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Lp regularity of the Bergman projection on
the symmetrized polydisc

Zhenghui Huo and Brett D. Wick

Abstract. We study the Lp regularity of the Bergman projection P over the symmetrized polydisc

in C
n . We give a decomposition of the Bergman projection on the polydisc and obtain an operator

equivalent to the Bergman projection over antisymmetric function spaces. Using it, we obtain the

Lp irregularity of P for p = 2n
n−1

which also implies that P is Lp bounded if and only if p ∈ ( 2n
n+1

, 2n
n−1
).

1 Introduction

Let Ω be a domain in the complex Euclidean space Cn . Let dV denote the Lebesgue
measure. |e Bergman projection PΩ is the orthogonal projection from L2(Ω) onto
the Bergman space A2(Ω), the space of all square-integrable holomorphic functions.
Associated with PΩ , there is a unique function KΩ on Ω × Ω such that for any
f ∈ L2(Ω):

PΩ( f )(z) = ∫
Ω
KΩ(z; w̄) f (w)dV(w).(1.1)

|e positive Bergman operator P+Ω is given by

P+Ω( f )(z) = ∫
Ω

∣KΩ(z; w̄)∣ f (w)dV(w).(1.2)

By its deonition, the Bergman projection is L2 bounded. An active area of research in
several complex variables and harmonic analysis considers the Lp regularity of PΩ for
p ≠ 2. In particular, people are interested in the connection between the boundary
geometry of pseudoconvex domains and the Lp behavior of the projection. On a
wide class of domains, the Bergman projection is Lp regular for all 1 < p < ∞ (see,
for instance, [BŞ12, CD06, EL08, Fef74, McN89, McN94a, McN94b, MS94, NRSW88,
PS77]). On some other domains, the projection has only a onite range of mapping
regularity (see, for example, [BCEM22, Che17, CJY20, CKY20, CZ16, EM16, EM17,
Zey13]). We also refer to [Zey20] for a survey on the problem.
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2 Z. Huo and B. D. Wick

In this article, we focus on the Bergman projection on the symmetrized
polydiscGn . Let Dn denote the polydisc in C

n . Let Φn be the rational holomorphic
mapping on C

n given by Φn(w1 , . . . ,wn) = (p1(w), . . . , pn(w)), where p j(w) is the
symmetric polynomial in w of degree j:

p j(w1 ,w2 , . . . ,wn) = ∑
k1<k2<⋅⋅⋅<k j

wk1wk2 . . .wk j
.

|e symmetrized polydiscGn is the image of Dn under Φn :

G
n ∶= {(p1(w), . . . , pn(w)) ∶ w ∈ Dn}.(1.3)

When n = 2, the symmetrized bidisc

G ∶= G
2 = {(w1 +w2 ,w1w2) ∶ (w1 ,w2) ∈ D2}(1.4)

serves as an interesting example in several complex variables. It is a orst known
example of many phenomena. We list some of them here below:

• |e Lempert theorem may hold on bounded pseudoconvex domains that are not
biholomorphically equivalent to any convex domains [AY04].

• Bounded C-convex domains are not necessarily biholomorphically equivalent to
convex ones [NPZ08].

See also [ALY18, AY00, Sar15] for some recent work onG.
In addition, the symmetrized polydisc Gn also serves as an example of a quotient

domain and is biholomorphically equivalent to D
n/Sn , where Sn is the group of

permutations of n coordinate variables in C
n . See [DM23, Gho21] for some recent

studies regarding Bergman projections over quotient domains of the form Ω/G.
Partially due toG2’s interesting properties, the Lp regularity of PG2 and PGn has also

attracted attention in recent years. In [CKY20], Chen, Krantz, and Yuan showed that

PGn is Lp bounded for p ∈ (1 + n−1√
n2−1 , 1 + √n2−1

n−1 ). Later, Chen, Jin, and Yuan [CJY20]

improved the Lp regular range of PG to (4/3, 4) and established the Sobolev estimates
for PG. While preparing this article, the authors were informed of a discrepancy
between the arXiv version of [CJY20] and the version those authors submitted to
a journal for publication. In a recent update of [CJY20] posted to the arXiv, the
range of Lp regularity for the symmetrized polydisc is at least ( 2n

n+1 ,
2n
n−1), see [CJY23,

Remark 1.5]. |e main idea in the proof of these results is to use Bell’s transformation
formula [Bel81] to reformulate the Lp regularity problem of PGn into a weighted Lp

regularity problem of PDn over a weighted Lp space of antisymmetric functions. Yet,
the precise Lp regular range for PGn was not previously known.

|ere are mainly two challenges on obtaining the sharp Lp estimates of PGn : 1. the
complexity of the Jacobian of (p1 , . . . , pn) for large n dimension makes estimations
complicated. 2. |e cancellation caused by integrating antisymmetric functions cre-
ates obstacles to precisely analyze the (un)boundedness of the operator. To us, the
second issue is more crucial and distinguishes the problem onG

n from other settings
like the Hartogs triangle. Actually, this issue leads to an interesting yet nontrivial
weighted inequality problem in harmonic analysis. We elaborate below using a simple
analogical example:
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Lp regularity of the Bergman projection on the symmetrized polydisc 3

Let T be a singular integral operator on Lp(R2). Set
L
p
anti(R2 , ∣x1 − x2∣a) ∶= { f ∈ Lp(R2 , ∣x1 − x2∣a) ∶ f (x1 , x2) = − f (x2 , x1)}.

For which p is the operator T bounded on L
p
anti(R2 , ∣x1 − x2∣a)?

From the classical weighted theory, the singularity of the weight function ∣x1 − x2∣a
over the line {x1 = x2} may cause unboundedness issue for T over Lp(R2 , ∣x1 − x2∣a).
On the other hand, the antisymmetry property f (x1 , x2) = − f (x2 , x1) implies that for
any U ⊆ R,

∫
U×U

f dV = 0,

suggesting possible better behavior of T on the subspace L
p
anti(R2 , ∣x1 − x2∣a) than on

the entire weighted Lp space. Nevertheless, the usual harmonic analysis methods for
weighted Lp cannot be directly applied to this subspace case.

In this article, we overcome these issues onGn and give the precise Lp regular range
for PGn and P+

Gn :

|eorem 1.1 PGn and P+
Gn are Lp bounded if and only if p ∈ ( 2n

n+1 ,
2n
n−1 ).

When n = 2, PG is Lp bounded if and only if p ∈ ( 4
3
, 4). In contrast to this result,

Dall’Ara and Monguzzi [DM23] recently showed that, if one replaces D2 by unit ball
B2 in (1.4), the Bergman projection over the newly formed domain {(w1 +w2 ,w1w2) ∶(w1 ,w2) ∈ B2} will possess completely diferent Lp mapping properties. In particular,
they proved the following:

Set D2k ∶= {(w2k

1 +w2k

2 ,w1w2) ∶ (w1 ,w2) ∈ B2}with k ∈ N ∪ {0}. |en the
Bergman projection on D2k is L

p bounded for all p ∈ (1,∞).
Our computations suggest that the distinction between results on G and D2k is

caused by the product structure of D2. It is yet to be investigated on what exact
geometric property of these domains will determine the Lp mapping behaviors of the
projection over them.

Our proof strategy of |eorems 1.1 can be summarized as follows:

(1) Similar to [CJY20, CKY20], we reformulate |eorem 1.1 into a weighted Lp

regularity result of PDn for antisymmetric functions on the polydisc D
n (see

|eorems 2.4 and 2.3).
(2) We prove in detail the Lp boundedness results for p ∈ ( 2n

n+1 ,
2n
n−1) using known

weighted estimates on the polydisc (see |eorem 2.3, Section 3, and [CJY23,
Remark 1.5]).

(3) To obtain the unboundedness result for the case p = 2n
n−1 , we decompose PDn into

the sum of two operators Tn
1 and Tn

2 (see (4.5) and (4.6)), where Tn
1 = 0 and

Tn
2 = PDn over spaces of antisymmetric functions (see Lemmas 4.1 and 4.3).

(4) By using Tn
2 , we further reduce the (un)boundedness problem of PDn over a

space of antisymmetric functions into a problem about an operator T̃n over
a diferent space of symmetric functions. Finally, we provide examples for the
unboundedness of T̃n there (see |eorems 4.2 and 4.4 and their proofs).

We remark that the decomposition PDn = Tn
1 + Tn

2 is crucial in our proof. Using the
kernel function of Tn

2 , we are able to <cancel out= part of the weight of the space,
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4 Z. Huo and B. D. Wick

transform the problem from an antisymmetric function space to a symmetric one,
and reduce norm computation dioculty in n-dimensional case all at once.

Our article is organized as follows: In Section 2, we provide known lemmas
and reduce Lp estimates of PGn and P+

Gn into weighted Lp estimates of PDn for
(anti)symmetric functions. In Section 3, we recall the known weighted Lp norm esti-
mates of PD and give a detailed proof for the Lp boundedness result for PGn and P+

Gn .
In Section 4, we present the decomposition of PDn and examples for the Lp irregularity
of PGn for p = 2n

n−1 . In Section 5, we point out some directions for future research.
Given functions of several variables f and g, we use f ≲ g to denote that f ≤ Cg for

a constant C. If f ≲ g and g ≲ f , then we say f is comparable to g and write f ≈ g.

2 Pull back from Gn to Dn

|is section focuses on reformulating the Lp regularity of PGn into a problem on the
polydisc Dn . Most of the lemmas and results were included in [CJY20, CKY20]. We
provide proofs here for completeness of our article.

2.1 From G
n to D

n

Recall that Φn(w) = (p1(w), p2(w), . . . , pn(w)), where
p j(w1 ,w2 , . . . ,wn) = ∑

k1<k2<⋅⋅⋅<k j

wk1wk2 . . .wk j
.

|en Φn is a ramioed rational proper covering map of order n! with complex
holomorphic Jacobian

JCΦn = ∏
j<k

(w j −wk)
(see, for example, [CKY20]). Let h ∈ Lp(Gn). Via a change of variables, the estimate

∥PGn(h)∥Lp(Gn) ≲ ∥h∥Lp(Gn)

is equivalent to

∥PGn(h) ○ Φn∥Lp(Dn ,∣JCΦn ∣2) ≲ ∥h ○ Φn∥Lp(Dn ,∣JCΦn ∣2).(2.1)

Using the Bell’s transformation formula [Bel81],

PDn(JCΦn ⋅ (h ○ Φn)) = JCΦ ⋅ (PGn(h) ○ Φn),
(2.1) becomes the following weighted estimate:

∥PDn(JCΦn ⋅ (h ○ Φn))∥Lp(Dn ,∣JCΦn ∣2−p) ≲ ∥JCΦn ⋅ h ○ Φn∥Lp(Dn ,∣JCΦn ∣2−p).(2.2)

By Bell’s transformation formula for the Bergman kernel,

n!∑
j=1

KDn(z; ϕ j(w))JC(ϕ j)(w) = JCΦn(z)KGn
(Φn(z),w),
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Lp regularity of the Bergman projection on the symmetrized polydisc 5

where ϕ j are the n! local inverses of Φ. |erefore, to show the estimate

∥P+Gn(h)∥Lp(Gn) ≲ ∥h∥Lp(Gn) ,

it is suocient to prove that

∥P+Dn(∣JCΦn ∣ ⋅ (h ○ Φn))∥Lp(Dn ,∣JCΦn ∣2−p) ≲ ∥∣JCΦn ∣ ⋅ h ○ Φ∥Lp(Dn ,∣JCΦn ∣2−p) .(2.3)

Let Sn denote the family of all permutations of {z1 , . . . , zn}. Since Φn is invariant
under any permutation, the function h ○ Φn also inherits symmetry properties. To
clearly describe them, we give several deonitions below. For j, k ∈ {1, . . . , n} with
j < k, we let τ j,k denote the 2-cycle in Sn that interchanges z j and zk . For j = 1, . . . , n,
we will also abuse the notation for τ ∈ Sn and let τ( j) denote the index such that
τ(z j) = zτ( j).

Deonition 2.1 Let f be a function on D
n .

(1) f is called ( j, k) symmetric if f (z1 , . . . , zn) = f ○ τ j,k(z1 , . . . , zn), and is called
symmetric if f (z1 , . . . , zn) = f ○ τ j,k(z1 , . . . , zn) for any j ≠ k.

(2) f is called ( j, k) antisymmetric if f (z1 , . . . , zn) = − f ○ τ j,k(z1 , . . . , zn) and is
called antisymmetric if f (z1 , . . . , zn) = − f ○ τ j,k(z1 , . . . , zn) for any j ≠ k.

By the above deonition, h ○ Φn is symmetric while JCΦn is antisymmetric. |ere-
fore, the function JCΦn ⋅ h ○ Φn is antisymmetric and ∣JCΦn ∣ ⋅ h ○ Φn is symmetric.
It’s also not hard to see that PDn(JCΦn ⋅ (h ○ Φn)) and P+

Dn(JCΦn ⋅ (h ○ Φn)) are
antisymmetric and P+

Dn(∣JCΦn ∣ ⋅ (h ○ Φn)) is symmetric. Set

L
p
anti(Dn , ∣JCΦn ∣2−p) ∶= { f ∈ Lp(Dn , ∣JCΦn ∣2−p) ∶ f is antisymmetric},(2.4)

L
p
sym(Dn , ∣JCΦn ∣2−p) ∶= { f ∈ Lp(Dn , ∣JCΦn ∣2−p) ∶ f is symmetric}.(2.5)

L
p
anti(Dn , ∣JCΦn ∣2−p) and L

p
sym(Dn , ∣JCΦn ∣2−p) turn out to be equivalent to Lp(Gn).

|e next lemma gives the norm equivalence of L
p
anti(Dn , ∣JCΦn ∣2−p),

L
p
sym(Dn , ∣JCΦn ∣2−p), and Lp(Gn). When p = 2, this lemma can be viewed as a

special case of [Try13, |eorem 1].

Lemma 2.2 |e following statements are true:

(1) L
p
anti(Dn , ∣JCΦn ∣2−p) is norm equivalent to Lp(Gn) via the mapping:

f ↦ n!∑
j=1

( f

JCΦ
) ○ ϕ j .(2.6)

(2) L
p
sym(Dn , ∣JCΦn ∣2−p) is norm equivalent to Lp(Gn) via the mapping:

f ↦ n!∑
j=1

( f

∣JCΦn ∣ ) ○ ϕ j .(2.7)

Proof We prove the statement for L
p
anti(Dn , ∣JCΦn ∣2−p). |e proof for

L
p
sym(Dn , ∣JCΦn ∣2−p) is similar. We begin by showing that the mapping in (2.6)
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6 Z. Huo and B. D. Wick

is norm preserving. Since f is antisymmetric, the function
f

JCΦn
is symmetric. |us,

( f

JCΦn
) ○ ϕ j = ( f

JCΦn
) ○ ϕk for any j, k and

∫
Dn

∣ f ∣p ∣JCΦn ∣2−pdV = ∫
Dn

∣ f

JCΦn

∣p ∣JCΦ∣2dV
= n!∑

j=1
∫
ϕ j(Gn)

∣ f

JCΦn

∣p ∣JCΦn ∣2dV

= n!∑
j=1

∫
Gn

∣( f

JCΦn

) ○ ϕ j∣
p

dV

=(n!)1−p ∫
Gn

�����������
n!∑
j=1

( f

JCΦn

) ○ ϕ j

�����������
p

dV .

Note also that h ↦ 1
n!
JCΦn ⋅ h ○ Φn is the inverse of (2.6), the mapping in (2.6) is onto

which completes the proof. ∎
By Lemma 2.2 and the fact that ∣PGn( f )(z)∣ ≤ P+

Gn(∣ f ∣)(z), the next two theorems
are suocient to yield |eorem 1.1.

|eorem 2.3 PDn and P+
Dn are bounded on Lp(Dn , ∣JCΦn ∣2−p) for p ∈ ( 2n

n+1 ,
2n
n−1).

|eorem 2.3 appears as [CJY23, Remark 1.5] with the same range of p.

|eorem 2.4 PDn is unbounded on L
p
anti(Dn , ∣JCΦn ∣2−p) for p = 2n

n−1 .

Last, we reference below the Forelli–Rudin estimates on D which will be used in
the proof of |eorem 2.4 (see, for example, [Zhu05] for its proof).

Lemma 2.5 (Forelli–Rudin) For ε < 1 and z ∈ D, let
aε ,s(z) = ∫

D

(1 − ∣w∣2)−ε
∣1 − zw̄∣2−ε−s dV(w),(2.8)

|en:

(1) for s > 0, aε ,s(z) is bounded on D;
(2) for s = 0, aε ,s(z) is comparable to the function − log(1 − ∣z∣2);
(3) for s < 0, aε ,s(z) is comparable to the function (1 − ∣z∣2)s .

3 Proof of Theorem 2.3

While [CJY23, Remark 1.5] sketches the proof of|eorem 2.3, here we provide all the
relevant details to make the article self-contained (see also [ZY, Corollary 6.1]). |e
main ingredient of the weighted norm estimates of the positive Bergman operator
P+
D
over weighted Lp spaces. On the unit disc D, the boundedness of PD and P+

D
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on weighted Lp spaces is closely related to the Bekollé–Bonami constant of weight
functions. Let Tz denote the Carleson tent over z in the unit discD deoned as below:

• Tz ∶= {w ∈ D ∶ ∣1 − w̄ z
∣z∣ ∣ < 1 − ∣z∣} for z ≠ 0, and

• Tz ∶= D for z = 0.

Bekollé and Bonami [BB78] characterized weighted Lp spaces where PD and P+
D
are

bounded:

|eorem 3.1 (Bekollé–Bonami [BB78]) Let the weight u(w) be a positive, locally
integrable function on the unit disc D. Let 1 < p < ∞. |en the following conditions are
equivalent:

(1) P ∶ Lp(D, u) ↦ Lp(D, u) is bounded.
(2) P+ ∶ Lp(D, u) ↦ Lp(D, u) is bounded.
(3) |e Bekollé–Bonami constant

Bp(u) ∶= sup
z∈D

∫Tz
u(w)dV(w)

∫Tz
dV(w)

⎛
¿

∫Tz
u−

1
p−1 (w)dV(w)

∫Tz
dV(w)

À
⎠
p−1

is onite.

Using dyadic harmonic analysis technique, various authors established quantitative
weighted Lp norm estimates of the Bergman projection (see [HW20b, HWW21, PR13,
RTW17]).

|eorem 3.2 [RTW17, Lemma 15] Let the weight function u be positive, locally
integrable on D. |en for p ∈ (1,∞),

∥PD∥Lp(D,u) ≤ ∥P+D∥Lp(D,u) ≲ (Bp(u))max{1,(p−1)−1}
.

Lemma 3.3 For a oxed point a ∈ D, let up(w) = ∣a −w∣2−p . |en for any p ∈ (4/3, 4),
Bp(up) ≲ 1, where the upper bound is independent of a. Moreover, if we choose arbitrary
m points a1 , . . . , am in D, and set

vp(w) = m∏
j=1

∣a j −w∣2−p ,
then for any p ∈ ( 2m+2

m+2 ,
2m+2
m

), Bp(vp) ≲ 1. Here, the upper bounds may depend on
constants m and p but are independent of a j .

Proof Weorst consider the case of the weight up . Note that up and u
−1/(p−1)
p are inte-

grable on D if and only if p ∈ ( 4
3
, 4). |en, it is enough to show that Bp(∣a −w∣b) ≲ 1

with an upper bound independent of a if both up and u
−1/(p−1)
p are integrable on D.

We consider the integral of up and u
−1/(p−1)
p over Tz for arbitrary z ∈ D. Notice that

Tz = D ∩ {w ∶ ∣w − z
∣z∣ ∣ < 1 − ∣z∣} is the intersection set of the unit disc D and the disc

centered at the point z/∣z∣ with Euclidean radius 1 − ∣z∣. A geometric consideration
then yields that the Lebesgue measure V(Tz) of Tz is comparable to (1 − ∣z∣)2.

If ∣a − z∣ < 3(1 − ∣z∣), then Tz is contained in a ball Ba given by

Ba = {w ∈ C ∶ ∣w − a∣ < 5(1 − ∣z∣)}.
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|us,

∫Tz
up(w)dV(w)
∫Tz

dV(w)
⎛⎜¿

∫Tz
u
− 1

p−1

p (w)dV(w)
∫Tz

dV(w)
À⎟⎠
p−1

≲ ∫Ba
∣w − a∣2−pdV(w) (∫Ba

∣w − a∣(p−2)/(p−1)dV(w))p−1

(1 − ∣z∣)2p
= (5(1 − ∣z∣))4−p ⋅ ((p − 1)(3p − 4)−1(5(1 − ∣z∣))(3p−4)/(p−1))p−1

(4 − p)52p(1 − ∣z∣)2p
= (p − 1)p−1

(4 − p)(3p − 4)p−1 ,

provided up and u
−1/(p−1)
p are integrable. If ∣a − z∣ ≥ 3(1 − ∣z∣), then ∣a −w∣ ≈ ∣a − z∣

for all w ∈ Tz and hence

∫Tz
up(w)dV(w)
∫Tz

dV(w)
⎛⎜¿

∫Tz
u
− 1

p−1

p (w)dV(w)
∫Tz

dV(w)
À⎟⎠
p−1

≲ ∣a − z∣2−p ∫Tz
dV(w)

∫Tz
dV(w)

⎛
¿

∣a − z∣(p−2)/(p−1) ∫Tz
dV(w)

∫Tz
dV(w)

À
⎠
p−1

= 1.

Since the upper bound obtained in both cases are independent of the choice of a
and Tz , we conclude that Bp(up) is bounded above by a constant if and only if
p ∈ (4/3, 4) and the upper bound is independent of a j .

Now we turn to the case of weight vp(w) = ∏m
j=1 ∣a j −w∣2−p . By a similar proof

as above, Bp(∣a −w∣(2−p)m) ≲ 1 for any p ∈ ( 2m+2
m+2 ,

2m+2
m

) where the upper bound is
independent of a. Using Hölder’s inequality, we obtain for any z ∈ D
∫Tz

vp(w)dV(w)
∫Tz

dV(w)
⎛⎜¿

∫Tz
v
− 1

p−1

p (w)dV(w)
∫Tz

dV(w)
À⎟⎠
p−1

≲ ⎛⎜¿
m∏
j=1

⎛
¿

∫Tz
∣a j −w∣m(2−p)dV(w)

∫Tz
dV(w)

À
⎠

1
mp ⎛

¿
∫Tz

∣a j −w∣m(p−2)/(p−1)dV(w)
∫Tz

dV(w)
À
⎠

1
m
− 1

mp À⎟⎠
p

≲ ⎛
¿

m∏
j=1

Bp (∣a j −w∣m(2−p))À
⎠

p

m ≲ 1.

|erefore, Bp(vp) ≲ 1 with upper bound independent of points a j . ∎
With Lemma 3.3, we are ready to show|eorem 2.3:

Proof of |eorem 2.3 Since ∣PDn(h)(z)∣ ≤ P+
Dn(∣h∣)(z) for any h ∈ Lp(Dn ,∣JCΦn ∣2−p), it suoces to show the boundedness for P+

Dn . Note that JCΦn(w) consists
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Lp regularity of the Bergman projection on the symmetrized polydisc 9

of n − 1 many factors of each variable w j . When integrating with respect to the single
variablew j , only these n − 1 factors matter in JCΦn(w). |us the boundedness of P+

Dn

on Lp(Dn , ∣JCΦn ∣2−p) for p ∈ ( 2n
n+1 ,

2n
n−1) follows from Fubini and Lemma 3.3 with

m = n − 1. ∎
4 Proof of Theorem 2.4

We will orst prove the theorem for the case n = 2, clearly illustrating the decomposi-
tion we use for PD2 . |en we dive into the case for general nwhere the decomposition
procedure and estimations are more complicated yet the same strategy applies.

4.1 The case for n = 2

Note that JCΦ2 = w1 −w2. To prove |eorem 2.4, we consider the decomposition
PD2 = T2

1 + T2
2 where

T2
1 ( f )(z1 , z2) = ∫

D2

f (w1 ,w2)dV
π2(1 − z1w̄1)(1 − z2w̄2)(1 − z1w̄2)(1 − z2w̄1) ,(4.1)

T2
2 ( f )(z1 , z2) = ∫

D2

(z1 − z2)(w̄1 − w̄2) f (w1 ,w2)dV
π2(1 − z1w̄1)2(1 − z2w̄2)2(1 − z1w̄2)(1 − z2w̄1) .(4.2)

Lemma 4.1 T2
1 is a zero operator on L

p
anti(D2 , ∣w1 −w2∣2−p).

Proof Note that T2
1 ( f )(z1 , z2) is symmetric by its deonition. For any f ∈ L

p
anti(D2 ,∣w1 −w2∣2−p),

T2
1 ( f )(z1 , z2) = T2

1 (− f )(z2 , z1) = −T2
1 ( f )(z1 , z2),

which implies T2
1 ( f ) = 0. ∎

By Lemma 4.1, PD2 = T2
2 on L

p
anti(D2 , ∣w1 −w2∣2−p). So,|eorem 2.4 can be further

reduced into the following statement in the case n = 2.

|eorem 4.2 T2
2 is unbounded on L

p
anti(D2 , ∣w1 −w2∣2−p) for p = 4 = 2×2

2−1 .

Proof Let T̃2 denote the operator given as follows:

T̃2(h)(z) ∶= (JCΦ2(z))−1T2(hJ̄CΦ2)(z).
|en

T̃2(h)(z) = ∫
D2

(w̄1 − w̄2)2h(w)dV
π2(1 − z1w̄1)2(1 − z2w̄2)2(1 − z1w̄2)(1 − z2w̄1) ,(4.3)

and ∥T2
2 ∥Lp

anti
(D2 ,∣JCΦ2 ∣2−p) = ∥T̃2∥Lp

sym(D2 ,∣JCΦ2 ∣2) provided one of the norms is onite.

|us it suoces to show that T̃2 is unbounded on L
p
sym(D2 , ∣JCΦ2∣2) for p = 4. For

s ∈ [ 1
2
, 1), we set

hs(w) = 1

π(1 − sw1)2 + 1

π(1 − sw2)2 .
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10 Z. Huo and B. D. Wick

|en

∥hs∥4L4
sym(D2 ,∣JCΦ2 ∣2) = ∫

D2
∣ 1

π(1 − sw1)2 + 1

π(1 − sw2)2 ∣
4

∣w1 −w2∣2dV(w)
≲ ∫

D

1

π4∣1 − sw1∣8 ∫
D

∣w1 −w2∣2dV(w2)dV(w1)
≈ (1 − s)−6 ,

where the last equality follows from the Forelli–Rudin estimates (2.8). Note that the
kernel function of T̃2 is anti-holomorphic in w variables and hs can be expressed in
terms the conjugate of the Bergman kernels:

2∑
j=1

1

π(1 − sw j)2 = π (KD2((s, 0); (w̄1 , 0)) + KD2((0, s); (0, w̄2))) .
|e reproducing property of the Bergman projection implies:

T̃2(hs)(z)
= ∫

D2

(w̄1 − w̄2)2
π2(1 − z1w̄1)2(1 − z2w̄2)2(1 − z1w̄2)(1 − z2w̄1)

2∑
j=1

1

π(1 − sw j)2 dV(w)
= s2

π(1 − z1s)2(1 − z2s) + s2

π(1 − z2s)2(1 − z1s) .
|us

∥T̃2(hs)∥4L4
sym(D2 ,∣JCΦ2 ∣2)

= ∫
D2

∣ s2

π(1 − z1s)2(1 − z2s) + s2

π(1 − z2s)2(1 − z1s) ∣
4

∣z1 − z2∣2dV(z)
= ∫

D2
∣ 1

1 − z1s
+ 1

1 − z2s
∣4 s8∣z1 − z2∣2

π4∣1 − z1s∣4∣1 − z2s∣4 dV(z).(4.4)

For oxed s < 1, set U(s) = {z ∈ D ∶ Arg(1 − zs) ∈ (− π
6
, π
6

)}. |en for z1 , z2 ∈ U(s),
∣ 1

1 − z1s
+ 1

1 − z2s
∣ ≥ 1

2∣1 − z1s∣ .
Applying this inequality to (4.4) gives

∫
D2

∣ 1

1 − z1s
+ 1

1 − z2s
∣4 s8∣z1 − z2∣2

π4∣1 − z1s∣4∣1 − z2s∣4 dV(z) ≳ ∫
U2(s)

∣z1 − z2∣2∣1 − z1s∣8∣1 − z2s∣4 dV(z).
Since

z1 − z2(1 − z1s)(1 − z2s) = 1

s(1 − z1s) − 1

s(1 − z2s) ,
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we have

∫
U2(s)

∣z1 − z2∣2∣1 − z1s∣8∣1 − z2s∣4 dV(z)
=∫

U2(s)

1

∣1 − z1s∣6∣1 − z2s∣2 ∣
1

s(1 − z1s) −
1

s(1 − z2s) ∣
2

dV(z)
=∫

U2(s)

1

s2∣1 − z1s∣6∣1 − z2s∣2 (
1

∣1 − z1s∣2 +
1

∣1 − z2s∣2 − 2Re
1

(1 − z1s)(1 − z̄2s)) dV(z)
≥∫

U2(s)

1

∣1 − z1s∣8∣1 − z2s∣2 +
1

∣1 − z1s∣6∣1 − z2s∣4 − 2
1

∣1 − z1s∣7∣1 − z2s∣3 dV(z).
By realizing that ∣1 − zs∣ = s∣ 1

s
− z∣ and applying polar coordinates, one can obtain the

following Forelli–Rudin estimates (2.8) on U(s).

∫
U(s)

1

∣1 − zs∣a dV(z) ≈
⎧⎪⎪⎪⎪«⎪⎪⎪⎪¬

(1 − s)2−a , a > 2,

− log(1 − s), a = 2,

1, a < 2.

We leave the details of its proof to readers as an exercise. Using these estimates,

∫
U2(s)

1

∣1 − z1s∣8∣1 − z2s∣2 dV(z) ≈ −(1 − s)−6 log(1 − s)
∫
U2(s)

1

∣1 − z1s∣6∣1 − z2s∣4 dV(z) ≈ ∫
U2(s)

1

∣1 − z1s∣7∣1 − z2s∣3 dV(z) ≈ (1 − s)−6 ,
which implies that ∥T̃2(hs)∥4L4

sym(D2 ,∣JCΦ2 ∣2) ≈ −(1 − s)−6 log(1 − s).
As s → 1,

∥T̃2(hs)∥4L4
sym(D2 ,∣JCΦ2 ∣2)

∥hs∥4L4
sym(D2 ,∣JCΦ2 ∣2)

≳ − log(1 − s) → ∞,

proving that T̃2 is unbounded on L4
sym(D2 , ∣JCΦ2∣2). ∎

4.2 The case for general n

Like the case n = 2, our proof for general n also involves a decomposition of PDn into
operators Tn

1 and Tn
2 .

Tn
1 (h)(z) = ∫

Dn

∏1≤ j<k≤n(1 − zkw̄ j)(1 − z jw̄k) − ∏1≤ j<k≤n(z j − zk)(w̄ j − w̄k)
πn ∏1≤ j≤k≤n(1 − zkw̄ j)(1 − zkw̄ j)

× h(w)dV(w).(4.5)

Tn
2 (h)(z) = (PDn − Tn

1 )(h)(z) =∫
Dn

∏1≤ j<k≤n(z j − zk)(w̄ j − w̄k)
πn ∏1≤ j≤k≤n(1 − zkw̄ j)(1 − z jw̄k)h(w)dV(w).

(4.6)

Lemma 4.3 Tn
1 is a zero operator on L

p
anti(Dn , ∣JCΦn ∣2−p).
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12 Z. Huo and B. D. Wick

Proof Recall that τ j,k is the permutation that interchanges variablesw j andwk , and
a kernel function K(z; w̄) on D

n × D
n is called ( j, k)-symmetric in w if K(z; w̄) =

K(z; τ̄ j,k(w)). If K(z; w̄) is ( j, k)-symmetric in w̄, then for any antisymmetric

f ∈ L
p
anti(Dn , ∣JCΦn ∣2−p), we have

∫
Dn

K(z; w̄) f (w)dV(w) = − ∫
Dn

K(z; τ̄ j,k(w)) f (τ j,k(w))dV(w)
= − ∫

Dn
K(z; w̄) f (w)dV(w).

|us operators with ( j, k)-symmetric kernel functions in w annihilate
L
p
anti(Dn , ∣JCΦn ∣2−p).
For l = 1, . . . , n, we deone the operator Pl to be as follows:

Pl(h)(z) = ∫
Dn

∏1≤ j<k≤l(1 − z jw̄k)(1 − zkw̄ j) ∏1≤ j<k≤n ,1≤l<k≤n(z j − zk)(w̄ j − w̄k)
πn ∏1≤ j≤k≤n(1 − zkw̄ j)(1 − z jw̄k)

× h(w)dV(w).(4.7)

|en P1 = Tn
2 and Pn = PDn . We claim that PDn = Pl on L

p
anti(Dn , ∣JCΦn ∣2−p) for all

l = 1, . . . , n. |en Tn
1 = PDn − P1 = 0 on L

p
anti(Dn , ∣JCΦn ∣2−p). We prove the claim by

induction on l.
Let K l denote the kernel function of Pl . When l = 2,

K2(z; w̄) = (1 − z1w̄2)(1 − z2w̄1) ∏1≤ j<k≤n ,( j,k)≠(1,2)(z j − zk)(w̄ j − w̄k)
πn ∏1≤ j≤k≤n(1 − zkw̄ j)(1 − z jw̄k) .

|en

K2(z; w̄) − K1(z; w̄)
= ((1 − z1w̄2)(1 − z2w̄1) − (z1 − z2)(w̄1 − w̄2))∏1≤ j<k≤n ,( j,k)≠(1,2)(z j − zk)(w̄ j − w̄k)

πn∏1≤ j≤k≤n(1 − zkw̄ j)(1 − z jw̄k)
= (1 − z1w̄1)(1 − z2w̄2)∏1≤ j<k≤n ,( j,k)≠(1,2)(z j − zk)(w̄ j − w̄k)

πn∏1≤ j≤k≤n(1 − zkw̄ j)(1 − z jw̄k)
= ∏1≤ j<k≤n ,( j,k)≠(1,2)(z j − zk)(w̄ j − w̄k)

πn∏n
j=3(1 − z jw̄ j)∏n

j,k=1(1 − zkw̄ j) .

It is not hard to check that K2 − K1 is (1, 2)-symmetric in w which shows that P1 = P2
on L

p
anti(Dn , ∣JCΦn ∣2−p).

Suppose that P1 = Pl on L
p
anti(Dn , ∣JCΦn ∣2−p) for l = m. We show that Pm+1 = Pm

on L
p
anti(Dn , ∣JCΦn ∣2−p). Let Rm denote the power set

Rm ∶= {I ∶ I ⊆ {1, 2, . . . ,m}}.
Given I ∈ Rm , let ∣I∣ denote the cardinality of I. For simplicity of notation, we set
a j,k = 1 − z jw̄k and b j,k = (z j − zk)(w̄ j − w̄k). |en for j ≠ k, a j,kak , j = a j, jakk +
b j,k . Note that
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m∏
j=1

a j,m+1am+1, j = m∏
j=1

(a j, jam+1,m+1 + b j,m+1)
= ∑
I∈Rm

a
∣I∣
m+1,m+1 ∏

j∈I
a j, j ∏

k∈Ic

bk ,m+1 .

We set

pI(z; w̄) ∶= a
∣I∣
m+1,m+1 ∏

j∈I
a j, j ∏

k∈Ic

bk ,m+1 .

|en

m∏
j=1

a j,m+1am+1, j = m∏
j=1

(1 − z jw̄m+1)(1 − zm+1w̄ j) = ∑
I∈Rm

pI(z; w̄).
Let Km and Km+1 be the kernel function of Pm and Pm+1, respectively, as in (4.7). Let
Km ,I denote the kernel function

Km ,I(z; w̄) ∶= pI(z; w̄) ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j
.

We can express Km and Km+1 in terms of Km ,I(z; w̄):
Km(z; w̄) = ∏ j<k≤m(1 − z jw̄k)(1 − zkw̄ j) ∏ j<k ,m<k(z j − zk)(w̄ j − w̄k)

πn ∏ j≤k(1 − zkw̄ j)(1 − z jw̄k)
= p∅(z; w̄) ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j

= Km ,∅(z; w̄),
and

Km+1(z; w̄) = ∏ j<k≤m+1(1 − z jw̄k)(1 − zkw̄ j)∏ j<k ,m+1<k(z j − zk)(w̄ j − w̄k)
πn∏ j≤k(1 − zkw̄ j)(1 − z jw̄k)

= ∑I∈Rm
pI(z; w̄)∏ j<k≤m(1 − z jw̄k)(1 − zkw̄ j)∏ j<k ,m+1<k(z j − zk)(w̄ j − w̄k)

πn∏ j≤k(1 − zkw̄ j)(1 − z jw̄k)
= ∑

I∈Rm

Km ,I(z; w̄) = Km(z; w̄) + ∑
∅≠I∈Rm

Km ,I(z; w̄).
We show that for any nonempty I ∈ Rm , Km ,I is a linear combination of ( j, k)-
symmetric kernel functions. |en for antisymmetric f ∈ L

p
anti(Dn , ∣JCΦn ∣2−p),

Pm+1( f )(z) = ∫
Dn

Km+1(z; w̄) f (w)dV(w)
= ∫

Dn
∑

I∈Rm

Km ,I(z; w̄) f (w)dV(w)
= ∫

Dn
Km(z; w̄) f (w)dV(w)

= Pm( f )(z),
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14 Z. Huo and B. D. Wick

which completes the induction and the proof of the lemma. When ∣I∣ > 1, there exists
j1 , j2 ∈ I, and

Km ,I(z; w̄) = pI(z; w̄) ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j

= a
∣I∣
m+1,m+1 ∏k∈I ak ,k ∏ j∈Ic b j,m+1 ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j
.

It’s easy to see that Km ,I(z; w̄) is ( j1 , j2)-symmetric.
Now we turn to consider the case when I = { j0}. Without loss of generality, we let

j0 = 1.

Km ,{1}(z; w̄)
= p{1}(z; w̄)∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j

= am+1,m+1a1,1∏m
k=2 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j

= am+1,m+1a1,1(a2,m+1am+1,2 − a2,2am+1,m+1)∏m
k=3 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j

= am+1,m+1a1,1a2,m+1am+1,2∏m
k=3 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j
− Km ,{1,2}(z; w̄),

where Km ,{1,2}(z; w̄) is (1, 2)-symmetric in w.
Since b3,m+1 = a3,m+1am+1,3 − a3,3am+1,m+1, we have

am+1,m+1a1,1a2,m+1am+1,2∏m
k=3 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j

= am+1,m+1a1,1a2,m+1am+1,2a3,m+1am+1,3∏m
k=4 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j

− a2m+1,m+1a1,1a2,m+1am+1,2a3,3∏m
k=4 b j,m+1∏ j<k≤m a j,kak , j∏ j<k ,m+1<k b j,k

πn∏ j≤k a j,kak , j
,

where the negative term above is (1, 3)-symmetric in w. Repeating the above process
using the identity b j,m+1 = a j,m+1am+1, j − a j, jam+1,m+1 until no b j,m+1 term lev, we
obtain

Km ,{1}(z; w̄) − am+1,m+1a1,1 ∏m
k=2 ak ,m+1am+1,k ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j

is a linear combination of functions that are (1, j)-symmetric in w. Since the function

am+1,m+1a1,1 ∏m
k=2 ak ,m+1am+1,k ∏ j<k≤m a j,kak , j ∏ j<k ,m+1<k b j,k

πn ∏ j≤k a j,kak , j

is (1,m + 1)-symmetric in w, we are done. ∎
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Since Tn
2 = PDn on L

p
anti(Dn , ∣JCΦn ∣2−p ∣), the next theorem implies|eorem 2.4 for

general n.

|eorem 4.4 Tn
2 is unbounded on L

p
anti(Dn , ∣JCΦn ∣2−p) for p = 2n

n−1 .

Proof |e proof for the case n > 2 follows from a similar argument as in the proof
of |eorem 4.2. Let T̃n denote the operator given as follows:

T̃n(h)(z) ∶= (JCΦn(z))−1Tn
2 (hJ̄CΦn)(z).

|en

T̃n(h)(z) = ∫
Dn

∏ j<k(w̄ j − w̄k)2h(w)dV
πn ∏ j≤k(1 − zkw̄ j)(1 − z jw̄k) ,(4.8)

and ∥Tn
2 ∥Lp

anti
(Dn ,∣JCΦn ∣2−p) = ∥T̃n∥Lp

sym(Dn ,∣JCΦn ∣2) provided one of the norms is onite.

|us it suoces to show that T̃n is unbounded on L
p
sym(Dn , ∣JCΦn ∣2) for p = 2n

n−1 .
Recall that Sn is the set of all permutations of {z1 , . . . , zn}. For s ∈ (0, 1), we set

hs(z) = ∑
τ∈Sn

1

∏n−1
j=1 (1 − τ(z j)s)n .

|en hs is a symmetric function with

∥hs∥p

L
p
sym(Dn ,∣JCΦn ∣2)

= ∫
Dn

����������� ∑
τ∈Sn

1

πn−1 ∏n−1
l=1 (1 − τ(w l)s)n

�����������
p

∏
1≤ j<k≤n

∣w j −wk ∣2dV(w)

≲ ∫
Dn

∏1≤ j<k≤n ∣w j −wk ∣2
∏n−1

l=1 ∣1 −w l s∣np dV(w)
≲ ∫

Dn−1

∏1≤ j<k≤n−1 ∣w j −wk ∣2
∏n−1

l=1 ∣1 −w l s∣np dV(w1 , . . . ,wn−1)
≲ ∫

Dn−1

∏1≤ j<k≤n−1 ∣w j −wk ∣2
∏n−1

l=1 ∣1 −w l s∣2n−4
dV(w1 , . . . ,wn−1)

∏n−1
l=1 ∣1 −w l s∣np+4−2n .(4.9)

To evaluate the integral above, we need an (n − 2)-step procedure to eliminate the
numerator of the integrand, i.e., we rewrite

∏1≤ j<k≤n−1(w j −wk)
∏n−1

l=1 (1 −w l s)n−2 .

Step 1. Recall that by partial fractions:

1

∏n−1
j=1 (1 −w js) = n−1∑

j=1

c j

(1 −w js) ,
where c j = 1

sn−2∏n−1
k=1,k≠ j

(w j−wk) . |en

∏1≤ j<k≤n−1(w j −wk)
∏n−1

l=1 (1 −w l s)n−2 = n−1∑
j1=1

∏1≤ j<k≤n−1(w j −wk)
sn−2(1 −w j1 s) ∏n−1

l=1 (1 −w l s)n−3 ∏n−1
k=1,k≠ j1(w j1 −wk) .
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Step 2. Now we focus on the j1th term in the sum above:

∏1≤ j<k≤n−1(w j −wk)
sn−2(1 −w j1 s) ∏n−1

l=1 (1 −w l s)n−3 ∏n−1
k=1,k≠ j1(w j1 −wk) .

Applying the partial fractions yields

1

∏n−1
j=1, j≠ j1(1 −w js) = n∑

j=1, j≠ j1

1

sn−3(1 −w js) ∏n−1
k=1,k≠ j1(w j1 −wk) ,

and

∏1≤ j<k≤n−1(w j −wk)

sn−2(1 −w j1 s)∏
n−1
l=1 (1 −w l s)n−3∏n−1

k=1,k≠ j1
(w j1 −wk)

=
n−1

∑
j1=1

n−1

∑
j2=1
j2≠ j1

×
∏1≤ j<k≤n−1(w j −wk)

s2n−5(1 −w j1 s)2(1 −w j2 s)∏
n−1
j=1 (1 −w js)n−4∏n−1

k=1,k≠ j1
(w j1 −wk)∏n−1

k=1,k≠ j1 , j2
(w j2 −wk)

.

Step 3. As in Step 2, we turn to the term with sub-indices ( j1 , j2) in the sum above
and continue the process by doing partial fractions to

1

∏n−1
j=1, j∉{ j1 , j2}(1 −w js) .

Repeat this process. |en aver n − 2 steps, we obtain

∏1≤ j<k≤n−1(w j −wk)
∏n−1

l=1 (1 −w l s)n−2 = ∑
(l1 , l2 , . . . , ln−1)∈Sn−1

s−
1
2
(n−1)(n−2)∏1≤ j<k≤n−1(w j −wk)

∏1≤ j<k≤n−1(w l j −w lk ) ∏n−1
t=1 (1 −w l t s)n−1−t

= ∑
(l1 , l2 , . . . , ln−1)∈Sn−1

sgn((l1 , . . . , ln−1))s− 1
2
(n−1)(n−2)

∏n−1
t=1 (1 −w l t s)n−1−t .(4.10)

Here, sgn((l1 , . . . , ln−1)) is the sign of the permutation (l1 , . . . , ln−1).
Applying this identity to (4.9) and using the triangle inequality, we obtain

∥hs∥p
L
p
sym(D

n ,∣JCΦn ∣2)

≲ ∫
Dn−1

∏1≤ j<k≤n−1 ∣w j −wk ∣2
∏n−1

l=1 ∣1 −w l s∣2n−4
1

∏n−1
l=1 ∣1 −w l s∣np+4−2n dV(w1 , . . . ,wn−1)

≲ ∑
(l1 , l2 , . . . , ln−1)∈Sn−1

∫
Dn−1

s−(n−1)(n−2)

∏n−1
t=1 ∣1 −w l t s∣2n−2−2t .

1

∏n−1
l=1 ∣1 −w l s∣np+4−2n dV(w1 , . . . ,wn−1)

≲ ∫
Dn−1

1

∏n−1
l=1 ∣1 −w l s∣np+2−2 l dV(w1 , . . . ,wn−1).

(4.11)
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Lp regularity of the Bergman projection on the symmetrized polydisc 17

For p = 2n
n−1 , np + 2 − 2l ≥ np + 2 − 2(n − 1) > 2. |us the Forelli–Rudin estimates

(2.8) imply

∫
Dn−1

1

∏n−1
l=1 ∣1 −w l s∣np+2−2l dV(w1 , . . . ,wn−1)

= n−1∏
l=1

∫
D

1

∣1 −w l s∣np+2−2l dV(w1 , . . . ,wn−1)
≈ n−1∏

l=1
(1 − s)−np+2l = (1 − s)−n2−n .(4.12)

Hence ∥hs∥p

L
p
sym(Dn ,∣JCΦn ∣2)

≲ (1 − s)−n2−n .

Nowwe turn to compute T̃n(hs). Let I denote the identity operator. For the variable
w j , letDw j

denote the partial diferential operator

Dw j
= I +w j

∂

∂w j

.

For any k ∈ N and holomorphic function f (w) = ∑α∈Nn cαw
α on D

n ,

(Dw j
)k f (w) = ∑

α∈Nn

cα(α j + 1)kwα .

For each integer k > 2,

1

(1 −w js)k = ∞∑
m=0

(m + 1)k−1smwm
j = ∞∑

m=0
(m + 2)k−2((m + 1)smwm

j ),
where the Pochhammer symbol (m + 2)k−2 = (m + 2)(̇m + 3) . . . (m + k − 1) is a
polynomial inm of degree k − 2. |us, there exists a polynomial qk−2 of degree k − 2
such that

1

(1 −w js)k = qk−2(Dw j
) ( 1

π(1 −w js)2 ) .

For holomorphic functions f , g on D
n with f (w) = ∑α cαw

α and g(w) = ∑α dαw
α ,

∫
Dn

f
n∏
j=1

qk−2(Dw j
)(g)dV = ∫

Dn
(∑

α

cαw
α) ⎛

¿∑
α

dα
n∏
j=1

qk−2(α j + 1)w̄αÀ
⎠ dV(w)

= ∑
α

cαdα
n∏
j=1

qk−2(α j + 1) ∫
Dn

∣w∣2αdV(w)

= ∫
Dn

⎛
¿∑

α

cα
n∏
j=1

qk−2(α j + 1)wαÀ
⎠ (∑

α

dαw̄
α) dV(w)

= ∫
Dn

n∏
j=1

qk−2(Dw j
)( f )(w)ḡ(w)dV(w).(4.13)
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18 Z. Huo and B. D. Wick

|erefore, we have

T̃n(hs)(z)
= ∫

Dn

∏1≤ j<k≤n(w̄ j − w̄k)2
πn ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k) ∑

τ∈Sn

1

∏n−1
j=1 (1 − τ(w j)s)n dV(w)

= ∫
Dn

∏1≤ j<k≤n(w̄ j − w̄k)2
πn ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k) ∑

τ∈Sn

n−1∏
j=1

qn−2(Dτ(w j))
× ( 1

π(1 − τ(w j)s)2 ) dV(w)
= ∫

Dn
∑
τ∈Sn

n−1∏
j=1

qn−2(Dτ(w̄ j)) ( ∏1≤ j<k≤n(w̄ j − w̄k)2
πn ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k))

× ⎛
¿

1

πn−1 ∏n−1
j=1 (1 − τ(w̄ j)s)2

À
⎠ dV(w)

= ∫
Dn

∑
τ∈Sn

n−1∏
j=1

qn−2(Dτ(w̄ j)) ( ∏1≤ j<k≤n(w̄ j − w̄k)2
πn ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k))

× πKDn(w; τ(s, . . . , s, 0))dV(w)
= ∑

τ∈Sn

n−1∏
j=1

qn−2(Dτ(w̄ j)) ( ∏1≤ j<k≤n(w̄ j − w̄k)2
πn−1 ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k)) ∣

w̄=τ(s , . . . ,s ,0)
.

We claim that there is a constant cn such that

n−1∏
j=1

qn−2(Dτ(w̄ j)) ( ∏1≤ j<k≤n(w̄ j − w̄k)2
πn−1 ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k)) ∣

w̄=τ(s , . . . ,s ,0)

= cns
n(n−1)

∏n−1
m=1(1 − τ(zm)s) ∏n

l=1(1 − z l s)n−1 .(4.14)

By symmetry, it suoces to show (4.14) for the case when τ is the identity map, i.e.,

n−1∏
j=1

qn−2(Dw̄ j
) ( ∏1≤ j<k≤n(w̄ j − w̄k)2

πn−1 ∏n
m=1(1 − zmw̄m) ∏n

j,k=1(1 − z jw̄k)) ∣
w̄=(s , . . . ,s ,0)

= cns
n(n−1)

∏n−1
m=1(1 − zms) ∏n

l=1(1 − z l s)n−1 .(4.15)

Set ∂̄ j = ∂
∂w̄ j

. For a multi-index l = (l1 , . . . , ln), set ∂̄l = ∂̄ l11 . . . ∂̄
ln
n .|en by the product

rule,Dk
w̄ j

= ∑k
l=0 ck , l w̄

l
j ∂̄

l
j . |erefore

n−1∏
j=1

qn−2(Dw̄ j
) = n−1∏

j=1

⎛
¿
n−2∑
l j=0

d l j w̄
l j
j ∂̄

l j
j

À
⎠ = ∑

l∈{0,1,. . . ,n−2}n−1
d l1 . . . d ln−1 w̄

l ∂̄l ,
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Lp regularity of the Bergman projection on the symmetrized polydisc 19

for some constants d l j . Note that for l = (l1 , . . . , ln−1) ∈ {0, 1, . . . , n − 2}n−1,

∂̄l ( ∏1≤ j<k≤n(w̄ j − w̄k)2
πn−1 ∏n

m=1(1 − zmw̄m) ∏n
j,k=1(1 − z jw̄k))

can be expressed as a linear combination of terms of the form

∂̄m
⎛
¿ ∏
1≤ j<k≤n

(w̄ j − w̄k)2À⎠ ∂̄l−m ( 1

πn−1 ∏n
m=1(1 − zmw̄m) ∏n

j,k=1(1 − z jw̄k)) ,

where m = (m1 , . . . ,mn−1) with m j ≤ l j for all j and l − m = (l1 − m1 , . . . , ln−1 −
mn−1).

Since l j ≤ n − 2 for each j, the sum

∣m∣ = ∑m j ≤ ∑ l j ≤ (n − 1)(n − 2).
|us, the polynomial ∂̄m (∏1≤ j<k≤n(w̄ j − w̄k)2) is of total degree n(n − 1) − ∣m∣
which is at least n(n − 1) − (n − 1)(n − 2) = 2(n − 1). Note also that for w̄ =(s, . . . , s, 0), the factor (w̄ j − w̄k) ≠ 0 if and only if either j or k equals n. It is not hard

to see that the polynomial ∏n−1
k=1(w̄k − w̄n)2 is the only divisor of ∏1≤ j<k≤n(w̄ j − w̄k)2

that has degree at least 2(n − 1) and does not vanish at (s, . . . , s, 0). Hence,
∂̄m

⎛
¿ ∏
1≤ j<k≤n

(w̄ j − w̄k)2À⎠ ∣
(s , . . . ,s ,0)

≠ 0

if and only if ∣m∣ = (n − 2)(n − 1), i.e.,m = (n − 2, . . . , n − 2). In this case, we have

n−1∏
j=1

∂̄n−2j

⎛
¿ ∏
1≤ j<k≤n

(w̄ j − w̄k)2À⎠ ∣
(s , . . . ,s ,0)

= cn
n−1∏
k=1

(w̄k − w̄n)2∣(s , . . . ,s ,0) = cns
2n−2

for some constant cn . |erefore,

n−1∏
j=1

qn−2(Dw̄ j)⎛¿
∏1≤ j<k≤n(w̄ j − w̄k)2

πn−1∏n
m=1(1 − zmw̄m)∏n

j,k=1(1 − z jw̄k)
À
⎠ ∣w̄=(s , . . . ,s ,0)

= ∑
l∈{0,1,. . . ,n−2}n−1

d l1 . . . d ln−1 w̄
l
∂̄
l
⎛
¿

∏1≤ j<k≤n(w̄ j − w̄k)2
πn−1∏n

m=1(1 − zmw̄m)∏n
j,k=1(1 − z jw̄k)

À
⎠ ∣w̄=(s , . . . ,s ,0)

= ⎛¿
dn−1
n−2∏n−1

j=1 (w̄n−2
j ∂̄n−2j ) (∏1≤ j<k≤n(w̄ j − w̄k)2)

πn−1∏n
m=1(1 − zmw̄m)∏n

j,k=1(1 − z jw̄k)
À
⎠ ∣w̄=(s , . . . ,s ,0)

= dn−1
n−2cns

n(n−1)

∏n−1
m=1(1 − zms)∏n

l=1(1 − z l s)n−1 ,
(4.16)

which proves the claim (4.15) and gives

T̃n(hs)(z) = ∑
τ∈Sn

dn−1
n−2cns

n(n−1)

∏n−1
m=1(1 − τ(zm)s) ∏n

l=1(1 − z l s)n−1 .(4.17)
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20 Z. Huo and B. D. Wick

We next compute the norm of T̃n(hs)
∥T̃n(hs)(z)∥p

L
p
sym(Dn ,∣JCΦn ∣2)

= ∫
Dn

����������� ∑
τ∈Sn

dn−1
n−2cns

n(n−1)

∏n−1
m=1(1 − τ(zm)s) ∏n

l=1(1 − z l s)n−1
�����������
p

∏
1≤ j<k≤n

∣z j − zk ∣2dV(z)

= ∫
Dn

d
p(n−1)
n−2 c

p
ns

pn(n−1)

∏n
l=1 ∣1 − z l s∣p(n−1)

����������� ∑
τ∈Sn

1

∏n−1
m=1(1 − τ(zm)s)

�����������
p

∏
1≤ j<k≤n

∣z j − zk ∣2dV(z).
(4.18)

Set

Un(s) = {w ∈ D ∶ Arg(1 −ws) ∈ (− π

6(n − 1) ,
π

6(n − 1))} .

|en for any z = (z1 , . . . , zn) ∈ (Un(s))n and τ ∈ Sn ,

Arg{ 1

∏n−1
m=1(1 − τ(zm)s)} ∈ (−π

6
,
π

6
) ,

which yields that

����������� ∑
τ∈Sn

1

∏n−1
m=1(1 − τ(zm)s)

����������� ≳ 1

∏n−1
m=1 ∣1 − zms∣ .

Using this inequality, we have

∥T̃n(hs)(z)∥p

L
p
sym(Dn ,∣JCΦn ∣2)

= ∫
Dn

d
p(n−1)
n−2 c

p
ns

pn(n−1)

∏n
l=1 ∣1 − z l s∣p(n−1)

����������� ∑
τ∈Sn

1

∏n−1
m=1(1 − τ(zm)s)

�����������
p

∏
1≤ j<k≤n

∣z j − zk ∣2dV(z)

≳ ∫(Un(s))n
1

∏n
l=1 ∣1 − z l s∣p(n−1)

����������� ∑
τ∈Sn

1

∏n−1
m=1(1 − τ(zm)s)

�����������
p

∏
1≤ j<k≤n

∣z j − zk ∣2dV(z)

≳ ∫(Un(s))n
∏1≤ j<k≤n ∣z j − zk ∣2

∏n−1
m=1 ∣1 − zms∣p ∏n

l=1 ∣1 − z l s∣p(n−1) dV(z)
= ∫(Un(s))n

∏1≤ j<k≤n ∣z j − zk ∣2
∏n

l=1 ∣1 − z l s∣2(n−1) ⋅ 1

∏n−1
m=1 ∣1 − zms∣p ∏n

l=1 ∣1 − z l s∣p(n−1)−2(n−1) dV(z).
(4.19)

By a similar (n − 1)-step partial fraction procedure, we obtain the following analogue
of (4.10)

∏1≤ j<k≤n(z j − zk)
∏n

l=1(1 − z l s)n−1 = ∑
(l1 , . . . , ln)∈Sn

sgn((l1 , . . . , ln))s− 1
2
n(n−1)

∏n
t=1(1 − z l t s)n−t .
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Lp regularity of the Bergman projection on the symmetrized polydisc 21

Hence (4.19) becomes

∥T̃n(hs)(z)∥p
L
p
sym(D

n ,∣JCΦn ∣2)

≳ ∫
(Un(s))n

∏1≤ j<k≤n ∣z j − zk ∣2
∏n

l=1 ∣1 − z l s∣2(n−1) ⋅
dV(z)

∏n−1
m=1 ∣1 − zms∣p∏n

l=1 ∣1 − z l s∣p(n−1)−2(n−1)
≳ ∫

(Un(s))n

������������
∑

(l1 , . . . , ln)∈Sn

sgn((l1 , . . . , ln))
∏n

t=1(1 − z l t s)n−t
������������
2

dV(z)
∏n−1

m=1 ∣1 − zms∣p∏n
l=1 ∣1 − z l s∣p(n−1)−2(n−1) .

(4.20)

We further restrict our region of integration to obtain more precise estimates. For
j ∈ {1, . . . , n} and s ∈ (1 − (5n!)−2n , 1), we set

Un(s, j) = Un(s) ⋂ {z ∶ (5n!)2 j(1 − s) < ∣z − 1

s
∣ < 1} ,

and set U(s) = Un(s, 1) × Un(s, 2) × ⋅ ⋅ ⋅ × Un(s, n). It is worth noting that we imple-
ment a positive lower bound 1 − (5n!)−2n for s here so that Un(s, j) is nonempty
and U(s) is asymmetric in its components. As the reader will see, we need this extra
restriction for s but not when n = 2 since in higher dimensions, the desired integral
estimates cannot be achieved solely by Forelli–Rudin estimate.|e asymmetry ofU(s)
is also used.

By a polar coordinate computation,

∫
Un(s , j)

dV(z)
∣1 − zs∣k = s−k ∫

Un(s , j)

dV(z)
∣z − s−1∣k

= s−k ∫
π

6(n−1)

− π
6(n−1)

∫ 1

(5n!)2 j(1−s)
r1−kdrdθ

= ⎧⎪⎪«⎪⎪¬
π

3sk(k−2)(n−1)((5n!)2 j(2−k)(1 − s)2−k − 1) k > 2

− π
3s2(n−1)(2 j log 5n! + log(1 − s)) k = 2

.(4.21)

For functions f (s) and g(s), we write f (s) ∼ g(s) if
lim
s→1−

f (s)
g(s) = 1.

|en, (4.21) yields

∫
Un(s , j)

dV(z)
∣1 − zs∣k ∼ ⎧⎪⎪«⎪⎪¬

π(5n!)2 j(2−k)(1−s)2−k
3sk(k−2)(n−1) k > 2

− π log(1−s)
3s2(n−1) k = 2

.(4.22)

Recall that for τ ∈ Sn , we let τ( j) be the index satisfying zτ( j) = τ(z j). For p = 2n
n−1 , the

triangle inequality and Cauchy–Schwarz inequality implies
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∫(Un(s))n

����������� ∑
τ∈Sn

sgn((l1 , . . . , ln))
∏n

t=1(1 − zτ(t)s)n−t
�����������
2

1

∏n−1
m=1 ∣1 − zms∣p ∏n

l=1 ∣1 − z l s∣p(n−1)−2(n−1) dV(z)

≳∫
U(s)

����������� ∑
τ∈Sn

sgn((l1 , . . . , ln))
∏n

t=1(1 − zτ(t)s)n−t
�����������
2

1

∏n−1
m=1 ∣1 − zms∣p ∏n

l=1 ∣1 − z l s∣p(n−1)−2(n−1) dV(z)

≳ ∫
U(s)

⎛⎜⎜¿
1

∏n
t=1 ∣1 − zts∣2n−2t −

����������������
∑
τ∈Sn

τ≠I

sgn((l1 , . . . , ln))
∏n

t=1(1 − zτ(t)s)n−t
����������������

2À⎟⎟⎠
× dV(z)

∏n−1
m=1 ∣1 − zms∣ 2n

n−1 ∏n
l=1 ∣1 − z l s∣2

≳ ∫
U(s)

⎛⎜⎜¿
1

∏n
t=1 ∣1 − zts∣2n−2t − ∑

τ∈Sn

τ≠I

n!

∏n
t=1 ∣1 − zτ(t)s∣2n−2t

À⎟⎟⎠
× dV(z)

∏n−1
m=1 ∣1 − zms∣ 2n

n−1 ∏n
l=1 ∣1 − z l s∣2

= ∫
U(s)

⎛⎜⎜¿
1

∏n
t=1 ∣1 − zts∣2n−2t − ∑

τ∈Sn

τ≠I

n!

∏n
t=1 ∣1 − zts∣2n−2τ−1(t)

À⎟⎟⎠
× dV(z)

∏n−1
m=1 ∣1 − zms∣ 2n

n−1 ∏n
l=1 ∣1 − z l s∣2 .

We claim that in the integral above, the orst term will dominate the rest terms, and
thus determines the size of the entire integral. We start by showing that the orst term
dominates the sum of those terms with τ−1(n) ≠ n. Note that

∫
U(s)

dV(z)
∏n

t=1 ∣1 − zts∣2n−2τ−1(t)∏n−1
m=1 ∣1 − zms∣ 2n

n−1 ∏n
l=1 ∣1 − z l s∣2

= ∫
U(s)

dV(z)
∣1 − zns∣2n+2−2τ−1(n)∏n−1

m=1 ∣1 − zms∣ 2n2n−1+2−2τ−1(m)

= ∫
Un(s ,n)

dV(zn)
∣1 − zns∣2n+2−2τ−1(n)

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2τ−1(m)

.(4.23)

Since 1 ≤ m ≤ n − 1, the denominator factor ∣1 − zms∣ in (4.23) has power
strictly greater than 2. |e factor ∣1 − zns∣ has power 2 only if τ−1(n) = n, or
equivalently τ(zn) = zn . By the Forelli–Rudin estimates (2.8) and the fact that{τ−1(1), . . . , τ−1(n)} = {1, . . . , n},

∫
Un(s ,n)

dV(zn)
∣1 − zns∣2n+2−2τ−1(n)

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2τ−1(m)

≈ ⎧⎪⎪«⎪⎪¬
(1 − s)−n2−n τ(n) ≠ n

− log(1−s)
(1−s)n2+n τ(n) = n

.(4.24)
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|us, for s suociently close to 1, the integral in (4.23) with τ(n) = n dominates the
ones with τ(n) ≠ n. |erefore, we can further assume that

∫
U(s)

⎛⎜⎜⎜¿
1

2

1

∏n
t=1 ∣1 − zts∣2n−2t − ∑

τ∈Sn

τ(n)≠n

n!

∏n
t=1 ∣1 − zts∣2n−2τ−1(t)

À⎟⎟⎟⎠
× dV(z)

∏n−1
m=1 ∣1 − zms∣ 2n

n−1 ∏n
l=1 ∣1 − z l s∣2 ≥ 0,

which implies

∫
U(s)

⎛⎜⎜¿
1

∏n
t=1 ∣1 − zts∣2n−2t − ∑τ∈Sn

τ≠I

n!

∏n
t=1 ∣1 − zts∣2n−2τ−1(t)

À⎟⎟⎠
dV(z)

∏n−1
m=1 ∣1 − zms∣ 2nn−1 ∏n

l=1 ∣1 − z l s∣2

≳ ⎛⎜⎜¿
1

2

n−1∏
m=1
∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1

+2−2m
− ∑

τ∈Sn−1
τ≠I

n−1∏
m=1
∫
Un(s ,m)

n!dV(zm)
∣1 − zms∣ 2n2n−1

+2−2τ−1(m)

À⎟⎟⎠
× ∫

Un(s ,n)

dV(zn)∣1 − zns∣2 .
(4.25)

Now we turn to show that the positive term in the last line of (4.25) also dominates
the rest terms. Since all these terms share the same zn part, the estimate (4.24) is
no longer able to distinguish one from another. |us here, we will make use of the
asymmetry of U(s) in z j variables to prove the claim.

By (4.22), we have

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2τ−1(m)

∼ n−1∏
m=1

π(5n!)2m(2τ−1(m)− 2n2

n−1 )(1 − s)2τ−1(m)− 2n2

n−1

3s
2n2

n−1+2−2τ−1(m)( 2n2

n−1 − 2τ−1(m))(n − 1)
= πn−1(1 − s)−n2−n(5n!)−2n3

3n−1sn2+n+2(n − 1)n−1
n−1∏
m=1

(5n!)4mτ−1(m)

( 2n2

n−1 − 2τ−1(m))
= πn−1(1 − s)−n2−n(5n!)−2n3

3n−1sn2+n+2(n − 1)n−1
(5n!)4∑n−1

m=1 mτ−1(m)

∏n−1
m=1( 2n2

n−1 − 2m) .(4.26)

Hence, for any permutation τ ∈ Sn−1 with τ ≠ I,

∏n−1
m=1 ∫Un(s ,m)

dV(zm)
∣1−zm s∣

2n2
n−1
+2−2m

∏n−1
m=1 ∫Un(s ,m)

dV(zm)
∣1−zm s∣

2n2
n−1
+2−2τ−1(m)

∼ (5n!)4∑n−1
m=1(m2−mτ−1(m)) ≥ (4n!)4 .(4.27)

Here ∑n−1
m=1(m2 − mτ−1(m)) ≥ 1 follows by Cauchy–Schwarz inequality and the fact

that the sum ∑n−1
m=1(m2 − mτ−1(m)) is an integer. Substituting these estimates into

(4.25), we onally obtain
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∫
Un(s ,n)

dV(zn)
∣1 − zns∣2

× ⎛
¿
1

2

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2m

− ∑
τ∈Sn−1

n−1∏
m=1

∫
Un(s ,m)

n!dV(zm)
∣1 − zms∣ 2n2n−1+2−2τ−1(m)

À
⎠

≳ ∫
Un(s ,n)

dV(zn)
∣1 − zns∣2

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2m

⎛
¿
1

2
− ∑

τ∈Sn−1

n!

(4n!)4
À
⎠

≥ 1

4
∫
Un(s ,n)

dV(zn)
∣1 − zns∣2

n−1∏
m=1

∫
Un(s ,m)

dV(zm)
∣1 − zms∣ 2n2n−1+2−2m

≈ −(1 − s)−n2−n log(1 − s),
(4.28)

which implies that ∥T̃n(hs)∥p

L
p
sym(Dn ,∣JCΦn ∣2)

≳ −(1 − s)−n2−n log(1 − s). |us

∥T̃n(hs)∥p

L
p
sym(Dn ,∣JCΦn ∣2)

∥hs∥p

L
p
sym(Dn ,∣JCΦn ∣2)

≳ − log(1 − s) → ∞
as s → 1, proving that T̃n is unbounded on L

p
sym(Dn , ∣JCΦn ∣2) for p = 2n

n−1 . ∎
5 Some remarks

1. In [HW20a], we studied weak-type estimates of the Bergman projection on the
Hartogs triangle and showed the projection is of weak-type (4, 4) but not of weak-
type ( 4

3
, 4
3
). |ese results together with the Marcinkiewicz interpolation also recover

the sharp Lp regular range ( 4
3
, 4) for the projection on the Hartogs triangle. Similarly,

weak-type (p, p) estimates of PGn when p = 2n
n±1 could lead to an alternative approach

for |eorem 1.1.

2. In [CJY23], Chen, Jin, and Yuan obtained the Sobolev Lp boundedness for PG
from W k ,p(G) to some weighted W k ,p spaces for p > 2. With Lp irregularity results
obtained for PGn , it would be interesting to investigate the W k ,p (ir)regularity for
PGn . In addition to estimates for PGn , one may further consider Lp boundedness and
compactness of operators that are related to the Bergman projection, such as Toeplitz
operators and Hankel operators.

3.|e symmetrized polydiscGn can be viewed as the quotient domainD
n/Sn , where

Sn is the group of permutations of variables acting on D
n . It is interesting to see

whether our method can be generalized to obtain similar results on other quotient
domains of Dn . For instance, the Lp norm of PGn is equivalent to the Lp norm of
PDn over L

p
anti(Dn , ∣JCΦn ∣2−p), a subspace of Lp(Dn , ∣JCΦn ∣2−p) that is related to Sn .

On this subspace, we are able to construct the operator Tn
2 which equals PDn . It is

interesting to see if such a proving strategy can be abstracted to work for general
quotient domains.
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