
Sources of Underproduction in Open Source

Software

Kaylea Champion

University of Washington

kaylea@uw.edu

Benjamin Mako Hill

University of Washington

makohill@uw.edu

Abstract—Because open source software relies on individuals
who select their own tasks, it is often underproduced—a term
used by software engineering researchers to describe when a
piece of software’s relative quality is lower than its relative
importance. We examine the social and technical factors asso-
ciated with underproduction through a comparison of software
packaged by the Debian GNU/Linux community. We test a
series of hypotheses developed from a reading of prior research
in software engineering. Although we find that software age
and programming language age offer a partial explanation for
variation in underproduction, we were surprised to find that the
association between underproduction and package age is weaker
at high levels of programming language age. With respect to
maintenance efforts, we find that additional resources are not
always tied to better outcomes. In particular, having higher num-
bers of contributors is associated with higher underproduction
risk. Also, contrary to our expectations, maintainer turnover
and maintenance by a declared team are not associated with
lower rates of underproduction. Finally, we find that the people
working on bugs in underproduced packages tend to be those
who are more central to the community’s collaboration network
structure, although contributors’ betweenness centrality (often
associated with brokerage in social networks) is not associated
with underproduction.

I. INTRODUCTION

Open source software is frequently supported by teams of

developers, system engineers, designers, and support special-

ists. While these teams are often organized as both firms, they

increasingly take the form of networks of self-organized col-

laborators working together in a model called commons-based

peer production [1]. Although the results of peer production

are often innovative and influential (e.g., GNU/Linux, Apache,

and Python), the tasks taken on by contributors in these efforts

do not always align with tasks that are most needed by the

software project’s users or by the general public.

Of particular concern is software that is underproduced—

i.e., low quality, but highly important. Underproduction has

been shown to be widespread in open source software [2].

Some underproduced software may be buried deep in the

software supply chain, and vulnerabilities and flaws may not

be noticed until they cause disruptions. How can we identify

underproduced software and remediate risks before they cause

major failures?

This paper builds on previous software engineering research

focused on risk measurement to test a series of hypotheses on

correlates and theorized causes of underproduction in open

source software oriented to both material conditions (e.g.,

the programming language used) and social features (e.g.,

the number of maintainers). We open in §II with a review

of related work to build intuition around these hypotheses,

describe our setting and methods in further detail in §III, and

present our analysis in §IV. We discuss the implications of

our results in §V, describing limitations around these results

in §VI before concluding in §VII.

II. BACKGROUND

A. The production of Free/Libre Open Source Software

People start and join free/libre open source software

(FLOSS) projects for a wide range of reasons, often including

intrinsic motivations [3, 4, 5]. The work of these develop-

ers can be organized in numerous ways—from individual

efforts with few if any other contributors, to casual handovers

among whoever is willing to pitch in, to committed small-

group collaborations, to networks of thousands of developers

coordinating their work and making regular integrated releases

[6, 7]. For example, the Apache Project today oversees a

widely-used web server but was founded by a group of system

administrators who had been informally trading fixes to an

older, abandoned piece of software [8]. The Linux kernel was

created by Linus Torvalds as a personal project [1] before

being shared with the world at no charge. The openness

and flexibility of how work is organized do not guarantee

participation. Volunteers may trickle in slowly, if at all, or

be treated so poorly that they leave [9]. Ultimately, software

may come to rely heavily on a few individuals or even a single

person. Leaders can burn out and may not have a pipeline of

candidates to assume key roles [10, 11].

Although FLOSS’s impact can be large, the process that

creates these goods can be inefficient. Benkler observed that

some of the largest and most well-known FLOSS projects

function as commons-based peer production organizations that

rely on voluntary and self-organized labor [12]. Although a

substantial portion of FLOSS is supported by firms [13], these

firms do not generally assign tasks within FLOSS projects.

Individuals—especially volunteers—tend to choose their own

tasks. Unfortunately, the tasks individuals choose may not be

those most needed by users. As a result, underproduction—

when the quality of a good falls below its importance—can

introduce an important form of risk.
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Figure 1. A conceptual diagram locating underproduction in open source
software in relation to quality and importance, reproduced from Champion
and Hill [2].

B. Alignment between supply and demand in open source

software

In a 2021 paper that has influenced and inspired this

work, Champion and Hill proposed a technique for measuring

underproduction [2]. Applied to any repository of comparable

software packages, this method requires an ordinal measure of

quality, an ordinal measure of importance, and a description of

an optimal relationship between the two. In the example used

by Champion and Hill, the proposed optimal relationship was

a simple statement about relative rank: the most important

packages ought to be the highest quality (illustrated in Figure

1). Champion and Hill illustrated their method using data

extracted from Debian, finding that a “minimum of 4,327

packages in Debian are underproduced.” However, a critical

limitation of their work is that it did not examine potential

sources, causes, or remedies for underproduction.

C. Sources of Underproduction

Where does underproduction come from within GNU/Linux

distributions? Answering this question is difficult because we

lack knowledge in the literature about the role and success of

distributions in the software supply chain. However, consider-

ing that distributions’s work involves high levels of expertise

in writing, patching, installing, and integrating software, we

can draw lessons from the software engineering literature

about what factors could be associated with success and

failure. Therefore, to develop hypotheses about the sources of

underproduction, we consider both what we know about the

most widely cited example of underproduction (the Heartbleed

vulnerability in OpenSSL), as well about how underproduction

might arise at the software project level, in general.

OpenSSL is open source software and the most widely used

implementation of SSL.1 The importance of OpenSSL is clear:

global web traffic relies on SSL to encrypt traffic between web

servers and browsers. In 2014, security researchers identified

a vulnerability in OpenSSL that they nicknamed Heartbleed.

At the time of its discovery, the vulnerability had been present

for more than 2 years, and security researchers estimated that

24-55% of the most visited websites were vulnerable [14].

Estimates of the costs to remediate Heartbleed ranged in the

hundreds of millions of US dollars [15]. The aftermath of

Heartbleed revealed that, despite its importance, OpenSSL had

a range of quality challenges [16, 17, 18, 19]. The Heartbleed

security is emblematic of underproduction because it involves

extremely important software that was, at the time, low quality

in critical respects.

Scholars have identified several potential reasons for Heart-

bleed that point to reasons for OpenSSL’s underproduction.

First, OpenSSL had a complex technical structure that was

difficult to analyze by both tools and experts, suggesting a need

for widespread refactoring and modernization [16, 20, 21].

Second, OpenSSL is written in C, which, like C++ but unlike

Java, lacks built-in detection of buffer over-reads—the bug

that led to Heartbleed [20]. Third, its architecture was substan-

tially out of step with modern engineering standards (e.g., it

implemented its own memory management) [20]. Bug reports

related to the dangers of its memory architecture apparently

were untriaged in the OpenSSL bug tracker for a substantial

period prior to the release of the Heartbleed CVE.2 Finally,

there were a relatively small number of people involved with

OpenSSL who were available to detect and respond to security

vulnerabilities and very little funding devoted to its upkeep

[21, 17, 16]. Although scholars have presented these factors as

causes or contributing factors to Heartbleed, the significance of

Heartbleed is not simply in the details of how a buffer overread

might arise, nor in how such an error might go undetected,

but also in the broader problems of neglect and longstanding

quality issues in OpenSSL that Heartbleed revealed.

Several of these factors suggest that underproduction is

ultimately a technical problem to be prevented and solved.

We might expect that modern languages, modern libraries,

modern architectures, and modern code analytic techniques

could have detected the bug sooner or prevented the bug from

being introduced in the first place. Although older packages

written in older languages and according to older architectural

ideas can be modernized, this is a substantial undertaking [20].

Examining the problem of underproduction from a technical

perspective suggests that some codebases are simply harder to

maintain adequately and more failure prone. Technical causes

of underproduction might include the language a piece of

software is written in, code age, or some combination of

these. Although languages and code can be refactored and

modernized, the original language and architecture form at

least an upper bound on how old the package can be. All

things being equal, we might expect newer to be better as

1https://heartbleed.com
2E.g., https://flak.tedunangst.com/post/analysis-of-openssl-freelist-reuse



we take the opportunity to learn from the past. To test these

ideas, we propose three hypotheses: (H1) underproduction is

associated with older software, and (H2) underproduction

is associated with the use of older programming languages.

Further, given improvements in engineering standards over

time and our observation that OpenSSL was both an older

package and written in an older language (C), we suggest

(H3) Underproduction associated with increased package

age will be even stronger when the language is also old.

Although age may be part of the explanation, some software

is better maintained than other software of a similar age.

There are numerous cases where old software continues to

function as well or better than newer software. Focusing only

on the passage of time would not account for the important

role of maintainer resources. The lack of developers working

on OpenSSL is frequently cited as part of the story of how

Heartbleed happened [e.g., 16, 17, 22, 19]. Proponents of

open forms of collaboration point to Linus’s law—the notion

that “given enough eyeballs, all bugs are shallow” [23].

Presumably, a lack of eyeballs, therefore, leads to undiscov-

ered vulnerabilities. In their study of the PyPi ecosystem,

Valiev et al. found that a higher number of contributors

was associated with both short-term and long-term project

survival [24]. A larger OpenSSL maintainer team might have

prevented Heartbleed using defect detection tools or seeing the

problem sooner. However, as Brooks famously argued, adding

additional developer resources can be detrimental to progress

[25]. In their study of GitHub, Joblin and Apel suggest that

small clusters of collaborators with low turnover may be asso-

ciated with more successful projects in comparison to projects

where larger groups of people are committing to the same

functions [26]. Although we acknowledge the presence of

competing explanations, our fourth hypothesis draws from the

former perspective emphasizing the value of larger number of

contributors and suggests that (H4) underproduced software

has fewer contributors.

That said, attributing underproduction to simply the number

of developers seems likely to be incomplete, given that FLOSS

developers vary widely in such traits as knowledge of the

codebase. Turnover in leadership may be harmful, as found in

Joblin and Apel [26]. In his analysis of a software development

firm, Mockus found that staff departures were associated with

lower software quality as measured via code analysis and

customer defect reports [27]. Some open source projects rely

heavily on a single individual, and the loss of the maintainer

may spell the end of a project. Coelho and Valente surveyed

maintainers of GitHub projects that were once popular, but

have since been deprecated, and found that lack of maintainer

interest and lack of maintainer time were some of the top

reasons for project failure [28]. Further, Coelho and Valente

found that although maintainers tried to overcome failure by

transitioning ownership to a team, recruiting a new maintainer,

or bringing in new contributors, these approaches often did not

revive the project.

On the other hand, some FLOSS projects are organized such

that high levels of maintainer turnover are not detrimental. For

example, in their study of five open source projects composed

of many modules in an overarching framework (Angular.JS,

Ansible, Jenkins, JQuery, and Rails), Foucault et al. found that

these successful projects all had relatively high contributor

turnover [29]. Early work from Michlmayr and Hill observed

that Debian tended to rely on single individuals [30]. Robles

et al. [31] found that when a maintainer leaves the Debian

project, others often adopt their packages. As a result of this

process, Robles et al. found that the most important packages

tend to be maintained by the most experienced maintainers.

However, the adoption of a piece of software by others does

not mean that the software will ultimately be maintained at

a quality level commensurate with its importance. Nassif and

Robillard’s 2017 study of eight open source projects (GIMP,

Assimp, TrinityCore, Gitlab CE, Linux, Chromium, Kodi, and

Apereo CAS) found that the departure of maintainers led to

substantial knowledge loss [32]. Further, Nassif and Robbilard

found that these departures led to parts of the project going

unmaintained: those who continued to participate did not tend

to take on maintenance of the parts written by those who

had left. So, while there are reasons to think otherwise, we

hypothesize that the loss of a maintainer will make it more

likely that a package will be underproduced and that (H5)

underproduction is associated with maintainer turnover.

FLOSS developers organize their work in multiple ways.

They may work alone, form a loose collection of collaborators,

or assemble into a team [6, 33, 7, 31]. Although the team

structure does not need to be large or complex to have an

impact, the presence of a team suggests that a more stable

collaboration has formed with a distinct identity [34]. In their

study of the PyPi ecosystem, Valiev et al. found that having

a project hosted in an “organization” account, rather than an

individual one, was associated with the project being 22%

less likely to become dormant [24]. Transitioning away from

depending on a single maintainer was also one of the tech-

niques Coelho and Valente found that maintainers of failing

projects attempted, suggesting that maintainers themselves feel

that teamwork may be helpful in preventing failure [28]. Team

approaches offer the potential for the transition of leadership,

technical help, and social rewards such as encouragement and

recognition. This perspective suggests that (H6) packages

maintained by a team are less likely to be underproduced

than those maintained by individuals.

Ways of organizing work go beyond the team that forms

around a single package. Developers work together across

multiple packages and form broad collaborative networks.

Two software packages inside these networks can be thought

of as connected if the same person has engaged with both.

These types of connections may be valuable because someone

who works on several packages may be well-placed to see

how a bug in one package has implications for another.

Indeed, Joblin and Apel constructed collaboration networks

from developers who commit to the same function and found

that degree centrality strongly predicted success for the open

source projects they examined on GitHub [26]. We might

expect that collaboration allows for greater resilience and



productivity within the team supporting individual pieces of

software because an individual who is highly connected to

other collaborators may be able to access additional social and

technical support [35]. This availability of social connection

may be highly valuable in driving project success. In their

study of GitHub projects, Qiu et al. found that participants

were more likely to persist in software projects with high

potential for building social capital [36]. A struggling package

that is more central within a collaborative network may be

more likely to be noticed, and the resources to solve its

problems are more likely to be available. These perspectives

suggest that (H7) underproduced packages are associated

with collaborators who are farther from the central influ-

ential core of collaborators.

Finally, it may be the case that underproduced packages

lack collaborators who are aware of what is happening across

Debian as a whole—those people who might notice cross-

package trends or have a more accurate sense of the baseline

rates of problems and resolution such that they can recog-

nize that a package is struggling. This suggests that (H8)

underproduction is associated with collaborators lacking

visibility into what is going on elsewhere in the project—

i.e., an absence of brokers.

III. METHODS

A. Empirical Setting

We build from Champion and Hill’s method for detecting

relative underproduction in software packages in the Debian

GNU/Linux operating system distribution [2]. Debian was

founded in 1993 and has grown to serve a range of computing

needs, especially with respect to server infrastructure. Debian

also serves as the primary package source for Ubuntu.3 The

Debian community has a history of democratic governance

and volunteer participation in that individuals exclusively self-

select into tasks and a long-established reputation for quality

[37, 38, 39].

An operating system distribution serves a vital integration

role in the world of software development by bringing to-

gether, configuring, and testing thousands of packages under

a common framework. One of the key ways that Debian

members contribute to Debian is by serving as a package’s

maintainer. Although the term is used in several ways within

Debian, we use the term to describe the person listed in a

package’s “Maintainer” field. This person (or group) will re-

ceive notifications of bugs and is responsible for the package.4

In Debian, maintainers are not the only individuals who can

update packages. Trusted community members (those granted

“Debian Developer” status) can upload a Debian package in

what is called a non-maintainer upload (NMU). Because they

are a sign of problems, Champion and Hill used NMUs to

validate their measure of underproduction. Many packages list

a range of other people in package metadata who, while not

the maintainer, can upload packages in what are not considered

3https://ubuntu.com/community/debian
4https://wiki.debian.org/Maintainers

NMUs. We describe any person who uploads a version of a

package outside of an NMU as an “uploader.”

A Debian package maintainer is not necessarily the person

who develops and maintains the software itself. Debian typi-

cally describes this latter person as the “upstream” maintainer.

In this sense, Debian maintainers are the downstream recip-

ients of problems that are located upstream in the software

supply chain. However hard a Debian maintainer works, they

may have little control over the challenging behavior of the

software they are seeking to integrate with other packages.

Of course, the responsibilities of the Debian maintainer may

be made substantially more difficult if the software they

are packaging is complex, has fragile dependencies, or if

it not being maintained well (or at all) upstream. Although

our study is of Debian, we examine only one supply chain

segment. Some of the data we collect directly reflects upstream

conditions, which vary widely. Figure 2 illustrates a piece

of this supply chain; upstream software developers produce

software, which is packaged by operating system distribution

communities like Debian.

B. Data

Debian has a history of making high-quality data available

to the public in ways that have been useful for software

engineering research [e.g., 40, 41]. To test our hypotheses,

we operationalize the concepts in each hypothesis using mea-

sures from this data (corresponding hypotheses are indicated

in parentheses). We use the history of package uploads as

recorded in the Ultimate Debian Database [41] maintained

by Debian, as well as package release notes for package age

(H1), the number of people contributing (H4), the turnover

in maintainership (H5), and the presence of a maintaining

team (H6). We collected package-level underproduction data

from the dataset Champion and Hill published.5 This dataset

contains estimates for 6,551 packages [2]. We merge these

data with measures that we build from a series of other

datasets. We identify the upstream programming language of

each package (H2), and we use a set of tags in the UDD

of the format “implemented-in::<language>”. These tags are

present for 2,383 of the 6,551 packages in our study and

refer to 24 different languages. We also use the history of

bug resolutions from the Debian Bug Tracking System (BTS)

to build a collaboration network (H7, H8).

C. Measures

Our key outcome variable, underproduction, is drawn from

the replication dataset published by Champion and Hill. Posi-

tive values indicate underproduction, with a higher underpro-

duction factor associated with higher levels of underproduc-

tion; the measure is a ratio between quality rank and impor-

tance rank. We treat underproduction as a boolean value where

true indicates that the underproduction factor, as measured in

Champion and Hill, is positive.

In H1, we proposed that underproduction is associated with

older software. We operationalize package age as the length

5https://doi.org/10.7910/DVN/PUCD2P





and once tagged only shell, we treated that release as tagged

Perl and shell. For a package i and language j,

Release Language Proportioni,j =
TaggedReleasesi,j

TotalTaggedReleasesi

Hence our measure of language is per-package and per-

language, and a continuous value from 0 to 1.

To calculate mean language age, we take the number of

years before 2020 in which the language was introduced (the

year of introduction was sourced from the English Wikipedia

article about the language; larger numbers describe older

programming languages) and calculate language age at the

package level using the proportion of releases tagged with the

language (packages can be tagged with multiple languages

in a given release), multiplied by the age of the language in

2020. This measure of language age is admittedly very coarse:

languages change over time, and new versions may have

very different features than were available in older versions.

However, we argue that language authors desire to maintain

some level of continuity between versions and that the design

decisions made early in a language tend to set the overall tenor

for what comes later. Because there are 24 different languages

represented, for a package i and language j:

Mean Lang Agei =

∑

24

j=1
Release Lang Propi,j ∗ YearsOldj

#Total Languages Presenti

In H4, we proposed that underproduced packages will

have fewer contributors. We measure the number of people

contributing using uploader count, the number of people

contributing to a package by counting the number of unique

individuals who have uploaded new versions of the package.

In H5, we proposed that underproduced packages will

have higher rates of maintainer turnover. We measure main-

tainership turnover by looking at the maintainer field of all

contributions uploaded for a given package. It is important

to recall that the maintainer of a package may or may not

be the person doing the upload. We use a boolean value for

turnover so that if a package has had more than one maintainer,

maintainer turnover is true, otherwise false.

In H6, we hypothesize that packages maintained by teams

will be less likely to be underproduced. Examples of teams

are the Debian Games Team and the Debian Python Team.

In Debian at the time of upload, the Debian archive system

logs the identity of the uploader as well as the identity of the

maintainer in the form of a name and email address pair. To

detect whether a given upload occurred while the project was

being maintained by a team, we examine the maintainer field

of the log. If the maintainer is a mailing list (indicated by the

mailing list email domain lists.alioth.debian.org), we record it

as a team. We also identified three addresses representing the

Debian-wide quality assurance teams. Because these teams are

typically used a placeholder or temporary maintainers, we did

not treat the presence of these QA groups in the maintainer

field as indicative of being maintained by a team and omitted

these uploads from our dataset.

In H7 and H8, we hypothesize that underproduced packages

will tend to be worked on by people in less central positions

within the broader collaborative network in Debian. To build

a network that considers both packages and contributors, we

considered that contributors may have some social connection

by having worked on bugs within the same package.

Using the package igraph [42], we first generated a two-

mode network from individuals doing bug work in packages.

Two-mode networks are used when two types of nodes exist

in a network analysis [43]. In our case, one set of nodes

represents individuals, and the other set represents packages.

The network is formed by generating an undirected edge

between people and packages when they work on bugs in

the package and an undirected edge between people who

have worked on bugs in the same package. Our network

included every bug in every package in Debian. We excluded

from this network the internal-only automatic messages (e.g.,

“owner@bugs.debian.org”) as these do not indicate actual

contributors.

To obtain network measures at the level of the package, we

then project this two-mode network to a single-mode network

such that packages are connected to other packages by means

of the people who contribute to their bugs. Therefore, packages

are ultimately connected by means of having contributors

in common. This analysis yielded 78,955 contributors across

18,399 packages. Not all of these packages were present

in the dataset from Champion and Hill due to insufficient

bug resolution data to generate an underproduction estimate.

Therefore, although we use all 18,399 packages in generating

our network measures, our inference is limited to the 6,551

in Champion and Hill. We use eigenvector centrality (which

ranges from 0 to 1) to evaluate H7 (proximity to the core).

Eigenvector centrality is a weighted form of degree centrality:

after assigning weights to nodes based on the number of

connections to other nodes, the value of each connection

is reweighted such that connections from high-degree nodes

are worth more than those from low-degree nodes in a way

that is similar to the Google PageRank algorithm. We use

betweenness centrality to evaluate H8 (cross-project visibility

by means of brokerage). Betweenness centrality is the extent

to which a given node lies on the shortest path between other

nodes.

1) Name Canonification: Measuring the number of unique

people contributing to a package in the form of package

uploaders in H4, maintainer turnover in H5, as well as building

the networks of bug collaborators in H7 and H8, required

identifying individuals. Doing this necessitated a process of

name canonification. Bugs in Debian are represented as email

messages, with addresses presented with a name part and an

email part. Contributors sending messages with the system do

not always use the same name and email address, and their

name and address may change over time. A manual review of

bug records revealed numerous examples where an individual

submitted a bug with their work or personal address and then

worked on the bug and resolved it using their Debian-specific

address. As a result, email address was not sufficient as a



primary key. Unfortunately, a person’s name alone is also

not a reliable primary key since some names and nicknames

are relatively common globally. The risk is not only from

conflating two Johns Smith, but also conflating Jack Johnson

and Jennifer Juarez who have have both decided to set their

name part of their email address to “JJ.”

Given these concerns, we applied two heuristics as part

of our canonification process. First, we reasoned that in

all cases, someone using the same email address but a

different name was likely to be the same person (e.g.,

“J Doe <jdoe@example.com>” should be treated as the

same person as “Jane Doe <jdoe@example.com>”). Fur-

ther, within the same bug (but only within the same bug),

we treated entries with the same name part but differ-

ent email address part as also the same, e.g., “Jane Doe

<jd@workaddress.com>” was treated as the same person as

”Jane Doe <j.doe@homeaddress.com>”. We also inspected

this mapping manually to remove obvious dummy addresses

and resolve circular references. This process found 8,741 in-

stances where the same person used more than one address for

their Debian bug work and identified aliases associated with

6,438 unique individuals. We used these aliases to canonify

uploaders, maintainers, and collaborators on bugs prior to

analysis.

D. Analytic Plan

We use logistic regression to test each of our hypotheses,

which calculates the log odds of an outcome from a vector of

explanatory variables. Because the outcome variable in logistic

regression is the log odds of an outcome, our models were all

of the form:

log

(

Punderprod

1− Punderprod

)

= β0 + βX

where P is the probability that a given package is underpro-

duced, odds is defined as probability divided by 1 - probability,

X describes a vector of variables from our dataset, and β

describes the vector of fitted parameter estimates associated

with our hypothesis tests.

One analytic challenge we faced was missing data in terms

of package programming language (due to untagged packages)

as well as missing network measures (due to isolates in the

collaboration network, meaning we have no defined centrality

measure for a package). In order to offer inference into the

source of underproduction while managing the presence of

confounders and missing data, we fit four models. M1 includes

those predictors for which we have complete data (offering

insight into H1, H4, H5, and H6). M2 omits only the language

age predictors (H1, H4-H8). M3 omits only the network

predictors (H1-H6). M4 is the full model (H1-H8) but, due

to missing data, is estimated using only 1

3
the observations

used in M1. For each hypothesis, we assess the relationship

between our predictors X and underproduction and measure

significance at the α = .05 significance level. Full code and

data for replicating our results are available via the Harvard

Dataverse at https://doi.org/10.7910/DVN/N2HIRS.

E. Ethics

This study was conducted entirely using publicly available

data published by the Debian community and does not involve

any interaction or intervention with human subjects. This type

of research using these data has been reviewed by the IRB

at the authors’ institution and has been determined not to

be human subjects research. However, we recognize that this

work removes observational data from its original context.

Therefore, our publication does not include information that

would identify Debian contributors.

IV. RESULTS

The results of our models are presented in Table I.

A. H1, H2, and H3: Age

In H1, we proposed that underproduction would be associ-

ated with older software. Our results in Table I provide support

for this hypothesis. This finding is consistent across all four

models. We find a significant relationship between the number

of years a package has been in Debian and underproduction—

the older a piece of software is, the higher its underproduction

risk. A visualization of our data with respect to language age

appears in Figure 3. The coefficients from a model to test this

relationship are presented in log-odds units in Table I, and

the individual coefficients should be interpreted as the log-

odds ratio associated with a one-unit change in the predictor,

all other factors being equal. Thus our model M4 predicts

that a package older by one year has an odds ratio of 1.406,

corresponding to odds of being underproduced that are 40.6%

higher.6

In H2, we proposed that packages written in older languages

would be more likely to be underproduced. Figure 4 shows

the data associated with this measure. Our results in Table I

provide support for this hypothesis across all models fit with

this predictor (M3 and M4). M4 predicts that a package written

in a language older by one year, all other factors being equal,

has odds of being underproduced that are 17.3% higher.

Our hypothesis in H3 suggests the presence of an interaction

between language age and package age, such that underpro-

duction associated with older packages will be more extreme

when the language it is written in is also old. However, our

models contradict this hypothesis, and we find that while

the main effect of being an older package and being written

in an older language both tend to increase the probability

that a package is underproduced, the interaction between

these two independent variables has a negative coefficient. To

interpret these coefficients, we visualize the marginal effect of

package age for two language ages (25 years, corresponding

to Java, and 48 years, corresponding to C), with results as

seen in Figure 5. Although the confidence intervals around

the predictions are relatively wide, this result suggests that

the effect on underproduction of being an older package is

weaker when the language is also old.

6Because our models are logistic regressions, eβ is the odds ratio associated
with a one-unit change in β. In this case, e.34 = 1.405. We do similar
transformations for each of the other parameter estimates below.



Table I
THESE LOGISTIC REGRESSION MODELS ASSESS THE EXTENT TO WHICH UNDERPRODUCTION IS A FUNCTION OF A RANGE OF SOCIAL AND TECHNICAL

FACTORS. COEFFICIENTS ARE UNTRANSFORMED LOG-ODDS ESTIMATES WITH A 95% CONFIDENCE INTERVAL INDICATED IN BRACKETS. NOTE THAT THE

NUMBER OF OBSERVATIONS VARIES PER MODEL DUE TO MISSING DATA.

M1: no lang/network measures M2: No language measures M3: No network measures M4: Full model

(Intercept) −1.90∗ −1.66∗ −6.57∗ −7.28∗

[−2.07;−1.73] [−1.91;−1.41] [−8.24;−4.89] [−9.06;−5.50]
Package Age (years) 0.14∗ 0.08∗ 0.32∗ 0.34∗

[0.13; 0.15] [0.06; 0.09] [0.22; 0.43] [0.23; 0.45]
Uploader Count 0.21∗ 0.13∗ 0.26∗ 0.18∗

[0.17; 0.24] [0.09; 0.17] [0.21; 0.32] [0.12; 0.24]
Did maintainer change? 0.32∗ 0.35∗ 0.27∗ 0.22

[0.19; 0.45] [0.19; 0.51] [0.03; 0.51] [−0.03; 0.47]
Team proportion 0.17∗ 0.03 −0.48∗ −0.20

[0.02; 0.33] [−0.17; 0.23] [−0.79;−0.16] [−0.54; 0.13]
Eigenvector Centrality 16.74∗ 18.91∗

[13.08; 20.41] [14.18; 23.64]
Betweenness Centrality −0.00 −0.00

[−0.00; 0.00] [−0.00; 0.00]
Mean Language Age 0.15∗ 0.16∗

[0.11; 0.19] [0.12; 0.20]
Package Age : Mean Language Age −0.01∗ −0.01∗

[−0.01;−0.00] [−0.01;−0.01]
AIC 6586.11 4373.82 2305.08 2088.71
BIC 6619.97 4418.64 2345.35 2140.37
Log Likelihood −3288.05 −2179.91 −1145.54 −1035.35
Deviance 6576.11 4359.82 2291.08 2070.71
Num. obs. 6450 4459 2328 2299
∗ Null hypothesis value outside the confidence interval.

Figure 5. This visualization shows predicted underproduction probability from
model M4 for two prototypical packages of different programming language
ages where package age varies as shown along the x-axis. The package shown
in blue is 25 years old, corresponding to a package written in a language as
old as Java, while the package shown in red is 48 years old, corresponding to
a package written in a language as old as C. The gray ribbon shows a 95%
confidence interval around the prediction.

B. H4: Contributor Count

In H4, we proposed that greater numbers of contributors

would decrease the probability that a package is underpro-

duced. Our results across all four models in Table I contradict

this hypothesis. Instead, we find that additional uploaders are

associated with an increase in odds that a package is underpro-

duced. Our model M4 predicts that an additional uploader is

associated with a 19.7% higher odds of being underproduced.

In other words, increased uploaders are associated with an

increased risk of underproduction.

C. H5: Maintainer Turnover

In H5, we proposed that maintainer turnover would be

associated with a higher probability of underproduction. Al-

though three of the four model results (M1-M3) in Table I

provide support for this hypothesis, we observe that once we

include collaboration network measures, language age, and

the interaction of package and language age, this effect is

no longer statistically significant. This suggests that having

experienced maintainer turnover is not associated with higher

odds of underproduction once language age and collaboration

network measures are held constant.

D. H6: Organizing into Teams

In H6, we proposed that being maintained by a team would

diminish the likelihood that a given package was underpro-

duced. Model results presented in Table I provide little support

for this claim. Instead, we find contradictory results in models

M1–M3. With all covariates present in the smaller dataset

in M4, we find that the impact of team proportion is not

statistically significant. This suggests that, other factors being

equal, the involvement of a maintenance team does not impact

the odds of a package becoming underproduced. Indeed, our

results provide some evidence that the opposite may be true.

E. H7 and H8: Collaboration Networks

Finally, we examine the role of collaboration networks

in underproduction. In H7, we test whether underproduced



software packages are associated with an absence of influence

(eigenvector centrality). Our results for M2 and M4 presented

in Table I contradicts our expectation in H7. Instead, we find

that an increase in eigenvector centrality is associated with

an increased likelihood of underproduction. In H8, we test

whether underproduced software packages are associated with

an absence of brokerage (betweenness centrality). Our results

for M2 and M4 presented in Table I contradict our expectation

in H8. Instead, we find that all other factors being equal, the

betweenness centrality of a package is not associated with an

increase in the odds that the package is underproduced.

V. DISCUSSION

A. The Role of Technology Choices in Underproduction

In H1-H3, we examined the relationship between older

software, older languages, and underproduction. Our results

suggest that we should think of software age in a nuanced way.

All other things being equal, an older package or one written

in an older language is more likely to be underproduced. How-

ever, having been written in an older language is associated

with a weaker effect of package age. These results suggest

that although software faces increased underproduction risk

as it (and its language) grows older, thinking of software only

in terms of language or age is insufficient. Indeed, for older

software in older languages to be present in our dataset, it

must have survived for decades. Recently written packages

in newer languages are also less likely to be underproduced.

Further, we observe that there is substantial variation within

languages in Figure 4 and in the confidence interval width in

Figure 5. Committed communities may be able to maintain

the health of pieces of software regardless of their age and

language, but there are no guarantees.

From the perspective of software users, underproduction risk

due to age is likewise challenging. Older software may have

a range of benefits not captured in the direct maintenance of

the software’s quality: knowledge and trust from a history of

use, availability of documentation, integration with other tools,

embeddedness in a given process, or the existence of migration

paths to an alternative. Change to a new service or paradigm

has a cost even when the current solution is performing quite

poorly. These factors may continue to elevate the importance

of the software even after quality has fallen away substantially.

B. Organizing to Address or Prevent Underproduction

In H4, we studied the number of contributors by examining

uploader quantity. In H5, we examined maintainer turnover.

In H6, we examined the question of how uploaders and main-

tainers are organized. Contrary to our expectations, additional

uploaders to a package were associated with increased odds

of underproduction. Maintainer turnover, in and of itself, is

not associated with underproduction. Nor is the presence of

a maintenance team in our full model. These are challenging

results for communities seeking to organize effort in ways that

resist or prevent underproduction. It may be that identifying

a level of modularity where a single uploader can sustain

effort for the package’s life is helpful (hence, the community

should orient itself to retaining that uploader’s commitment).

Awareness of the key role of individual effort and the risk

involved in a transition from “one” to “more than one”

may allow these projects to think differently about how they

approach scale and burnout prevention. Or, it may be the

case that detection and remediation are more achievable than

prevention.

Our results in H7 and H8 suggest that the people working on

bugs in underproduced packages are influential in the network

formed by bug commenters. This suggests that, rather than

being isolated from other software, underproduced software

is drawing from a highly central resource pool—one that

is perhaps spread too thinly. However, our cross-sectional

approach does not allow us to distinguish if the engagement

with influential contributors predates the emergence of under-

production or followed after it. In sum, these findings suggest

that the best-case scenario for a piece of software is to be

maintained by a dedicated individual who does not work on

many other pieces of software.

C. Key Takeaways for Practitioners

Our study draws both from the distribution level and from

upstream development communities, asking whether underpro-

duction at the distribution level is attributable to technical

factors such as the age of the package and the language

in which the package is written or to how the distribution

organizes effort. Although software developers and maintain-

ers in distributions like Debian take on different roles in the

supply chain, they have an important relationship. Software

developers benefit from the additional testing, dependency

management, visibility, and support that distributions provide.

To the extent that their goal is to serve end users, making

their package easy for distributions to maintain is in their

best interest. For their part, distribution maintainers depend

on upstream developers to make good quality software that

can be easily installed and readily integrated with the other

packages. Both groups have a role to play in preventing and

addressing underproduction.

For distributions like Debian, our findings with respect

to organizational structure should be particularly helpful. As

described, the best-case scenario may be to support dedicated

and focused individuals rather than push for simply “more

eyeballs” or large volumes of new contributors pitching in

casually. Although much of the literature on peer production

communities emphasizes the power of these casual contribu-

tors as part of the long tail, distributions like Debian are an

important counterexample.

For developer communities, our finding that underproduc-

tion seems to be an inevitable consequence of age and lan-

guage age suggests that all projects need to confront the march

of time. New projects should be careful about using older

languages. However, the negative interaction term brings a sign

of hope: longstanding projects may continue to pass the test

of time.



VI. LIMITATIONS

Our measure of underproduction is extracted entirely from

prior results in Champion and Hill [2]. This underproduction

measure used the mean resolution time of bugs as a measure

of quality and usage as a measure of importance. Other

measures of quality and importance could lead to different

results. Furthermore, our results should be characterized within

the context of how underproduction manifests itself at the

distribution level. Although Debian is an important part of

the software supply chain, it is only one link in the chain.

Different links may be characterized by different concerns.

Our work may not generalize beyond the Debian context.

While our evidence suggests that packaging software is

well-served by single individuals, some peer production ac-

tivities are likely to be impossible without a team effort.

Understanding the relative modularity of production tasks

and the conditions that make it necessary to set aside the

advantages of unitary leadership in favor of collaborative effort

is a key area for future work.

Our measure of package age does not consider how long

a package existed before it was added to Debian and is

thus only a lower bound on the age of the software. Our

assessment of language age only considers the year in which

a given language emerged. Although this is an important part

of the context of a given language and the paradigms under

which it was designed, languages evolve, and code is rewritten

and refreshed. Our use of language tagging in Debian omits

variation in how important a given language may be to a

package, and these tags are unlikely to be missing at random.

We have taken up four different perspectives on ways

that people collaborate—maintainership, uploading, declaring

a team, and working on bugs. However, each of these measures

is relatively coarse and does not take the history of the package

into account. This omits multiple forms of variation, which

may be important, such as how the team functions. Further,

our analysis’s cross-sectional nature omits the maintenance

structure’s history. Teams and overworked individuals may

adopt packages because they are underproduced. Or what

begins as a team effort may fall into disarray with an individual

left picking up the pieces. We have sought to limit the impact

of confounders like these by including a full model with

all predictors. However, because our collection of predictors

is necessarily incomplete, our ability to infer the causes of

underproduction is limited.

Additionally, we acknowledge that many of our predictors

of underproduction are largely measures of quality—either of

software or of software maintenance. We hope that by treating

underproduction as our outcome, instead of quality directly, we

are able to incorporate knowledge about importance to identify

the causes and correlates of software that is less high quality

than it should be given its importance. Doing so means that our

analysis is substantively about risk, not only about identifying

low-quality software.

A final limitation is the cross-sectional nature of our data

and the correlational nature of our analysis. Although our

hypotheses are framed in terms of causes, our results describe

correlations in our data. Indeed, it is easy to imagine how un-

derproduction could cause increases in some of our measures.

For example, a package might have more maintainers over its

life because it requires lots of work to fix bugs in a way that

burns out maintainers or because the software is so important

that it attracts lots of very capable people interested in helping.

We have attempted to include a range of covariates to address

this risk and have attempted to avoid causal language in our

interpretation. That said, our results are best thought of as

correlational evidence in support of causal theories.

Future work should seek to further unpack the factors that

affect quality or importance to understand how these factors

ultimately affect underproduction. Further, we should explore

what social and structural factors might affect communities’

underlying ability to ensure more or less alignment between

quality and importance. Additional methods need to be de-

veloped to understand underproduction not only in a cross-

sectional and cumulative manner, as in Champion and Hill

[2] and our own work, but also longitudinally, to support

prioritization and intervention.

VII. CONCLUSION

Underproduction is partly a result of the simple passage of

time. Older software, or software written in older program-

ming languages, is at greater risk. This makes confronting

underproduction risk a seemingly inevitable task for software

in the longer term. One strategy to confront underproduction

risk is to consider how best to organize maintenance effort.

Although solitary contributors and teams may be viable, our

results suggest that underproduction risk is associated with

projects with higher resources. We find no evidence that

maintainer turnover is associated with higher risk or that teams

are associated with lower risk in our full model. The work of

sustaining FLOSS is both an opportunity for individuals to

make important personal contributions and for them to band

together to build teams within larger communities. Although

communities producing FLOSS distributions have little control

over the age or language of the software they package, they

have control over other things. Our work points to ways that

FLOSS organizations can use information on relative under-

production and its correlates to allocate resources and make

difficult choices about when to retire or omit software when

further intervention may not address the likely underlying

causes of problems.
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