes the proof of the statement.

Note that by Proposition 4.19 the limiting random analytic function Eβ,a can also be
characterized as Eβ,a = Hβ,a(0, z)

†( 1
−i

)
, where Hβ,a solves the SDE (4.16).

Using Proposition 5.5 and Theorem 6.8, one obtains the following result on the
convergence of normalized characteristic polynomial of the perturbed matrix RO

[r]
2n,β,a,b.

Corollary 6.9. For fixed r ∈ [0, 1] let Λ2n = {λ1, . . . , λ2n} be the size 2n rank-one

multiplicative perturbed real orthogonal ensemble and set p[r]2n,β,a,b(z) =
∏2n

i=1
z−λi

1−λi
to be
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the normalized characteristic polynomial. Then under the coupling of Proposition 6.7,
we have almost surely∣∣∣Ψ[r]

2n,β,a,b(e
iz/n)e−iz/(2n) − E [r]β,a(z)

∣∣∣→ 0, uniformly on compacts as n→∞,

where E [r]β,a(z) = Hβ,a(1, z)
†( 1

−i 1−r
1+r

)
. Consequently, the rank-one multiplicative perturbed

real orthogonal beta ensemble Λ2n converges weakly to the zero set of the random
analytic function E [r]β,a under the edge scaling (1.3) as n→∞.

Recall that the secular function ζβ,a of the Bessβ,a operator is given by ζβ,a =

Hβ,a(1, z)
†(1

0

)
. The above result gives an interpolation between the scaling limits of

the normalized characteristic polynomials of the unperturbed and the truncated real
orthogonal beta ensemble.

7 The truncated circular Jacobi beta ensemble

In Section 7.1 we construct the truncated and the multiplicative perturbed circular
Jacobi beta ensemble, and we compute the joint eigenvalue density of the truncated
model. In Section 7.2, we derive the edge scaling limits of the truncated and perturbed
models using Propositions 5.4 and 5.5.

7.1 Matrix model and joint eigenvalue density for truncated circular Jacobi
beta ensemble

Consider the random probability measure µCJ
n,β,δ in (4.5), with support given by

the circular Jacobi beta ensemble. Recall also the matrix model CJn,β,δ defined in
Proposition 4.8 via the sequence of regular Verblunsky coefficients αk, 0 ≤ k ≤ n− 1 of
µCJ
n,β,δ.

Definition 7.1. For fixed n ≥ 1, β > 0, <δ > −1/2 we define the truncated circular Jacobi
beta ensemble as the joint eigenvalue distribution of the truncated matrix Trunc(CJn,β,δ).
For a fixed r ∈ [0, 1] we define the perturbed circular Jacobi beta ensemble as the joint

eigenvalue distribution of the perturbed matrix CJ
[r]
n,β,δ := CJn,β,δ · diag(r, 1, 1, . . . , 1).

The main challenge to study these ensembles is that the Verblunsky coefficients
of µCJ

n,β,δ are not independent, hence one cannot expect a nice description of the CMV
matrices appearing in Proposition 3.5. However, as the next proposition shows, we can
still preserve the independence by expressing the appearing CMV matrices in terms of
the modified Verblunsky coefficients.

Recall the definition of modified Verblunsky coefficients given by the recursion (3.10).
The recursion provides a one-to-one map between the first k ≤ n − 1 Verblunsky co-
efficients and the first k modified Verblunsky coefficients, we denoted this map by
Tk.

Proposition 7.2. Fix β > 0, δ ∈ C with <δ > −1/2, and let γk, 0 ≤ k ≤ n − 1 be the
sequence of modified Verblunsky coefficients of µCJ

n,β,δ. Then the sub-unitary CMV matrix

C(T −1
n−1(γn−2, γn−3 · · · , γ0)) has the same joint eigenvalue distribution as the truncated

model Trunc(CJn,β,δ). For fixed r ∈ [0, 1], the matrix C(T −1
n (γn−2, γn−3 . . . , γ0, rγn−1)) has

the same joint eigenvalue distribution as the perturbed model CJ[r]n,β,δ.

Before proving the proposition, we introduce a simple mapping on D. For γ ∈ D recall
the linear fractional transformation Aγ,D from (3.15). This is an isometry of the Poincaré
disk that corresponds to an affine transformation in the Poincaré half-plane H. The
inverse of Aγ,D is also an isometry, and it also corresponds to an affine transformation in
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H, we denote the corresponding element in D by γι:

A−1
γ,D = Aγι,D, γι = −γ 1− γ̄

1− γ
. (7.1)

Note that the ι : γ 7→ γι mapping is an involution such that Aγ,D(0) = γι.
We also need the following distributional identity for Θ(a + 1, δ) random variables

(see Definition 4.7).

Claim 7.3. Fix δ ∈ C with <δ > −1/2. Let ζ0, ζ1, . . . , ζn−1 be a sequence of independent
random variables such that ζi ∼ Θ(ai + 1, δ), with a0 = 0 and ai ≥ 0 for i ≥ 1. Then(

ζι1
ζ0

,
ζι2
ζ1

, . . .
ζιn−1

ζn−2
,

1

ζn−1

)
d
=

(
ζ̄1,

ζ̄2
ζ̄ι1

, . . . ,
ζ̄n−1

ζ̄ιn−2

,
ζ̄0

ζ̄ιn−1

)
. (7.2)

Proof. Our statement will follow from the following (simpler) distributional identity. Let
ζ ∼ Θ(a+ 1, δ) and η ∼ Θ(1, δ) be independent. Then

(ηζ̄ι, ζ)
d
= (ζ, ηζ̄ι). (7.3)

Since |ζι| = |ζ|, it is sufficient to prove that the unit length random variables ηζ̄ι/|ζ|
and ζ/|ζ| are conditionally exchangeable given |ζ| = r. Let z = ζ/|ζ|, then under the
condition |ζ| = r we have

ηζ̄ι/|ζ| = −η 1− rz

z − r
.

By the independence of η and ζ, the conditional joint density of (η, z) (given |ζ| = r) is
proportional

(1− η)δ̄(1− η−1)δ(1− rz)δ̄(1− rz−1)δ.

Since the Jacobian of the mapping
(
−η 1−rz

z−r , z
)
7→ (η, z) is equal to 1, the conditional

joint density of (ξ1, ξ2) :=
(
−η 1−rz

z−r , z
)
given |ζ| = r) is proportional to

(1− r(ξ1 + ξ2) + ξ1ξ2)
δ̄(1− r(ξ−1

1 + ξ−1
2 ) + ξ−1

1 ξ−1
2 )δ.

This shows the (conditional) exchangeability (ξ1, ξ2) = (ηζ̄ι/|ζ|, ζ/|ζ|) and proves (7.3).
Now we turn to the proof of the statement. Note that (7.3) implies that

(ζι1/ζ0, ζ̄1)
d
= (ζ̄1, ζ

ι
1/ζ0).

Starting from the random vector on the left-hand side of (7.2), we apply (7.3) repeatedly
and get(

ζι1
ζ0

,
ζι2
ζ1

, . . .
ζιn−1

ζn−2
,

1

ζn−1

)
d
=

(
ζ̄1,

ζ̄0ζ
ι
2

ζ̄ι1
, . . .

ζιn−1

ζn−2
,

1

ζn−1

)
d
= . . .

d
=

(
ζ̄1,

ζ̄2
ζ̄ι1

, . . . ,
ζ̄0ζ

ι
n−1

ζ̄ιn−2

,
1

ζn−1

)
d
=

(
ζ̄1,

ζ̄2
ζ̄ι1

, . . . ,
ζ̄n−1

ζ̄ιn−2

,
ζ̄0

ζ̄ιn−1

)
,

proving (7.2).

Now we return to the proof of Proposition 7.2.

Proof of Proposition 7.2. Let αk, 0 ≤ k ≤ n− 1 be the (regular) Verblunsky coefficients
of µCJ

n,β,δ and set α̃k, 0 ≤ k ≤ n − 1 to be the reversed version of αk, 0 ≤ k ≤ n − 1

defined via (3.5). By Proposition 3.5, the truncated and perturbed models Trunc(CJn,β,δ)

and CJ
[r]
n,β,δ have the same eigenvalues as the CMV matrices C(α̃0, α̃1, · · · , α̃n−2) and
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C(α̃0, α̃1, · · · , α̃n−2, rα̃n−1), respectively. Hence, the statement of the proposition follows
if we can show

(α̃0, α̃1, . . . , α̃n−2, α̃n−1)
d
= T −1

n (γn−2, γn−3, · · · , γ0, γn−1). (7.4)

Introduce the temporary notation

(α̂0, α̂1, . . . , α̂n−1) = T −1
n (γn−2, γn−3, . . . , γ0, γn−1).

We need to show (α̃0, α̃1, . . . , α̃n−2, α̃n−1)
d
= (α̂0, α̂1, . . . , α̂n−1), which will follow from(

α̃0,−
α̃1

α̃0
. . . ,− α̃n−1

α̃n−2

)
d
=

(
α̂0,−

α̂1

α̂0
. . . ,− α̂n−1

α̂n−2

)
.

From (3.10) and (7.1) it follows that

− αk

αk−1
=

γ̄k
γ̄ι
k−1

, k ≥ 1, α0 = γ̄0. (7.5)

Hence (
α̂0,−

α̂1

α̂0
. . . ,− α̂n−1

α̂n−2

)
=

(
γ̄n−2,

γ̄n−3

γ̄ι
n−2

, . . . ,
γ̄0
γ̄ι
1

,
γ̄n−1

γ̄ι
0

)
.

On the other hand, from (3.5) and (7.5) we have(
α̃0,−

α̃1

α̃0
. . . ,− α̃n−1

α̃n−2

)
=

(
− ᾱn−2

ᾱn−1
,− ᾱn−3

ᾱn−2
, . . . ,− ᾱ0

ᾱ1
,
1

ᾱ0

)
=

(
γι
n−2

γn−1
,
γι
n−3

γn−2
, . . . ,

γι
0

γ1
,
1

γ0

)
From Proposition 4.8 we know that γk, 0 ≤ k ≤ n − 1 are independent with γk ∼
Θ(β(n− k − 1) + 1), δ). Using Claim 7.3 with ζj = γn−1−j , 0 ≤ j ≤ n− 1 we get(

γι
n−2

γn−1
,
γι
n−3

γn−2
, . . . ,

γι
0

γ1
,
1

γ0

)
d
=

(
γ̄n−2,

γ̄n−3

γ̄ι
n−2

, . . . ,
γ̄0
γ̄ι
1

,
γ̄n−1

γ̄ι
0

)
,

and the statement of the proposition follows.

Proposition 7.2 allows us to derive the joint eigenvalue distribution of the finite
truncated circular Jacobi beta ensemble.

Theorem 7.4. Fix β > 0, δ ∈ C with <δ > −1/2. Then the eigenvalues of Trunc(CJn+1,β,δ)

are distributed in Dn according to the density

cn,β,δ

n∏
j,k=1

(1− zj z̄k)
β
2 −1

∏
j<k

|zk − zj |2
n∏

j=1

(
(1− zj)

δ̄(1− z̄j)
δ
)

(7.6)

with respect to the Lebesgue measure onDn. Here cn,β,δ = 1
πnn!

∏n
j=1

Γ( β
2 j+1+δ)Γ( β

2 j+1+δ̄)

Γ( β
2 j)Γ( β

2 j+1+δ+δ̄)

is the normalizing constant.

Proof. The proof of the statement relies on the following computations of Jacobian
determinants. We refer to Section 6 and Appendix B of [24] for more details.

Let γk, 0 ≤ k ≤ n− 1 be distributed as in Proposition 7.2, and let (α0, α1, · · · , αn−1) =

T −1
n (γ0, γ1, · · · , γn−1). From (3.10) we have∣∣∣∣∂(α0, . . . , αn−1)

∂(γ0, . . . , γn−1)

∣∣∣∣ = 1. (7.7)
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Denote by zk, 1 ≤ k ≤ n the eigenvalues of Trunc(CJn+1,β,δ). It has been shown in [24]
that ∣∣∣∣∂(α0, . . . , αn−1)

∂(z1, . . . , zn)

∣∣∣∣ = |∆(z1, . . . , zn)|2
n−1∏
j=0

(1− |αj |2)−j , (7.8)

where ∆(z1, . . . , zn) =
∏

1≤j<k≤n(zj − zk) denotes the Vandermonde determinant of
zk, 1 ≤ k ≤ n. Using |αk| = |γk|, (7.7), and (7.8), we obtain∣∣∣∣∂(γ0, . . . , γn−1)

∂(z1, . . . , zn)

∣∣∣∣ = |∆(z1, . . . , zn)|2
n−1∏
j=0

(1− |γj |2)−j . (7.9)

Proposition 2.5 of [4] shows that we have

n−1∏
j=0

(1− γj) = Φn(1) =
n∏

j=1

(1− zj),
n−1∏
j=0

(1− γ̄j) = Φ̄n(1) =
n∏

j=1

(1− z̄j). (7.10)

Since |αk| = |γk|, by Lemma B.1 (vi) of [24], we have

n−1∏
j=0

(1− |γj |2)(
β
2 −1)(j+1) =

n−1∏
j=0

(1− |αj |2)(
β
2 −1)(j+1) =

n∏
j,k=1

(1− zj z̄k)
β
2 −1. (7.11)

By (7.9)-(7.11) and the explicit joint distribution of γk, 0 ≤ k ≤ n− 1, the joint density of
zk, 1 ≤ k ≤ n is given by

cn,β,δ

n−1∏
j=0

(1− |γj |2)(
β
2 −1)(j+1)(1− γj)

δ̄(1− γ̄j)
δ|∆(z1, . . . , zn)|2

= cn,β,δ

n∏
j,k=1

(1− zj z̄k)
β
2 −1

n∏
j=1

(
(1− zj)

δ̄(1− z̄j)
δ
)
|∆(z1, . . . , zn)|2.

Collecting the normalizing constants of the joint distribution of γk, 0 ≤ k ≤ n− 1, we get

cn,β,δ =
1

πnn!

n−1∏
j=0

Γ(β2 (j + 1) + 1 + δ)Γ(β2 (j + 1) + 1 + δ̄)

Γ(β2 (j + 1))Γ(β2 (j + 1) + 1 + δ + δ̄)
.

This finishes the proof.

Note that using the explicit description of the joint distribution of the modified
Verblunsky coefficients of the random probability measure µCJ

n,β,δ, and the method devel-
oped in Section 7 of [24], one can also obtain the joint density of the perturbed circular
Jacobi beta ensemble. We omit the computation to shorten our representation.

7.2 Edge limit of the truncated circular Jacobi beta ensemble

In this section, we prove the edge limits of the rank-one truncation and multiplicative
perturbation of the circular Jacobi beta ensemble.

Recall the Dirac operator representation CJn,β,δ defined in Definition 4.9. We denote

by τ̃n,β,δ the reversed version of CJn,β,δ via Definition 5.1, and by
←↩

τ n,β,δ to be the pulled-
back version of τ̃n,β,δ via Definition 5.2.

Our approach will be similar to the one used for the circular beta ensemble case
(which correspond to δ = 0). We will show that under appropriate transformations, the
operators

←↩

τ n,β,δ and CJn,β,δ are orthogonally equivalent. Note however, that in the δ 6= 0

the measure µCJ
n,β,δ is no longer invariant under rotations, which requires us to develop a

new method to prove the orthogonal equivalence. The key ingredient is the following
proposition, providing equivalent descriptions of the conditioned path parameters of
CJn,β,δ.
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Proposition 7.5. Let µ = µCJ
n,β,δ and let γk, 0 ≤ k ≤ n − 1 be its modified Verblunsky

coefficients. Let bk, 0 ≤ k ≤ n be the path parameters of CJn,β,δ in D. Then the following
sequences have the same joint distribution.

(1). The path parameters bk, 0 ≤ k ≤ n conditioned on bn = 1.

(2). The path parameters corresponding to the sequence of modified Verblunsky coeffi-
cients γ̄ι

0, γ̄
ι
1, . . . , γ̄

ι
n−2, 1.

(3). The ‘pulled-back and time-reversed’ path parameters b′k := Ab̂n−1,D
(b̂n−k−1), 0 ≤ k ≤

n, where b̂−1 = 1 and b̂k, 0 ≤ k ≤ n−1 are the first n elements of the path parameters
produced by the sequence of modified Verblunsky coefficients γ̄n−2, γ̄n−3, . . . , γ̄0.

The proof relies on a special decomposition property of the Θ(a+ 1, δ) distribution
and an application of Doob’s h-transform. Before presenting the proof, we first introduce
a Pearson-type distribution, and a couple of facts about the Θ(a+ 1, δ) distribution.

Definition 7.6. For m > 1/2 and µ ∈ R we denote by PIV (m,µ) the distribution of the
(unscaled) Pearson type IV distribution on R that has density function

22m−2|Γ(m+ µ
2 i)|

2

π Γ(2m− 1)
(1 + x2)−me−µ arctan x. (7.12)

Note that the random variable Θ(1, δ) can be connected to the Pearson random
variable PIV (<δ + 1,−2=δ) via the mapping eiθ 7→ − cot(θ/2).

Fact 7.7 ([30]). Suppose that γ ∼ Θ(a+ 1, δ) with a ≥ 0 and <δ > −1/2. Define w, v ∈ R

with 2γ
1−γ = w − iv. Then the joint density of (v, 1 + w) ∈ R×R+ is given by

fa,δ(x, y) = ca,δ y
a
2−1(x2 + (1 + y)2)−( a

2+<δ+1)e2=δ arctan x
1+y , (7.13)

with ca,δ = 2a+2<δ Γ(a/2+1+δ)Γ(a/2+1+δ̄)
πΓ(a/2)Γ(a/2+1+2<δ) .

Moreover, the random variables w and v
2+w are independent. The distribution of the

random variable v
2+w is given by PIV (

a
2 + <δ + 1,−2=δ). The distribution of 1 + w is the

same as the distribution of G1/G2, where G1, G2 are the independent (standard) Gamma
random variables with parameters a

2 and a
2 + 2<δ + 1, respectively.

Using Fact 7.7 and the definition of γι in (7.1), one obtains the following property.

Fact 7.8. Suppose that γ ∼ Θ(a+ 1, δ) with a ≥ 0 and <δ > −1/2. Then γι ∼ Θ(ã+ 1, δ̃)

with ã = a+ 4<δ + 2, δ̃ = −(1 + δ).

Proof. With a bit of abuse of notation, define w, v, wι, vι ∈ R with

w − iv =
2γ

1− γ
, wι − ivι =

2γι

1− γι
. (7.14)

They satisfy the identities U−1(γ) = v + i(1 + w) and U−1(γι) = vι + i(1 + wι). By (7.14)
and (7.1) we have

1 + wι =
1

1 + w
,

vι

2 + wι
= − v

2 + w
.

From Fact 7.7, we obtain that the joint density of (vι, 1 + wι) is proportional to

y
a
2+2<δ(x2 + (1 + y)2)−( a

2+<δ+1)e−2=δ arctan x
1+y .

This shows that if γ ∼ Θ(a + 1, δ), then γι ∼ Θ(ã + 1, δ̃), with ã := a + 4<δ + 2 and
δ̃ := −(1 + δ). Note that the random variable γι is well-defined since the conditions ã > 0

and ã/2 + <δ̃ = a/2 + <δ > −1/2 are still satisfied.
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The next result shows that the right boundary point of the CJn,β,δ operator has the
same distribution as a Θ(1, δ) random variable.

Proposition 7.9. Let bn be the right boundary point of the Dirac operator CJn,β,δ in D.

Then bn
d
= Θ(1, δ).

Proof. Fix n, recall from Proposition 4.8 that the modified Verblunsky coefficients γk =

γ
(n)
k , 0 ≤ k ≤ n − 1 of CJn,β,δ are independent, with γk ∼ Θ(β(n − k − 1) + 1, δ). Let

bk := b
(n)
k , 0 ≤ k ≤ n − 1 be the path parameters of CJn,β,δ in D, these solve the

recursion (3.18) with b0 = 0. Let bk,γ , 0 ≤ k ≤ n be the solution of this recursion for any
initial value b0,γ = γ ∈ D, and denote by Pn(γ, η) the probability density function of bn,γ .

Recall the isometriesAγ,D defined according to (3.13). By the recursions (3.18), (3.19)
and the fact that A−1

γ,D(0) = γ, we have bn,γ = A−1
γ,D(bn). This can also be checked by

noticing that the corresponding path parameters in H are invariant in law with respect
to the affine transformations Ax+iy,H defined as in (3.13).

In the case when n = 1, we get bn = b1 = γ0 from the recursion (3.18), so the
statement follows. More precisely, we have

P1(0, η) = cδ(1− η)δ̄(1− η̄)δ, cδ =
Γ(1 + δ)Γ(1 + δ̄)

Γ(1 + δ + δ̄)
,

and

P1(γ, η) = cδ

(
(1− |γ|2)(1− η)

(1− γ̄η)(1− γ)

)δ̄ (
(1− |γ|2)(1− η̄)

(1− γη̄)(1− γ̄)

)δ
1− |γ|2

|1− γ̄η|2
. (7.15)

For n ≥ 2 we will proceed by induction. Assume that Pn−1(0, η) = P1(0, η) for any

η ∈ ∂D. This assumption implies that Pn−1(γ, η) = P1(γ, η) since b
(n−1)
n−1,γ = A−1

γ,D(b
(n−1)
n−1 ).

The proof will be completed if we can show that Pn(0, η) = P1(0, η). Let

fa,δ = ca,δ(1− |z|2)
a
2−1(1− z)δ̄(1− z̄)δ, a = β(n− 1)

be the density function of γ(n)
0 as in Definition 4.7. Note that the random variable γ

(n)
0 is

independent of γ(n)
k , 1 ≤ k ≤ n−1, and the latter sequence has the same joint distribution

as γ(n−1)
k , 0 ≤ k ≤ n− 2. Hence from (3.18) and (7.15) we get

Pn(0, η) =

∫
z∈D

Pn−1(z, η)fa,δ(z)dz =

∫
z∈D

P1(z, η)fa,δ(z)dz

= cδ(1− η)δ̄(1− η̄)δ
∫
z∈D

ca,δ
(1− |z|2) a

2+δ+δ̄

(1− z̄η)δ+1(1− zη̄)δ̄+1
dz.

Using the change of variable z 7→ zη̄ we see that the integral does not depend on η.
Hence Pn(0, η) is a constant multiple of P1(0, η) which means that it must be equal to it.
This completes the induction step and finishes the proof.

Now we turn to the proof of Proposition 7.5.

Proof of Proposition 7.5. We first prove the equivalence between (2) and (3). By the
recursion (3.19) and the fact A−1

γ,D(0) = γ, we have

b′k = Aγ̄0,D ◦ Aγ̄1,D ◦ · · · ◦ Aγ̄n−2,D

(
A−1

γ̄n−2,D
◦ · · · ◦ A−1

γ̄k,D
(0)
)

= A−1
γ̄ι
0,D
◦ · · · ◦ A−1

γ̄ι
k−1,D

(0).

This shows that the sequence b′k, 0 ≤ k ≤ n − 1 are the first n elements of the path
produced by γ̄ι

0, . . . , γ̄
ι
n−2. (This fact was also observed in Lemma 50 of [45].) By setting
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b̃−1 = 1, we have b′n = Abn−1,D(1) = 1. Note also, that b′n = 1 if and only if the
corresponding last modified Verblunsky coefficient is equal to 1. This proves that the
path parameters described in (2) and (3) are equal in law.

We now prove that the paths described in (1) and (2) have the same distribution. Let
zk = U−1(bk), 0 ≤ k ≤ n be the path parameters of CJn,β,δ in H. By (3.17) this is a (time-
inhomogeneous) Markov chain, with transition densities that are invariant under affine

transformations. By Proposition 7.9 it follows that zn
d
= U−1(γn−1) ∼ PIV (<δ + 1,−2=δ)

with density

g(q) =
4<δ|Γ(1 + δ)|2

π Γ(2<δ + 1)
(1 + q2)−<δ−1e2=δ arctan q.

Moreover, the proof of the same proposition also implies that the conditional distribution
of zn given zk = z = x+ iy for a fixed 0 ≤ k ≤ n− 2 is the same as that of yU−1(γn−1)+ x.
This random variable has density

gx,y(q) := y−1g(
q − x

y
).

For any fixed z = x+ iy, z′ = x′ + iy′ ∈ H we get

lim
q→∞

gx′,y′(q)

gx,y(q)
=

h(z′)

h(z)
, h(z) := (=z)2<δ+1. (7.16)

Let fak,δ(x, y) be the density function of U−1(γk) defined via (7.13) with parameters
ak = β(n− k − 1) and δ. Then the transition density of the Markov chain zk, 0 ≤ k ≤ n is
given by

P
(
(z, k), (z′, k + 1)

)
= fak,δ

(
<(z′ − z)

=z
,
=z′

=z

)
, 0 ≤ k ≤ n− 1.

Now consider the distribution of zk, 0 ≤ k ≤ n conditioned on zn = q with q → ∞. By
Doob’s h-transform, the conditioned transition density is given by

Q
(
(z, k), (z′, k + 1)

)
=P
(
(z, k), (z′, k + 1)

)h(z′)
h(z)

=cak,δ v
β
2 (n−k−1)+2<δ(u2 + (1 + v2))−

β
2 (n−k−1)−<δ−1e2=δ arctan(u/(1+v))

where u = (<z′ − <z)/=z and v = =z′/=z. By Proposition 7.8, Q((z, k), (z′, k + 1)) is
exactly the density function of the random variable U−1(γ̄ι

k). This proves the equivalence
between the statements (1) and (2), and hence completes the proof.

By Proposition 7.5 and Fact 7.8 we see that the effect of conditioning the path
parameters in D to hit 1 is equivalent to changing the parameter δ 7→ −(1 + δ̄). This
coincides with a similar factorization lemma for the generating path of the τβ,δ operator,
see Theorem 43 of [30].

Corollary 7.10. Consider the same setup as in Proposition 7.5, in particular the path
b′k, 0 ≤ k ≤ n defined in (3). Let η ∼ Θ(1, δ) be independent of γk, 0 ≤ k ≤ n− 2. Then the
rotated path parameters b̌k := ηb′k, 0 ≤ k ≤ n have the same joint distribution as the path
parameters of the CJn,β,δ operator.

Proof. By Proposition 7.5, the path parameters b′k, 0 ≤ k ≤ n can be produced by
the sequence of modified Verblunsky coefficients γ̄ι

0, . . . , γ̄
ι
n−2, 1. Let (α

′
0, . . . , α

′
n−1) :=

T −1
n (γ̄ι

0, . . . , γ̄
ι
n−2, 1) be the corresponding sequence of Verblunsky coefficients. By (3.10)

and (7.5) we get

α′
k = (−1)k γι

k · · · γι
0

γk−1 · · · γ0
, 0 ≤ k ≤ n− 2, α′

n−1 = (−1)n−1 γ
ι
n−2 · · · γι

0

γn−2 · · · γ0
.
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Recall also the (equivalent) description of b′k, 0 ≤ k ≤ n using α′
k, 0 ≤ k ≤ n− 1 in (3.8).

Observe that for Z = diag(z, 1), we have

PZ−1

(
1 ᾱ0

α0 1

)
· · ·
(

1 ᾱk−1

αk−1 1

)
Z

(
0

1

)
= z̄bk. (7.17)

This shows that the Verblunsky coefficients α̌k, 0 ≤ k ≤ n − 1 corresponding to b̌k, 0 ≤
k ≤ n are given by α̌k = η̄α′

k, in particular

α̌k = (−1)kη̄ γι
k · · · γι

0

γk−1 · · · γ0
, 0 ≤ k ≤ n− 2, α̌n−1 = (−1)n−1η̄

γι
n−2 · · · γι

0

γn−2 · · · γ0
.

(The relation between rotating the sequences of path parameters and the corresponding
Verblunsky coefficients is related to the so-called Aleksandrov measure. We refer to [38]
for more background.)

Finally, using Claim 7.3 for ζ0 = η, ζj = γj−1, 1 ≤ j ≤ n we get the following
distributional identity:(

γι
0η̄,

γι
1

γ0
, . . . ,

γι
n−2

γn−3
,

1

γn−2

)
d
=

(
γ̄0,

γ̄1
γ̄ι
0

, . . . ,
γ̄n−2

γ̄ι
n−3

,
η̄

γ̄ι
n−2

)
.

This means that α̌k, 0 ≤ k ≤ n−1 have the same joint distribution as the random variables

α̇k = (−1)k γ̄k · · · γ̄0
γ̄ι
k−1 · · · γ̄ι

0

, 0 ≤ k ≤ n− 2, α̇n−1 = (−1)n−1 η̄γ̄n−2 · · · γ̄0
γ̄ι
n−2 · · · γ̄ι

0

.

Since the joint distribution of γ0, . . . , γn−2, η is the same as the joint distribution of
γ0, . . . , γn−1, (3.10) and (7.5) now shows that

(α̌0, α̌1, . . . , α̌n−1)
d
= (α̇0, . . . , α̇n−1)

d
= T −1

n (γ0, . . . , γn−1),

which implies that b̌k, 0 ≤ k ≤ n have the same joint distribution as the path parameters
bk, 0 ≤ k ≤ n for CJn,β,δ.

Recall the path
←↩

b k, 0 ≤ k ≤ n, the pulled back version of the reversed path b̃k, 0 ≤
k ≤ n corresponding to the random measure µCJ

n,β,δ. By Proposition 7.2 b̃k, 0 ≤ k ≤ n− 1

has the same distribution as the path built from the modified Verblunsky coefficients
γn−2, . . . , γ0. This path is the complex conjugate of the path b̂k, 0 ≤ k ≤ n − 1 in (3) of

Proposition 7.5. This also means that
←↩

b k, 0 ≤ k ≤ n is just the time-reversed and complex
conjugated version of the path b′k, 0 ≤ k ≤ n in (3) of Proposition 7.5. Together with
Corollary 7.10 this implies that applying an independent random rotation, a complex

conjugation, and a time reversal to
←↩

b k, 0 ≤ k ≤ n produces a path that has the same
distribution as the driving path of the operator CJn,β,δ. This statement allows us to show

that
←↩

τ n,β,δ and CJn,β,δ are orthogonally equivalent.

Proposition 7.11. Let
←↩

b k, 0 ≤ k ≤ n be the path parameters defined in Corollary 7.10,
←↩

τ n,β,δ the corresponding Dirac-type operator, and let

Q =
1√

1 + q2

(
q 1

−1 q

)
, q = U−1(

←↩

b n).

Then the operator ρ−1(SQ)
←↩

τ n,β,δ(SQ)−1ρ has the same distribution as CJn,β,δ.
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Proof. Recall the transformation Q defined in Section 2.2. Observe that in the unit-disk
model, the transformation Q behaves exactly as a rotation, i.e. for z ∈ D we have

Q(z) = U ◦ Q ◦ U−1(z) = η̄z, where we denote η :=
←↩

b n.
Together with Propositions 7.2 and 7.5, this observation shows that the path param-

eters of ρ−1(SQ)
←↩

τ n,β,δ(SQ)−1ρ have the same joint distribution as b̌k = ηb′k, 0 ≤ k ≤ n

where b′k, 0 ≤ k ≤ n are distributed as in Proposition 7.5. Moreover, by the same argu-

ment one can check that the left boundary point of ρ−1(SQ)
←↩

τ n,β,δ(SQ)−1ρ is equal to 1

as desired. The proof is now completed by Corollary 7.10.

Recall the limiting operator HPβ,δ defined in Definition 4.12, and its reversed and
transformed version τβ,δ defined in Definition 4.18. By Propositions 7.9 and 7.11 the
transformation connecting HPβ,δ and τβ,δ has the same distribution as the one connecting

CJn,β,δ and
←↩

τ n,β,δ.
The operator level convergence of the CJn,β,δ to the limiting HPβ,δ operator was

proved in [30] and can be summarized as follows. This is also the final ingredient to
prove the convergence of the normalized characteristic polynomial of the truncated
circular Jacobi beta ensemble.

Proposition 7.12 ([30]). Fix β > 0 and <δ > −1/2. Consider the Dirac-type oper-

ators CJn,β,δ = Dir(zn(·), u0, u(n)1 ), n ≥ 1 with u0 =
(
1
0

)
, u

(n)
1 =

(−zn(1)
−1

)
, and HPβ,δ =

Dir(z(·), u0, u1) with u1 =
(−z(1)

−1

)
. There exists a coupling of the operators CJn,β,δ, n ≥ 1,

and HPβ,δ = Dir(z(·), u0, u1) such that as n→∞ we have almost surely zn → z pointwise
on [0, 1), and almost surely

‖r CJn,β,δ − r HPβ,δ‖HS → 0, tCJn,β,δ
− tHPβ,δ

→ 0.

Set cδ = 4
β (<δ +

1
2 ) > 0, and for ε > 0 small define c1 = cδ − ε, c2 = cδ + ε. Then there

exists a sequence of tight random variables κn, n ≥ 1 and an a.s. finite random variable
κ > 0 such that for 0 ≤ t < 1

κ−1
n

(
1− bntc

n

)c2

≤ =zn(t) ≤ κn

(
1− bntc

n

)c1

, |zn(1)−<zn(t)| ≤ κn

(
1− bntc

n

)c1

(7.18)

and similarly,

κ−1(1− t)c2 ≤ =z(t) ≤ κ(1− t)c1 , |z(1)−<z(t)| ≤ κ(1− t)c1 . (7.19)

We now have all the ingredients to prove the edge scaling limit of the truncated
circular Jacobi beta ensemble.

Theorem 7.13. For fixed n ≥ 1, β > 0 and <δ > −1/2, let λi, 1 ≤ i ≤ n − 1 be
size n truncated circular Jacobi beta ensemble nd set pn−1,β,δ(z) =

∏n−1
i=1

z−λi

1−λi
be the

normalized characteristic polynomial. Let Eβ,δ be the structure function of τβ,δ defined
via (2.11). Then there is a coupling of pn,β,δ, n ≥ 1 and Eβ,δ such that

|pn−1,β(e
iz/n)e−iz/2 − Eβ,δ(z)| → 0 a.s. uniformly on compacts as n→∞

Consequently, under the edge scaling (1.3), the truncated circular Jacobi beta ensembles
converge weakly to the zeros of the random analytic function Eβ,δ(·).

Proof. Let µ̃n be the reversed version of the measure µn := µCJ
n,β,δ, and

←↩

τ n,β,δ be the
pulled-back operator. By Propositions 3.2 and 7.2, we may regard pn−1,β,δ as the monic
orthogonal polynomial of degree n− 1 associated to µ̃n. By Proposition 5.3, we have

pn−1,β,δ(e
iz/n)e−iz/2 = e−iz/(2n)

←↩

Hn((n− 1)/n, z)†
(

1

−i

)
,
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where
←↩

Hn solves the ODE (2.9) of
←↩

τ n,β,δ. Recall Eβ,δ = Hβ,δ(1, ·)† ·
(

1
−i

)
, where Hβ,δ(t, z)

solves (2.9) of τβ,δ. It is enough to show the uniform-on-compacts convergence of
←↩

Hn(1, z)

to Hβ,δ(1, z).

By Propositions 4.19 and 7.11, one can obtain the operators
←↩

τ n,β,δ, n ≥ 1 and τβ,δ
from CJn,β,δ, n ≥ 1 and HPβ,δ under the same orthogonal transformations. Therefore,
under the coupling of the operators CJn,β,δ and HPβ,δ in Proposition 7.12 gives

‖r←↩

τ n,β,δ − r τβ,δ‖HS → 0, |t←↩
τ n,β,δ

− tτβ,δ
| → 0 a.s. as n→∞. (7.20)

Let {←↩

z k, 0 ≤ k ≤ n}, {z̃k, 0 ≤ k ≤ n}, and {zk, 0 ≤ k ≤ n} be the path parameters
of
←↩

τ n,β,δ, τ̃n,β,δ and CJn,β,δ in H, respectively. By Definitions 5.1 and 5.2, we have

=←↩

z k = =z̃k/=z̃n−1. From (3.16) and (3.17) we have =zk =
∏k−1

j=0
1−|γj |2
|1−γj |2 . By (7.4) we

have

(=z̃k, 0 ≤ k ≤ n− 1)
d
=
( n−2∏

j=n−k−1

1− |γj |2

|1− γj |2
, 0 ≤ k ≤ n− 1

)

which implies (=←↩

z k, 0 ≤ k ≤ n− 1)
d
= ((=zn−k−1)

−1, 0 ≤ k ≤ n− 1). (Note an analogous
relation also holds between the imaginary part of the generating paths of the τβ,δ and

HPβ,δ operators.) Recall
←↩

z n(·) :=
←↩

z bntc for t ∈ (0, 1]. For ε small, the first bound in (7.18)
yields that

κ−1
n

(
bntc
n

)−cδ+ε

≤ =←↩

z n(t) ≤ κn

(
bntc
n

)−cδ−ε

, cδ =
4

β
(<δ + 1

2
), (7.21)

with a sequence of tight random variables κn. By choosing ε < min{cδ, 1
2} one can

check that the path bound (7.21) satisfies the condition (5.12). We can now combine
Proposition 5.4, Corollary 5.6, and Proposition 7.12 to obtain the theorem.

Note that by Proposition 4.19, the structure function Eβ,δ can also be characterized
as Eβ,δ = Hβ,δ(0, z)

†( 1
−i

)
, where Hβ,δ(u, z) solves the SDE (4.16).

Note that in the coupling of Proposition 7.12, the path bounds (7.18), (7.19) and the
point-wise convergence of the generating paths zn → z imply that u(n)1 → u1 a.s. (see
also Proposition 7.9). From Theorem 7.13 and Proposition 5.5 one obtains the following
result on the (edge) scaling limit of the multiplicative perturbed circular Jacobi beta
ensemble.

Corollary 7.14. For fixed r ∈ [0, 1] let Λ[r]
n = {λ1, . . . , λn} be the set of eigenvalues of the

perturbed matrix CJ
[r]
n,β,δ. Set p

[r]
n,β,δ(z) =

∏n
i=1

z−λi

1−λi
to be the normalized characteristic

polynomial, and let Hβ,δ be the solution to the ODE (2.9) of τβ,δ. Let q ∼ Θ(1, δ) be
independent of Hβ,δ. Then under the coupling of Proposition 7.12, we have∣∣∣p[r]n,β,δ(e

iz/n)e−iz/(2n) − E [r]β,δ(z)
∣∣∣→ 0, a.s. uniformly on compacts as n→∞,

where E [r]β,δ(z) = Hβ,δ(1, z) ·
(

1
−cr

)
with cr =

q+i 1−r
1+r

1−iq 1−r
1+r

. In particular, this implies the weak

convergence of Λ[r]
n under the edge scaling (1.3) to the zero set of the random analytic

function E [r]β,δ as n→∞.

Similar to the statement of Theorem 1.3, we have cr = q when r = 1 and cr = i when
r = 0, hence this result shows the connection between the scaling limits of the truncated
and the unperturbed circular Jacobi beta ensemble.
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8 Appendix

8.1 Overview of some results for β = 2

Let Λ be a locally compact Polish space (in this section it will always be C). A simple
point process on Λ is called determinantal with respect to a reference measure µ with
kernel function K : Λ × Λ → R if for any k ≥ 1 the kth joint intensity function of the
process with respect to µ is given by

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k. (8.1)

(See [21] for more on determinantal point processes.) Determinantal processes appear
naturally from joint probability densities containing the square of the Vandermonde. In
this section we will always assume that all absolute moments of µ are finite.

Proposition 8.1 ([32, 27]). Suppose that the X1, X2, . . . , Xn are complex valued random
variables with joint density given by

1

Zn,µ

∏
1≤i<j≤n

|zi − zj |2 (8.2)

with respect to a product measure µ⊗n (on Rn of Cn). (Here Zn,µ is a finite constant.)
Let ϕk(z) be the degree k orthonormal polynomials with respect to µ. Then

∑n
k=1 δXk

is
a determinantal point process with respect to µ with kernel given by

K(z, w) =
n−1∑
k=0

ϕk(z)ϕ̄k(w). (8.3)

Proposition 8.1 together with (1.1) and (1.2) immediately imply that both the circular
unitary ensemble and the truncated circular unitary ensemble are determinantal. The
size n circular unitary ensemble has kernel function

KCircn,2
(z, w) =

n−1∑
k=0

zkw̄k, (8.4)

with respect to the uniform measure on the unit circle. The size n truncated circular
unitary ensemble has a similar kernel function

KTrunc(Circn,2)(z, w) =
n−1∑
k=0

(k + 1)zkw̄k, (8.5)

with respect to the uniform measure on the unit disk. Note that [47] also treats more
general truncations of Haar unitary matrices. They showed that if we delete the first
m rows and columns of a size n +m Haar unitary matrix then the eigenvalues of the
resulting submatrix have joint eigenvalue density given by

1

Zn,m

∏
1≤j<k≤n

|zj − zk|2
n∏

k=1

(1− |zk|2)m−1, zj ∈ D, (8.6)

with respect to the Lebesgue measure on the unit disk. By Proposition 8.1 this is also a
determinantal point process, with respect to the measure with density (1− |z|2) on the
unit disk.

Determinantal processes have a number of nice analytic features. The following
proposition shows that if we understand the scaling limit of the kernels of a sequence
of determinantal processes then we can derive the scaling limit and the limit is also
determinantal.
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Proposition 8.2 ([40, 36]). Suppose that X ,X1,X2, . . . are determinantal processes on
C with respect to the common reference measure µ, with kernel functions K,K1,K2, . . . .
Assume that

Kn(z, w)→ K(z, w) (8.7)

uniformly on compacts in C2. Then Xn converges in distribution to X .
Using some simple transformations one can rewrite the determinantal kernel of the

circular unitary ensemble as

K̃Circn,2
(eit, eis) = Dn(t− s), Dn(u) =

sin(nu/2)

sin(u/2)
.

By taking the limit of this kernel as n → ∞ we get the celebrated result of Gaudin,
Mehta, Dyson regarding the the scaling limit of the circular ensemble.

Theorem 8.3 ([2, 32]). Let Λn be the angles in the size n circular unitary ensemble
parametrized in (−π, π]. Then nΛn ⇒ Λ where Λ is a determinantal point process on R

with kernel

KSine2(s, t) =
sin((s− t)/2)

π(s− t)

with respect to the Lebesgue measure.

Taking the limit of the kernel (8.5) (without any additional scaling) we obtain the
point process studied by Peres and Virág in [34].

Theorem 8.4 ([34]). Let Λn be the eigenvalues of Trunc(Circn+1,2). Then Λn converges
to a determinantal point process on the unit disk with kernel

KBergman(z, w) =
1

(1− zw̄)2
(8.8)

with respect to the uniform measure on the unit disk. The resulting point process has
the same distribution as the zero set of the Gaussian analytic function

fGAF (z) =

∞∑
n=0

ξnz
n, (8.9)

where ξn, n ≥ 0 are i.i.d. standard complex normals.

Note that [29] provides a generalization of this result by connecting the limit of the
eigenvalues of rank m truncation of Haar unitary matrices with the singular points of a
matrix valued Gaussian analytic function that generalizes (8.9).

The circular Jacobi beta ensemble (1.9) for β = 2 is also determinantal, this is also
called the Hua-Pickrell distribution. The kernel function can be expressed in terms of the
orthogonal polynomials with respect to the probability measure µδ that has probability
density function proportional to

(1− z̄)δ(1− z)δ̄

on the unit circle. The Hua-Pickrell distribution can be realized as the joint eigenvalue
distribution of the random unitary matrices that have density proportional to | det(1−
U)δ|2 with respect to the Haar measure.

In [31] the authors studied the truncations of these random matrices. They showed
that the eigenvalues of the rank-m truncated matrices form a determinantal point process
on the unit disk, and derived their kernel function. Moreover, they showed that the
scaling limit of the joint eigenvalue distribution (without any additional scaling) leads to
the same limits as in the Haar unitary case (as described in [34] and [29]).
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Edge limits of truncated circular beta ensembles

If we are interested in the (hard) edge scaling limit of the eigenvalues of the truncated
matrix Trunc(Circn+1,2) then one needs to transform the kernel (8.5) according to (1.3),
and take the limit. This was considered in [1] where the following result was shown.

Theorem 8.5 ([1]). Let Λn be the eigenvalues of Trunc(Circn+1,2). Then the sequence
−ni log Λn converges to a determinantal point process X2 supported on the upper half
plane H with kernel function

Kedge(z, w) = f(z − w̄), f(u) =
1

π

∫ 1

0

teitudt, z, w ∈ H, (8.10)

with respect to the Lebesgue measure on H.

In fact, this is a special case of a more general problem that [1] considers: the product
of independent copies of rank-m truncations of Haar unitary matrices. The point process
X2 also appears in [15] as the scaling limit of the rank-one additive anti-Hermitian
perturbation for the Gaussian unitary ensemble.

Note that our Theorem 1.2 for β = 2 provides a new characterization for the deter-
minantal point process X2. It would be interesting to see whether the determinantal
structure could be proved directly from that result.

8.2 Open problems

We end with a couple of open problems.

Problem 1. (Bulk scaling limits) Our results for general β > 0 consider the models
with the edge scaling (1.3). It would be interesting to explore the limiting behavior
under the bulk scaling, i.e. when we do not scale at all. In other words, it would be
interesting to see whether one could extend the results of [34] (see Theorem 8.4) and
[31] for general β, to characterize the point process scaling limit of the truncated circular
and circular Jacobi beta ensembles under no additional scaling. Moreover, it would
be interesting to find the scaling limit of the characteristic polynomial in this scaling
regime.

For β = 2, Krishnapur proved a result in [29] that connects the characteristic
polynomials of the truncated circular unitary ensemble with the Gaussian analytic
function of Theorem 8.4. Let φn−1(z) be the characteristic polynomial of the rank one
truncated Haar unitary matrix (the truncated circular unitary ensemble), and φ∗

n−1(z) =

zn−1φn−1(1/z̄) the reversed version of this polynomial. Theorem 5 of [29] proves that

√
n
φn−1(z)

φ∗
n−1(z)

→ fGAF (z), z ∈ D (8.11)

in distribution, uniformly on compacts in D. (See also the comments at the end of Section
5 of [29].) This of course implies that the truncated circular unitary ensemble as a point
process converges to the zero set of the Gaussian analytic function fGAF . It is not known
whether a similar limit holds for general β, and what the limit should be. It is interesting
to note however that for general β the sequence φ∗

n−1(z), n ≥ 2 converges uniformly
on compacts in D, this was proved in [6]. The limiting random function can be written

as exp
(√

2
β g(z)

)
where g(z) =

∑∞
k=1

zk
√
k
ξn, and ξn, n ≥ 1 are i.i.d. complex standard

normals.

Problem 2. (Edge to bulk transition) A simple calculation shows that under the
scaling z 7→ c−1z, c → ∞ the kernel (8.10) converges to a transformed version of the
kernel (8.8), where the transformation is the Cayley transform mapping the unit disk
D to the upper half plane H. This implies that as c→∞ the scaled edge limit process
c−1X2 converges to the image of the bulk limit process of Peres-Virág under the Cayley
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transform. Note that similar ‘edge-to-bulk’ limits are known for other random matrix
ensembles, see e.g. [41] for a similar transition involving the point process limits of the
Gaussian beta ensemble. It would be interesting to see if a similar limit exists for Xβ

for general β > 0. Presumably, this could also provide a way to prove the ‘edge-to-bulk’
transition in the β = 2 case without using the determinantal process framework.

Problem 3. (Purely imaginary additive rank one perturbations of beta ensembles)
In [28] Kozhan constructs tridiagonal matrix models for non-Hermitian (purely imaginary)
rank-one perturbations of the Gaussian and Laguerre beta ensembles. It is known from
[14] that in the β = 2 case the eigenvalues of these perturbed ensembles converge (under
the appropriate edge scaling) to the point process limits of the rank-one multiplicative
perturbations of the circular and real orthogonal beta ensembles. One would expect that
the result should hold in the general β case as well. This would require the extension of
the random operator framework to limits of tridiagonal (Jacobi) matrices.

Problem 4. (Multi-rank truncation of circular ensembles) In the β = 2 case,
Życzkowski and Sommers [47] also derived the joint eigenvalue distribution for a general
rank-k truncated circular unitary ensemble. In fact several of the β = 2 limit scaling
results extend to truncated models where k ≥ 1 rows and columns are removed from
a Haar unitary matrix. It would be interesting to see if any of these results could be
extended for general β > 0. The first step would be to characterize the rank-k truncated
circular beta ensemble. As noted in [24], this problem could potentially be attacked
using the theory of matrix-valued Verblunsky coefficients.
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