
ARTS: A System for Aggregate Related Table
Search

Junjie Xing
Computer Science and Engineering

University of Michigan
Ann Arbor, USA

jjxing@umich.edu

H. V. Jagadish
Computer Science and Engineering

University of Michigan
Ann Arbor, USA

jag@umich.edu

Abstract—Existing table search techniques define table re-
latedness with unionablility and/or joinability. While these are
valuable, they do not suffice for most data analysis tasks
that involve numerical data, which is often aggregated over
geographical, temporal, or other groups. In this demonstration,
we showcase ARTS, a novel table search system centered on
the unique concept of aggregate relatedness. By leveraging
pre-trained language models, ARTS offers a superior column
semantics understanding capability, with good labels created for
both textual and numerical columns. This demonstration will
offer attendees hands-on interaction with our system, revealing
its potential in effectively addressing real-world data analysis
challenges.

Index Terms—table discovery, column semantics, data integra-
tion, large language model

I. INTRODUCTION

Table search has been studied extensively in recent years.

As ever more data becomes available on the web and in

data repositories, and ever more applications are found for

data analysis and machine learning, there is an ever greater

demand to find data relevant to a task at hand. Consequently,

the significance of table search continues to escalate.

Often, in table search scenarios, a user possesses an ini-

tial table and seeks supplementary tables, from a repository,

or the web more broadly, to combine with their primary

table. So they use their table as a query table to initiate

the search. Several relatedness metrics have been developed

by researchers to measure the association between a query

table and potential matches. For instance, in the context of

unionable table search problems, “unionability” is employed

as a measure of table relatedness [1]–[4]. According to [1],

two tables are considered unionable if they possess shared

attributes from a common domain. However, if the user’s

purpose is quantitative data analytics, most attribute values

of interest are numbers, often reported as aggregates rolled up

at various granularities; and current relatedness metrics are not

suitable. Not surprisingly, tables with aggregates are prevalent

in open domain repositories, such as the US government’s

open data portal (Data.Gov) [5]. We’ve observed that over

50% of tables in Data.Gov comprise aggregated information.

In this demonstration, we showcase a system, ARTS, that

uses a novel objective for table search, namely “aggregate

relatedness”. Two tables are deemed “aggregate related” if

they can be connected via aggregate queries. Let’s elucidate

this concept with the following example:

Example 1 Consider Ela, an epidemiologist working

for a city government, who has a COVID-19 table shown

in Fig. 1 as the user’s query table with aggregate infor-

mation about positive cases, hospitalization, etc., by date,

age group and sex. To compare the trend of daily COVID-

19 cases against other jurisdictions, Ela aimed to find

tables such as the sample output table in Fig. 1, which is

another table, from a state government, with aggregated

COVID-19 cases by date and sex. After applying an

aggregate query on the first table, also shown in Fig. 1 as

the aggregate transformation, the schema of the resulting

table is equivalent with the second one. Note that not

only are the dimension columns semantically matched,

the numerical columns, “total” and “num cases”, also

share the same semantics (“total number of COVID-19

cases”). In this case, the two tables are aggregate related.

The notion of “aggregate relatedness” posits a more strin-

gent table relationship than mere table unionability. To classify

two tables as “aggregate related”, not only must the two

tables be transformed with aggregation queries to tables on the

same aggregation level so that the values can be compared,

as illustrated in Example 1, but their columns should also

share the same fine-grained column semantics. For example, a

column about “number of students” should be distinguished

from a column about “number of COVID-19 cases”: their

common column semantics type “number” is not sufficient.

Example 2 Using existing schema matching and table

union search techniques, the table depicted in Figure 2

could be a perfect match with the query table in Figure 1,

since the two tables share the similar table header, cell

values, and even column data distribution. However, it

makes no sense to union a table about autopsies per-

formed in Chicago with the query table, which counts

COVID-19 cases. Although table depicted in Figure 2

meets the requirement for being unionable with current

table union search systems [1], [4], it falls short of our

criteria for aggregate relatedness.

5461

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00428

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
04

28

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: ARTS’s Architecture and Sample Input/Output

Fig. 2: A table about autopsies performed in Chicago.

In the following, we first introduce ARTS’s framework in

Sec. II, the exhibit the demonstration experience in Sec. III.

II. ARTS’S FRAMEWORK

This section presents the overall framework of the ARTS

system. We discuss the user input, system output, ARTS’s

architecture, and ARTS’s implementation detail.

A. User Input

We require the user to provide two things to form a query, as

depicted in Fig. 1. First, the user should upload a query table

in tabular format. Second, the user needs to provide required

contextual information about the uploaded table, including the

title of the table and a description about the table. ARTS will

fill in the title of the table with the submitted tabular filename,

however, the user has the right to modify it and provide a more

accurate table title.

The effectiveness of ARTS relies on the accuracy of the

contextual information that the user provided with the title

and description. The contextual information will be fed into

the next steps for a comprehensive table understanding of the

query table, and assist the finding of aggregate related tables.

B. System Output

The system returns a list of output tables that are aggre-

gated related with the query table, along with the aggregate

transformations that makes the two tables aggregate related.

The sample out in Fig. 1 illustrates a top ranked aggregate

related table w.r.t. the query table in our table repository, and

the aggregation transformation of the query table that makes

the two tables aggregate related.

It is worth noting that not only the query table, but also

the output table can be associated with an aggregate transfor-

mation if necessary. For example, if the sample system output

table in Fig 1 is not aggregated by “case year”, “case month”,

“case day” and “sex”, instead aggregated on one more column

named “race/ethnicity”, then the sample output table should be

associated with an aggregate transformation on “case year”,

“case month”, “case day” and “sex”.

C. ARTS’s Architecture

As depicted in Fig. 1, ARTS consists of five modules,

including a prompt generator, a pre-trained language model

(PLM) executor, a column semantics extractor, a candidate

table generator, and an aggregate related table ranker. In the

following, we will introduce each modules in order. ARTS’s

success relies on the holistic understanding of fine-grained

column semantics on the query table. We show how ARTS

achieve this with the prompt generator, the PLM executor,

and the column semantics extractor.

1) Prompt Generator: We use a template-based prompt

generator that takes required contextual information of the

table, and generates a prompt that asks for column semantics

annotation from a pre-trained language model.

2) PLM Executor: A PLM executor takes a prompt as

input, and a selected PLM as a target, and calls the API

of the PLM to initiate a sequence completion task or a chat

completion task. We will discuss the implementation of the

PLM executor and the selection of PLMs in Sec. II-D.

An example of prompt and the response from PLM is

illustrated in Figure 4, the PLM used is GPT-3.5-Turbo [6].

3) Column Semantics Extractor: A column semantics ex-

tractor takes the response from the PLM as input, and extracts

the column semantics annotation for each column in the table.

5462

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

For example, the extractor extracts “The year in which the

COVID-19 cases were reported” for column “case year”.

It is worth highlighting that the success of the column

semantics extractor relies on the ability of the PLM in adhering

to provided instructions (in the prompt) and subsequently

producing well-structured outputs.

4) Candidate Table Generator: For two tables to be ag-

gregate related, they must share columns with the same

fine-grained column semantics. Using this requirement, we

generate a list of candidate tables by gathering the tables in

the table repository that shares at least one common column

with the column semantics extracted for the query table.

5) ARTS Ranker: The aggregate related table search ranker

implements an aggregate relatedness score function. The score

function takes into account the column semantics similarity be-

tween the two tables and the pairs of aggregate transformations

that makes the two tables aggregate related.

D. ARTS’s Implementation

As a table search system, we need to build a table repository

as the search space. Furthermore, we need to pre-annotate the

column semantics for all the tables in the table repository for

an effective aggregate related table search.

To build a large table repository, it is impossible to manually

provide an accurate title and description for all the tables.

Instead, we used the U.S. Government’s Open Data (Data.Gov)

[5] as the data source. This choice was based on several

reasons. Firstly, it is a large data portal, comprising over

250,000 datasets. Secondly, it adheres to the metadata standard

DCAT-US Schema v1.1, which enforces metadata availability,

including the title and description. Thirdly, most metadata

and datasets in Data.Gov are in English, thereby avoiding the

multilingual issue, which falls outside the scope of this paper.

1) Table Repository: A snapshot of Data.Gov was taken

on March 21st, 2023, capturing metadata for all datasets and

tabular data resources. We first downloaded all the metadata

with Data.Gov’s CKAN API . Subsequently, we downloaded

tabular data for each dataset with the urls in the metadata with

a time budget of 60 seconds for each download. The Data.Gov

snapshot comprised 247,675 datasets and 31,249 tabular data

resources, of which 23,600 were successfully downloaded.

Losses occurred due to (1) urls leading to landing pages

instead of downloadable data files, (2) formatting issues with

downloaded data files, and (3) errors during the downloading

process. Our table repository includes all tabular data, along

with their dataset-level metadata, from the Data.Gov snapshot.

2) Column Semantics Annotation: We then applied the

prompt generator, PLM executor, and column semantics ex-

tractor to annotate column semantics for all the tables in

our table repository. With GPT-3.5-Turbo [6] and dataset title

and description as contextual information, we sent 8,407,413

tokens as prompts, and the model returned 6,071,182 tokens.

The total cost was approximately 25 USD. Out of the 23,600

tables, we successfully parsed the model’s response for 20,578

tables. Failed parsing occurred when (1) the model changed

Fig. 3: Performance of ARTS on the benchmark with different

PLMs using different set of metadata.

the column name in the response, (2) the model didn’t follow

the instruction and returned a badly-formatted response.

3) PLM Executor: A variety of language models are in-

cluded in the demonstration plan. Specifically, our selection

includes two closed source models, GPT-3.5-Turbo [6] and

PaLM2 [7], and two open source model, Llama2 [8] and

Vicuna-v1.5 [9]. For both Llama2 and Vicuna-v1.5, we use

the 7B and 13B versions, which results in a total of 6 different

models. For closed source models, we directly call their API

for PLM execution. For open source models, we serve the

models on our own machine with FastChat [10].

E. ARTS’s Performance

To evaluate ARTS’s performance, we curated a benchmark

by manually annotating aggregate related tables from the table

repository we developed using Data.Gov. For each of the query

tables, we used the dataset title, dataset description, and dataset

tags to find the top 100 tables in the repository by semantic

similarity, thus a candidate table set with at most 300 tables

were constructed, then we manually examined each to identify

aggregate related tables.

Evaluation metrics. We employ metrics akin to other table

search systems, utilizing the mean average precision at K
(MAP@K) to assess the efficacy of the aggregate related

table search problem [1], [3], [4].

Discussion. As depicted in Figure 3, GPT-3.5-Turbo performs

best regardless of the metadata used. It surpasses other models

by a remarkable 20% margin on MAP@12 when utiliz-

ing both the title and description. Vicuna-v1.5-13B claims

the second position in terms of performance across both

metadata configurations. In contrast, Vicuna-v1.5-7B has the

lowest performance among all models. One hypothesis for this

disparity is that the fine-tuning process of Vicuna is more

effectively assimilated by the 13B model, especially given the

relatively modest performance difference between the 7B and

13B version of Llama2. Intriguingly, models exhibit different

behaviors with different metadata sets. Both PaLM2 and GPT-

3.5-Turbo exhibit enhanced performance when incorporating

both the title and description. On the other hand, models

like Llama2-7B, Llama2-13B, and Vicuna-v1.5-7B maintain

relatively consistent performances across metadata configura-

5463

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: ARTS’s Web Interface.

tions. Some even perform slightly better than their counterparts

when solely relying on the dataset title. These findings suggest

that models have different proficiencies when confronted with

longer context windows. While GPT-3.5-Turbo and PaLM2

benefit from expanded contextual information, the same cannot

be asserted for other models. The result also demonstrates the

effectiveness of ARTS in sparse context given that the average

length of dataset title in the benchmark is only six words.

III. EXPERIENCE

Our demonstration aims to show the conference attendees

that our proposed system ARTS is able to retrieve aggregate

related tables effectively, and the proposed aggregate related

table promotes the usability of the table search system.

To best illustrate how to use our tool, we prepared three sets

of query table, table title, and table description. Attendees can

also manually enter their data.

To show how ARTS can help users find aggregate related

tables, we use the motivating example from Fig. 1 where a

user would do the following:

1) Click the “upload your table” button, and select the

“covid example table.csv” as the desired file.

2) Set table title to: “covid-19 cases in city of ann arbor”.

3) Set the description of the table to: “This table records the

daily COVID-19 cases reported to the city of ann arbor

by all the hospitals and laboratory. For privacy concern,

the data is aggregated over date, age group and sex.”

4) Click “Prompt the PLM”. ARTS will generate the

prompt, call the model’s API, and extract column se-

mantics from the response.

5) Click “Find ARTs!”. ARTS will quickly process the

request and return a list of tables as depicted in Fig. 4.

6) User can click on different tables to see the aggregate

transformations in detail.

IV. CONCLUSION

Our demonstration showcases a novel search system aimed

for aggregate related tables. Aggregate related tables requires

a more comprehensive understanding of column semantics in a

fine-grained fashion. With only limited contextual information

from the user side, ARTS can find aggregate related tables

effectively and efficiently. This demonstration is a good illus-

tration of our vision on a more effective table search system

that requires a minimum of user input and returns highly

related tables.

ACKNOWLEDGMENT

This work was supported in part by NSF grants 1934565,

2106176 and 2312931.

REFERENCES

[1] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search
on open data,” Proc. VLDB Endow., vol. 11, no. 7, pp. 813–825, 2018.

[2] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, “Finding related tables,” in SIGMOD Conference. ACM,
2012, pp. 817–828.

[3] Y. Zhang and Z. G. Ives, “Finding related tables in data lakes for
interactive data science,” in SIGMOD Conference. ACM, 2020, pp.
1951–1966.

[4] A. Khatiwada, G. Fan, R. Shraga, Z. Chen, W. Gatterbauer, R. J. Miller,
and M. Riedewald, “SANTOS: relationship-based semantic table union
search,” Proc. ACM Manag. Data, vol. 1, no. 1, pp. 9:1–9:25, 2023.

[5] https://data.gov, U.S. Government’s Open Data.
[6] https://platform.openai.com/docs/models, GPT-3.5-Turbo.
[7] https://ai.google/discover/palm2/, PaLM2.
[8] https://ai.meta.com/llama/, Llama2.
[9] https://lmsys.org, Vicuna-v1.5.

[10] https://github.com/lm-sys/FastChat/tree/main, FastChat.

5464

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

