
Forall-exist statements in pseudopolynomial time

Eleonore Bach
∗

Friedrich Eisenbrand
†

Thomas Rothvoss
‡

Robert Weismantel
§

Abstract

Given a convex set Q ⊆ R
m and an integer matrix W ∈ Z

m×n, we consider statements of the form

∀b ∈ Q ∩ Z
m

∃x ∈ Z
n s.t. Wx ≤ b. Such statements can be verified in polynomial time with

the algorithm of Kannan and its improvements if n is fixed and Q is a polyhedron. The running

time of the best-known algorithms is doubly exponential in n. We provide a pseudopolynomial-time

algorithm if m is fixed. Its running time is (m∆)O(m2) where ∆ is the largest absolute value of an

entry in W . Furthermore it applies to general convex sets Q.

1 Introduction

An integer linear program (ILP) is a discrete optimization problem of the following kind

(1.1) max
{

cTx : Ax = b, x ≥ 0, x ∈ Z
n
}

where A ∈ Z
m×n, b ∈ Z

m and c ∈ Z
n. Many algorithmic problems can be modeled and solved as an

integer program. Integer programming is a showcase of progress and development in the field of algorithms
and complexity. If the number of variables in (1.1) is fixed, then Lenstra-type algorithms [19, 14] solve
integer programming in polynomial time. The recent result of Reis and Rothvoss [21], together with an
algorithm of Dadush [7] has a running time of (log n)O(n) times a polynomial in the binary encoding-length
of the input.
In 1982 Papadimitriou [20] has shown that such integer programs in standard form can be solved
in pseudopolynomial time, if the number m of rows of A ∈ Z

m×n is fixed. The running time of
Papadimitriou’s algorithm is (m∆)O(m2), where ∆ is the largest absolute value of an entry of A.
Papadimitriou’s algorithms was recently improved. Standard form IPs can be solved in time (m∆)O(m),
see [9, 13]. Knop, Pilipczuk, and Wrochna [17] showed that this running time is optimal up to constants
in the exponent. This lower bound is assuming the exponential-time-hypothesis [12]. In presence of upper
bounds on the variables, the best-known pseudopolynomial-time algorithms [9] still have a complexity of

(m∆)O(m2). Whether this running time is optimal, is a highly visible open problem.

Central to this paper are forall-exist statements of the form

(1.2) ∀b ∈ Q ∩ Z
m ∃x ∈ Z

n s.t. Wx ≤ b,

where Q ⊆ R
m is a given convex set and W ∈ Z

m×n is a given integer matrix.
Forall-exist statements are a substantial generalization of integer programming. For a given right-

hand-side b ∈ Z
m and Q = {b} deciding correctness of the statement (1.2) is an integer feasibility problem.

It comes as no surprise that problem (1.2) belongs to the second level of the polynomial hierarchy and
is Π2-complete [23, 24]. Kannan [15] provided an algorithm to decide forall-exist statements that runs
in polynomial time if the dimension n (number of columns of W) and m are fixed. Eisenbrand and
Shmonin [8] extended this result to the case where only n is assumed to be a constant.

Forall-exist statements are of interest in several scientific disciplines. A classical example from number
theory is the Frobenius problem [15]. Recently, forall-exist statements are of increasing importance
in the field of fixed-parameter complexity see, e.g. [10, 16]. A nice application is in the scope of fair
allocations [4, 5].

∗EPFL, Switzerland, eleonore.bach@epfl.ch
†EPFL, Switzerland, friedrich.eisenbrand@epfl.ch
‡University of Washington, USA, rothvoss@uw.edu. Supported by NSF grant 2318620: The Geometry of Integer

Programming and Lattices.
§ETH Zürich, Switzerland, robert.weismantel@ifor.math.ethz.ch

Copyright c© 2025

Copyright for this paper is retained by authors

Contributions Our main result is a pseudopolynomial time algorithm to decide forall-exist statements
in the case where the number m of rows of the matrix W ∈ Z

m×n is fixed. More precisely, the novel
contributions of this paper are the following.

i) We show that a decision problem (1.2) can be decided in time (m∆)O(m2). Here ∆ is the largest
absolute value of a component of W . In case that the answer is negative, our algorithm provides a
b ∈ Q ∩ Z

m so that the system Wx ≤ b, x ∈ Z
n is infeasible.

This result is via a sequence of reductions that leads to a conjunction of simpler forall-exist statements, for
which the domain of the ∃-quantifyer is a finite set of integer vectors. The number of such sub-problems
itself is

(

n

m

)

· (m∆)O(m) = (m∆)O(m2).

The last equality follows form the fact that we can assume that W does not have repeated columns and
hence n ≤ (2∆ + 1)m.

This running time is not higher than state-of-the-art algorithms for integer programming with lower
and upper bounds on its variables [9] in the pseudopolynomial-time regime where m is fixed. In particular,
the algorithm presented here does not show double exponential dependence on the number of variables.
The ETH -based lower bound of Knop et al. [17] of (m∆)Ω(m) for integer programming problems (1.1)
transfers to the same lower bound for forall-exist problems (1.2), by setting Q = {b}, the right-hand-side
of (1.1).

ii) A novel feature of our algorithm is that it applies to general convex sets Q ⊆ R
m, whereas Kannan’s

algorithm is described and analyzed for polyhedra only.

The analysis of algorithms involving a convex set Q requires a fair amount of technical care, see, e.g. [11].
We need to be able to solve the following problems involving Q. Our algorithm generates rational
polyhedra P ⊆ R

m for which it needs to decide whether Q ∩ P contains an integer point, or for a given
x∗ ∈ P it has to decide membership in Q. For the latter task, it is enough to have access to Q in form
of a membership oracle [11]. A query to this oracle has cost 1. The former task is more subtle. Using
the state of the art integer programming algorithm [21] this question can be decided in time (logm)O(m)

times a polynomial in log(R) where R > 1 is the radius of a ball containing Q. We abstract from such a
detailed running time analysis by accounting cost 1 for this task as well.

We also provide new structural results on specific forall-exist problems that have attracted recent
attention [6, 2]. The diagonal Frobenius number of a pointed cone cone(W) = {Wx : x ∈ R

n
≥0} where

W ∈ Z
m×n, is the smallest t∗ ≥ 0 such that one has the following: For all c ∈ cone(W) ∩ Z

m that are
conic combinations derived with weights more than t∗ in every generator one has that these points are
integer conic combinations as well.

iii) We show a bound on the diagonal Frobenius number of (m∆)O(m) which yields an improvement of
the previous-best bound of Aliev and Henk [2] in our parameter setting.

Comparison with the polynomial-time algorithm in fixed dimension The breakthrough of
Kannan [15] and its subsequent improvements [8] is a polynomial time algorithm if the dimension n
(number of columns of W) is fixed. The running time of these algorithms is doubly exponential in the
number of variables n. More precisely, these algorithms require a running time of at least

(1.3) (m log∆)2
n

.

To the best of our knowledge, this is the only algorithm with a nontrivial analysis of its running time
that is available for tackling forall-exist statements with fixed m and ∆. If all of n,m and ∆ are fixed, a
recent paper by Koutecký and Talmon [18] shows that the problem is FPT.

By ignoring the dependence on the binary encoding-length of ∆ and dropping constants, the achieved
running time (1.3) of Kannan’s algorithm [15] can be lower-bounded by Ω(m2n). Then, up to constant
factors, one can see that our algorithm is more efficient in the parameter-range

(1.4) m2 log(m∆) ≤ 2n log(m).

Copyright c© 2025

Copyright for this paper is retained by authors

The number m (rows of W) can in principle be exponential in the number of variables n. This is a
setting, where Kannan’s algorithm is more efficient than our pseudopolynomial-time algorithm. Another
interesting setting is when m ≤ nk for some constant k. This applies, for example in the context of fair
allocation [4]. To illustrate the efficiency of our algorithm in this case, we can assume that ∆ is at least
m. If the left-hand-side of (1.4) exceeds the right-hand-side, then

2n2k log(∆) > 2n ⇐⇒ log(∆) > 2n−2k logn−1.

Since k is a constant, this means that ∆ has to be doubly-exponential in n. In other words, the
number of bits to encode the largest entry of W has to be exponential in n. Outside of this regime and
under the assumption that m is polynomial in n, the algorithm proposed here is more efficient in terms
of worst-case running time.

2 A birds-eye perspective on our approach

Our main result is via a sequence of reductions. The details of this reduction are explained in Section 3.
We start here by recalling the starting point and then describe the final problem in this sequence and its
solution, thereby providing an overview as well as a first algorithmic result. Throughout Q ⊆ R

m denotes
a convex set and W ∈ Z

m×n denotes an integer matrix with ‖W‖∞ ≤ ∆. We are concerned with the
following decision problem.

Given Q ⊆ R
m and W ∈ Z

m×n, decide whether

(2.5) ∀b ∈ Q ∩ Z
m there exists x ∈ Z

n with Wx ≤ b.

Our main result is a reduction of problem (2.5) to
(

n
m

)

· (m ·∆)O(m) many simpler forall-exist problems
of the following kind.

Given a convex set Q ⊆ R
m, and a finite set C ⊆ Z

m with ‖C‖∞ ≤ (m ·∆)O(m). Decide the validity
of the statement

(2.6) ∀b ∈ Q ∩ Z
m ∃c ∈ C : c ≤ b.

Here ‖C‖∞ denotes the largest infinity norm of an element in C. Notice that in contrast to the forall-exist
statement of our departure, the domain of the variable in the scope of the ∃-quantifier at the end-of our
reduction is finite. In fact |C| ≤ (m∆)O(m2) follows from a counting argument. The running time that is
necessary to generate

(

n
m

)

· (m ·∆)O(m) many simpler forall-exist problems will be
(

n
m

)

· (m ·∆)O(m) as
well. Figure 1 illustrates the exist statement (2.6).

We conclude here by showing that (2.6) can be solved in time (m ·∆)O(m2).

Theorem 2.1. A forall-exist statement (2.6) can be decided in time (m ·∆)O(m2).

Proof. The goal is to find a counter-example, i.e., an integer point b ∈ Q ∩ Z
m such that for every c ∈ C,

there exists an index i ∈ {1, . . . ,m} such that bi < ci. Since all numbers are integers, the latter condition
is equivalent to bi ≤ ci− (1/2). We now consider the hyperplane arrangement defined by the axis-parallel
hyperplanes

(2.7) Hi
c = {x ∈ R

m : xi = ci − (1/2), c ∈ C, i ∈ {1, . . . ,m}} .

This partitions Rm into finite and infinite cells. Let us describe these cells precisely. For every component
i ∈ {1, . . . ,m}, let {ci : c ∈ C} be the set of i-th components of elements of C. Let `1i < · · · < `ki

i be an
ordering of this set. A cell V is then determined by a tuple

(j1, . . . , jm) ∈ {0, . . . , k1} × · · · × {0, . . . , km}

and it has the form

V =
{

x ∈ R
m : `j1i − (1/2) ≤ xi ≤ `j1+1

i − (1/2)
}

,

Copyright c© 2025

Copyright for this paper is retained by authors

b ∈ Q ∩ Zm

c1

c3

c2

Figure 1: A schematic picture of problem (2.6). The set Q is drawn in blue. The elements of the set C
are c1, c2 and c3. The area in grey corresponds to all points x ∈ R

m such that there exists a c ∈ C with
c ≤ x. The point b in red is an integral point in Q that is not contained in the grey area and hence is a
counter-example of the validity of the corresponding forall-exist statement.

where `0i = −∞ and `ki+1
i = +∞. A potential counter-example must lie in the interior of a cell V, since

it is integral. Furthermore, the interior of V either is fully contained in the union of the cones

(2.8)
⋃

c∈C

(

(c− 1

2
1) + R

m
≥0

)

,

or it is disjoint from this possibly non-convex set. To find a counterexample, we iterate over all cells V.
One iteration is as follows.

A) We check whether the interior of V is contained in the union (2.8). This is the case if and only if an
arbitrary point from its interior is contained in one of the cones.

B) In the case in which the interior is not contained in one of the cones, we check whether the integer
program

(2.9) V ∩Q ∩ Z
m

is feasible. If this is true, a counterexample has been detected and we can stop the process.

The integer program (2.9) can be solved in time (logm)O(m) [21] which is dominated by our final running

time. It remains to be shown that the number of cells is bounded by (m∆)O(m2). Clearly, the number of
cells is equal to

m
∏

i=1

(ki + 1).

Since the infinity norm of each c ∈ C is bounded by (m∆)O(m), one has ki ≤ (m∆)O(m) and therefore,

the number of cells is bounded by (m∆)O(m2).

Copyright c© 2025

Copyright for this paper is retained by authors

3 The sequence of reductions

The goal of this section is to provide a proof of the following assertion.

Theorem 3.1. There exists an algorithm that transforms a forall-exist statement (1.2) into an equivalent
conjunction of

(3.10)

(

n

m

)

· (m∆)O(m)

many forall-exist statements (3.12). The running time of the algorithm is bounded by (m∆)O(m2).

Remark 1. The running time of the algorithm of (m∆)O(m2) is potentially higher than the number
of problems (3.12) in the conjunction. In short, this is because we explicitly enumerate the set C.
The bound on the infinity norm of (m∆)O(m) for each element of C yields a straight-forward bound

of |C| = (m∆)O(m2).

We start with a standard transformation that is more convenient for us, as we use the concepts of
a finitely generated cone and of a finitely generated integer cone. The cone generated by the column
vectors of a matrix C ∈ Z

m×n is the set cone(C) = {Cx : x ∈ R
n
≥0}. The integer cone intcone(C) is

defined as intcone(C) = {Cx : x ∈ Z
n
≥0}. The following is a very important key concept. If C ∈ Z

m×m is
non-singular, then

(3.11) intcone(C) = cone(C) ∩ Λ(C).

Here Λ(C) = {Cx : x ∈ Z
m} is the (full-dimensional) lattice generated by C. The matrix C is called

basis of Λ(C).
We re-write the condition x ∈ Z

n, Wx ≤ b as x′ ∈ Z
n′

≥0, W
′x′ = b. In this way, the latter condition

x′ ∈ Z
n′

≥0, W ′x′ = b can be written as b ∈ intcone(W ′). Notice that ‖W ′‖∞ = ‖W‖∞ and that
rank(W ′) = m. We can thus assume, without loss of generality, that our forall-exist statement is as
follows.

Given Q ⊆ R
m, W ∈ Z

m×n of rank m, decide whether

(3.12) ∀b ∈ Q ∩ Z
m : b ∈ intcone(W).

3.1 Enforcing Q ⊆ cone(W) Suppose that there exists an element in (Q \ cone(W))∩Z
m. Then this

element is a counterexample to (3.12). We begin by excluding such counterexamples that are outside of
cone(W) by preprocessing via integer programming techniques.

More precisely, this is done by solving integer feasibility problems

Q ∩
{

x ∈ Z
m : aTx ≥ 1

}

6= ∅

for each integral facet-defining inequality aTx ≤ 0 of cone(W) ⊆ R
m. As described in the introduction,

we account for a running time of 1 for this test. If Q was explicitly given as a rational polyhedron, then
this test can be carried out in time (logm)O(m) times a polynomial in log∆ and the binary encoding
length of the description of Q. Apart from the latter factor, this is dominated by our running time.

The number of facets is bounded by
(

n
m

)

and the facets can be enumerated in this time-bound as
well, see, e.g. [22]. From now on, we can assume that Q ⊆ cone(W).

3.2 Reduction to simplicial cones Carathéodory’s theorem, see, e.g. [22] guarantees that each b in
cone(W) is contained in cone(WB) for a basis B ⊆ {1, . . . , n} of W . Here a basis WB of W is a selection
of m linearly independent columns of W . Clearly, the forall-exist statement (3.12) over Q ⊆ cone(W)
holds, if and only if it holds over all sets Q ∩ cone(WB). The number of sets Q ∩ cone(WB) is bounded
by

(

n
m

)

.
Our next lemma shows that, in each of these statements over Q ∩ cone(WB), we can almost replace

the condition x ∈ intcone(W) by x ∈ intcone(WB).

Copyright c© 2025

Copyright for this paper is retained by authors

Lemma 3.1. Let b ∈ cone(WB) ∩ Z
m, then b ∈ intcone(W) if and only if there exists an element

v ∈ intcone(W) of norm ‖v‖∞ ≤ (m∆)O(m) such that b− v ∈ intcone(WB).

The proof relies on the following theorem.

Theorem 3.2. (Theorem 3.3 in [9]) Consider a feasible integer program of the form

(3.13) max
{

cTx : Ax = b, x ≥ 0, x ∈ Z
n
}

where A ∈ Z
m×n, b ∈ Z

m and c ∈ Z
n with ‖A‖∞ ≤ ∆. Let x∗ ∈ R

n
≥0 be an optimal fractional vertex

solution of the linear programming relaxation. There exists an optimal solution z∗ ∈ Z
n
≥0 of the integer

program (3.13) such that ‖z∗ − x∗‖1 ≤ m(2m∆+ 1)m.

Proof. [Proof of Lemma 3.1] If there exists an element v ∈ intcone(W) with b− v ∈ intcone(WB), then

b ∈ v + intcone(WB) ⊆ intcone(W).

Conversely, let b ∈ cone(WB). Then b ∈ intcone(W) is equivalent to the fact that the following integer
program is feasible

(3.14) max
{

0Tx : Wx = b, x ∈ Z
n
≥0

}

.

Since b ∈ cone(WB), there exists an optimal vertex solution x∗ ∈ R
n
≥0 of the linear programming

relaxation of (3.14) has positive entries only in components i ∈ B. With Theorem 3.2 it follows that
there exists an integer (optimal) solution z∗ ∈ Z

n
≥0 with

‖z∗ − x∗‖1 ≤ m(2m∆+ 1)m.

This means that b can be decomposed as b = u+ v, where u ∈ intcone(WB) and v ∈ intcone(WNB) such
that

v = WNB · z∗NB .

Here we rely on usual notation: WNB is the matrix composed by the columns of W that are indexed by
NB = B and z∗NB is analogously composed of z∗. Notice that ‖z∗NB‖1 = ‖z∗NB − x∗

NB‖1 ≤ (m∆)O(m).
Therefore

‖v‖∞ = ‖WNB · z∗NB‖∞ ≤ (m∆)O(m).

Let us define C ⊆ intcone(W) as the set of all elements of intcone(W) of infinity norm bounded by

(m∆)O(m). Notice that this set has cardinality (m∆)O(m2). The above discussion shows that the
statement (3.12) is equivalent to the conjunction over

(

n
m

)

· (m∆)O(m) statements of the following form.

Given W ∈ Z
m×m of rank m, Q ⊆ cone(W) convex and C ⊆ Z

m, where ‖C‖∞ ≤ (m∆)O(m), decide
whether

(3.15) ∀b ∈ Q ∩ Z
m ∃c ∈ C such that b− c ∈ intcone(W)

3.3 Partitioning in residue classes of Λ(W) Recall that Λ(W) = {Wx : x ∈ Z
m} is the lattice

generated by the non-singular and integral matrix W ∈ Z
m×m. The fundamental parallelepiped Π(W) is

the set
Π(W) := {Wλ : λ ∈ [0, 1)m}.

The volume of Π(W) is equal to | det(W)| and corresponds to the number of integer points in Π(W). The
Hadamard inequality shows that | det(W)| ≤ (m∆)O(m). The lattice Z

m can be partitioned into residue
classes modulo Λ(W)

Z
m =

⋃

p∈Π(W)∩Zm

(p+ Λ(W)).

See, e.g. [3] for further details. Furthermore, we can assume that each element of Π(W) has infinity norm
bounded by m · ∆. This shows that the decision problem (3.15) can be reduced to the conjunction of
(m∆)O(m) decision problems of the following kind, each parameterized by a representative p ∈ Π(W)∩Zm

in the fundamental parallelepiped.

Copyright c© 2025

Copyright for this paper is retained by authors

Given W ∈ Z
m×m of rank m, p ∈ Π(W) ∩ Z

m, Q ⊆ cone(W) convex and C ⊆ Z
m, decide whether

(3.16) ∀b ∈ Q ∩ (Λ(W) + p) ∃c ∈ C such that b− c ∈ intcone(W).

The number of decision problems of the form (3.16) to which (3.12) reduces to is (m∆)O(m2) and the
running time involved to arrive at these sub-problems is in the same order of magnitude. This decision
problem is now the point of departure of the final reduction step.

3.4 Transforming to R
m
≥0 Our task is to solve the decision problem (3.16). We begin by recalling

that intcone(W) = Λ(W) ∩ cone(W). Hence if b ∈ Q ∩ (Λ(W) + p) and c ∈ C with b − c ∈ intcone(W)
one necessarily has

(3.17) c ≡ p (mod Λ(W)).

Therefore, we can delete from C all elements for which (3.17) does not hold and we can re-write the
decision problem (3.16) as follows.

Given W ∈ Z
m×m of rank m, p ∈ Π(W) ∩ Z

m, Q ⊆ cone(W) convex and C ⊆ Λ(W) + p, decide
whether

(3.18) ∀b ∈ Q ∩ (Λ(W) + p) ∃c ∈ C such that b ∈ cone(W) + c.

By subtracting p from Q as well as from C, the statement (3.18) is equivalent to the following.

(3.19) ∀b ∈ Q′ ∩ Λ(W) ∃c ∈ C′ such that b− c ∈ cone(W),

where Q′ = Q− p and C′ = C − p. Observe that C′ ⊆ Λ(W). One has

Q′ ∩ Λ(W) = W (W−1Q′ ∩ Z
m), C′ = W (W−1C′) and cone(W) = W R

m
≥0.

Furthermore, we have W−1C′ ⊆ Z
m. Recall that ‖C′‖∞ ≤ (m∆)O(m). The Hadamard inequality implies

that the absolute value of each component of W−1 is bounded by (m∆)O(m). Thus

‖W−1C′‖∞ ≤ (m∆)O(m).

By re-defining Q as W−1Q′, C as W−1C′ ⊆ Z
m we arrive at the desired simple problem (2.6).

Given a convex set Q ⊆ R
m, and a set C ⊆ Z

m with ‖C‖∞ ≤ (m ·∆)O(m). Decide the validity of the
statement

∀b ∈ Q ∩ Z
m ∃c ∈ C : c ≤ b.

4 Diagonal Frobenius Number

A central element of our sequence of reductions is Lemma 3.1 which is based on proximity between integer
and fractional optimal solutions. We conclude this paper with a structural result concerning the following
variant of the forall-exist statement (3.12) in which the convex set Q is the entire cone

Q = cone(W).

Our technique can be used to describe a subset of cone(W)∩Λ(W) in which there is no counterexample.
In other words, every point belongs to the set intcone(W).

Similar results of this flavor have appeared in the recent literature. The authors of [6] present a
deep in the cone Lemma which identifies this set as being those lattice points that are far away from the
boundary of cone(W). The authors note that such a result can also be deduced from Aliev and Henk [2]
who provide a bound on their so-called diagonal Frobenius number, which is the number t∗ below. Given
a matrix W ∈ Z

m×n such that cone(W) is pointed, find the smallest natural number t∗ such that for
all z ∈ {Wx : x ≥ t1} ∩ Λ(W), z ∈ intcone(W). Recall that a cone is pointed if it does not contain a
line, see, e.g. [22]. The upper bound on the diagonal Frobenius number given by Aliev and Henk [2] is as
follows.

Copyright c© 2025

Copyright for this paper is retained by authors

Theorem 4.1. ([2]) Let W ∈ Z
m×n such that Λ(W) = Z

m with cone(W) pointed. Then the diagonal
Frobenius number of W is at most

t∗ =
(n−m)

√
n

2

√

det(WW>).

The goal of this section is to provide a simple proof bounding the diagonal Frobenius number in terms
of the parameters m (number of rows of W) and ∆ (largest absolute value of a component of W). To
explain the differences of our bound and the bound in Theorem 4.1 in this setting, we first express the
bound above in these parameters.

Each component of WWT is bounded by n ·∆ in absolute value. Recall that n ≤ (2∆ + 1)m. The
Hadamard bound implies

√

det(WWT) ≤ mO(m)∆O(m2).

Thus, the upper bound [2] on the diagonal Frobenius number is

t∗ = ∆O(m2).

We will show below t∗ = (m∆)O(m). In a recent paper, Aggarwal et al. [1] have shown that our bound is
almost tight.

Theorem 4.2. Let W ∈ Z
m×n and cone(W) be pointed. Then

t∗ ≤ m · (2m∆+ 1)m.

Proof. Let b ∈ Λ(W) with b = Wλ, λ ∈ R
n
≥0 such that λ ≥ 1t and t = m · (2m∆ + 1)m. To show is

b ∈ intcone(W). Let b′ = t ·W1 ∈ Λ(W). We now consider the integer program

(4.20) max
{

0T (x+, x−) : Wx+ −Wx− = b− b′, (x+, x−) ≥ 0, (x+, x−) ∈ Z
2n
}

.

This integer program is feasible, since b− b′ ∈ Λ(W). Since b− b′ ∈ cone(W), there exists an LP-optimal
fractional solution (y+, y−) ≥ 0 such that y− = 0. The proximity Theorem 3.2 implies that there exists
an integer solution (z+, z−) ∈ Z

2n such that ‖z−‖1 ≤ m · (2m∆+ 1)m. Notice that

W (z+ − z− + t · 1) = b and z+ − z− + t · 1 ∈ Z
n
≥0.

Hence, b ∈ intcone(W).

Acknowledgments We would like to thank the anonymous SODA-reviewers for their very detailed and
useful comments and suggestions.

References

[1] Divesh Aggarwal, Antoine Joux, Miklos Santha, and Karol Węgrzycki. Polynomial time algorithms for
integer programming and unbounded subset sum in the total regime. arXiv preprint arXiv:2407.05435,
2024.

[2] Iskander Aliev and Martin Henk. Feasibility of integer knapsacks. SIAM Journal on Optimization,
20(6):2978–2993, 2010.

[3] Alexander Barvinok. A course in convexity, volume 54. American Mathematical Soc., 2002.
[4] Robert Bredereck, Andrzej Kaczmarczyk, Dušan Knop, and Rolf Niedermeier. High-multiplicity fair

allocation: Lenstra empowered by n-fold integer programming. In Proceedings of the 2019 ACM Conference
on Economics and Computation, pages 505–523, 2019.

[5] Jason Crampton, Gregory Gutin, Martin Kouteckỳ, and Rémi Watrigant. Parameterized resiliency problems
via integer linear programming. In International Conference on Algorithms and Complexity, pages 164–176.
Springer, 2017.

[6] Jana Cslovjecsek, Martin Kouteckỳ, Alexandra Lassota, Michał Pilipczuk, and Adam Polak. Parameterized
algorithms for block-structured integer programs with large entries. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 740–751. SIAM, 2024.

Copyright c© 2025

Copyright for this paper is retained by authors

[7] Daniel Nicolas Dadush. Integer programming, lattice algorithms, and deterministic volume estimation.
Georgia Institute of Technology, 2012.

[8] Friedrich Eisenbrand and Gennady Shmonin. Parametric integer programming in fixed dimension.
Mathematics of Operations Research, 33(4):839–850, 2008.

[9] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for integer program-
ming using the steinitz lemma. ACM Transactions on Algorithms (TALG), 16(1):1–14, 2019.

[10] Tomáš Gavenčiak, Martin Kouteckỳ, and Dušan Knop. Integer programming in parameterized complexity:
Five miniatures. Discrete Optimization, 44:100596, 2022.

[11] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

[12] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[13] Klaus Jansen and Lars Rohwedder. On integer programming, discrepancy, and convolution. Mathematics
of Operations Research, 48(3):1481–1495, 2023.

[14] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of operations
research, 12(3):415–440, 1987.

[15] Ravi Kannan. Lattice translates of a polytope and the frobenius problem. Combinatorica, 12(2):161–177,
1992.

[16] Dušan Knop, Martin Kouteckỳ, and Matthias Mnich. A unifying framework for manipulation problems.
In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pages
256–264, 2018.

[17] Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight complexity lower bounds for integer linear
programming with few constraints. ACM Transactions on Computation Theory (TOCT), 12(3):1–19, 2020.

[18] Martin Kouteckỳ and Nimrod Talmon. Multi-party campaigning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 5506–5513, 2021.

[19] Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of operations
research, 8(4):538–548, 1983.

[20] Christos H Papadimitriou. On the complexity of integer programming. Journal of the ACM (JACM),
28(4):765–768, 1981.

[21] Victor Reis and Thomas Rothvoss. The subspace flatness conjecture and faster integer programming. In
64th IEEE Symposium on Foundations of Computer Science (FOCS), 2023. to appear.

[22] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
[23] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22, 1976.
[24] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science, 3(1):23–33,

1976.

Copyright c© 2025

Copyright for this paper is retained by authors

	Introduction
	A birds-eye perspective on our approach
	The sequence of reductions
	Enforcing Q cone(W)
	Reduction to simplicial cones
	Partitioning in residue classes of (W)
	Transforming to Rm0

	Diagonal Frobenius Number

