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Abstract

We show that any bounded integral function f : A × B 7→ {0, 1, . . . ,∆} with rank r has

deterministic communication complexity ∆O(∆) · √r · log r, where the rank of f is defined to be

the rank of the A × B matrix whose entries are the function values. As a corollary, we show

that any n-dimensional polytope that admits a slack matrix with entries from {0, 1, . . . ,∆} has

extension complexity at most exp(∆O(∆) · √n · log n).

1 Introduction

In classical communication complexity, two players, Alice and Bob, are given a Boolean function
f : A × B 7→ {0, 1}, as well as separate inputs a ∈ A and b ∈ B, and wish to compute f(a, b)
while minimizing the total amount of communication. Alice and Bob have unlimited resources for
pre-computations and agree on a deterministic communication protocol to compute f before receiving
their respective inputs. The length of their protocol is defined to be the maximum number of bits
exchanged over all possible inputs. The deterministic communication complexity of f , denoted by
CCdet(f), is the minimum length of a protocol to compute f .

A major open problem in communication complexity is the log-rank conjecture proposed by
Lovász and Saks [LS88], which asks if CCdet(f) f (log r)O(1) for all Boolean functions f of rank r,
where the rank of a two-party function f on A×B is defined to be the rank of the matrix M ∈ R

A×B

with Ma,b = f(a, b) for all (a, b) ∈ A×B. The best upper bound currently known is due to Lovett
[Lov16], who showed CCdet(f) f O(

√
r log r) using discrepancy theory techniques.

In this work, we obtain similar deterministic communication complexity bounds for a larger class
of functions:

Theorem 1 (Main result, communication complexity). Let f : A×B 7→ {0, 1, . . . ,∆} be a bounded
integral function of rank r. Then there exists a deterministic communication protocol to compute f
with length at most ∆O(∆) · √r · log r bits.

The function f can be directly viewed as a non-negative matrix M ∈ {0, . . . ,∆}A×B of rank
r. We use the matrix representation exclusively in the remainder of this paper. Let us adopt the
convention that a rectangle in M is a (non-contiguous) submatrix M[A′, B′] indexed by some A′ ¦ A
and B′ ¦ B. A rectangle is monochromatic with color i if all entries in the rectangle have value i.
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The non-negative rank of a non-negative matrix M, denoted by rank+(M), is defined as the
minimum r such that M can be written as the sum of r non-negative rank-1 matrices, or equivalently,
as M = UV for non-negative matrices U ∈ R

A×r
g0 and V ∈ R

r×B
g0 . It is straightforward to see

rank+(M) f 2CCdet(M) (c.f. Rao and Yehudayoff [RY20], Chapter 1, Theorem 1.6): The protocol

tree to compute M has at most 2CCdet(M) leaves, each corresponding to a monochromatic rectangle
of M. These rectangles are disjoint over all leaves, and their union is M. Since a monochromatic
rectangle is a non-negative matrix of rank 0 or 1, we conclude that M can be written as a
sum of at most 2CCdet(M) rank-1 non-negative matrices. The positive semidefinite rank of M,
denoted by rankpsd(M), generalizes non-negative rank and has an analogous relationship to quantum
communication complexity [FGP+15]. It is defined as the minimum r such that there are positive
semidefinite matrices U1, . . .UA and V1, . . . ,VB of dimension r × r satisfying Mi,j = Tr(UiVj)
for all i, j; trivially, rankpsd(M) f rank+(M). Barvinok [Bar12] showed that if M has at most k

distinct entries, as is the setting studied in this paper, then rankpsd(M) f
(k−1+rank(M)

k−1

)

.
Non-negative rank brings us to a beautiful connection with extension complexity, introduced

in the seminal work of Yannakakis [Yan88] in the context of writing combinatorial optimization
problems as linear programs. The extension complexity of a polytope P, denoted xc(P), is defined
as the minimum number of facets of some higher dimensional polytope Q (its extended formulation)
such that there exists a linear projection of Q to P .

A foundational theorem from [Yan88] states that xc(P) = rank+(S), where S is the slack matrix
of P, defined as follows: Suppose P has facets F and vertices V. Then S is a non-negative F × V
matrix, where the (f, v)-entry indexed by facet f ∈ F defined by the halfspace a¦x f b and vertex
v ∈ V has value Sf,v = b − a¦v. (A facet may be defined by many equivalent halfspaces, and
therefore the slack matrix is not unique; the result holds for all valid slack matrices.) In fact, [Yan88]
showed that a factorization of S with respect to non-negative rank gives an extended formulation of
P and vice versa. For a comprehensive preliminary survey, see [CCZ10]. A number of breakthrough
results in extended complexity in recent years emerged from lower-bounding the non-negative rank
of the slack matrix for specific polytopes, such as the TSP, Cut, and Stable-Set polytopes
by Fiorini-Massar-Pokutta-Tiwary-De Wolf [FMP+15], and the Perfect-Matching polytope by
Rothvoss [Rot17].

Connecting extension complexity to deterministic communication complexity via non-negative
rank, we have:

Corollary 2 (Main result, extension complexity). Let P be a n-dimensional polytope that admits
slack matrix S. Suppose the entries of S are integral and bounded by ∆. Then the extension complexity
of P is at most exp(∆O(∆) · √n · log n).

Proof. Since P is n-dimensional, we know S has rank at most n, as there are at most n linearly
independent vertices of P , and the slack of a vertex with respect to all the facets is a linear function.
We combine the theorem of [Yan88] and Theorem 1 for the overall conclusion.

Our proof follows the approach discussed in the note of Rothvoss [Rot14] simplifying Lovett’s
result. The following lemma shows that there are indeed concrete polytopes for which our result
applies:

Lemma 3. Suppose there are polytopes P ¦ Q ¦ R
n where P = conv{x1, . . . ,xv} and Q = {x ∈

R
n : Ax f b} with A ∈ R

f×n. Suppose the partial slack matrix S ∈ R
f×v with Si,j = bi −Aixj for

i ∈ [f ], j ∈ [v] is integral and bounded by ∆. Then there exists a polytope K with extension complexity
at most exp(∆O(∆) · √n · log n) so that P ¦ K ¦ Q.
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Proof. From above, we have rank+(S) f exp(∆O(∆) · √n · log n). Moreover, it is well-known that

s
def
= rank+(S) is the extension complexity of some polytope K such that P ¦ K ¦ Q. (It is in fact

the minimum extension complexity over all such sandwiched polytopes.) The conclusion follows.
For completeness, we show the latter fact: Suppose S = UV is a non-negative factorization of S

with U ∈ R
f×s
g0 and V ∈ R

s×v
g0 . Let Klift def

= {(x,y) ∈ R
n+s : Ax+Uy = b,y g 0}, and let K be the

projection of Klift onto the first n coordinates. It is immediately clear that K ¦ Q, and xc(K) f s
by definition. For each j ∈ [v], the point xj satisfies Axj +S

j = b, where S
j is the j-th column of S

given by UVej . It follows that (xj ,Vej) ∈ Klift, so xj ∈ K. As this holds for each x1, . . . ,xv, we
conclude P ¦ K.

We give a direct example in a combinatorial optimization setting: Consider the k-Set-Packing

problem, where we are given a collection of n sets S1, . . . , Sn ¦ [N ] with N k n, and want to
find a maximum subcollection such that each element j ∈ [N ] is contained in at most k sets. The
k-Set-Packing polytope P is is the convex hull of all feasible subcollections of sets, given by

P = conv
{

x ∈ {0, 1}n :
∑

i:j∈Si

xi f k ∀j ∈ [N ]
}

.

Its natural LP relaxation Q is

Q =
{

x ∈ [0, 1]n :
∑

i:j∈Si

xi f k ∀j ∈ [N ]
}

.

In the regime where N k n, a priori, the extension complexity of P and Q could be as large as N .
But interestingly, let S be the partial slack matrix with respect to P and Q as defined in Lemma 3.
Then S contains integral values in {0, . . . , k}, and so we conclude there exists a sandwiched polytope
P ¦ K ¦ Q with xc(K) f exp(kO(k) · √n · log n).

2 Communication protocol

In this section, we give a deterministic communication protocol for a bounded integral matrix S

assuming it has the crucial property that any submatrix contains a large monochromatic rectangle.
The protocol is based on the protocol from Nisan and Widgerson [NW95] that is expanded on by
Lovett [Lov16].

Lemma 4. Let 0 < δ < 1. Let M ∈ {0, 1, . . . ,∆}A×B be a bounded integral matrix with rank r,

and suppose for any submatrix S
def
= M[A′, B′] where A′ ¦ A and B′ ¦ B, there is a monochromatic

rectangle in S of size g exp(−δ(r))|A′||B′| for some function δ of r. Then,

CCdet(M) f Θ

(

log∆ + log2 r +

log r
∑

i=0

δ(r/2i)

)

.

We begin by proving two helper lemmas relating to M and the rank of its submatrices, which we
subsequently use to bound the communication complexity.

Lemma 5. Let A,B,C,R be matrices of the appropriate dimensions, and let R have rank 0 or 1.
Then

rank

(

R

B

)

+ rank
(

R A
)

f rank

(

R A

B C

)

+ 3.
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Proof. We use a sequence of elementary rank properties:

rank

(

R A

B C

)

+ 1 g rank

(

0 A

B C

)

g rank(A) + rank(B)

g rank
(

R A
)

+ rank

(

R

B

)

− 2.

Lemma 6. Suppose the rank of M ∈ {0, 1, . . . ,∆}A×B is r. Then M contains at most (∆ + 1)r

different rows and columns.

Proof. We show the argument for rows: Let U ∈ {0, . . . ,∆}A×r denote a submatrix of M consisting
of r linearly independent columns of M. Clearly U has at most (∆+ 1)r different rows. If row i and
row j of U are identical, then row i and j of M are also identical, since by definition of rank, the
columns of M are obtained by taking linear combinations of columns of U.

Now, we can design a communication protocol to compute M using standard techniques. Without
loss of generality, we may assume M does not contain identical rows or columns, so that the conclusion
of Lemma 6 can be applied.

of Lemma 4. Suppose Alice has input a ∈ A and Bob has b ∈ B. Then Alice and Bob compute Ma,b

by recursively reducing the matrix M to a smaller submatrix in one of two ways: they communicate
the bit 0 which guarantees a decrease in rank in the resulting submatrix, and the bit 1 which
guarantees a decrease in size.

Let S denote the submatrix to be considered at a recursive iteration. Alice and Bob begin with
S

def
= M. During a recursive iteration, they first write S in the form

S =

(

R A

B C

)

,

where R denote the large monochromatic rectangle in S that is guaranteed to exist, with |R| g
exp(−δ(r))|S|. By Lemma 5, either rank

(

R A
)

f 1
2rank(S) +

3
2 , or rank

(

R B
)

f 1
2rank(S) +

3
2 .

In the first case, Alice communicates. If her input row a is in the upper submatrix of S, Alice
sends the bit 0, and both Alice and Bob update S =

(

R A
)

. On the other hand, if row a is in
the lower submatrix of S, Alice sends the bit 1, and they both update S =

(

B C
)

. In the second
case, Bob communicates. If his input column b is in the left submatrix of S, Bob sends 0, and they

update S =

(

R

B

)

. Otherwise, Bob sends 1, and they update S =

(

A

C

)

. If S has size 1, Alice can

simply output the entry of S, which is precisely Ma,b.
Consider the communication protocol up until the rank of S is halved (i.e., when the first 0 bit is

communicated): The protocol tree has at most Θ
(

− log |S|
log(1−exp(−δ(r)))

)

= Θ
(

r log(∆+1)
exp(−δ(r))

)

-many leaves

at this point, which is the max number of 1 bits that could have been communicated. Standard
balancing techniques (c.f.[RY20, Chapter 1, Theorem 1.7]) then allow us to balance the protocol tree;
combined with the bound |S| f (∆ + 1)2r by Lemma 6, we conclude that there exists a protocol of
length O(log r + log log(∆ + 1) + δ(r)).

Next, consider the phase where the protocol continues until the rank drops from r/2 to r/4.
Note that we may assume the submatrix at the start of this phase has unique rows and columns,
as Alice and Bob has unlimited computation at the start. Then this phase can be simulated by a
protocol of length O(log(r/2) + log log(∆ + 1) + δ(r/2)). We proceed in the same fashion where at
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phase i, the rank drops from r/2i to r/2i+1. Summing over i = 0, . . . , log r, we get that the total
protocol length is at most

log r
∑

i=0

(

log
( r

2i

)

+ log log(∆ + 1) + δ
( r

2i

))

f log2 r + log r log log(∆ + 1) +

log r
∑

i=0

δ
( r

2i

)

.

In the base case, S has rank 1 or 2. Suppose it has rank 2, and let S = uv¦ + u′v′¦ be a
factorization, where u and u′ are two linearly independent columns of S. Then Alice sends ua and
u′
a, which Bob uses to compute uavb + u′

av
′
b = Sa,b = Ma,b. Since u and u′ are columns of S, their

entries take values from {0, 1, . . . ,∆}, so Alice communicates O(log∆) bits in total. Finally we can
omit the term log r log log(∆ + 1) as it is dominated by log2 r + log∆.

3 Finding large monochromatic rectangles

In this section, we show that the assumption for applying the communication protocol from Section 2
does indeed hold. That is, any bounded integral matrix contains a sufficiently large monochromatic
rectangle.

We first reduce the problem of finding large monochromatic rectangles to finding almost-
monochromatic rectangles. We say a rectangle is (1− ε)-monochromatic if at least a (1− ε)-fraction
of its entries have the same value.

Lemma 7. Suppose M ∈ R
A×B has rank r g 1, and is (1− 1

16r )-monochromatic with color α. Then

M contains a monochromatic rectangle of size g |A||B|
8 .

Proof. Let us call a column of M bad if it contains at least 1
8r |A|-many non-α entries. By Markov’s

inequality, at most half the columns are bad. Let B′ ¦ B be the remaining good columns, where each
contains at least (1− 1

8r )|A|-many α entries. Let B′′ ¦ B′ be a maximal set of linearly independent
good columns. We know |B′′| f r as the rank of M is r.

Let U = M[A,B′′]. Since each column in B′′ contains at most 1
8r |A|-many non-α entries, there

are at most r · 1
8r |A| rows of U that contain non-α entries. Let A′ denote the |A| − 1

8 |A| g 1
2 |A| rows

of U that contain only α entries. So M[A′, B′′] contains only α entries.
Let T = M[A′, B′]. Since the columns in B′ are linear combinations of columns in B′′, each

column of T must be of the form β1 for some β. Finally, we know |T| = |A′||B′| g 1
4 |A||B|, and

there are at most 1
16r |A||B| non-α entries in M in total, so at least half the columns of T must have

value α.

Now, it remains to show that we can find large almost-monochromatic rectangles.

Lemma 8. Let M ∈ {0, 1, . . . ,∆}A×B be a bounded integral matrix of rank r. Then M contains a
(1− 1

16r )-monochromatic rectangle of size at least |A||B| · exp(−∆O(∆) · √r · log r).

To prove Lemma 8, we first define a distribution D over the rectangles of M, and then use the
probabilistic method with respect to D to show that there exists a large enough almost-monochromatic
rectangle. We begin with the technical ingredients:
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Definition 9 (Factorization norm). For a matrix M ∈ R
A×B, define its γ2-norm as

γ2(M)
def
= min{R g 0 : there are families of vectors {ua}a∈A, {vb}b∈B so that

Ma,b = ïua,vbð and ∥ua∥2∥vb∥2 f R for all a, b}.

In other words, γ2(M) gives the Euclidean length needed to factor the matrix M. Note that by
rescaling the ua’s and vb’s, it is straightforward to guarantee ∥ua∥2 f

√
R and ∥vb∥2 f

√
R for all

a, b in the definition. Here ua,ub are vectors of any dimension (of course one may choose ua,ub to
have dimension rank(M)). The terminology γ2-norm or factorization norm is indeed justified as γ2
is a norm on the space of real matrices.

The following lemma is well-known:

Lemma 10 (Lemma 4.2, [LMSS07]). Any matrix M ∈ R
A×B satisfies γ2(M) f ∥M∥∞ ·

√

rank(M).

It will be convenient for us to factor M with vectors of the same Euclidean length, which comes
at the expense of the dimension:

Lemma 11. For any matrix M ∈ R
A×B and s g

√

γ2(M), there are vectors {ua}a∈A, {vb}b∈B such
that Ma,b = ïua,vbð and ∥ua∥2 = ∥vb∥2 = s for all a ∈ A and b ∈ B.

Proof. Construct vectors ua,vb each with 2-norm ∥ua∥2, ∥vb∥2 f s and Ma,b = ïua,vbð using
Lemma 10. Then add |A|+ |B| new coordinates, where each ua and vb receives a “private” coordinate.
Set the private coordinate of ua to

√

s2 − ∥ua∥22, and similarly for vb.

We denote Nn(0, 1) as the n-dimensional standard Gaussian. Let Sn−1 def
= {x ∈ R

n : ∥x∥2 = 1}
be the n-dimensional unit sphere. The following argument is usually called hyperplane rounding in
the context of approximation algorithms:

Lemma 12 (Sheppard’s formula). Any vectors u,v ∈ Sn−1 with ïu,vð = α satisfy

Pr
g∼Nn(0,1)

[ïg,uð g 0 and ïg,vð g 0] = h(α)
def
=

1

2

(

1− arccos(α)

π

)

.

More generally, any vectors u,v ∈ R
n \ {0} satisfy

Pr
g∼Nn(0,1)

[ïg,uð g 0 and ïg,vð g 0] = h

( ïu,vð
∥u∥2∥v∥2

)

.

We can now define a suitable distribution over the rectangles of M using the above tools. In
particular, we want the probability that a rectangle contains an entry to be a function of the entry
value.

Lemma 13. Let M ∈ {0, 1, . . . ,∆}A×B be a bounded integral matrix of rank r. Then for any k,
there is a distribution Dk over the rectangles of M so that for all a ∈ A and b ∈ B,

Pr
R∼Dk

[(a, b) ∈ R] =

(

h

(

Ma,b

∆
√
r

))k

,

where h is the function defined in Lemma 12.
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Proof. We use Lemma 11 to factor M, which gives vectors ua,vb for all a ∈ A and b ∈ B, such
that Ma,b = ïua,vbð, and ∥ua∥2 = ∥vb∥2 = ∆1/2r1/4. Then we sample independent Gaussians
g1, . . . , gk ∼ Nn(0, 1) and set

Ri
def
= {a ∈ A : ïua, gið g 0} × {b ∈ B : ïvb, gið g 0},

and then R
def
= R1 ∩ · · · ∩Rk. Note that R is indeed a rectangle. For each i and each (a, b) ∈ A×B

we have

Pr[(a, b) ∈ Ri] = h

( ïua,vbð
∥ua∥2∥vb∥2

)

= h

(

Ma,b

∆
√
r

)

.

The overall expression follows by independence of the k rectangles.

Finally, we use the above distribution to show the existence of large almost-monochromatic
rectangles.

of Lemma 8. Let E0 ∪̇ · · · ∪̇ E∆ be the partition of the entries A×B based on entry values, so that
Ej def

= {(a, b) ∈ A × B : Ma,b = j}. Let mj
def
= (64r∆)(8∆)j for each j = 0, . . . ,∆, and let i be the

index such that mi · |Ei| is maximized. From this, we also get

|M| = |A| · |B| =
∆
∑

j=0

|Ej | f
∆
∑

j=0

mi

mj
|Ei| f mi|Ei|. (3.1)

For notational convenience, recall h(α)
def
= 1

2

(

1− arccos(α)
π

)

, and let c(j)
def
= h

(

j
∆
√
r

)

. We

observe that on [0, 1], the function h is convex, monotone increasing, lowerbounded by h(0) = 1/4,
upperbounded by h(1) = 1/2, and h′(α) = 1

2π
√
1−α2

g 1
2π . Additionally, the following claim about c

will be useful for our calculations later:

Claim 14.
c(j)

c(j−1) g 1 + 4
3π∆

√
r

for 1 f j f ∆. Also, c(∆)
c(0) f 1 + 4

π
√
r
.

Proof. We may assume r g 2. We use first order approximations for c. For the first inequality, we
also use the fact that c(j − 1) f 3/8:

c(j)

c(j − 1)
g c(j − 1) + c′(j − 1)

c(j − 1)
g 1 +

1

2π∆
√
r · c(j − 1)

g 1 +
4

3π∆
√
r
.

For the second inequality, we have

c(∆)

c(0)
f c(0) + ∆ · c′(∆)

c(0)
= 1 +

4∆

∆
√
r · 2π

√

1− 1/r
f 1 +

4

π
√
r
.

Next, let Dk be the distribution from Lemma 13, and generate R ∼ Dk for some choice of k to be
determined. We will show that there exists a k such that R is expected to be (1− 1

16r )-monochromatic
with color i, and is sufficiently large. Specifically, the number of i-entries in R is greater than the
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number all other entries in R by a factor of 16r in expectation, and moreover, this difference is
sufficiently large, which in turn means R is sufficiently large.

ER∼Dk



|Ei ∩R| − 16r
∑

j ̸=i

|Ej ∩R|





= |Ei| · c(i)k − 16r
∑

j ̸=i

c(j)k|Ej | (by Lemma 13)

g |Ei| · c(i)k


1− 16r
∑

j ̸=i

c(j)kmi

c(i)kmj





Suppose c(j)kmi

c(i)kmj
f 1

64r∆ for each j ̸= i, then we can conclude

g |Ei| · 4−k(1− 1

4
) (Since c(i) g 1

4)

g |A||B|
mi

1

2 · 4k . (by Eq. (3.1))

Claim 15. There exists a choice of k such that c(j)kmi

c(i)kmj
f 1

64r∆ for all j ̸= i.

Proof. We consider two cases:

(1) 0 f j < i: In this case we can bound c(j)kmi

c(i)kmj
f
(

c(i−1)
c(i)

)k
mi

m0
. To get our claim, it suffices to

choose k to satisfy

(

c(i− 1)

c(i)

)k mi

m0
f 1

64r∆

⇐ k g ((8∆)i + 1) log(64r∆)

log c(i)
c(i−1)

.

Using the lower bound from Claim 14, along with log(1 + x) g x/2 for x f 1, we conclude it
suffices to choose k to satisfy

k g ((8∆)i + 1) log(64r∆) · 3
2
π∆

√
r. (3.2)

(2) i < j f ∆: In this case we can bound c(j)kmi

c(i)kmj
f
(

c(∆)
c(0)

)k
mi

mi+1
. To get our claim, it suffices to

choose k to satisfy

(

c(∆)

c(0)

)k mi

mi+1
f 1

64r∆

⇐ k f ((8∆)i+1 − (8∆)i − 1) log(64r∆)

log c(∆)
c(0)

.

Using the upper bound from Claim 14, we conclude it suffices to choose k to satisfy

k f ((8∆)i+1 − (8∆)i − 1) log(64r∆) · π
√
r

4
. (3.3)
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To choose k to simultaneously satisfy the two cases, we first verify that the lower and upper bound
for k in Eq. (3.2) and Eq. (3.3) are consistent. Indeed when i ̸= 0, we have

3

2
((8∆)i + 1)∆ f 1

4
((8∆)i+1 − (8∆)i − 1),

so we may choose k to be equal to the lower bound. If i = 0, then the lower bound from Eq. (3.2)
does not apply, so we choose k to be equal to the upper bound.

For any established choice of k, we always have k f (8∆)∆ log(64r∆)π∆
√
r. Moreover, we have

logmi f (8∆)∆ log(64r∆). We conclude that

ER∼Dk



|Ei ∩R| − 16r
∑

j ̸=i

|Ej ∩R|



 g |A||B|
mi

1

2 · 4k

g exp(−∆O(∆) ·
√
r · log r)|A||B|,

Then any R attaining this expectation will simultaneously satify |R| g exp(−∆O(∆) ·√r · log r)|A||B|
and be (1− 1

16r )-monochromatic.

4 Proof of Theorem 1

By Lemma 8, we know any submatrix S of M contains a (1− 1
16r )-monochromatic rectangle of size

exp(−∆O(∆) · √r · log r)|S|. Therefore, by Lemma 7, S contains a monochromatic rectangle of size
1
8exp(−∆O(∆) · √r · log r)|S|. We substitute δ(r) = ∆O(∆)

√
r log r in Lemma 4 to get

CCdet(M) f Θ

(

log∆ + log2 r +

log r
∑

i=0

δ(r/2i)

)

.

The summation simplifies as follows:

log r
∑

i=0

δ(r/2i) =

log r
∑

i=0

∆O(∆)√r · 2−i/2 · log
( r

2i

)

f ∆O(∆)√r log r ·
log r
∑

i=0

2−i/2,

where the sum converges. We ignore the lower order terms in the communication complexity
expression to conclude

CCdet(M) f Θ
(

∆O(∆)√r log r
)

.
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