2024 |EEE 40th International Conference on Data Engineering (ICDE) | 979-8-3503-1715-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICDE60146.2024.00428

2024 IEEE 40th International Conference on Data Engineering (ICDE)

ARTS: A System for Aggregate Related Table
Search

Junjie Xing
Computer Science and Engineering
University of Michigan
Ann Arbor, USA
jjxing@umich.edu

Abstract—Existing table search techniques define table re-
latedness with unionablility and/or joinability. While these are
valuable, they do not suffice for most data analysis tasks
that involve numerical data, which is often aggregated over
geographical, temporal, or other groups. In this demonstration,
we showcase ARTS, a novel table search system centered on
the unique concept of aggregate relatedness. By leveraging
pre-trained language models, ARTS offers a superior column
semantics understanding capability, with good labels created for
both textual and numerical columns. This demonstration will
offer attendees hands-on interaction with our system, revealing
its potential in effectively addressing real-world data analysis
challenges.

Index Terms—table discovery, column semantics, data integra-
tion, large language model

I. INTRODUCTION

Table search has been studied extensively in recent years.
As ever more data becomes available on the web and in
data repositories, and ever more applications are found for
data analysis and machine learning, there is an ever greater
demand to find data relevant to a task at hand. Consequently,
the significance of table search continues to escalate.

Often, in table search scenarios, a user possesses an ini-
tial table and seeks supplementary tables, from a repository,
or the web more broadly, to combine with their primary
table. So they use their table as a query table to initiate
the search. Several relatedness metrics have been developed
by researchers to measure the association between a query
table and potential matches. For instance, in the context of
unionable table search problems, “unionability” is employed
as a measure of table relatedness [1]-[4]. According to [1],
two tables are considered unionable if they possess shared
attributes from a common domain. However, if the user’s
purpose is quantitative data analytics, most attribute values
of interest are numbers, often reported as aggregates rolled up
at various granularities; and current relatedness metrics are not
suitable. Not surprisingly, tables with aggregates are prevalent
in open domain repositories, such as the US government’s
open data portal (Data.Gov) [5]. We've observed that over
50% of tables in Data.Gov comprise aggregated information.

In this demonstration, we showcase a system, ARTS, that
uses a novel objective for table search, namely “aggregate
relatedness”. Two tables are deemed “aggregate related” if

H. V. Jagadish
Computer Science and Engineering
University of Michigan
Ann Arbor, USA
jag@umich.edu

they can be connected via aggregate queries. Let’s elucidate
this concept with the following example:

Example 1 Consider Ela, an epidemiologist working
for a city government, who has a COVID-19 table shown
in Fig. 1 as the user’s query table with aggregate infor-
mation about positive cases, hospitalization, etc., by date,
age group and sex. To compare the trend of daily COVID-
19 cases against other jurisdictions, Ela aimed to find
tables such as the sample output table in Fig. 1, which is
another table, from a state government, with aggregated
COVID-19 cases by date and sex. After applying an
aggregate query on the first table, also shown in Fig. 1 as
the aggregate transformation, the schema of the resulting
table is equivalent with the second one. Note that not
only are the dimension columns semantically matched,
the numerical columns, “total” and “num_cases”, also
share the same semantics (“total number of COVID-19
cases”). In this case, the two tables are aggregate related.

The notion of “aggregate relatedness” posits a more strin-
gent table relationship than mere table unionability. To classify
two tables as ‘“aggregate related”, not only must the two
tables be transformed with aggregation queries to tables on the
same aggregation level so that the values can be compared,
as illustrated in Example 1, but their columns should also
share the same fine-grained column semantics. For example, a
column about “number of students” should be distinguished
from a column about “number of COVID-19 cases”: their
common column semantics type “number” is not sufficient.

Example 2 Using existing schema matching and table
union search techniques, the table depicted in Figure 2
could be a perfect match with the query table in Figure 1,
since the two tables share the similar table header, cell
values, and even column data distribution. However, it
makes no sense to union a table about autopsies per-
formed in Chicago with the query table, which counts
COVID-19 cases. Although table depicted in Figure 2
meets the requirement for being unionable with current
table union search systems [1], [4], it falls short of our
criteria for aggregate relatedness.

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00428
Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

5461

@ Query table in tabular format:

é_ Query: @ Contextual Information: This is a table about COVID-19 cases in city of Ann Arbor. \

mTS’s Architecture

Prompt Generator

)

l PLM Executor l

2021 01 10 0-17 Female 8

l Column Semantics Extractor l

2021 01 1" 18 to 49 Male 10

l Candidate Tables Generator l
ARTS Ranker

-

N

/E:—) Sample Output:

SELECT

Year, Month, Day, Sex,
SUM(total) AS total

FROM table 2021 01 10

Female 107

Num_cases

2021 01 10 Female 100

GROUP BY Year, Month, Day, Sex

2021 01 " Male 98

2021 01 " Male 105

[

The aggregate transformation of the query table that makes the

k @ two tables aggregate related.

The output table returned by ARTS ranker, another COVID-19 table from a
state government, which is aggregate related with the query table.

Fig. 1: ARTS’s Architecture and Sample Input/Output

2020 05 10 Female 6

2020 05 10 Male 5

Fig. 2: A table about autopsies performed in Chicago.

In the following, we first introduce ARTS’s framework in
Sec. II, the exhibit the demonstration experience in Sec. III.

II. ARTS’S FRAMEWORK

This section presents the overall framework of the ARTS
system. We discuss the user input, system output, ARTS’s
architecture, and ARTS’s implementation detail.

A. User Input

We require the user to provide two things to form a query, as
depicted in Fig. 1. First, the user should upload a query table
in tabular format. Second, the user needs to provide required
contextual information about the uploaded table, including the
title of the table and a description about the table. ARTS will
fill in the title of the table with the submitted tabular filename,
however, the user has the right to modify it and provide a more
accurate table title.

The effectiveness of ARTS relies on the accuracy of the
contextual information that the user provided with the title
and description. The contextual information will be fed into
the next steps for a comprehensive table understanding of the
query table, and assist the finding of aggregate related tables.

B. System Output

The system returns a list of output tables that are aggre-
gated related with the query table, along with the aggregate
transformations that makes the two tables aggregate related.
The sample out in Fig. 1 illustrates a top ranked aggregate
related table w.r.t. the query table in our table repository, and

5462

the aggregation transformation of the query table that makes
the two tables aggregate related.

It is worth noting that not only the query table, but also
the output table can be associated with an aggregate transfor-
mation if necessary. For example, if the sample system output
table in Fig 1 is not aggregated by “case_year”, “case_month”,
“case_day” and “sex”, instead aggregated on one more column
named “race/ethnicity”, then the sample output table should be
associated with an aggregate transformation on ‘“case_year”,
“case_month”, “case_day” and “sex”.

C. ARTS’s Architecture

As depicted in Fig. 1, ARTS consists of five modules,
including a prompt generator, a pre-trained language model
(PLM) executor, a column semantics extractor, a candidate
table generator, and an aggregate related table ranker. In the
following, we will introduce each modules in order. ARTS’s
success relies on the holistic understanding of fine-grained
column semantics on the query table. We show how ARTS
achieve this with the prompt generator, the PLM executor,
and the column semantics extractor.

1) Prompt Generator: We use a template-based prompt
generator that takes required contextual information of the
table, and generates a prompt that asks for column semantics
annotation from a pre-trained language model.

2) PLM Executor: A PLM executor takes a prompt as
input, and a selected PLM as a target, and calls the API
of the PLM to initiate a sequence completion task or a chat
completion task. We will discuss the implementation of the
PLM executor and the selection of PLMs in Sec. II-D.

An example of prompt and the response from PLM is
illustrated in Figure 4, the PLM used is GPT-3.5-Turbo [6].

3) Column Semantics Extractor: A column semantics ex-
tractor takes the response from the PLM as input, and extracts
the column semantics annotation for each column in the table.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

For example, the extractor extracts “The year in which the
COVID-19 cases were reported” for column “case_year”.

It is worth highlighting that the success of the column
semantics extractor relies on the ability of the PLM in adhering
to provided instructions (in the prompt) and subsequently
producing well-structured outputs.

4) Candidate Table Generator: For two tables to be ag-
gregate related, they must share columns with the same
fine-grained column semantics. Using this requirement, we
generate a list of candidate tables by gathering the tables in
the table repository that shares at least one common column
with the column semantics extracted for the query table.

5) ARTS Ranker: The aggregate related table search ranker
implements an aggregate relatedness score function. The score
function takes into account the column semantics similarity be-
tween the two tables and the pairs of aggregate transformations
that makes the two tables aggregate related.

D. ARTS’s Implementation

As a table search system, we need to build a table repository
as the search space. Furthermore, we need to pre-annotate the
column semantics for all the tables in the table repository for
an effective aggregate related table search.

To build a large table repository, it is impossible to manually
provide an accurate title and description for all the tables.
Instead, we used the U.S. Government’s Open Data (Data.Gov)
[5] as the data source. This choice was based on several
reasons. Firstly, it is a large data portal, comprising over
250,000 datasets. Secondly, it adheres to the metadata standard
DCAT-US Schema v1.1, which enforces metadata availability,
including the title and description. Thirdly, most metadata
and datasets in Data.Gov are in English, thereby avoiding the
multilingual issue, which falls outside the scope of this paper.

1) Table Repository: A snapshot of Data.Gov was taken
on March 21st, 2023, capturing metadata for all datasets and
tabular data resources. We first downloaded all the metadata
with Data.Gov’s CKAN API . Subsequently, we downloaded
tabular data for each dataset with the urls in the metadata with
a time budget of 60 seconds for each download. The Data.Gov
snapshot comprised 247,675 datasets and 31,249 tabular data
resources, of which 23,600 were successfully downloaded.
Losses occurred due to (1) urls leading to landing pages
instead of downloadable data files, (2) formatting issues with
downloaded data files, and (3) errors during the downloading
process. Our table repository includes all tabular data, along
with their dataset-level metadata, from the Data.Gov snapshot.

2) Column Semantics Annotation: We then applied the
prompt generator, PLM executor, and column semantics ex-
tractor to annotate column semantics for all the tables in
our table repository. With GPT-3.5-Turbo [6] and dataset title
and description as contextual information, we sent 8,407,413
tokens as prompts, and the model returned 6,071,182 tokens.
The total cost was approximately 25 USD. Out of the 23,600
tables, we successfully parsed the model’s response for 20,578
tables. Failed parsing occurred when (1) the model changed

5463

—e— GPT-3.5-Turbo —e— Llama-2-13B —e— Vicuna-v1.5-13B

—e— PaLM2 —e— Llama-2-7B —e— Vicuna-v1.5-7B
0.8 0.8
0.7 0.7
v N
£os o6
= =
03 M ”?
0.4 0.4

2 4 6
K

(a) Dataset title and descrtption

8 10 12 2 4 6 8 10 12

K
(b) Dataset title only

Fig. 3: Performance of ARTS on the benchmark with different
PLMs using different set of metadata.

the column name in the response, (2) the model didn’t follow
the instruction and returned a badly-formatted response.

3) PLM Executor: A variety of language models are in-
cluded in the demonstration plan. Specifically, our selection
includes two closed source models, GPT-3.5-Turbo [6] and
PalLM2 [7], and two open source model, Llama2 [8] and
Vicuna-v1.5 [9]. For both Llama2 and Vicuna-v1.5, we use
the 7B and 13B versions, which results in a total of 6 different
models. For closed source models, we directly call their API
for PLM execution. For open source models, we serve the
models on our own machine with FastChat [10].

E. ARTS’s Performance

To evaluate ARTS’s performance, we curated a benchmark
by manually annotating aggregate related tables from the table
repository we developed using Data.Gov. For each of the query
tables, we used the dataset title, dataset description, and dataset
tags to find the top 100 tables in the repository by semantic
similarity, thus a candidate table set with at most 300 tables
were constructed, then we manually examined each to identify
aggregate related tables.

Evaluation metrics. We employ metrics akin to other table
search systems, utilizing the mean average precision at K
(MAPQK) to assess the efficacy of the aggregate related
table search problem [1], [3], [4].

Discussion. As depicted in Figure 3, GPT-3.5-Turbo performs
best regardless of the metadata used. It surpasses other models
by a remarkable 20% margin on M AP@12 when utiliz-
ing both the title and description. Vicuna-v1.5-13B claims
the second position in terms of performance across both
metadata configurations. In contrast, Vicuna-v1.5-7B has the
lowest performance among all models. One hypothesis for this
disparity is that the fine-tuning process of Vicuna is more
effectively assimilated by the 13B model, especially given the
relatively modest performance difference between the 7B and
13B version of Llama2. Intriguingly, models exhibit different
behaviors with different metadata sets. Both PaLM2 and GPT-
3.5-Turbo exhibit enhanced performance when incorporating
both the title and description. On the other hand, models
like Llama2-7B, Llama2-13B, and Vicuna-v1.5-7B maintain
relatively consistent performances across metadata configura-

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

ARTS: Aggregate Related Table Search

Query: Prompt:
Given a tabbo with the following information:

cavid-19 cases in Gty of ann arbor
Tithe: COVID-19 cases

Description: This table records the daily COVID-19 cases reported to

This table records the daly COVID-18 cases
the city af Ann Arbor

reported 1o the city of ann arbor by aff the
hospetals and laborstory. For privacy concem, the
data Is aggregated over dale. BgE QIOUP and sex

1. Upload the table

The tabie has the following columns: Year, Month, Day, AgeGroup,
Sex, Total

Please answer: what's the meaning for each of the columns? No
need to explain. Use simplest words, do not show sample value. For
2.Fillin the title and description of the table. each columas, answer in the format: calumn name : column meaning
Response:
3. column semantics understanding with PLM. M, 1 am willing 10 help!
Year: The year in which the COVID-18 cases were reparted
Month: The month in which the COVID-19 casos were reported
Day: The day in which the COVID-12 cases were reported
AgeGroup: The age group of the of the individuals atfected by
COVID-19
Sex: The biological sex (male or female) of the of the individuals
affected by COVID-19
Totak The total number of COVID-19 cases reported for a specific
combination of year, month, day, age group and sex

G135 Turso

B Chch 10 Show column semantcy
4. Find aggregate related tables

Output Table:
Agaregate Transformation: il

Casa_Marth

Case_Your Hum_Cases

=

=

Query Table Aggregate Transformation:

SULECT Yuar, Month, Day, SEX, SUM[Tetal) s Totsl From Query Group By Yess, Month, Day “

=

Fig. 4: ARTS’s Web Interface.

tions. Some even perform slightly better than their counterparts
when solely relying on the dataset title. These findings suggest
that models have different proficiencies when confronted with
longer context windows. While GPT-3.5-Turbo and PaLM2
benefit from expanded contextual information, the same cannot
be asserted for other models. The result also demonstrates the
effectiveness of ARTS in sparse context given that the average
length of dataset title in the benchmark is only six words.

III. EXPERIENCE

Our demonstration aims to show the conference attendees
that our proposed system ARTS is able to retrieve aggregate
related tables effectively, and the proposed aggregate related
table promotes the usability of the table search system.

To best illustrate how to use our tool, we prepared three sets
of query table, table title, and table description. Attendees can
also manually enter their data.

To show how ARTS can help users find aggregate related
tables, we use the motivating example from Fig. 1 where a
user would do the following:

1) Click the “upload your table” button, and select the
“covid_example_table.csv” as the desired file.

Set table title to: “covid-19 cases in city of ann arbor”.
Set the description of the table to: “This table records the
daily COVID-19 cases reported to the city of ann arbor
by all the hospitals and laboratory. For privacy concern,
the data is aggregated over date, age group and sex.”
Click “Prompt the PLM”. ARTS will generate the
prompt, call the model’s API, and extract column se-
mantics from the response.

Click “Find ARTs!”. ARTS will quickly process the
request and return a list of tables as depicted in Fig. 4.

2)
3)

4)

5)

6) User can click on different tables to see the aggregate
transformations in detail.

IV. CONCLUSION

Our demonstration showcases a novel search system aimed
for aggregate related tables. Aggregate related tables requires
a more comprehensive understanding of column semantics in a
fine-grained fashion. With only limited contextual information
from the user side, ARTS can find aggregate related tables
effectively and efficiently. This demonstration is a good illus-
tration of our vision on a more effective table search system
that requires a minimum of user input and returns highly
related tables.

ACKNOWLEDGMENT

This work was supported in part by NSF grants 1934565,
2106176 and 2312931.

REFERENCES

F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search
on open data,” Proc. VLDB Endow., vol. 11, no. 7, pp. 813-825, 2018.
A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee, F. Wu, R. Xin,
and C. Yu, “Finding related tables,” in SIGMOD Conference. ~ACM,
2012, pp. 817-828.

Y. Zhang and Z. G. Ives, “Finding related tables in data lakes for
interactive data science,” in SIGMOD Conference. ~ACM, 2020, pp.
1951-1966.

A. Khatiwada, G. Fan, R. Shraga, Z. Chen, W. Gatterbauer, R. J. Miller,
and M. Riedewald, “SANTOS: relationship-based semantic table union
search,” Proc. ACM Manag. Data, vol. 1, no. 1, pp. 9:1-9:25, 2023.
https://data.gov, U.S. Government’s Open Data.
https://platform.openai.com/docs/models, GPT-3.5-Turbo.
https://ai.google/discover/palm2/, PaLM2.

https://ai.meta.com/llama/, Llama2.

https://Imsys.org, Vicuna-v1.5.
https://github.com/lm-sys/FastChat/tree/main, FastChat.

[2]

[3]

5464

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 04,2025 at 04:54:00 UTC from IEEE Xplore. Restrictions apply.

