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Abstract

We show that any bounded integral function f : A x B — {0,1,...,A} with rank r has
deterministic communication complexity AC(®) . \/r . logr, where the rank of f is defined to be
the rank of the A x B matrix whose entries are the function values. As a corollary, we show
that any n-dimensional polytope that admits a slack matrix with entries from {0,1,..., A} has
extension complexity at most exp(A°©) . \/n -logn).

1 Introduction

In classical communication complexity, two players, Alice and Bob, are given a Boolean function
f+ Ax B+ {0,1}, as well as separate inputs a € A and b € B, and wish to compute f(a,b)
while minimizing the total amount of communication. Alice and Bob have unlimited resources for
pre-computations and agree on a deterministic communication protocol to compute f before receiving
their respective inputs. The length of their protocol is defined to be the maximum number of bits
exchanged over all possible inputs. The deterministic communication complexity of f, denoted by
CC¥t(f), is the minimum length of a protocol to compute f.

A major open problem in communication complexity is the log-rank conjecture proposed by
Lovész and Saks [L.S88], which asks if CC*(f) < (logr)°™) for all Boolean functions f of rank r,
where the rank of a two-party function f on A x B is defined to be the rank of the matrix M € R4*B
with M, = f(a,b) for all (a,b) € A x B. The best upper bound currently known is due to Lovett
[Lov16], who showed CC%*(f) < O(y/rlogr) using discrepancy theory techniques.

In this work, we obtain similar deterministic communication complexity bounds for a larger class
of functions:

Theorem 1 (Main result, communication complexity). Let f: A x B+ {0,1,...,A} be a bounded
integral function of rank r. Then there exists a deterministic communication protocol to compute f
with length at most A9 . \/r -logr bits.

The function f can be directly viewed as a non-negative matrix M € {0,..., A}**5 of rank
r. We use the matrix representation exclusively in the remainder of this paper. Let us adopt the
convention that a rectangle in M is a (non-contiguous) submatrix M[A’, B'] indexed by some A’ C A
and B’ C B. A rectangle is monochromatic with color i if all entries in the rectangle have value 1.
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The non-negative rank of a non-negative matrix M, denoted by rank (M), is defined as the
minimum 7 such that M can be written as the sum of r non-negative rank-1 matrices, or equivalently,
as M = UV for non-negative matrices U € ]R’;‘OXT and V € ]R’;XOB . It is straightforward to see

rank (M) < 200 (™) (¢ f. Rao and Yehudayoff [RY20], Chapter 1, Theorem 1.6): The protocol
tree to compute M has at most 90Ct (M) leaves, each corresponding to a monochromatic rectangle
of M. These rectangles are disjoint over all leaves, and their union is M. Since a monochromatic
rectangle is a non-negative matrix of rank 0 or 1, we conclude that M can be written as a
sum of at most 200" rank-1 non-negative matrices. The positive semidefinite rank of M,
denoted by rankpsq(IM), generalizes non-negative rank and has an analogous relationship to quantum
communication complexity [FGPT15|. Tt is defined as the minimum r such that there are positive
semidefinite matrices Uy,... Uy and Vy,..., Vg of dimension r x r satisfying M, ; = Tr(U;V;)
for all 4, j; trivially, rankyeq (M) < rank; (M). Barvinok [Barl2| showed that if M has at most &
distinct entries, as is the setting studied in this paper, then rank;gq (M) < (kipr]irik(M)).

Non-negative rank brings us to a beautiful connection with extension complexity, introduced
in the seminal work of Yannakakis [Yan88| in the context of writing combinatorial optimization
problems as linear programs. The extension complexity of a polytope P, denoted xc(P), is defined
as the minimum number of facets of some higher dimensional polytope Q (its extended formulation)
such that there exists a linear projection of Q to P.

A foundational theorem from [Yan88| states that xc(P) = ranky(S), where S is the slack matriz
of P, defined as follows: Suppose P has facets F and vertices V. Then S is a non-negative F x V
matrix, where the (f,v)-entry indexed by facet f € F defined by the halfspace a 'z < b and vertex
v € V has value Sy, = b — a'v. (A facet may be defined by many equivalent halfspaces, and
therefore the slack matrix is not unique; the result holds for all valid slack matrices.) In fact, [Yan88§]
showed that a factorization of S with respect to non-negative rank gives an extended formulation of
P and vice versa. For a comprehensive preliminary survey, see [CCZ10]. A number of breakthrough
results in extended complexity in recent years emerged from lower-bounding the non-negative rank
of the slack matrix for specific polytopes, such as the TSP, CuT, and STABLE-SET polytopes
by Fiorini-Massar-Pokutta-Tiwary-De Wolf [FMP*15|, and the PERFECT-MATCHING polytope by
Rothvoss [Rot17].

Connecting extension complexity to deterministic communication complexity via non-negative
rank, we have:

Corollary 2 (Main result, extension complexity). Let P be a n-dimensional polytope that admits
slack matriz S. Suppose the entries of S are integral and bounded by A. Then the extension complezity
of P is at most exp(ACA) . \/n -logn).

Proof. Since P is n-dimensional, we know S has rank at most n, as there are at most n linearly
independent vertices of P, and the slack of a vertex with respect to all the facets is a linear function.
We combine the theorem of [Yan88] and Theorem 1 for the overall conclusion. O

Our proof follows the approach discussed in the note of Rothvoss [Rot14]| simplifying Lovett’s
result. The following lemma shows that there are indeed concrete polytopes for which our result
applies:

Lemma 3. Suppose there are polytopes P C Q C R™ where P = conv{xy,...,x,} and Q = {x €
R™ : Ax < b} with A € RF*™. Suppose the partial slack matriz S € Rf ¥V with Sij = bi — Ayx; for
i € [f],7 € [v] is integral and bounded by A. Then there exists a polytope K with extension complezity
at most exp(APR) . \/n -logn) so that P C K C Q.



Proof. From above, we have rank, (S) < exp(AP®) . \/n -logn). Moreover, it is well-known that
s rank (S) is the extension complexity of some polytope K such that P C K C Q. (It is in fact
the minimum extension complexity over all such sandwiched polytopes.) The conclusion follows.
For completeness, we show the latter fact: Suppose S = UV is a non-negative factorization of S
with U € R%s and V € RYGY. Let It < f (. y) € RS : Az + Uy = b,y > 0}, and let K be the
projection of Kt onto the first n coordinates. It is immediately clear that X C Q, and xc(K) < s
by definition. For each j € [v], the point x; satisfies Ax; + S’/ = b, where S7 is the j-th column of S
given by UVe;. It follows that (x;, Ve;) € Kt so x; € K. As this holds for each x1,...,x,, we
conclude P C K.
O

We give a direct example in a combinatorial optimization setting: Consider the k-SET-PACKING
problem, where we are given a collection of n sets S1,...,5, C [N] with N > n, and want to
find a maximum subcollection such that each element j € [N] is contained in at most k sets. The
k-SET-PACKING polytope P is is the convex hull of all feasible subcollections of sets, given by

P:conv{xe{o,l}": Z r; <k Vje [N]}

:JES;

Its natural LP relaxation Q is

Q:{xE[O,l]”: o ai<k VJE[N]}-

1:JES;

In the regime where N > n, a priori, the extension complexity of P and Q could be as large as N.
But interestingly, let S be the partial slack matrix with respect to P and Q as defined in Lemma 3.
Then S contains integral values in {0,...,k}, and so we conclude there exists a sandwiched polytope
P C K C Q with xc¢(K) < exp(k°®) . /n - logn).

2 Communication protocol

In this section, we give a deterministic communication protocol for a bounded integral matrix S
assuming it has the crucial property that any submatrix contains a large monochromatic rectangle.
The protocol is based on the protocol from Nisan and Widgerson [NW95| that is expanded on by
Lovett [Lov16|.

Lemma 4. Let 0 < d < 1. Let M € {0,1,.. .,A}AXB be a bounded integral matriz with rank r,

and suppose for any submatriz S = M[A', B'] where A’ C A and B' C B, there is a monochromatic
rectangle in S of size > exp(—4d(r))|A’||B’| for some function 6 of r. Then,

logr
CCo¥t (M) < 0 (logA +log®r + Z (5(r/2i)> .
i=0

We begin by proving two helper lemmas relating to M and the rank of its submatrices, which we
subsequently use to bound the communication complexity.

Lemma 5. Let A, B, C, R be matrices of the appropriate dimensions, and let R have rank 0 or 1.
Then

R R A
rank (B) + rank (R A) < rank <B C) + 3.
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Proof. We use a sequence of elementary rank properties:

R A 0 A
rank <B C> + 1 >rank (B C) > rank(A) + rank(B)

> rank (R A) + rank (g) — 2.

O

Lemma 6. Suppose the rank of M € {0,1,...,AYA*B isr. Then M contains at most (A + 1)"
different rows and columns.

Proof. We show the argument for rows: Let U € {0,..., A}4*" denote a submatrix of M consisting
of r linearly independent columns of M. Clearly U has at most (A + 1)" different rows. If row i and
row j of U are identical, then row ¢ and j of M are also identical, since by definition of rank, the
columns of M are obtained by taking linear combinations of columns of U. O

Now, we can design a communication protocol to compute M using standard techniques. Without
loss of generality, we may assume M does not contain identical rows or columns, so that the conclusion
of Lemma 6 can be applied.

of Lemma 4. Suppose Alice has input a € A and Bob has b € B. Then Alice and Bob compute M,
by recursively reducing the matrix M to a smaller submatrix in one of two ways: they communicate
the bit 0 which guarantees a decrease in rank in the resulting submatrix, and the bit 1 which
guarantees a decrease in size.

Let S denote the submatrix to be considered at a recursive iteration. Alice and Bob begin with
S <M. During a recursive iteration, they first write S in the form

R A
(5 ¢,
where R denote the large monochromatic rectangle in S that is guaranteed to exist, with |R| >
exp(—6(r))[S|. By Lemma 5, either rank (R A) < 3rank(S) + 3, or rank (R B) < Jrank(S) + 3.
In the first case, Alice communicates. If her input row a is in the upper submatrix of S, Alice
sends the bit 0, and both Alice and Bob update S = (R A). On the other hand, if row a is in

the lower submatrix of S, Alice sends the bit 1, and they both update S = (B C). In the second
case, Bob communicates. If his input column b is in the left submatrix of S, Bob sends 0, and they

update S = <l§> Otherwise, Bob sends 1, and they update S = <é> If S has size 1, Alice can

simply output the entry of S, which is precisely Mg .
Consider the communication protocol up until the rank of S is halved (i.e., when the first 0 bit is

communicated): The protocol tree has at most © (m) =0 (%)—many leaves

at this point, which is the max number of 1 bits that could have been communicated. Standard
balancing techniques (c.f.[RY20, Chapter 1, Theorem 1.7]) then allow us to balance the protocol tree;
combined with the bound [S| < (A + 1)?" by Lemma 6, we conclude that there exists a protocol of
length O(log r + loglog(A + 1) 4 6(r)).

Next, consider the phase where the protocol continues until the rank drops from r/2 to r/4.
Note that we may assume the submatrix at the start of this phase has unique rows and columns,
as Alice and Bob has unlimited computation at the start. Then this phase can be simulated by a

protocol of length O(log(r/2) + loglog(A + 1) + §(r/2)). We proceed in the same fashion where at



phase i, the rank drops from 7/2% to r/2i*!. Summing over i = 0,...,logr, we get that the total
protocol length is at most

logr r r
Z <log (§> + loglog(A + 1) + (5<§>)
i=0
logr r
2
< log”r + log rloglog(A + 1) + Zé(§>.
i=0
In the base case, S has rank 1 or 2. Suppose it has rank 2, and let S = uv' + w/v'" be a
factorization, where u and u’ are two linearly independent columns of S. Then Alice sends u, and
uy,, which Bob uses to compute u,vp + u,v; = Sqp = Mgy. Since uw and u are columns of S, their
entries take values from {0,1,..., A}, so Alice communicates O(log A) bits in total. Finally we can
omit the term log rloglog(A + 1) as it is dominated by log®r 4 log A. O

3 Finding large monochromatic rectangles

In this section, we show that the assumption for applying the communication protocol from Section 2
does indeed hold. That is, any bounded integral matrix contains a sufficiently large monochromatic
rectangle.

We first reduce the problem of finding large monochromatic rectangles to finding almost-
monochromatic rectangles. We say a rectangle is (1 — €)-monochromatic if at least a (1 — €)-fraction
of its entries have the same value.

Lemma 7. Suppose M € RA*B has rank r > 1, and is (1 — 1ér)-m0noch7’0matz‘c with color ae. Then

. . . Al||B
M contains a monochromatic rectangle of size > %.

Proof. Let us call a column of M bad if it contains at least g-|A|-many non-a entries. By Markov’s
inequality, at most half the columns are bad. Let B’ C B be the remaining good columns, where each
contains at least (1 — &)|A|-many « entries. Let B” C B’ be a maximal set of linearly independent
good columns. We know |B”| < r as the rank of M is r.

Let U = M[A, B”]. Since each column in B” contains at most g-|A|-many non-a entries, there
are at most 7 - g-|A| rows of U that contain non- entries. Let A’ denote the |A| — §|A| > 1|A| rows
of U that contain only « entries. So M[A’, B”] contains only « entries.

Let T = M[A’, B']. Since the columns in B’ are linear combinations of columns in B”, each
column of T must be of the form S1 for some 8. Finally, we know |T| = |4'||B’| > 1|A||B|, and
there are at most 5-|A||B| non-c entries in M in total, so at least half the columns of T must have
value a. O

Now, it remains to show that we can find large almost-monochromatic rectangles.

Lemma 8. Let M € {0,1,..., A}AXB be a bounded integral matrixz of rank r. Then M contains a
(1 — & )-monochromatic rectangle of size at least |A||B| - exp(—A°A) .\ /r - logr).

To prove Lemma 8, we first define a distribution D over the rectangles of M, and then use the
probabilistic method with respect to D to show that there exists a large enough almost-monochromatic
rectangle. We begin with the technical ingredients:



Definition 9 (Factorization norm). For a matrix M € R4*5B define its yo-norm as

~v2(M) 4 min{R > 0 : there are families of vectors {us }aca, {vp}pep so that

M,p = (Uq, vp) and [Jugl2]|vp]|2 < R for all a,b}.

In other words, 72(M) gives the Euclidean length needed to factor the matrix M. Note that by
rescaling the u,’s and vy’s, it is straightforward to guarantee ||uq|l2 < VR and ||vp]|2 < VR for all
a,b in the definition. Here u,,u; are vectors of any dimension (of course one may choose u,, uy to
have dimension rank(M)). The terminology 72-norm or factorization norm is indeed justified as 7,
is a norm on the space of real matrices.

The following lemma is well-known:

Lemma 10 (Lemma 4.2, [LMSS07]). Any matriz M € RA*B satisfies vo(M) < | M||oo - 1/Tank(M).

It will be convenient for us to factor M with vectors of the same Euclidean length, which comes
at the expense of the dimension:

Lemma 11. For any matriz M € RA*E and s > V72(M), there are vectors {ug }aca, {Vb}bcn such
that My = (0, vp) and [uallz = |wylls = s for alla € A and b € B.

Proof. Construct vectors uq, v, each with 2-norm [Jugll2, [|[vp/2 < s and Mg = (g, vp) using
Lemma 10. Then add |A|+ |B| new coordinates, where each u, and vy, receives a “private” coordinate.
Set the private coordinate of u, to \/s2 — ||u,/|3, and similarly for vy, O

We denote N™(0,1) as the n-dimensional standard Gaussian. Let S"~1 < {z € R™ : ||z|s = 1}
be the n-dimensional unit sphere. The following argument is usually called hyperplane rounding in
the context of approximation algorithms:

Lemma 12 (Sheppard’s formula). Any vectors u,v € S~ with (u,v) = « satisfy

o 1 arccos(«)
> > 0] = o1 /=)
g 2 0 and (g,0) > 0] = () (1 2=()

More generally, any vectors w,v € R"™\ {0} satisfy

(,0) )
Pr ,u) >0 and (g,v) >0 =h| ——— | .
grion (9 9.v) 2 0] <|ruu2uvuz

We can now define a suitable distribution over the rectangles of M using the above tools. In
particular, we want the probability that a rectangle contains an entry to be a function of the entry
value.

Lemma 13. Let M € {0,1,...,A}*B be a bounded integral matriz of rank r. Then for any k,
there is a distribution Dy, over the rectangles of M so that for alla € A and b € B,

W1 l(a.b) € R = (h (fﬁ))k

where h is the function defined in Lemma 12.




Proof. We use Lemma 11 to factor M, which gives vectors u,, vy for all a € A and b € B, such
that My p = (g, vp), and |Juglla = ||vp|l2 = AY2rY/4. Then we sample independent Gaussians
gi,---,9r ~ N"(0,1) and set

Ridéf{aeA:<uaagi> ZO} X {be B <vbagi> 20}7

def

and then R = Ry N---NRyg. Note that R is indeed a rectangle. For each i and each (a,b) € A x B

we have
meni=(55) - 25).

The overall expression follows by independence of the k rectangles. O

Finally, we use the above distribution to show the existence of large almost-monochromatic
rectangles.

of Lemma 8. Let & U---U Ea be the partition of the entries A x B based on entry values, so that
& = {(a,b) € Ax B: M,y = j}. Let mj = (64rA)B2) for each j = 0,..., A, and let i be the
index such that m; - |&;| is maximized. From this, we also get

M| = [A] - |B] = Z\5|<Zfl5!<mzl5\ (3.1)

For notational convenience, recall h(a) = %(1 — arccfrs(a)>, and let ¢(j) £ h <#) We

Ayr
observe that on [0, 1], the function h is convex, monotone increasing, lowerbounded by h(0) = 1/4,
upperbounded by h(1) = 1/2, and h/(«a) = m > 5—. Additionally, the following claim about ¢

will be useful for our calculations later:

. c(g 4 . c
Claim 14. c(j(i)l) >1+ AT for1 <j <A. Also, C(( )) <1+ w\f

Proof. We may assume r > 2. We use first order approximations for ¢. For the first inequality, we
also use the fact that ¢(j — 1) < 3/8:

c(4) cj-D+d(G-1) 1 4
G-1D= -1 ' Tamasgon =t A

For the second inequality, we have

A-d(A 4A 4
SC(0)+ ( ):1+ <14

c(0) AVr-2my/1T—1/r = w1

O

Next, let Dy, be the distribution from Lemma 13, and generate R ~ Dy, for some choice of k to be
determined. We will show that there exists a k such that R is expected to be (1— 16 )-monochromatic
with color ¢, and is sufficiently large. Specifically, the number of i-entries in R is greater than the



number all other entries in R by a factor of 167 in expectation, and moreover, this difference is
sufficiently large, which in turn means R is sufficiently large.

Er~p, ||&NR|—16r) | NR|

J#i
= |&] - e(i)F = 16r > c(4)"1&)] (by Lemma 13)
JFi
(7) mz
> (&l - e(@d)* | 1—16r
&l - (i Z c(i)Fm;

Suppose E]))k;“ < spx for each j # i, then we can conclude

1
> |&]-474(1 - 7 (Since c(i) > )
[AllB| 1
> 2 (3.
e YT (by Eq. (3.1))

Claim 15. There exists a choice of k such that E))kml < 64rA for all j # 1.

Proof. We consider two cases:

) <c<z>1> g

Fm; =\ e ) % To get our claim, it suffices to

c(i —1)\* m; 1
( (i) ) mo = 64rA
8A) + 1) log(64rA)

log c((;(j)l)

(1) 0 < j < i: In this case we can bound
choose k to satisfy

- g U

Using the lower bound from Claim 14, along with log(1 + z) > x/2 for z < 1, we conclude it
suffices to choose k to satisfy

; 3
k> ((8A)" 4+ 1)log(64rA) - §7TA\/77. (3.2)
k
(2) i < j < A: In this case we can bound CEJ))IC:? < ( 0))> m—ﬂ To get our claim, it suffices to

choose k to satisfy

(AT my 1
(c(O) ) Mit1 = 64rA
((8A)*! — (8A) — 1) log(64rA)

log Cc((ﬁ))

= k<

Using the upper bound from Claim 14, we conclude it suffices to choose k to satisfy

k< ((8A)*! — (8A)! — 1) log(64rA) - ”f. (3.3)




To choose k to simultaneously satisfy the two cases, we first verify that the lower and upper bound
for k in Eq. (3.2) and Eq. (3.3) are consistent. Indeed when i # 0, we have

38a)y +1)A <

. ((8A)*! — (8A) — 1),

e

so we may choose k to be equal to the lower bound. If i = 0, then the lower bound from Eq. (3.2)
does not apply, so we choose k to be equal to the upper bound. O

For any established choice of k, we always have k < (8A)2 log(64rA)rA/r. Moreover, we have
logm; < (8A)2 log(64rA). We conclude that

AllB] 1

Egr~p, ||&NR|—16r) |€;NR]|| >
i#i
> exp(~A%®) - /1 - logr)|Al|B,

Then any R attaining this expectation will simultaneously satify |R| > exp(—AP®) .\ /r-log )| A||B|
and be (1 — 1&)-monochromatic. O

4 Proof of Theorem 1

By Lemma 8, we know any submatrix S of M contains a (1 — l—ér)—monochromatic rectangle of size

exp(—AP®) .\ /r - logr)|S|. Therefore, by Lemma 7, S contains a monochromatic rectangle of size
éexp(—AO(A) - /T -logr)|S|. We substitute §(r) = APV in Temma 4 to get

logr
CC*'(M) < © (IOgA + log?r + Z 5(r/2i)> :

=0

The summation simplifies as follows:

logr logr
; 5(r/2) = ; AOB) /7. 9712 og (21)

logr

< A% frlogr - Z 2712,
i=0

where the sum converges. We ignore the lower order terms in the communication complexity
expression to conclude

Ot (M) < 0 (AO<A>ﬁlog r) .
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