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The resummation calculation (ResBos) is a widely used tool for the simulation of single vector boson
production at colliders. In this work, we develop a significant improvement over the ResBos code by
increasing the accuracy from NNLLþ NLO to N3LLþ NNLO and release the ResBos v2.0 code.
Furthermore, we propose a new nonperturbative function that includes information about the rapidity
of the system (IFY). The IFY functional form was fitted to data from fixed target experiments, the Tevatron,
and the LHC. We find that the nonperturbative function has mild rapidity dependence based on the results
of the fit.
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I. INTRODUCTION

At the collider experiments, theW and Z boson channels
are considered standard candle processes. Specifically, the
lepton pair production cross sections are among the most
precise observables measurable at the Large Hadron
Collider (LHC) [1,2]. Additionally, they appear as back-
grounds to all beyond the Standard Model (BSM) searches.
Therefore, it is of vital importance that the theoretical
calculations for these processes are calculated to the highest
precision possible. In the case of the total inclusive rate,
these processes have been calculated to N3LO accuracy in
quantum chromodynamics (QCD) [3–5], NLO accuracy in
the electroweak theory (EW) [6–8], and the first order for
the mixed QCD-EW corrections [9–14].
In the case of differential distributions, the calculations

are starting to be completed at N3LO for the rapidity [15],
the transverse mass distribution [16] and the transverse
momentum of the vector boson and the lepton in Ref. [17].
Furthermore, there was an investigation of the effects of
higher order corrections to triple-differential Drell-Yan
observables in Ref. [18]. Care has to be taken when
calculating observables sensitive to low transverse momen-
tumW and Z bosons. In this region, each order in the fixed-
order calculation diverges in the limit that the transverse

momentum goes to zero. However, it was first demon-
strated by Collins et al. [19] that the form of these terms
forms a series that can be formally summed. This approach
is known as transverse momentum resummation. The
current state-of-the-art resummation calculation is at
N4LLp þ N3LO [20], with most other codes at N3LL’þ
N3LO accuracy [17,21–23].

In this work, we present the next version of the ResBos

program [24,25]. The ResBos version 2 (henceforth
ResBos2) code was developed to address some major
concerns from the original ResBos code [26]. One such
concern was the precision of the code. Previously, the
accuracy was only at NNLLþ NLO with an approximate
correction to NNLLþ NNLO neglecting the corrections
to the angular functions. The ResBos2 code is at N3LLþ
NNLO accuracy, including the correct angular functions.
These concerns were some of the major theory criticisms
levied against the recent CDF W mass measurement. The
CDF experiment measured the W mass as 80; 433�
9 MeV [27], which is the most precise direct measure-
ment. This result disagrees with the Standard Model
(SM) electroweak global fit result of 80; 359.1�
5.2 MeV [28]. The impact of these updates are evaluated
in Ref. [29].
The rest of this paper is organized as follows. First, we

review the two different b-space resummation formalisms
implemented in the ResBos2 code in Sec. II. Section III
discuss the improvements implemented into the ResBos2

code over the previous version of the code. We investigate
the rapidity dependence of the non-perturbative Sudakov
factor in Sec. IV. The comparison LHC data are given for
the Z boson in Sec. V and results for the W boson mass at
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the Tevatron and the LHC can be found in [29]. Finally,
conclusions and a future outlook are given in Sec. VI.

II. RESUMMATION FORMALISMS

When performing fixed-order calculations, the calcula-
tion is organized by the power of αs. Fixed-order calcu-
lations make sense when each term in the series is smaller
than the previous term. However, there are certain phase
space points that result in each subsequent term being
larger than the previous one, causing the breakdown of the
fixed-order calculation. To resolve this, resummation is
introduced. Resummation reorganizes that calculation by
noticing that there are certain terms that appear at every
order in αs [19]. These terms that appear in a specific form

at each order are logarithms of two scales, e.g., logðQ2

p2
T
Þ. The

number of logarithmic terms included in the calculation is
denoted by leading log for having only the leading term,
and adding next-to for each additional log term included.
The organization into different orders of precision are
summarized in Table I.
The dynamics of multiple soft-gluon radiation in scatter-

ing processes is treated through the use of the resummation
formalism [30–34]. There are many applications of resum-
mation at modern colliders. In this work, the focus will be
on the treatment of transverse momentum resummation.
The formalism was originally shown to be possible for all
the large logarithms (leading and subleading) to all orders
by Collins et al. [19]. The formalism developed in their
work will be referred to as the CSS Formalism. A more
recent formalism was developed by Catani, de Florian, and
Grazzini, which is known as the CFG Formalism [35]. The
details of the two formalisms are explained in Secs. II A
and II B respectively. The differences between the two
formalisms are highlighted in Sec. II C. The remainder of
this section will focus on the general outline of pT
resummation.
Firstly, resummation is a mean to relate the different

scales of a multiscale process to a single scale, which also
removes the large logarithms that result from the large

difference between the scales. Therefore, the first step is to
factorize the cross-section calculation into the different
scale regions that are involved in the calculation. The
regions that are important to this work are known as the
hard factor, the soft factor, and the collinear or jet factors. A
diagrammatic representation of each piece for the Drell-
Yan process can be seen in Fig. 1, and can be expressed as:

dσ
dQ2dydp2

T
∝ Hðμ; μRÞSðμ; μResÞC1ðμ; μFÞ

× C2ðμ; μFÞJðμ; Rμ0Þ; ð1Þ

whereH is the hard factor, S is the soft factor,C1 andC2 are
the collinear factors for each incoming hadron, and J is the
jet factor. In this work, we are inclusive on the number of
jets so the factor Jðμ; Rμ0Þ ¼ 1. However, it plays an
important role for example in Higgsþ jet resummation
[36]. Additionally, the various scales are given as the hard
scale μ, the renormalization scale μR, the resummation
scale μRes, the factorization scale μF, and the jet radius (R)
scaled by the jet scale μ0.
The remainder of the section is to discuss the calculation

of the soft factor, and derive the well known Sudakov
factor. Starting from the fixed-order calculation up to the
nth order in αs, the result can be split into a singular piece,
and a regular piece. The singular piece are terms that are

proportional to 1
p2
T
logmðQ2

p2
T
Þ (m ¼ 0; 1;…; 2n − 1) and

δðpTÞ, and the regular terms are less singular than those
previously mentioned. This calculation breaks down when

αns
1
p2
T
logmðQ2

p2
T
Þ becomes large.

To resolve this issue, the logarithms need to be summed
to all orders to obtain a finite result in the limit pT → 0, and
remove all large logarithms from the final result. In order to
perform the resummation correctly, the cross section needs
to be Fourier transformed into impact parameter (b) space.
In the impact parameter space, the total transverse momen-
tum is explicitly conserved [37]. After the Fourier trans-
form, the cross section can be expressed as

TABLE I. The different components needed for different orders of resummation.

Anomalous dimension

Order Boundary condition (C) γi (noncusp, B) Γcusp; β (A) Fixed order matching (Y)

LL 1 � � � 1-loop � � �
NLL 1 1-loop 2-loop � � �
NLL’ (þ NLO) αs 1-loop 2-loop αs
NNLL (þ NLO) αs 2-loop 3-loop αs
NNLL’ (þ NNLO) α2s 2-loop 3-loop α2s
N3LL (þ NNLO) α2s 3-loop 4-loop α2s
N3LL’ (þ N3LO) α3s 3-loop 4-loop α3s
N4LL (þ N3LO) α3s 4-loop 5-loop α3s
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dσ
dQ2dp2

Tdy
¼ 1

ð2πÞ2
Z

d2beiq⃗T ·b⃗W̃ðb;Q; x1; x2Þ

þ YðpT;Q; x1; x2Þ; ð2Þ
where W̃ contains the resummation of the singular pieces
of the cross section, and Y contains the regular pieces of
the cross section definedby taking the fixed-order calculation
and subtracting the corresponding asymptotic piece. The
asymptotic piece contains the terms that are at least
as singular as 1

p2
T
in the fixed-order calculation in the

limit pT → 0.
By studying the form of the singular piece, the x1 and x2

dependence in W̃ can be factorized into

W̃ðb;Q; x1; x2Þ ¼
X
j

Cjðb;Q; x1ÞCjðb;Q; x2ÞW̃ðb;QÞ;

ð3Þ
where Cj is a convolution of the PDFs with a collinear
Wilson coefficient, with the convolution defined as

Cj ¼
X
a

Z
1

x

dz
z
Cja

�
x
z
; b; μ; Q

�
faðz; μÞ; ð4Þ

where Cja is the Wilson coefficient, fa is the PDF, the sum
a runs over all incoming partons, and j represents the
parton that enters into the hard cross section calculation.
These functions are the collinear factors as previously
mentioned. The remaining term contains the hard factor,
and the soft factors.
W̃ is determined by solving the evolution equation [38]

∂

∂ logQ2
W̃ðQ; bÞ ¼ ½Kðbμ; gsðμÞÞ þGðQ=μ; gsðμÞÞ�

× W̃ðQ; bÞ; ð5Þ

where Kðbμ; gsðμÞÞ and GðQ=μ; gsðμÞÞ satisfy the renorm-
alization group equations (RGEs),

d
d log μ

Kðbμ; gsðμÞÞ ¼ −γKðgsðμÞÞ; ð6Þ

d
d log μ

Gðb=μ; gsðμÞÞ ¼ γKðgsðμÞÞ; ð7Þ

where γK is the anomalous dimension, calculated from the
singular terms of the cross section [39–42]. Through theRGE
equations, Kðbμ; gsðμÞÞ and Gðb=μ; gsðμÞÞ can be evolved
independently to scales of order 1=b and Q, respectively,
removing all large logarithms from the calculation. After
solving these equations, theA andB functions can be defined
such that Eq. (5) can be rewritten as

∂

∂ logQ2
W̃ðQ;bÞ ¼ −

�Z
C2
2
Q2

C2
1
=b2

dμ2

μ2

�
AðgsðμÞ;C1Þ log

C2
2Q

2

μ2

þBðgsðμÞ;C1;C2Þ
��

W̃ðQ;bÞ; ð8Þ

whereC1 andC2 are arbitrary constants of integration arising
from solving the RGEs. It is possible to calculate the values
for the A and B functions order by order in perturbation
theory.
Finally, to obtain a result that can be used to make

predictions of the cross section, the evolution equation of
W̃ needs to be solved. The solution can be written as

W̃ðQ; bÞ ¼ e−SðQ;bÞW̃
�
C1

C2b
; b
�
; ð9Þ

where S is known as the Sudakov factor, and is given by

SðQ; bÞ ¼
Z

C2
2
Q2

C2
1
=b2

dμ2

μ2

�
AðgsðμÞ; C1Þ log

C2
2Q

2

μ2

þ BðgsðμÞ; C1; C2Þ
�
: ð10Þ

Putting all of the results above together, the resummed
cross section can by written as

dσ
dQ2dp2

Tdy
¼ H

ð2πÞ2
Z

d2beiq⃗T ·b⃗e−SðQ;bÞ

×
X
j

Cj

�
C1

C2b
;Q; x1

�
Cj

�
C1

C2b
;Q; x2

�

þ YðpT;Q; x1; x2Þ: ð11Þ

This is the general form for transverse momentum
resummation. However, this form is not the final form
used in calculations, due the fact that when the impact
parameter becomes large, the scale of resummation goes

FIG. 1. A diagrammatic representation of the factorized cross
section for Drell-Yan, broken into a soft, collinear, and hard
factor. The soft factor is labeled by the S, the collinear factors are
labeled by the C’s, and the hard factor is labeled by the H.
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below ΛQCD. Therefore the calculation becomes nonper-
turbative. To prevent using a scale below ΛQCD, the b�

prescription is introduced, where

b� ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

b2max

q ; ð12Þ

where bmax is chosen such that 1=bmax is of order ΛQCD.
The lower bound of the Sudakov integral is then modified
from C2

1=b
2 to C2

1=b
2�. This functional form prevents b�

from ever being larger than bmax, preventing scales below
ΛQCD. However, this causes the prediction to be inaccurate
at low pT, since a piece is removed by the b� prescription.
To resolve this, a nonperturbative function needs to be
introduced.
There are many different proposals for the form of the

nonperturbative function [25,43–45]. In this section, the
general concepts of the nonperturbative function will be
covered. The method of obtaining this function is through
fits to data. It is believed that the nonperturbative function
should be universal, and only depend on the color structure
of the initial states. This then gives the final form of the
resummation formalism in a scheme independent way as

dσ
dQ2dp2

Tdy
¼

X
i;j

H
ð2πÞ2

Z
d2bei pT

�!
·b⃗e−Sperte−SNPC

⊗ fiC ⊗ fj; ð13Þ

where Spert is the Sudakov factor, while SNP is the non-
perturbative Sudakov factor. Finally, up to this point the
integration coefficients (C1, C2, and C3) were left to be
arbitrary. The canonical choice for these scales are given
by C1 ¼ b0, C2 ¼ 1, and C3 ¼ b0, where b0 ¼ 2e−γE . In
Appendix A, the relationship between the canonical scale
choice and any arbitrary choice is calculated up through α3s .
The theory uncertainty due to the missing higher order
corrections can be estimated by modifying the values of C1,
C2, and C3.

A. Collins-Soper-Sterman formalism

So far, the resummation formalism has been developed
in a resummation scheme independent way. Here, the
Collins-Soper-Sterman Formalism is introduced [19]. In
this formalism, the hard matrix element,H, is taken to be 1,
with no corrections as a function of αs, and the B and C
coefficients become process dependent. The A, B, and C
coefficients can be expanded as a series in αs as

A ¼
X∞
n¼1

�
αs
π

�
n
AðnÞ; ð14Þ

B ¼
X∞
n¼1

�
αs
π

�
n
BðnÞ; ð15Þ

Cij ¼ δij þ
X∞
n¼1

�
αs
π

�
n
CðnÞ
ij : ð16Þ

For Drell-Yan, the coefficients for A up to α3s , B up to α2s
and C up to αs are given with the canonical scale choice as
[46–51]

Að1Þ ¼ CF; ð17Þ

Að2Þ ¼ 1

2
CF

��
67

18
−
π2

6

�
CA −

5

9
Nf

�
; ð18Þ

Að3Þ ¼ CF

�
CFNf

2

�
ζ3 −

55

48

�
−

N2
f

108

þ C2
A

�
11ζ3
24

þ 11π4

720
−
67π2

216
þ 245

96

�

þ CANf

�
−7ζ3
12

þ 5π2

108
−
209

432

��
; ð19Þ

Bð1Þ ¼ −
3

2
CF; ð20Þ

Bð2Þ ¼ C2
F

�
π2

4
−

3

16
− 3ζ3

�
þCFCA

�
11

36
π2 −

193

48
þ 3

2
ζ3

�

þCFNf

�
17

24
−
π2

18

�
; ð21Þ

Cð1Þ
qq ðzÞ ¼ 1

2
CFð1 − zÞ þ δð1 − zÞ 1

4
CFðπ2 − 8Þ; ð22Þ

Cð1Þ
qg ðzÞ ¼ 1

2
zð1 − zÞ; ð23Þ

Cð1Þ
qq ðzÞ ¼ Cð1Þ

qq0 ðzÞ ¼ Cð1Þ
qq̄0 ðzÞ ¼ 0; ð24Þ

where CF ¼ 4=3, CA ¼ 3, and Nf is the number of active
quarks. The results for Bð3Þ can be found in Ref. [52], and
for Cð2Þ can be found in Ref. [53].

B. Catani-deFlorian-Grazzini formalism

Catani, deFlorian, and Grazzini realized that the behavior
of soft gluons is independent of the hard process, and
developed a resummation formalism in which the hard
factor which is process dependent can be pulled out of the
Fourier transform [54]. This then leads to the calculation in
impact parameter space only depending on the initial state
partons, and not the hard factor. Like in CSS, the A, B, and
C functions can be expanded as a series in αs. However, in
addition to these three, the hard factorH is not fixed to one,
but can also be expanded as a series in αs. In the CFG
formalism, the A, B, and C coefficients are given by

Að1Þ ¼ CF; ð25Þ
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Að2Þ ¼ 1

2
CF

��
67

18
−
π2

6

�
CA −

5

9
Nf

�
; ð26Þ

Að3Þ ¼ CF

�
CFNf

2

�
ζ3 −

55

48

�
−

N2
f

108

þ C2
A

�
11ζ3
24

þ 11π4

720
−
67π2

216
þ 245

96

�

þ CANf

�
−7ζ3
12

þ 5π2

108
−
209

432

��
; ð27Þ

Bð1Þ ¼ −
3

2
CF; ð28Þ

Bð2Þ ¼
�
ð−3þ 24ζ2 − 48ζ3ÞC2

F

þ
�
−17
3

−
88

3
ζ2 þ 24ζ3

�
CFCA

þ
�
2

3
þ 16

3
ζ2

�
CFNf

��
16þ CFβ0ζ2; ð29Þ

Cð1Þ
qq ðzÞ ¼ 1

2
CFð1 − zÞ; ð30Þ

Cð1Þ
gq ðzÞ ¼ 1

2
CFz; ð31Þ

Cð1Þ
qg ðzÞ ¼ 1

2
zð1 − zÞ; ð32Þ

Cð1Þ
qq̄ ðzÞ ¼ Cð1Þ

qq0 ðzÞ ¼ Cð1Þ
qq̄0 ðzÞ ¼ 0: ð33Þ

The relationship for obtaining the A, B, and C coef-
ficients in the CFG formalism from the coefficients in the
CSS formalism can be found in Sec. II C. The hard factor is
process dependent, and for Drell-Yan are given as

HDYð1Þ ¼ CF

�
π2

2
− 4

�
; ð34Þ

HDYð2Þ ¼ CFCA

�
59ζ3
18

−
1535

192
þ 215π2

216
−

π4

240

�

þ 1

4
C2
F

�
−15ζ3 þ

511

16
−
67π2

12
þ 17π4

45

�

þ 1

864
CFNfð192ζ3 þ 1143 − 152π2Þ; ð35Þ

up to Oðα2sÞ [35].

C. Comparison of CSS to CFG

The conversion between the CSS and CFG Formalisms
can be given using the all orders relations [54]:

CF
abðzÞ ¼ ½HF

a �12CabðzÞ; ð36Þ

BF
c ¼ Bc − β

d lnHF
c

d ln αs
; ð37Þ

where the F superscript is used to indicate which pieces are
process dependent, and β is the function that describes the
running of αs. This can be expanded order by order to give
a conversion between explicit CSS and CFG coefficients. It
is important to note that the A coefficients are always
universal, and Bð1Þ is also universal (only depends on the
color structure of the initial state). The conversions up to
N3LL resummation are listed below

Cð1ÞF
ab ðzÞ ¼ Cð1Þ

ab ðzÞ þ δabδð1 − zÞ 1
2
Hð1ÞF

a ; ð38Þ

Cð2ÞF
ab ðzÞ ¼ Cð2Þ

ab ðzÞ þ
1

2
Hð1ÞF

a Cð1Þ
ab ðzÞ

þ δabδð1 − zÞ 1
2

�
Hð2ÞF

a −
1

4
ðHð1ÞF

a Þ2
�
; ð39Þ

Bð2ÞF
c ¼ Bð2Þ

c þ β0H
ð1ÞF
c ; ð40Þ

Bð3ÞF
c ¼ Bð3Þ

c þ β1H
ð1ÞF
c þ 2β0

�
Hð2ÞF

a −
1

2
ðHð1ÞF

a Þ2
�
; ð41Þ

with β0 ¼ 11CA−2Nf

12
and β1 ¼ 17C2

A−5CANf−3CFNf

24
.

III. ResBos2 IMPROVEMENTS

In this section, the different physics improvements
implemented into ResBos2 are discussed below. For technical
code improvements see Appendix B. These improvements
include the changes to N3LLþ NNLO accuracy and the
inclusion of the NNLO accurate angular distributions. Both
of these issues were a major concern in the usage of the
ResBos prediction for the CDF W mass measurement (see
Ref. [29] for more details).

A. Resummation at N3LL matched to NNLO

In order to match the resummed calculation to the fixed
order calculation, the asymptotic expansion needs to be
calculated to the same order as the perturbative calculation.
Additionally, a matching procedure needs to be defined to
manipulate the transition from the region described by the
resummed calculation (small transverse momentum) to the
region described by the fixed order calculation (large
transverse momentum).
The asymptotic expansion can be calculated using two

different methods. Firstly, since it should reproduce the
singular structure of the perturbative calculation, one can
take the transverse momentum to zero limit of the fixed
order calculation and keep terms that are at least as singular
as 1=p2

T . The other approach is to take the resummed
calculation and expand it to a fixed order in the strong
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coupling constant. The two calculations should be identical
and is a good validation of the calculations. In this work, we
analytically expand the resummed calculation to Oðα3sÞ to
prepare for matching to an N3LO prediction. Furthermore,
we numerically validate that the asymptotic expansion and
the perturbative calculation agree in the limit of small
transverse momentum. The expansion of the A, B,C, andH
coefficients toOðαnsÞ can be explicitly found up toOðα3sÞ in
Secs. II A, II B, and Appendix C for the CSS and CFG
formalisms. The expansion of both the CSS and CFG
formalism result in the same singular and asymptotic piece,
so it is sufficient to only consider the CSS formalism. The
lepton variables and angle between b⃗ and q⃗T are integrated
out to simplify the discussion, but do not modify the results.
After these simplifications, the resummation formalism
becomes

lim
pT→0

dσ
dQ2dydp2

T
∝

1

2πp2
T

Z
∞

0

dηηJ0ðηÞe−Sðη=pT ;QÞC

⊗ fjðx1; p2
T=η

2ÞC ⊗ fk̄ðx2; p2
T=η

2Þ
þ ðj ↔ k̄Þ; ð42Þ

where terms that are not of importance in the derivation
have been dropped, and terms that are less singular than 1

p2
T

or δðpTÞ have also been dropped. The asymptotic piece is
obtained by integrating over η ¼ bpT. Additional details
can be found in Appendix D.
Calculating the results to OðαsÞ is fairly straightforward.

However, the results at higher orders quickly become
untractable. Therefore, it is useful to introduce the follow-
ing definition,

dσ
dQ2dydp2

T
¼ σ0

S
1

2πp2
T

X
i;j

X∞
n¼1

X2n−1
m¼0

�
αsðμ2Þ

π

�
n

n
Cði;jÞ
m

× lnm
�
Q2

p2
T

�
; ð43Þ

which becomes very useful for organization beyondOðαsÞ.
The definition above differs from that found in Ref. [55] by
expanding in factors of αs

π instead of αs
2π, and the overall

factor for the 1
p2
T
term is 1

2π instead of 1
π. Using these

definitions the coefficients up to Oðα2sÞ are given as

1C
ði;jÞ
1 ¼ 2Að1Þfifj;

1C
ði;jÞ
0 ¼ 2Bð1Þfifj þ ½fjðPi←b ⊗ fbÞfiðPj←a ⊗ faÞ�;

2C
ði;jÞ
3 ¼ −2ðAð1ÞÞ2fifj;

2C
ði;jÞ
2 ¼ ð−6Að1ÞBð1Þ þ 2Að1Þβ0Þfifj − 3Að1ÞðfjðPi←b ⊗ fbÞfiðPj←a ⊗ faÞÞ;

2C
ði;jÞ
1 ¼

�
Að1Þβ0 ln

μ2R
Q2

þ 2Að2Þ − 2ðBð1ÞÞ2 þ Bð1Þβ0

�
fifj þ 4Að1ÞðCð1Þ ⊗ fiÞfj − 2Að1ÞðPð1Þ ⊗ fiÞfj ln

μ2F
Q2

− 4Bð1ÞðPð1Þ ⊗ fiÞfj þ β0ðPð1Þ ⊗ fiÞfj − ðPð1Þ ⊗ Pð1Þ ⊗ fiÞfj − ðPð1Þ ⊗ fiÞðPð1Þ ⊗ fjÞ þ i ↔ j;

2C
ði;jÞ
0 ¼

�
4ðAð1ÞÞ2ζð3Þ þ Bð1Þβ0 ln

μ2R
Q2

þ 2Bð2Þ
�
fifj þ Bð1Þ

�
4ðCð1Þ ⊗ fiÞfj − 2ðPð1Þ ⊗ fiÞfj ln

μ2F
Q2

�

− β0

�
4ðCð1Þ ⊗ fiÞfj − 2ðPð1Þ ⊗ fiÞfj ln

μ2R
Q2

�
þ 2ðCð1Þ ⊗ Pð1Þ ⊗ fiÞfj þ 2ðCð1Þ ⊗ fiÞðPð1Þ ⊗ fjÞ

− ðPð1Þ ⊗ Pð1Þ ⊗ fiÞfj ln
μ2F
Q2

þ ðPð1Þ ⊗ fiÞðPð1Þ ⊗ fjÞ ln
μ2F
Q2

þ ðPð2Þ ⊗ fiÞfj þ i ↔ j;

and the results for Oðα3sÞ are given in Appendix E.

B. NNLO angular distributions

The decay of the Z boson into a pair of leptons can be described by a set of angular functions with an associated
coefficient [56–59]. These are given as

dσ
dpTdydQ2d cos θdϕ

¼ L0ð1þ cos2θÞ þ A0ð1 − 3cos2θÞ þ A1 sin 2θ cosϕþ A2sin2θ cos 2ϕþ A3 sin θ cosϕþ A4 cos θ

þ A5sin2θ sin 2ϕþ A6 sin 2θ sinϕþ A7 sin θ sinϕ;

JOSHUA ISAACSON, YAO FU, and C.-P. YUAN PHYS. REV. D 110, 073002 (2024)

073002-6



where L0 is an overall normalization factor, Ai are the
different angular coefficients, and θ;ϕ are the polar and
azimuthal angles defined in the Collins-Soper frame [60],
respectively.

At leading order, onlyL0 and A4 are nonzero. At next-to-
leading order, all the terms are nonzero with the exception
of A5, A6, and A7, which are nonzero at next-to-next-to-
leading order. Furthermore, at next-to-leading order the

FIG. 2. Comparison between the ResBos2 calculation assuming that the angular coefficients follow the same resummation as the overall
rate and the ATLAS 8 TeV angular coefficients data from Ref. [62]. The red curve is the regularized data. The purple curve is the
unregularized data.

FIG. 3. Comparison between the ResBos2 calculation assuming the angular coefficients are resummed separately from the overall rate.
and the ATLAS 8 TeV angular coefficients data from Ref. [62]. The red curve is the regularized data. The purple curve is the
unregularized data.
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values for A0 and A2 are equal and is known as the Lam-
Tung relation [61]. This relation breaks down at NNLO and
the first nonzero measurement of A0 − A2 was done by the
ATLAS experiment [62]. In this work, we will compare the
ResBos2 predictions to those from ATLAS, with the excep-
tion of A5, A6, and A7, since these results are first nonzero at
NNLO and are approximately zero.
In order to make these predictions in the ResBos code,

we are required to match to a fixed order calculation at
NNLO. This is achieved through scaling the ResBos2 NLO
calculation by a set of k-factors obtained in MCFM [63–
65] for each coefficient independently. These k-factors
are differential in the invariant mass, transverse momen-
tum, and rapidity of the lepton pair, allowing for a
reproduction of any leptonic differential distribution
within numerical precision of those from the explicit
NNLO fixed order calculation. The fixed order calcu-
lation is then matched to the resummation calculation
within ResBos2 and the results are compared to the ATLAS
data [62]. The results are shown in Fig. 2. Here we can
see good agreement between the ResBos2 prediction and
the experimental data. Results are shown for both the
regularized and unregularized results, which are described
in detail in Ref. [62].
An open question in the calculation of the angular

coefficients is in the handling of the resummation effects
on all of the coefficients with the exception of L0 and A4.
There has been discussion about the different procedures to
handle the ambiguity associated with handling the lepton
kinematics in conjunction with the QCD soft gluon
resummation in Refs. [66,67]. Here we propose two novel
schemes to estimate the possible size of the effects of
resummation on the coefficients. The first scheme is to
assume that the coefficients are modified in the same
manner as L0 and A4 due to resummation. The second
scheme is to assume that the coefficients are not modified at

all by resummation. These two schemes should encompass
the true effects of resummation. The effects of choosing
these two schemes can be seen in Figs. 2 and 3, respec-
tively. We leave further investigation into these effects to a
future work.

IV. NEW NONPERTURBATIVE FIT

In this work, we propose a new nonperturbative fit
containing information about the rapidity(y) of the system
given by

SIFY ¼ g1 þ ðg2 þ g3b2Þ log
�

Q
MZ

�
þ g4 log

�
1960ffiffiffi

s
p

�

þ g5ðtanh ðg6yMaxÞ þ tanh ðg6ðjyj − yMaxÞÞÞ; ð44Þ

where g1 through g6 are parameters to be fit, yMax is fixed to
be 5 in this study, and

ffiffiffi
s

p
is the center of mass energy in

GeV. This form is chosen such that at the Tevatron, the
dominate contribution comes to the nonperturbative func-
tion comes from g1. Furthermore, the term proportional to
g5 is chosen such that for y ¼ 0 the contribution from this
term vanishes. Hence, to fit the experimental dataset in
which the y dependence has been integrated out, we set y to
be zero in the above equation.
For the fit, we include data from CDF [68,69], D0

[70,71], E288 [72], E605 [73], R209 [74], and a rapidity
separated measurement from ATLAS [75] and CMS [2],
and high rapidity measurement from LHCb [76] We leave
the other LHC measurements discussed in Sec. V as
validation of the nonperturbative fit. Additional details
on the kinematics of each experiment are given in Table II.
For the fits, we include the PDF uncertainty as an

uncorrelated systematic uncertainty. The fit is performed
through the use of the Bayesian Analysis Toolkit (BAT)
package [77]. BAT uses Markov Chain Monte Carlo

TABLE II. A list of all experiments used for the nonperturbative fit. The first column gives the name of the experiment, the second
gives the center of mass energy, the third describes the experimental cuts applied for each set of events, and the last column gives the
total number of data points for each experiment.

Experiment
ffiffiffi
s

p
(GeV) Cuts Npts

CDF Run 1 [68] 1800 66 GeV < Mll < 116 GeV 32
CDF Run 2 [69] 1960 66 GeV < Mll < 116 GeV 41
D0 Run 1 [70] 1800 66 GeV < Mll < 116 GeV 15
D0 Run 2 [71] 1960 66 GeV < Mll < 116 GeV 8
E288 200 [72] 19.4 4 GeV < Mll < 8 GeV, y ¼ 0.4 28
E288 300 [72] 23.8 4 GeV < Mll < 8 GeV, 11 GeV < Mll < 12 GeV, y ¼ 0.21 35
E288 400 [72] 27.4 5 GeV < Mll < 8 GeV, 11 GeV < Mll < 14 GeV, y ¼ 0.03 42
E605 [73] 38.8 7 GeV < Mll < 9 GeV, 10.5 GeV < Mll < 14 GeV, Ez ¼ 0.1 GeV 35
R209 [74] 62 5 GeV < Mll < 11 GeV, 0.1 < x < 0.8 10
ATLAS [75] 8000 66 GeV < Mll < 116 GeV, pTl

> 20 GeV, jηlj < 2.4 48
CMS [2] 13,000 76.1876 GeV < Mll < 106.1876 GeV, pTl

> 25 GeV, jηlj < 2.4 80
LHCb [76] 13,000 60 GeV < Mll < 120 GeV, pTl

> 20 GeV, 2.0 < ηl < 4.5 10
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(MCMC) to fit the optimal best fit, along with the
correlation matrix, and uncertainties on all the parameters.
The priors for all the parameters are taken to be flat over the
allowed range. The allowed ranges are 0 < g1 < 3.5,
0 < g2 < 1, 0 < g3 < 1, −0.5 < g4 < 1, 0 < g5 < 10,
and 0.5 < g6 < 5. The limits on the lower values of these
parameters are chosen such that Eq. (44) remains positive.
We investigated the effects of choice of prior, and found no
major difference when changing the priors.
The best fit was found by minimizing the log-likelihood

between the theory predictions and the experimental data.
The log-likelihood function used in this work is the same as
defined in Refs. [78,79] for an experiment E and repro-
duced here for convenience

χ2E ¼
XNpt

k¼1

1

s2k

�
Dk − TkðgÞ −

XNλ

α¼1

λαβkα

�2

þ
XNλ

α¼1

λ2α: ð45Þ

Each data point k comes with the value for the data (D),
a statistical uncertainty (sk;stat), and a uncorrelated sys-
tematic uncertainty (sk;uncorr:sys). The total uncorrelated

uncertainty is then obtained as sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2k;stat þ s2k;uncorr:sys

q
for a given data point. Additionally, the theory prediction
for each data point is given by TkðgÞ, where g is the
vector of all parameters in the nonperturbative function.
Finally, each data point may come with Nλ correlated
systematic uncertainties given by βkα. Traditionally, these
correlated uncertainties are handled by introducing a
nuisance parameter λα that is assumed to be sampled
from a standard normal distribution. As discussed in
Appendix B of Ref. [79], the optimal values for λα can be
directly calculated as a function of the fit parameters. In this
work, we implement this technique to handle the correlated
systematic uncertainties.
In addition to the experimentally reported uncertainties,

we also include the theory uncertainty arising from the
PDFs. In this work we use the CT18NNLO PDFs [79]. One
can consider the uncertainty associated with the PDF
extraction as an experimental uncertainty from the fitted
data. Therefore, it should be included in the χ2 calculation.
In this work, we treat these uncertainties as uncorrelated,
similar to Ref. [80], this is also similar to how the
uncertainties induced by αs and the PDFs are estimated
for experimental observables [81]. While this approxima-
tion is not completely accurate, separating out the corre-
lated and uncorrelated components between each data point
is beyond the scope of this work. The PDF uncertainty is
assessed by fixing the nonperturbative parameters and
calculating the spread from the central PDF value. This
value is stored as a percentage shift of the theory prediction
for each data point.
The ResBos2 calculation used in the fit is setup to use the

scale choices of 4C1 ¼ C3 ¼ 4b0, C2 ¼ 1, μF ¼ μR ¼ MT ,
and setting bmax ¼ b0, where MT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þQ2

p
is the

transverse mass of the Drell-Yan pair, and b0 ¼ 2e−γE ≃
1.123 GeV−1, with γE being the Euler constant. The choice
of C3 ¼ 4b0 is to ensure that the ratio C3=b� is always
greater than the cutoff scale for the PDF to ensure that there
is no extrapolation needed in the calculation. Fixing this
value before the fit is allowed since any difference caused
by this scale choice will be absorbed in the nonperturbative
fit. Additionally, the choice of bmax ¼ b0 is suggested by
the disagreement between the BLNY fit and the lattice data
seen in Fig. 15 of Ref. [82]. In the lattice results, the fall-off
of the BLNY result occurs around b ¼ 0.5 GeV−1 (i.e., the
bmax value for the BLNY fit), suggesting that a larger bmax
be used.
In addition to the scale choices, certain experiments

only provide data that includes experimental cuts and not
unfolded back to an inclusive level. In our dataset, this
only consists of the data from the LHC. Performing
the full Monte-Carlo integration for each set of non-
perturbative values would be computationally prohibitive.
When working in the full phase space, we can use the
mean value theorem to approximate the integrals over the
invariant mass and rapidity bins, leaving only the Fourier
transform from impact parameter space to transverse
momentum space left. This can be accomplished very
quickly as discussed in Appendix B. On the other hand,
when using the fiducial phase space, one must also
integrate over the lepton kinematics resulting in a five
dimensional integral which is accomplished using VEGAS

[83], and also still involves the Fourier transform at
each point.
To address this issue, we calculate a cut efficiency for

the initial set of nonperturbative parameters and assume
that this efficiency is not sensitive to the nonperturbative
parameters chosen. After the fit is complete, we check
again the cut efficiency by performing a full calculation
including the Monte-Carlo integration for the χ2. From
these cross checks, we validate that the cut efficiency is
insensitive to the nonperturbative parameters, and the χ2

presented here comes from this final full validation run.
To increase the weight of the rapidity dependence data in
the global χ2 fit, the PDF uncertainties of ATLAS, CMS,
and LHCb dataset are divided by a factor of 3,1 similar to
what was done for the CT10W fit [84] to emphasize the
impact of the D0 data on lepton charge asymmetry in W-
boson decays produced at the Tevatron. For other data-
sets, the PDF uncertainty remains the original value.
After fitting, the χ2 are calculated again using the normal
PDF uncertainty for every dataset. While this approach
may not be suitable for disentangling the flavor depend-
ence of the nonperturbative function, the form used here

1The factor of 3 was chosen to ensure that the LHC data had a
significant contribution to the total χ2 while not completely
dominating the fit.
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already assumes no flavor dependence, and an inves-
tigation into these effects are left to a future work.
The fits are performed using 8 Markov chains that are

run until they converge. This ensures that the fit that we
find is the global minimum instead of a local minimum.
After the chains have converged, we perform an additional
100,000 iterations to determine the optimal fit values, the
uncertainty of each parameter, and the correlations between
the different parameters. Additional details on the pro-
cedure can be found in Ref. [77].
Over the course of the fits, we found that the best fit

results had g3 consistent with zero. Therefore, for the
final fit result presented here we set g3 to zero. For the
best fit value of g5, we find that simultaneous fitting of g5
and g6 leads to a very flat distribution. To address this,
we perform an iterated approach until the results con-
verge. First, we fix g5 to 1 and fit all the other
parameters. Then we fix the other parameters to their
best fit results and only fit g5. This procedure is repeated
until the values for all the parameters remain at their
previous best fit. The total χ2=dof from this fit is
381=384, and the break-down for each experiment is
given in Table III. The best fit values are given in
Table IV. For comparison, we have also performed an
update to the SIYY-1 fit from Ref. [85], using the same

dataset and fitting techniques described above, allowing
g1, g2, g3, x0, and λ to float and set bmax ¼ 1.5 GeV−1.
This choice of bmax is consistent with the original SIYY
paper [85]. The results for the SIYY-1 fit are also given
in Table III. Its χ2=dof value is found to be 460=384,
which is slightly worse than the IFY fit. More details,
together with various fits to the SIYY-1 form, are
summarized in Appendix F, for completeness.
The correlation matrix for the IFY fit is given as, for a set

of parameters ðg1; g2; g4; g6Þ,

C ¼

0
BBB@

1 0.288 −0.139 0.350

0.288 1 0.906 −0.174
−0.139 0.906 1 −0.334
0.350 −0.174 −0.334 1

1
CCCA: ð46Þ

Here we see a strong correlation between g2 and g4, with
minor correlations between g1 and the other coefficients
and g4 and g6. The correlation between g1 and the other
coefficients is expected since the g1 is just an overall
constant and shifting around any other coefficient will
result in a need to also shift g1 to compensate. The
posterior distributions marginalized over the other param-
eters for each of the fitted coefficients is shown in Figs. 4
and 5, along with denoting the one, two, and three σ
confidence intervals. The one σ region is in green, the
two σ region is in yellow, and the three σ region is in red.
The filled circle denotes the mean value along with the
standard deviation. This is obtained after marginalizing
over the other parameters. The open circle denotes the
global mode value. This is the point that is sampled
the most in the full parameter space by the MCMC. The
consistency between the global mode and the mean
values shows that the MCMCs have converged well to
the true minimum.

TABLE III. The summary of the number of points, χ2, and χ2=d.o.f. for each experiment included in the fit. The
reference to each experiment is given in the table.

Experiment Npts χ2 (IFY) χ2=d.o.f. (IFY) χ2 (SIYY-1) χ2=d.o.f. (SIYY-1)

CDF1 [68] 32 19.8 0.62 19.5 0.61
CDF2 [69] 41 48.5 1.18 48.2 1.18
D01 [70] 15 11.1 0.74 11.6 0.77
D02 [71] 8 19.4 2.43 19.7 2.46
E288 200 [72] 28 31.4 1.12 62.1 2.22
E288 300 [72] 35 34.6 0.99 48.1 1.37
E288 400 [72] 42 89.9 2.14 101.3 2.41
E605 [73] 35 54.5 1.56 67.1 1.92
R209 [74] 10 8.5 0.85 9.5 0.95
ATLAS [75] 48 9.2 0.19 11.5 0.24
CMS [2] 80 35.7 0.45 40.1 0.50
LHCb [76] 10 18.3 1.83 21.3 2.13

Total 384 381 0.992 460 1.20

TABLE IV. The best fit result to the experimental data included
in the IFY fit.

Parameter IFY fit

g1 1.034� 0.026
g2 0.053� 0.025
g4 −0.143� 0.014
g5 13.45� 2.0
g6 1.468� 0.108
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A comparison of the IFY nonperturbative fit described
above to the Tevatron data from CDF [68,69] and D0
[70,71] are shown in Fig. 6. The experimental data was
collected with

ffiffiffi
s

p ¼ 1800 GeV for the Run I data (top
row of the figure), and with

ffiffiffi
s

p ¼ 1960 GeV (bottom
row) for the Run II data. The experimental data has been
unfolded to the inclusive Z production level in the
invariant mass window of 66 GeV < Mll < 116 GeV.
The cuts applied in the analysis are shown in Table II.
The comparison is made using the N3LLþ NNLO
prediction within ResBos2 and comparing to the unshifted
data. In these comparisons, the scale variations and PDF
uncertainties in the calculation are intentionally left out in
the comparison to data to more easily demonstrate the
quality of the fit.
A similar comparison is made to various low

energy experiments. In this work, we consider the E288

FIG. 4. Best fit values with 1; 2; 3σ ranges in green, yellow, and red respectively. The value for g1 is in the upper left plot, g2 in the
upper right, g4 on the left in the second row, g5 on the right of the second row, and g6 on the bottom. The value for g3 was fixed to be zero.
Additional details in the text.

FIG. 5. Best fit values on the marginalized g5 with 1; 2; 3σ
ranges in green, yellow, and red respectively.
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experiment [72], the E605 experiment [73], and the R209
experiment [74]. The E288 experimental dataset consists of
three different incident proton energies (200, 300, and
400 GeV). The different incident proton energies are
separated into three different sets labeled E288 200,
E288 300, and E288 400, respectively. The E288 experi-
ment consisted of colliding a proton beam on a copper
target. The E605 experimental dataset was taken at a center
of mass energy of 38.8 GeV with a 800 GeV proton beam
on a copper target. The experiment measured the invariant
dimuon cross section (E d3σ

d3p) for a fixed longitudinal

momentum (xF ¼ 0.1). Finally, the R209 experiment con-
sisted of colliding two proton beams at a center of mass
energy of

ffiffiffi
s

p ¼ 62 GeV. The data was separated into
various invariant mass windows and was inclusive on the
rapidity of the dimuon pair. The comparison to the various
low energy experiments can be found in Fig. 7. Overall, we
see good agreement between the ResBos2 IFY fit and the

experimental data. Again, the scale uncertainties and PDF
uncertainties are not included to help make it clear the
quality of the fit.
Overall, we see excellent agreement between the fitted

IFY form and the experimental data. The fact that the
values for g5 and g6 are not consistent with zero supports
that there is rapidity dependence in the nonperturbative
contributions to the transverse momentum resummation
calculation. The rapidity dependence of the IFY form is
most strongly influenced by the LHCb data, specifically
the low transverse momentum bins as shown in Table V.
This is supported by the observation that the numerical
contribution of the g5 (and g6) term of Eq. (44) is negligible
for jyj less than about 2.5. Hence, the quality of the fits to
the ATLAS and CMS Z boson data is not noticeable altered
by the inclusion of this rapidity-dependent term of the IFY
form. A detailed comparison to all the LHC data is left to
the following section.

FIG. 6. Comparison of the IFY nonperturbative fit with the N3LLþ NNLO accurate ResBos2 calculation to the Tevatron Z boson
transverse momentum data. The top row are the results from run I, with CDF [68] on the left and D0 [70] on the right. The bottom row is
the same as the top but with run II data [69,71].
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FIG. 7. Comparison of the IFY nonperturbative fit with the N3LLþ NNLO accurate ResBos2 calculation to fixed target data. The top
row and the plot on the second row on the left are the results from E288 [72], the plot on the second row on the right is the comparison to
E605 data [73]. The bottom row is a comparison to R209 data [74].
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V. Z BOSON OBSERVABLES AT THE LHC

In this work, we compare to the ResBos2 prediction to all
available Z boson transverse momentum and ϕ�

η distribu-
tions available at 7, 8, and 13 TeV. The ϕ�

η observable
was proposed in Refs. [86,87] and only depends on the
angular distribution of the final state leptons, but has a
direct correlation to the transverse momentum of the Z
boson, and was first measured in D0 [88]. The observable is
defined as

ϕ�
η ¼ tan

�
π − Δϕ

2

�
sinðθ�ηÞ; ð47Þ

where Δϕ is the azimuthal separation of the two leptons
and θ�η is the measurement of the scattering angle with
respect to the proton beam direction in the rest frame of the
Z boson, i.e.,

cosðθ�ηÞ ¼ tanh

�
η− − ηþ

2

�
: ð48Þ

In the above equation, η� corresponds to the rapidity of the
positively or negatively charged lepton, respectively. In the
limit of small transverse momentum of the Z boson, one
can approximate ϕ�

η as

ϕ�
η ≈

pT

Mll
sinϕCS; ð49Þ

where ϕCS is the ϕ angle in the Collins-Soper frame [60].
This limit demonstrates the correlation between the
transverse momentum of the Z boson and the ϕ�

η

observable.
Throughout the following sections, the resummation

calculation is performed using CT18NNLO [79], with
the central scale given by C1 ¼ b0, C2 ¼ 1, C3 ¼ 4b0,
μF ¼ MT , and μR ¼ MT , and using the IFY nonper-
turbative functional form described in the previous
section. Additionally, we vary all the scales by factors
of two under the constraints that the ratio of all scaling
factors is in the range 1=2 < s1=s2 < 2, where s1 and
s2 are two of the scaling factors. Furthermore, we
require that the scale factor for C1, C3, and μF are kept
the same with each other since all of these scales relate
to the cutoff between the nonperturbative region and
the perturbative region. After all the above constraints,

TABLE V. The χ2 of LHCb data of the first four points for
g5 ¼ 0 and g5 ¼ 13.45.

χ2 for g5 ¼ 0 χ2 for g5 ¼ 13.45

pT ¼ 1.1 1.422 0.042
pT ¼ 2.8 0.864 0.122
pT ¼ 4.0 2.666 2.086
pT ¼ 5.2 0.028 0.065

FIG. 8. Comparison between the ResBos2 calculation and the ATLAS 7 TeV pT distributions from Ref. [89].

FIG. 9. Comparison between the ResBos2 calculation and the ATLAS 7 TeV ϕ�
η distributions from Ref. [90].
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we are left with 15 scale variations. To obtain the scale
uncertainty, we take the maximum variation of all the
scales in each bin forming an envelope uncertainty.
Additional details on the scale variations and the
dependency of the scales for the A, B, and C
coefficients are given in Appendix A.
The 7 TeV datasets consists of a pT and ϕ�

η measurement
from ATLAS [89,90] and a pT measurement from
CMS [91]. The comparisons can be see in Figs. 8–10.
In each of these calculations, the data is given with the
error bars denoting the quadrature sum of the systematic
and statistical uncertainties. The ResBos2 prediction with
the IFY nonperturbative fit described above is given with
the PDF uncertainty in dark blue and the scale uncer-
tainty combined with the PDF uncertainty in light blue.
We can see that the PDF uncertainty is typically on the
order of a few percent, while the scale uncertainty is
about 5% for small pT and ϕ�

η and growing to about 10%
at high pT and ϕ�

η.
2 There is a disagreement between the

ResBos2 prediction and the experimental data at high
transverse momentum and ϕ�

η. This discrepancy can be
accounted for by the N3LO corrections not included in
the ResBos2 calculation as seen in Ref. [92]. Overall, the
ResBos2 prediction shows excellent agreement with the
data in the small pT and ϕ�

η regions, in the intermediate
region the agreement begins to degrade due to the break-
down of the validity of the resummation calculation and

corrections related to matching that are left to a
future work.
The complete LHC 8 TeV dataset on Z boson trans-

verse momentum and ϕ�
η comes from both ATLAS [75]

and CMS [93]. The comparison between the ResBos2

calculation and the experimental data shows very similar
features as the comparison to the 7 TeV data, as
expected. Again, we see excellent agreement in the small
transverse momentum (or ϕ�

η) region, a disagreement
between the theory prediction and the data in the
intermediate region due to needed improvements in the
matching region, and a prediction below the data at high
transverse momentum that can be improved by matching
to the N3LO prediction. As an example, we show in
Fig. 11 the comparison between the ResBos2 calculation
and the ATLAS 8 TeV ϕ�

η distributions from Ref. [75]. In
this figure, we also include the comparison to the
prediction of CFG resummation formalism, calculated
with the same choice of scales and the central set of
CT18 NNLO PDFs. It shows that the predictions of CSS
and CFG resummation formalisms agree well within the
scale uncertainty of the CSS prediction. We have also
confirmed that both formalisms yield almost identical
predictions when using the canonical scales in the
numerical calculations.
Finally, we compare the ResBos2 predictions to the LHC

13 TeV datasets on Z boson transverse momentum and ϕ�
η

distributions. The measurements at 13 TeV come from
ATLAS [94], CMS [2], and LHCb [76]. The overall
agreement between the ResBos2 prediction and the exper-
imental data is consistent with what is seen at 7 and 8 TeV.
However, there appears to be better agreement in the
intermediate transverse momentum and ϕ�

η region com-
pared to 7 and 8 TeV. Again, the disagreement at large
transverse momentum can be addressed with the inclusion
of higher order corrections.
Overall, ResBos2 can accurately describe the LHC data

for Z boson production in the small transverse momen-
tum and ϕ�

η regions, as expected. Additionally, since the
ResBos2 prediction only matches to NNLO at large
transverse momentum, there is missing strength compared
to the experimental data that can be resolved by matching
to N3LO. The matching to N3LO is left to a future work
as well. Here, we only show the detailed comparison to
the ATLAS [75] and CMS [93] 8 TeV pT data (Figs. 12
and 13, respectively), the CMS 13 TeV pT data [2]
(Fig. 14), and the LHCb 13 TeV pT data [76] (Fig. 15
right panel). The nonperturbative function obtained above
is still able to accurately describe the other LHC pT
datasets (Figs. 8, 10, 13, and 15) and all of the ϕ�

η

datasets (Fig. 16).

FIG. 10. Comparison between the ResBos2 calculation and the
CMS 7 TeV pT distributions from Ref. [91].

2The size of the scale uncertainty is expected to be about
10% because the large pT and ϕ�

η the calculation is only NLO
accurate. The calculation is NNLO accurate only for the inclusive
rate.
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FIG. 12. Comparison between the ResBos2 calculation and the ATLAS 8 TeV pT distributions from Ref. [75].

FIG. 11. Comparison between the ResBos2 calculation and the ATLAS 8 TeV ϕ�
η distributions from Ref. [75].
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FIG. 13. Comparison between the ResBos2 calculation and the CMS 8 TeV pT distributions from Ref. [93].

FIG. 14. Comparison between the ResBos2 calculation and CMS [2] for the pT distribution in different rapidity bin.

FIG. 15. Comparison between the ResBos2 calculation and ATLAS [94] on the left, CMS [2] in the middle, and LHCb [76] on the right
for the pT distribution.
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VI. CONCLUSIONS

In this work, we discussed the recent improvements
in the ResBos resummation program known as ResBos2.
One significant improvement was in increasing the
logarithmic accuracy from NNLL to N3LL in the
resummation calculation. Additionally, the resummation
formalism was expanded to include both the CSS and
CFG formalisms into the same program. This enables a
comparison between the two different formalisms while
easily controlling for other implementation detail effects.
Finally, the ResBos2 program improves upon the ResBos

framework by including a complete NNLO calculation to
be matched to. This is of vital importance to ensure that
the angular distributions for W and Z boson production
are simulated correctly.
With the improvement of logarithmic accuracy, a new

more accurate nonperturbative function of the Sudakov
factor was also required to meet the precision needs of the
LHC. In this work, we proposed the IFY functional form
that includes rapidity dependence. We find that the non-
perturbative function has mild rapidity dependence based
on the results of the fit. The IFY functional form was fit to
data from fixed target experiments, the Tevatron, and the
LHC. Overall, there were 384 points included in the fit, and
the best fit result had a χ2 of 380.8.
The ResBos2 prediction with the IFY functional form

was then validated against the LHC datasets which are
intentional excluded from the fit. In the comparison to this
set of LHC data, we find excellent agreement in the small
transverse momentum (or ϕ�

η) region as expected. However,
in the intermediate matching region and the large transverse
momentum region the agreement is not as good. The large
transverse momentum (or ϕ�

η) disagreement is expected due
to the large contributions from N3LO. The rough size of
these corrections is of the same size as the disagreement
between theResBos2 prediction atN3LLþ NNLO.Weplan to
interface with a N3LO prediction in a future work [20,95].
The disagreement in the intermediate region requires further
investigation of the matching scheme and is left to a
future work.
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APPENDIX A: SCALE VARIATIONS

In the ResBos2 calculation, there exist 5 scales that can be
varied to obtain the theoretical scale uncertainty. These 5
scales are the typical factorization and renormalization
scales that appear in a fixed order calculation, and then
three resummation scales that arise from the solution of the
renormalization group equations (denoted C1, C2, and C3).
The prescription that we propose to be used with the ResBos2

code is to fix the factorization scale, C1, and C3 to be scaled
by the same prefactor, and vary C2 and μR independently.
This combination gives a total of 15 scales to be calculated
for the scale uncertainty.
Additionally, the values of A, B, and C in the resummation

formalism depend on the choice of C1, C2, and C3. To obtain
the scale dependence, the resummation formalism is expanded
for arbitrary scales and is compared to the canonical choice,
(C1 ¼ C3 ¼ b0, and C2 ¼ 1). In other words

Wðb;Q; C1; C2; C3ÞjOðαns Þ ¼ Wðb;Q; C1 ¼ b0; C2

¼ 1; C3 ¼ b0ÞjOðαns Þ; ðA1Þ
where the definitions of C1, C2, and C3 can be found in the
scale dependent resummation formalism given as

FIG. 16. Comparison between the ResBos2 calculation and ATLAS [94] on the left, CMS [2] in the middle, and LHCb [76] on the right
for the ϕ�

η distribution.
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W ¼ exp

�
−
Z

C2
2
Q2

C2
1
=b2

dμ2

μ2
Aðμ;C1Þ log

�
C2
2Q

2

μ2

�
þ Bðμ;C1; C2Þ

�

× C ⊗ fa

�
x1;

C1

C2

;
C3

b

�
C ⊗ fb

�
x2;

C1

C2

;
C3

b

�
: ðA2Þ

performing the series expansion of the previous equation, and using Eq. (A1), to Oðα3sÞ, the scale dependence is given by:

Að1Þ ¼ Að1;cÞ ðA3Þ

Að2Þ ¼ Að2;cÞ − β0Að1;cÞ log
�
b20
C2
1

�
ðA4Þ

Að3Þ ¼ Að3;cÞ þ 4β20A
ð1;cÞlog2

�
b0
C1

�
− 2 log

�
b0
C1

�
ðβ1Að1;cÞ þ 2β0Að2;cÞÞ ðA5Þ

Bð1Þ ¼ Bð1;cÞ − Að1;cÞ log
�
b20C

2
2

C2
1

�
ðA6Þ

Bð2Þ ¼ Bð2;cÞ − Að2;cÞ log
�
b20C
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�
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�
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�
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�
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�
b20C
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�
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3
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Comparing these results to that from Ref. [96], it is
important to note the differences in the definition of β0
and β1. In Ref. [96], the β functions are β0 ¼ ð11CA −
2nfÞ=6 and β1 ¼ ð17C2

A − 5CAnf − 3CFnfÞ=6, while
here β0 ¼ ð11CA − 2nfÞ=12 and β1 ¼ ð17C2

A − 5CAnf −
3CFnfÞ=24. Note that this result is consistent with

Ref. [96], except for the scale dependence in Cð2Þ. Addi-
tionally, the calculation is extended to include Að3Þ and Bð3Þ.
The maximum uncertainty for the Sudakov factor arises
for the choice C1 ¼ b0=2 and C2 ¼ 2 and C1 ¼ 2b0 and
C2 ¼ 1=2, which can be understood from the fact that this
has the largest impact on the value of the Sudakov integral.
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The dependence of C3 for the uncertainty is more com-
plicated, because it deals with the complex energy and
x-dependence of the PDFs.
When using the canonical choice of the scales, the scale

variation in the CFG formalism can be readily obtained
from the conversion relations presented in Sec. II C.
However, when using the noncanonical scales, due to
the different treatments of the hard factor H, cf. Sec. II
B, the numerical difference in the predictions of the CSS
and CFG formalisms can increase as compared to the case
of using the canonical scales. The difference between CSS
and CFG when using the canonical scales should differ
starting at the next-to-next-to-next-to-next subleading log
[i.e., α4s logðq2T=Q2Þ]. When using the noncanonical scales,
the difference arises first in the Bð2Þ and Cð1Þ terms due to
the different scales the hard function is now evaluated at
[see Eq. (38)].

APPENDIX B: COMPUTATIONAL
IMPROVEMENTS

As the accuracy of the ResBos code increases, the
computational needs also drastically increase. To address
these needs, two approaches can be taken. First, improved
algorithms can be developed to improve the overall
performance. Second, different computing architectures
can be leveraged to provide more computing resources.
Both of these approaches result in a smaller amount of
walltime used to obtain predictions. The ResBos2 code takes
advantage of both methods to speed up calculations and
take advantage of highly parallel computers.

1. Algorithmic improvements

There are two major algorithmic improvements in the
ResBos2 code that enable a significant speed improvement in
overall compute requirements. The first and most important
algorithmic improvement is the use of Ogata quadrature
[97]. The second improvement is in the handling of the
convolution kernels required in the impact parameter
calculation.

a. Ogata quadrature

Ogata in Ref. [97] proposes a novel quadrature formula
with the zeros of the Bessel function as nodes, i.e.,

Z
∞

−∞
jxj2νþ1fðxÞdx≈h

X∞
k¼−∞;k≠0

wνkjhξνkj2νþ1fðhξνkÞ; ðB1Þ

where

wνk ¼
Yνðπξνjkj
Jνþ1ðπξνjkj

¼ 2

π2ξνjkjjνþ1ðπξνjkjÞ
; k ¼ �1;�2;…;

ðB2Þ

with ν is a real constant greater than −1, h is a positive step
size, ξνk are the zeros for the Bessel function JνðπxÞ of the
first kind with of order ν ordered in an increasing order for
increasing k with ξν−k ¼ −ξνk, and Yν is the Bessel function
of the second kind of order ν. The approach takes influence
from the double exponential (DE) quadrature formula [98].
The DE formula is known to be optimal for a large class of
integrals. However, this approach fails for oscillatory func-
tions over infinite intervals. The use of DE for oscillatory
functions of the Fourier transform typewas first addressed in
Ref. [99]. The authors ofRef. [99] chose aDE transform such
that the nodes of the quadrature rapidly approached the zeros
of the function sinðxÞ, allowing for the integral to be
computed with a small number of function evaluations.
The work of Ogata [97] was to extend the DE approach

for Fourier type integrals to integrals of the Hankel trans-
form, i.e., Z

∞

0

fðxÞJνðxÞdx: ðB3Þ

These integrals show up in the resummation calculation,
and thus finding a DE quadrature rule would significantly
reduce the number of function evaluations needed. To
achieve a DE-type formula, the variables are transformed as

x ¼ π

h
ψðtÞ with ψðtÞ ¼ t tanh

�
π

2
sinh t

�
: ðB4Þ

This transforms the integral for the Hankel transform as
Z

∞

0

fðxÞJνðxÞdx ≈ π
X∞
k¼1

wνkf

�
π

h
ψðhξνkÞ

�

× Jν

�
π

h
ψðhξνkÞψ 0ðhξνkÞ: ðB5Þ

The above infinite sum can be truncated with a small
number of function evaluations, as the value π

hψðhξνkÞ
approaches πξνk double exponentially as k → ∞.
This approach still requires an optimization for the

choice of h and the upper bound on the sum (N). A
method to achieve this was proposed in Ref. [100]. In this
work, the authors investigate the uncertainty estimates to
determine an optimal value for h and N. The uncertainty
after the above transformation arises from two pieces. The
first arises from the approximation of the quadrature at a
finite value of h and is estimated as Oðe−c=hÞ, where c is
some positive constant which depends on the function
being integrated. The second term arises from the trunca-
tion of the sum at some finite value N and is given as

IνNþ1 ¼ h
X∞

j¼Nþ1

wνjjhξνjj2νþ1fðhξνjÞ: ðB6Þ

In Ref. [100], the authors found that the optimal choice of
parameters can be obtained by maximizing the contribution
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of the first node, i.e.,

∂

∂h
ðhðhξ2νþ1

ν1 fðhξν1ÞÞ ¼ 0: ðB7Þ

The equation is then solved for h and the resulting value is
defined as hu. However, it is important to note that the value
for hu tends to be large, thus making the value of Oðe−c=hÞ
also large. This can be resolved by noticing that for a fixed
N, the final nodes can be placed in the same position for
some new h by enforcing

huξνN ¼ π

h
ψðhξνNÞ; ðB8Þ

which has a solution defined as ht at

ht ¼
1

ξνN
sinh−1

�
2

π
tanh−1

�
hu
π

��
: ðB9Þ

The above equation only has a solution for hu < π. To
address this issue, an upper bound on hu can be set to
ensure that the calculated value of ht is always well defined.
A demonstration of the effectiveness of this optimization
technique can be seen in Fig. 6 from Ref. [100].
This algorithm with the optimization is implemented in

the ResBos code and significantly reduces the number of
function evaluations needed in impact parameter space to
achieve an accurate conversion back to momentum space.
Overall, this introduces a speed up of 10–100 depending on
the value of transverse momentum considered.

b. Convolution improvements

A major use of computational resources in the ResBos

calculation is the convolution of the hard collinear kernels
with the PDF. This becomes especially expensive for
calculating Cð2Þ. However, it is straightforward to pre-
tabulate these values similar to how PDFs are handled in
tools like LHAPDF [101]. The convolution can be written as

C ⊗ fðx;Q2Þ ¼
Z

1

x
CðzÞfðx=z;Q2Þdz: ðB10Þ

Additionally, the convolution can be carried out using a
fixed quadrature algorithm like double exponential quad-
rature [98]. When using a fixed quadrature algorithm, the
values of z evaluated for all x andQ2 are the same. Thus the
values for CðzÞ can be tabulated in the first iteration and
then just read off for each subsequent iteration. This allows

for a significant time improvement in generating convolu-
tion grids, which can then be interpolated to create a
significant time improvement when generating the resum-
mation and asymptotic grids.

2. Architecture improvements

The ResBos calculation consists of two components. First,
resummation, perturbation, and asymptotic grids in Q, pT ,
and y are generated over the required parameter space. This
piece only includes the production of the vector boson
being considered. Second, the grids are then interpolated
and combined with the decay of the vector boson through
the use of integration over the entire phase space. The
integration over the phase space is optimized using adaptive
importance sampling via the VEGAS algorithm [83,102].
Both of these components are trivially parallelizable.
Therefore, it is possible to see a significant improvement
in the performance through the use of a message passing
interface (MPI) to enable communication between a set of
CPUs. This results in a overall walltime speed-up directly
proportional to the number of CPUs used. Investigations
into using GPUs for the parallelization are currently
underway and are left to a future work.

APPENDIX C: Bð3Þ AND Cð2Þ COEFFICIENTS

The coefficients up to NNLL can be found in Secs. II A
and II B for the CSS and CFG formalisms respectively. For
the additional terms that appear at N3LL, they can be found
in [52,53], and are reproduced here for ease.

The B anomalous dimension in CSS at Oðα3sÞ is given as

BDY
3 ¼ γDY2 − γr2 þ β1cDY1 þ 2β0

�
cDY2 −

1

2
ðcDY1 Þ2

�
; ðC1Þ

substituting the numbers into the equation above, the
numerical result is given as

BDY
3 ¼ 114.98 − 11.27nf þ 0.32n2f; ðC2Þ

where nf is the number of active flavors. Note the above
equation differs from that in [52], since the expansion in
[52] is for αs

4π, while this work uses αs
π .

The hard-collinear coefficients Cð2Þ
ij at the NNLO for

vector boson production are given by five different initial
states: qq̄, qq̄0, qq, qq0, and qg. These coefficients can be
respectively obtained from (reproduced from Ref. [53] for
convenience)

2Cð2Þ
qq̄ ðzÞ þ δð1 − zÞ

�
HDYð2Þ

q −
3

4
ðHDYð1Þ

q Þ2 þ CF

4
ðπ2 − 8ÞHDYð1Þ

q

�
þ 1

2
CFH

DYð1Þ
q ð1 − zÞ

¼ HDYð2Þ
qq̄←qq̄ðzÞ −

C2
F

4

�
δð1 − zÞ ðπ

2 − 8Þ2
4

þ ðπ2 − 10Þð1 − zÞ − ð1þ zÞ ln z
�
; ðC3Þ
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Cð2Þ
qg ðzÞ þ 1

4
HDYð1Þ

q zð1 − zÞ ¼ HDYð2Þ
qq̄←qgðzÞ −
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4

�
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2
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�
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4
− 4

�
zð1 − zÞ

�
; ðC4Þ

Cð2Þ
qq ðzÞ ¼ HDYð2Þ

qq̄←qqðzÞ; ðC5Þ

Cð2Þ
qq0 ðzÞ ¼ HDYð2Þ

qq̄←qq0 ðzÞ; ðC6Þ

Cð2Þ
qq̄0 ðzÞ ¼ Hqq̄←qq̄0 ; ðC7Þ

where the scheme independent hard-collinear coefficient functions (H) are given by

HDYð2Þ
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π2 logð1− zÞ þ 5ζ3

2

�
þ ð1− zÞ

�
−Li2ðzÞ−

3

2
logð1− zÞ logðzÞ þ 2π2

3
−
29

4

�

þ 1

24
ð1þ zÞlog3ðzÞ þ 1

1− z

�
1

8
ð−2z2 þ 2zþ 3Þlog2ðzÞ þ 1

4
ð17z2 − 13zþ 4Þ logðzÞ

�
−
z
4
logð1− zÞ




þCF

	
1

z
ð1− zÞð2z2 − zþ 2Þ

�
Li2ðzÞ
6

þ 1

6
logð1− zÞ logðzÞ− π2

36

�
þ 1

216z
ð1− zÞð136z2 − 143zþ 172Þ

−
1

48
ð8z2 þ 3zþ 3Þlog2ðzÞ þ 1

36
ð32z2 − 30zþ 21Þ logðzÞ þ 1

24
ð1þ zÞlog3ðzÞ



; ðC8Þ

HDYð2Þ
qq̄←qq̄0 ðzÞ ¼ CF

	
1

12z
ð1 − zÞð2z2 − zþ 2Þ

�
Li2ðzÞ þ logð1 − zÞ logðzÞ − π2

6

�
þ 1

432z
ð1 − zÞð136z2 − 143zþ 172Þ

þ 1

48
ð1þ zÞlog3ðzÞ − 1

96
ð8z2 þ 3zþ 3Þlog2ðzÞ þ 1

72
ð32z2 − 30zþ 21Þ logðzÞ



; ðC9Þ
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HDYð2Þ
qq̄←qqðzÞ ¼ CF

�
CF −

1

2
CA

�	
1þ z2

1þ z

�
3Li3ð−zÞ

2
þ Li3ðzÞ þ Li3

�
1

1þ z

�
−
Li2ð−zÞ logðzÞ

2
−
Li2ðzÞ logðzÞ

2

−
1

24
log3ðzÞ − 1

6
log3ð1þ zÞ þ 1

4
logð1þ zÞlog2ðzÞ þ π2

12
logð1þ zÞ − 3ζ3

4

�

þ ð1 − zÞ
�
Li2ðzÞ
2

þ 1

2
logð1 − zÞ logðzÞ þ 15

8

�
−
1

2
ð1þ zÞðLi2ð−zÞ þ logðzÞ logð1þ zÞÞ

þ π2

24
ðz − 3Þ þ 1

8
ð11zþ 3Þ logðzÞ



þ CF

	
1

12z
ð1 − zÞð2z2 − zþ 2Þ

�
Li2ðzÞ þ logð1 − zÞ logðzÞ − π2

6

�

þ 1

432z
ð1 − zÞð136z2 − 143zþ 172Þ − 1

96
ð8z2 þ 3zþ 3Þlog2ðzÞ

þ 1

72
ð32z2 − 30zþ 21Þ logðzÞ þ 1

48
ð1þ zÞlog3ðzÞ



; ðC10Þ

HDYð2Þ
qq̄←qq0 ðzÞ ¼ HDYð2Þ

qq̄←qq̄0 ðzÞ; ðC11Þ

HDYð2Þ
qq̄←qgðzÞ ¼ CA

	
−

1

12z
ð1− zÞð11z2 − zþ 2ÞLi2ð1− zÞ þ ð2z2 − 2zþ 1Þ

�
Li3ð1− zÞ

8
−
1

8
Li2ð1− zÞ logð1− zÞ

þ 1

48
log3ð1− zÞ

�
þ ð2z2 þ 2zþ 1Þ

�
3Li3ð−zÞ

8
þLi3ð 1

1þzÞ
4

−
Li2ð−zÞ logðzÞ

8
−

1

24
log3ð1þ zÞ

þ 1

16
log2ðzÞ logð1þ zÞ þ 1

48
π2 logð1þ zÞ

�
þ 1

4
zð1þ zÞLi2ð−zÞ þ zLi3ðzÞ−

1

2
zLi2ð1− zÞ logðzÞ

− zLi2ðzÞ logðzÞ−
3

8
ð2z2 þ 1Þζ3 −

149z2

216
−

1

96
ð44z2 − 12zþ 3Þlog2ðzÞ

þ 1

72
ð68z2 þ 6π2z− 30zþ 21Þ logðzÞ þ π2z

24
þ 43z

48
þ 43

108z
þ 1

48
ð2zþ 1Þlog3ðzÞ

−
1

2
z logð1− zÞlog2ðzÞ− 1

8
ð1− zÞzlog2ð1− zÞ þ 1

4
zð1þ zÞ logð1þ zÞ logðzÞ þ 1

16
ð3− 4zÞz logð1− zÞ− 35

48




þCF

	
ð2z2 − 2zþ 1Þ

�
ζ3 −

Li3ð1− zÞ
8

−
Li3ðzÞ
8

þ 1

8
Li2ð1− zÞ logð1− zÞ þLi2ðzÞ logðzÞ

8
−

1

48
log3ð1− zÞ

þ 1

16
logðzÞlog2ð1− zÞ þ 1

16
log2ðzÞ logð1− zÞ

�
−
3z2

8
−

1

96
ð4z2 − 2zþ 1Þlog3ðzÞ

þ 1

64
ð−8z2 þ 12zþ 1Þlog2ðzÞ þ 1

32
ð−8z2 þ 23zþ 8Þ logðzÞ þ 5

24
π2ð1− zÞzþ 11z

32

þ 1

8
ð1− zÞzlog2ð1− zÞ− 1

4
ð1− zÞz logð1− zÞ logðzÞ− 1

16
ð3− 4zÞz logð1− zÞ− 9

32



; ðC12Þ

HDYð2Þ
qq̄←ggðzÞ ¼ −

z
2

�
1 − zþ 1

2
ð1þ zÞ logðzÞ

�
; ðC13Þ

where LikðzÞ (k ¼ 2; 3) are the polylogarithm functions,

Li2ðzÞ ¼ −
Z

z

0

dt
t
lnð1 − tÞ; Li3ðzÞ ¼

Z
1

0

dt
t
lnðtÞ lnð1 − ztÞ; ðC14Þ

and the H factors are the scheme dependent resummation factors. For CSS, H is 1 to all orders, while for CFG, H has αs
dependence.
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APPENDIX D: BESSEL INTEGRALS

In the calculation of the asymptotic expansion, integrals
with varying powers of the impact parameter (b). The main
integration needed can be expressed of the formZ

∞

0

dηηJ0ðηÞFðηÞ; ðD1Þ

This integral can be performed by using the following

integration by parts identity
Z

∞

0

dηηJ0ðηÞFðηÞ ¼ −
Z

∞

0

dηηJ1ðηÞ
dFðηÞ
dη

; ðD2Þ

which is true given that the boundary term vanishes,
ðηJ1ðηÞFðηÞ∞η¼0 ¼ 0Þ. Additionally, the following integral
results will be important in obtaining both the asymptotic
and singular piece up to Oðα3sÞ

Z
∞

0

dηJ1ðηÞlnm
�
η2Q2

b20p
2
T

�
¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

1; if m ¼ 0

ln Q2

p2
T
; if m ¼ 1

ln2 Q2

p2
T
; if m ¼ 2

ln3 Q2

p2
T
− 4ζð3Þ; if m ¼ 3

ln4 Q2

p2
T
− 16ζð3Þ ln Q2

p2
T
; if m ¼ 4

ln5 Q2

p2
T
− 40ζð3Þln2 Q2

p2
T
− 48ζð5Þ; if m ¼ 5;

ln6 Q2

p2
T
− 80ζð3Þln3 Q2

p2
T
− 288ζð5Þ ln Q2

p2
T
þ 160ζð3Þ2; if m ¼ 6

ðD3Þ

where b0 ¼ 2e−γE ≃ 1.123 GeV−1, and γE is the Euler constant. Up through m ¼ 2 is needed for the OðαsÞ calculations,
through m ¼ 4 is needed for the Oðα2sÞ calculations, and all of the above will be needed for the Oðα3sÞ calculations.

APPENDIX E: Oðα3
s Þ ASYMPTOTIC EXPANSION COEFFICIENTS

The coefficients for the asymptotic expansion at Oðα3sÞ are given as

3C
ði;jÞ
5 ¼ 1

4
ðAð1ÞÞ3fifj;

3C
ði;jÞ
4 ¼ ðAð1ÞÞ2

�
5

4
Bð1Þfifj −

5

3
β0fifj þ

5

8
fiPð1Þ ⊗ fj þ

5

8
fjPð1Þ ⊗ fi

�
;

3C
ði;jÞ
3 ¼ Að1Þ

��
ðBð1ÞÞ2 − 7

3
β0Bð1Þ −Að2Þ þ β20

�
fifj þ 2Bð1ÞfjPð1Þ ⊗ fi −

7

3
β0fjPð1Þ ⊗ fi þ

1

2
Pð1Þ ⊗ fiPð1Þ ⊗ fj

þ 1

2
fjPð1Þ ⊗ Pð1Þ ⊗ fi

�
− ðAð1ÞÞ2

�
fjCð1Þ ⊗ fi −

1

2
fjPð1Þ ⊗ fi log

�
Q2

μ2F

�
− β0fifj log

�
Q2

μ2R

��
þ i↔ j;

3C
ði;jÞ
2 ¼

�
2β0Að2Þ þBð1Þ

�
β20 −

3

2
Að2Þ

�
þAð1Þ

�
−
3

2
Bð2Þ þ β1 − 2β20 log

�
Q2

μ2R

�
þ 3β0Bð1Þ log

�
Q2

μ2R

��
− 5ðAð1ÞÞ3ζ3

þ 1

2
ðBð1ÞÞ3 − 3

2
β0ðBð1ÞÞ2

�
fifj −

3

2
Að2ÞfjPð1Þ ⊗ fi þAð1Þ

�
5β0fjCð1Þ ⊗ fi þBð1Þ

�
−3fjCð1Þ ⊗ fi −

3

2
fjPð1Þ

⊗ fi log

�
Q2

μ2F

��
−
3

2
Cð1Þ ⊗ fiPð1Þ ⊗ fj −

3

2
fjCð1Þ ⊗ Pð1Þ ⊗ fi þ β0fjPð1Þ ⊗ fi log

�
Q2

μ2F

�
−
3

4
Pð1Þ ⊗ fiPð1Þ

⊗ fj log

�
Q2

μ2F

�
−
3

4
Pð1Þ ⊗ Pð1Þ ⊗ fifj log

�
Q2

μ2F

�
þ 3β0fjPð1Þ ⊗ fi log

�
Q2

μ2R

�
−
3

4
fjPð2Þ ⊗ fi

�
þ β20fjP

ð1Þ ⊗ fi

−
3

4
β0Pð1Þ ⊗ fiPð1Þ ⊗ fj −

3

4
β0fjPð1Þ ⊗ Pð1Þ ⊗ fi þ

3

2
ðBð1ÞÞ2fjPð1Þ ⊗ fi þBð1Þ

�
−3β0fjPð1Þ ⊗ fi þ

3

4
Pð1Þ

⊗ fiPð1Þ ⊗ fj þ
3

4
fjPð1Þ ⊗ Pð1Þ ⊗ fi

�
þ 3

8
Pð1Þ ⊗ Pð1Þ ⊗ fiPð1Þ ⊗ fj þ

1

8
fjPð1Þ ⊗ Pð1Þ ⊗ Pð1Þ ⊗ fi þ i↔ j;
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3C
ði;jÞ
1 ¼

�
−2β0Að2Þ log

�
Q2

μ2R

�
þAð3Þ − 2Bð1ÞBð2Þ þ 2Bð2Þβ0 þ 2ðBð1ÞÞ2β0 log

�
Q2

μ2R

�
þBð1Þ

�
β1 − 2β20 log

�
Q2

μ2R

��

þAð1Þ
�
β20 log

�
Q2

μ2R

�
− β1 log

�
Q2

μ2R

��
þ ðAð1ÞÞ2

�
40

3
β0 − 10Bð1Þ

�
ζ3

�
fifj

þAð2Þ
�
2fjCð1Þ ⊗ fi þ fjPð1Þ ⊗ fi log

�
Q2

μ2F

��
− 4β20fjC

ð1Þ ⊗ fi − 2β20fjP
ð1Þ ⊗ fi log

�
Q2

μ2R

�

−
1

2
Pð2Þ ⊗ fiPð1Þ ⊗ fj −Cð1Þ ⊗ Pð1Þ ⊗ fiPð1Þ ⊗ fj −

1

2
Cð1Þ ⊗ fiPð1Þ ⊗ Pð1Þ ⊗ fj

−
3

4
Pð1Þ ⊗ Pð1Þ ⊗ fiPð1Þ ⊗ fj log

�
Q2

μ2F

�
− 2Bð2ÞfjPð1Þ ⊗ fi −

1

4
fjPð1Þ ⊗ Pð2Þ ⊗ fi

−
1

4
fjPð2Þ ⊗ Pð1Þ ⊗ fi −

1

2
fjCð1Þ ⊗ Pð1Þ ⊗ Pð1Þ ⊗ fi −

1

4
fjPð1Þ ⊗ Pð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�

þ ðBð1ÞÞ2
�
−2fjCð1Þ ⊗ fi − fjPð1Þ ⊗ fi log

�
Q2

μ2F

��
þ 3β0Cð1Þ ⊗ fiPð1Þ ⊗ fj þ

1

2
β0Pð1Þ ⊗ fiPð1Þ

⊗ fj

�
log

�
Q2

μ2F

�
þ 2 log

�
Q2

μ2R

��
þ β0fjPð2Þ ⊗ fi þ 3fjCð1Þ ⊗ Pð1Þ ⊗ fi þ

1

2
β0fjPð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�

þ β0fjPð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2R

�
þBð1Þð−2Cð1Þ ⊗ fiPð1Þ ⊗ fj −Pð1Þ ⊗ fiPð1Þ ⊗ fj log

�
Q2

μ2F

�

þ β0fjPð1Þ ⊗ fi log

�
Q2

μ2F

�
þ 4β0fjPð1Þ ⊗ fi log

�
Q2

μ2R

�
− fjPð2Þ ⊗ fi − 2fjCð1Þ ⊗ Pð1Þ ⊗ fi

− fjPð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
þ 6β0fjCð1Þ ⊗ fi þ β0fjPð1Þ ⊗ fi

�
log

�
Q2

μ2F

�
þ 4 log

�
Q2

μ2R

���

þAð1Þ
�
1

4
Pð1Þ ⊗ fiPð1Þ ⊗ fjlog2

�
Q2

μ2F

�
þ 1

4
fjPð1Þ ⊗ Pð1Þ ⊗ filog2

�
Q2

μ2F

�
þ 1

2
β0fjPð1Þ ⊗ filog2

�
Q2

μ2F

�

þCð1Þ ⊗ fiPð1Þ ⊗ fj log

�
Q2

μ2F

�
þ 1

2
fjPð2Þ ⊗ fi log

�
Q2

μ2F

�
þ fjCð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
− 2β0fjPð1Þ

⊗ fi log

�
Q2

μ2F

�
log

�
Q2

μ2R

�
þCð1Þ ⊗ fiCð1Þ ⊗ fj þ 2fjCð2Þ ⊗ fi − 4β0fjCð1Þ ⊗ fi log

�
Q2

μ2R

��

þ β1fjPð1Þ ⊗ fi − 10ðAð1ÞÞ2ζ3fjPð1Þ ⊗ fi þ i↔ j;

3C
ði;jÞ
0 ¼ 2Cð1Þ ⊗ fjfiBð2Þ þ Pð1Þ ⊗ fj log

�
Q2

μ2F

�
fiBð2Þ þ 2Cð1Þ ⊗ fifjBð2Þ þ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
fjBð2Þ

þ 3

8
Pð1Þ ⊗ fjPð1Þ ⊗ Pð1Þ ⊗ filog2

�
Q2

μ2F

�
þ 3

8
Pð1Þ ⊗ fiPð1Þ ⊗ Pð1Þ ⊗ fjlog2

�
Q2

μ2F

�
þ Pð1Þ ⊗ fjlog2

�
Q2

μ2R

�
fiβ20

þ 4Cð1Þ ⊗ fj log

�
Q2

μ2R

�
fiβ20 þ Pð1Þ ⊗ filog2

�
Q2

μ2R

�
fjβ20 þ 4Cð1Þ ⊗ fi log

�
Q2

μ2R

�
fjβ20 þ Cð2Þ ⊗ fjPð1Þ ⊗ fi

þ Cð2Þ ⊗ fiPð1Þ ⊗ fj þ
1

2
Cð1Þ ⊗ fjPð2Þ ⊗ fi þ

1

2
Cð1Þ ⊗ fiPð2Þ ⊗ fj þ Cð1Þ ⊗ fjCð1Þ ⊗ Pð1Þ ⊗ fi

þ Cð1Þ ⊗ fiCð1Þ ⊗ Pð1Þ ⊗ fj þ
1

2
Pð1Þ ⊗ fjPð2Þ ⊗ fi log

�
Q2

μ2F

�
þ 1

2
Pð1Þ ⊗ fiPð2Þ ⊗ fj log

�
Q2

μ2F

�

þ Pð1Þ ⊗ fjCð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
þ Pð1Þ ⊗ fiCð1Þ ⊗ Pð1Þ ⊗ fj log

�
Q2

μ2F

�

þ 1

2
Cð1Þ ⊗ fjPð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
þ 1

2
Cð1Þ ⊗ fiPð1Þ ⊗ Pð1Þ ⊗ fj log

�
Q2

μ2F

�
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þ 1

8
Pð1Þ ⊗Pð1Þ ⊗ Pð1Þ ⊗ fjlog2

�
Q2

μ2F

�
fi − 2β1Cð1Þ ⊗ fjfiþ

1

4
Pð3Þ ⊗ fjfiþ

1

2
Cð1Þ ⊗Pð2Þ ⊗ fjfiþCð2Þ

⊗Pð1Þ ⊗ fjfiþ
1

4
Pð1Þ ⊗Pð2Þ ⊗ fj log

�
Q2

μ2F

�
fiþ

1

4
Pð2Þ ⊗Pð1Þ ⊗ fj log

�
Q2

μ2F

�
fiþ

1

2
Cð1Þ ⊗Pð1Þ ⊗Pð1Þ

⊗ fj log

�
Q2

μ2F

�
fi− β1Pð1Þ ⊗ fj log

�
Q2

μ2R

�
fiþ

1

8
Pð1Þ ⊗Pð1Þ ⊗Pð1Þ ⊗ filog2

�
Q2

μ2F

�
fj− 2β1Cð1Þ ⊗ fifj

þ 1

4
Pð3Þ ⊗ fifjþ

1

2
Cð1Þ ⊗Pð2Þ ⊗ fifjþCð2Þ ⊗Pð1Þ ⊗ fifjþ

1

4
Pð1Þ ⊗Pð2Þ ⊗ fi log

�
Q2

μ2F

�
fj

þ 1

4
Pð2Þ ⊗Pð1Þ ⊗ fi log

�
Q2

μ2F

�
fjþ

1

2
Cð1Þ ⊗Pð1Þ ⊗ Pð1Þ ⊗ fi log

�
Q2

μ2F

�
fj − β1Pð1Þ ⊗ fi log

�
Q2

μ2R

�
fj

þ 1

2
Pð1Þ ⊗ fiPð1Þ ⊗ fjlog2

�
Q2

μ2F

�
β0− 4Cð1Þ ⊗ fiCð1Þ ⊗ fjβ0 −Cð1Þ ⊗ fjPð1Þ ⊗ fi log

�
Q2

μ2F

�
β0−Cð1Þ ⊗ fiPð1Þ

⊗ fj log

�
Q2

μ2F

�
β0 − 2Cð1Þ ⊗ fjPð1Þ ⊗ fi log

�
Q2

μ2R

�
β0− 2Cð1Þ ⊗ fiPð1Þ ⊗ fj log

�
Q2

μ2R

�
β0− 2Pð1Þ ⊗ fiPð1Þ

⊗ fj log

�
Q2

μ2F

�
log

�
Q2

μ2R

�
β0þ

1

4
Pð1Þ ⊗Pð1Þ ⊗ fjlog2

�
Q2

μ2F

�
fiβ0− 4Cð2Þ ⊗ fjfiβ0 −Cð1Þ ⊗Pð1Þ ⊗ fj log

�
Q2

μ2F

�
fiβ0

−Pð2Þ ⊗ fj log

�
Q2

μ2R

�
fiβ0− 2Cð1Þ ⊗Pð1Þ ⊗ fj log

�
Q2

μ2R

�
fiβ0 −Pð1Þ ⊗Pð1Þ ⊗ fj log

�
Q2

μ2F

�
log

�
Q2

μ2R

�
fiβ0

þ 1

4
Pð1Þ ⊗Pð1Þ ⊗ filog2

�
Q2

μ2F

�
fjβ0− 4Cð2Þ ⊗ fifjβ0−Cð1Þ ⊗Pð1Þ ⊗ fi log

�
Q2

μ2F

�
fjβ0−Pð2Þ ⊗ fi log

�
Q2

μ2R

�
fjβ0

− 2Cð1Þ ⊗Pð1Þ ⊗ fi log

�
Q2

μ2R

�
fjβ0−Pð1Þ ⊗Pð1Þ ⊗ fi log

�
Q2

μ2F

�
log

�
Q2

μ2R

�
fjβ0þðBð1ÞÞ

�
1

2
Pð1Þ ⊗ fiPð1Þ ⊗ fjlog2

�
Q2
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�

þ 1
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�
Q2
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�
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Pð1Þ ⊗Pð1Þ ⊗ fifjlog2

�
Q2

μ2F

�
þ 1
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Pð1Þ ⊗ fjfiβ0log2

�
Q2

μ2F

�

þ 1

2
Pð1Þ ⊗ fifjβ0log2

�
Q2

μ2F

�
þ 1

2
Pð2Þ ⊗ fjfi log

�
Q2

μ2F

�
þCð1Þ ⊗ fjPð1Þ ⊗ fi log

�
Q2

μ2F

�
þCð1Þ ⊗ fiPð1Þ ⊗ fj log

�
Q2

μ2F

�

þCð1Þ ⊗Pð1Þ ⊗ fjfi log

�
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�
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�
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�
þ 1

2
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�
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�
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⊗ fj log

�
Q2
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�
fiβ0 log

�
Q2

μ2F

�
− 2Pð1Þ ⊗ fi log

�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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�
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28

3
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28

3
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�

þ fifj

�
−4 log

�
Q2
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�
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�
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�
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�
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�
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μ2R

��
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þ 56

3
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�
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�
Q2

μ2R

�
β0ζð3Þ

�
;
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APPENDIX F: FITS TO THE SIYY-1 FORM

Here, we summarize the fitted values of the nonpertur-
bative parameters when using the SIYY-1 form of the
nonperturbative Sudakov factor, as introduced in Ref. [85],
which was written as

SSIYY−1 ¼ g1b2 þ g2 lnðb=b�Þ lnðQ=Q0Þ þ g3b2ððx0=x1Þλ
þ ðx0=x2ÞλÞ; ðF1Þ

with x1 ¼ Qffiffi
s

p ey and x2 ¼ Qffiffi
s

p e−y. The so-called SIYY fit, as

reported in Ref. [85], was obtained from a global analysis
of the low energy Drell-Yan data and the Z boson data
from the CDF and D0 at the Tevatron, with fixed values
of Q2

0 ¼ 2.4 GeV2, x0 ¼ 0.01, λ ¼ 0.2, and the choice of
bmax ¼ 1.5 GeV−1. In this work, we extended the dataset of
the global analysis to include also the Z boson data from the
ATLAS, CMS and LHCb at the LHC, cf. Table II, and used
the improved ResBos code (ResBos2), instead of the original
ResBos code, for theory predictions. The values of the fitted
parameters ðg1; g2; g3Þ are listed in the second column of
Table VI. The total χ2=dof from this fit is found to be
482=384. Here, we have adopted the same scale choices
as those used in the central prediction of the IFY fit,
presented in Sec. IV. Namely, 4C1 ¼ C3 ¼ 4b0, C2 ¼ 1,
and μF ¼ μR ¼ MT .
For comparison, the result of the SIYY-1 fit presented in

Table III was obtained by allowing also the theory model
parameters λ and x0 to float, while using the same values of
bmax ¼ 1.5 GeV−1 and Q2

0 ¼ 2.4 GeV2. The fitted param-
eters are listed in the third column of Table VI. The total
χ2=d.o.f. from this fit is 460=384, and the break-down
for each experiment is given in Table III. We note that a

nonzero value of the g3 parameter in the SIYY-1 form
implies that the fitted dataset favors a rapidity-dependent
nonperturbative function. As found in the IFY fit, a non-
vanishing rapidity-dependent nonperturbative contribution
is favored after including the LHCb data in the global
analysis. Furthermore, the correlation matrix of the fitted
parameters ðg1; g2; g3; λ; x0Þ of the SIYY-1 fit is found to be

C ¼

0
BBBBBB@

1 0.341 −0.762 0.912 −0.028
0.341 1 −0.613 0.241 −0.022
−0.762 −0.613 1 −0.635 −0.452
0.912 0.241 −0.635 1 −0.036
−0.028 −0.022 −0.452 −0.036 1

1
CCCCCCA
:

ðF2Þ

As a final remark, we have checked that using
bmax ¼ b0 ≃ 1.123 GeV−1, instead of 1.5 GeV−1, in the
SIYY-1 fit leads to about the same χ2=d.o.f. value.
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