A Note on the No-(d + 2)-On-a-Sphere Problem

Andrew Suk &
Department of Mathematics, University of California San Diego, La Jolla, CA, USA

Ethan Patrick White =
Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, 1L, USA

—— Abstract

]d of size n@+1 ~°M) with
no d + 2 points on a sphere or a hyperplane. This improves the previously best known bound of

Q(nﬁ) due to Thiele from 1995.

For fixed d > 3, we construct subsets of the d-dimensional lattice cube [n
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1 Introduction

The famous no-three-in-line problem, raised by Dudeney [5] in 1917 in the special case n = 8,
asks if it is possible to select 2n points from the lattice square [n]? such that no three are

collinear. Clearly, one cannot do better than 2n as [n]?

can be covered by n lines. For
n < 52, many authors have published solutions to this problem obtaining the bound of 2n
(e.g. see [6]). However, for large values of n, the best known lower bound is due to Hall et
al. [9] which contains at least (3 — ) n points, for any £ > 0 and n sufficiently large.

The similar no-four-on-a-circle problem, raised by Erdés and Purdy in 1981 (see [8]),
asks to determine the maximum number of points that can be selected from [n]? such that
no four are on a circle. Here, a line is also considered to be a degenerate circle. Again, we
have the trivial upper bound of 3n as any vertical line must contain at most three points.
This upper bound was improved by Thiele [19], who showed that at most %n - % points can
be selected, and moreover, he gave a construction of % points from [n)? with no four on a
circle (or a line).

In this paper, we study the no-four-on-a-circle problem in higher dimensions (Problem 4
in Chapter 10 of [3]). A k-sphere is a k-dimensional sphere. Thus, a 0-sphere is a pair of
points, a 1-sphere is a circle, and etc. For simplicity, we will simply use the term sphere
when referring to a (d — 1)-dimensional sphere in R%. Again, the maximum number of points
that can be selected from the d-dimensional lattice cube [n]¢ with no d + 2 points on a
sphere or a hyperplane is at most (d + 1)n since we can cover [n]? with n hyperplanes. In
the other direction, Thiele [18] showed that one can select (n7=1) points from [n]? with no
d 4 2 points on a sphere or a hyperplane, providing the first non-trivial construction for this
problem. In this note, we prove the following.

» Theorem 1. Let d > 3 be a positive integer. Then there is a subset of the d-dimensional
3
lattice cube [n]? with par—o) points with no d + 2 members on a sphere or a hyperplane.
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While it is possible that one can improve this bound to £(n), we make the following more
modest conjecture.

» Conjecture 2. Let d > 3 be a positive integer. Then there is a subset of the d-dimensional
d
lattice cube [n]? with Q(nT+T) points with no d + 2 members on a sphere or a hyperplane.

Our paper is organized as follows. In Section 2, we recall several results from VC-dimension
theory that will be used in the proof of Theorem 1. In Section 3, we prove Theorem 1.
We conclude our paper with several remarks and related problems. For sake of clarity, we
systemically remove floor and ceilings whenever they are not crucial. All logarithms are in
based 2 unless stated otherwise.

2 VC-dimension theory

In this section, we recall several results from VC-dimension theory that will be used in the
proof of Theorem 1. First we introduce some terminology.

Let G = (P,Q, E) be a bipartite graph with independent sets P, @ and edges E C P x Q.
For ¢ € @ we define the neighbourhood Ng(q) = {p € P: (p,q) € E}. Define the set-system
F = {Ng(q): q € Q} with ground set P. We say a set S C P is shattered by F if for
every subset B C S, there is a set A € F such that ANS = B. The Vapnik-Chervonenkis
dimension (VC-dimension) of (P, F) is the largest integer d for which there exists a subset
S C P, with |S| = d, that is shattered by F.

The primal shatter function of (P,F) is defined as

= ANP: A .
mr(z) P,CI;{?;‘:ZI{ N € 7}

The well-known Sauer-Shelah lemma [14, 16] states that if dy is the VC-dimension of F, then

r(z) < i: (j) (1)

i=0
We will need the following result due to Fox, Pach, Sheffer, Suk, and Zahl.

» Theorem 3 ([7]). Let G = (P,Q, E) be a bipartite graph with |P| = m and |Q| = n, such
that the set system F) = {N(q): q € Q}, with ground set P, satisfies 7, (z) < cz% for all z.
Then if G is Ky -free, we have

E(G)| < 1 (mnt=Y 4 ),
where ¢; = ci(c,do,t). In particular, c; < 10 - ct?>¥+1(dglog dg)%.

A subset A C [n]? is a mazimal spherical set of [n]? if all points in A lie on a single sphere
S in R?, and no point of [n]¢ can be added to A while keeping all points on the sphere S.
Let S, 4 denote the set-system of all maximal spherical sets of [n]?, with ground set [n].

» Lemma 4. For d > 2, the VC-dimension of the set-system ([n]?, S, q4) is at most d + 1.

Proof. We proceed by induction on d. The base case d = 1 is trivial since a 0-sphere consists
of 2 points. For the inductive step, assume the statement holds for d’ < d. For sake of
contradiction, suppose that a set Q of d + 2 points in [n]? is shattered by S,, 4.
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Case 1. Suppose @ is in general position, that is, no d+ 1 members in @ lie on a hyperplane.
By linear algebra, any d + 1 points in @ determines a unique sphere in R¢. However, since
Q is shattered by S, 4, there is a sphere that contains (). Hence, there is no sphere that
contains exactly d + 1 points from (. Contradiction.

Case 2. Suppose @ contains a (d + 1)-tuple Q' that lies on a hyperplane h in R%. Since
the intersection of a sphere with h is a (d — 2)-sphere in h, by induction on d, Q' cannot be
shattered by S,, 4. Hence, ) cannot be shattered by &, 4, which is a contradiction. <

3 Proof of Theorem 1

In this section, we prove Theorem 1. First, let us recall several results. The first is the
well-known Chernoff inequality (see [11, Theorem 2.8]).

» Lemma 5 (Chernoff’s inequality). Let X1,...,X,, be independent random variables such
that P(X; =1)=q and P(X; =0)=1—¢q, and let X =) . X;. Then for 0 < § < 1, we have

_ 82qn

P(X > (1+d)gn)<e 3,
and

P(X <(1—-9)gn)<e 3

Next, we estimate the number of points from [n]¢ that can lie on a sphere or a hyperplane.
For the latter, we will use the following result due to Balogh and White.

» Lemma 6 ([2]). Let d > 2 be a positive integer, and ay,...,aq € Z not be all zero with
greatest common denominator 1. Let s = max;{|a;|}, n > s be a positive integer, and set

d
L= {(xlv"wxd) S Zd: Zaixi = O}
=1

If £ [n]? spans a (d — 1)-dimensional subspace, then |£ N [n]¢| < 39nd=1/s.

» Lemma 7. The number of (d + 2)-tuples in [n]¢ that lie on a common hyperplane is at
most O(n®’ T4-1)

Proof. By the lemma above, the number of (d + 1)-tuples in [n]¢ that lie on a hyperplane
which passes through the origin is at most

’I’Ld_l

> < - )dﬂ st = 0(n® 1),

S

By symmetry, for any fixed point p € [n]¢, the number of (d + 1)-tuples in [n]? that lies on a
hyperplane which passes through p is at most O(nd2’1). After summing over all points in
[n]?, the statement follows. Note that Lemma 7 applies to hyperplanes whose intersection
with [n]? spans a (d — 1)-dimensional subspace. We can assume that any (d + 2)-tuple in
[n]? lying on a common hyperplane meets this requirement by adding other points from [n]?
if needed. |

Finally, we will use the following result due to Sheffer that bounds the number of points
from [n]? that lies on a k-sphere in R, for k < d — 1. See also [10, Sec. 11.2, Equation 11.9],
[17, Theorem 2].
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» Lemma 8 ([15], Lemma 3.2). Let d > 2 and k < d — 1. Then there is a positive constant
¢ = c(d) such that every k-sphere in R contains at most n*=1+e/108108n points from [n]?.

Before we prove Theorem 1, let us give a brief outline of the argument. First, we use the
probabilistic method and Lemmas 7 and 8 to obtain a large subset A C [n]¢ such that very
few members of A lie on a (d — 2)-sphere or a hyperplane in R%. We then apply Theorem
3 and ideas from incidence geometry to estimate the number of r-tuples in A that lie on a
common sphere. Finally, we apply the deletion method to find a large subset A” C A such
that no d + 2 members of A” lie on a sphere or a hyperplane. We now flesh out all of the
details of the proof.

Proof of Theorem 1. Without loss of generality, we can assume that n is a power of 2.
Indeed, otherwise we can find an integer n’ < n that is a power of 2 such that n’ > n/2, and
apply the arguments below to the subcube [n/]¢. This would only change the hidden constant
in the o(1) term in the exponent. Moreover, we will assume that n is sufficiently large.

Fix a positive integer D < n that will be determined later, such that D divides n. We
partition the d-dimensional cube [n]? into D? smaller cubes Q1, ..., Q pa, where each Q; is
of the form

{115+1,...7(21+1)5}X"'X{Zdﬁ"‘l,...,(ld"—l)ﬁ}.

where iy, ...,iq € {0,...,D — 1}. Hence, |Q;| = (n/D)%.

Consider a random subset A C [n]¢ obtained by selecting each point in [n]? independently
with probability n3~?. Set P, = @; N A, for i = 1,..., D% Let W be the event that the
subset A C [n]? satisfies the following properties.

1. n3/2 < |A] < 2n3.

2 n3D*d/2 <P < 2n3D~% for all 1 < j < D4

3. Every (d — 2)-sphere contains less than n/1°8198™ points of A, where ¢; = ¢;(d).

4. The number (d + 2)-tuples in A that lie on a common hyperplane is at most con
where ¢3 = ca(d).

2d+5
)

By Lemma 5 and Markov’s inequality, event W holds with probability at least 1 / 2.

Indeed, by Lemma 5, the probability that |A| > 2n3 or |A| < n3/2 is at most e~ T et
Thus, the first property holds with high probability, that is, with probability tending to 1
as n approaches infinity. A similar argument follows for the second property. For the third
property, let us fix a (d — 2)-sphere S in R%. By Lemma 8, there is a constant ¢ = ¢(d) such

d—3+c/loglogn

that S contains at most n points from [n]¢. By Lemma 5,

wc/ loglogn

P[|S N A| > 2nc/108108n] < ¢~ "3
Since there are at most n® (d — 2)-spheres in R? with at least d points from [n]%, the union
bound implies that the third property holds with high probability. For the fourth property,
let X denote the number (d + 2)-tuples in A that lie on a common hyperplane. By Lemma 7,
we have E[X] < ¢/n2?+5 where ¢’ = ¢/(d). By Markov’s inequality (see [1]), we have

E[X] 1
/. 2d+5 7

P[X > 10dn**T] < 10024 < 10°
Putting everything together, and setting ci, co sufficiently large, event W holds with proba-
bility at least 1/2.



A. Suk and E. P. White

Thus, let us fix A C [n]? with the four properties described above, and set t = oncs/loglogn
where ¢3 = max{cy, c2}. Let S be the collection of spheres in R¢, such that each sphere in
S contains at least d + 1 points from A in general position. Hence, |S| = O(|A|?*!). Let
S; C S be the set of spheres in S that contains at least one point of P; = @; N A. Let
G; = (P;,S;, E;) be the bipartite incidence graph between P; and S;. Since the intersection
of two distinct spheres in R is a (d — 2)-sphere, and every (d — 2)-sphere contains less than
t points from A, each graph G; is K; o-free.

Let F; be the set system whose ground set is P;, and whose sets are SN P}, where S € §;
and |S N P;j| > t. That is,

F;={SNP;:5€S;,|SNP;| >t}

By Lemma 4, the VC-dimension of F; is at most d + 1. By inequality (1), we have
T, (2) = O(z4).

Hence, we apply Theorem 3 with t = n¢/108lg” t4 conclude that
[B,| < e/ s (1|1, 75 +1551)

where ¢4 = c4(d).
Given the partition [n]? = Q; U---UQ pa described above, we say that a sphere S crosses
the subcube Q; if SN Q; # 0.

» Observation 9. For fized d > 2, every sphere S in R? crosses at most cs D4~ subcubes
Q;, where cs = c5(d).

Proof. Let ¢5 = ¢5(d) be a large constant that depends only on d. We will determine c; later.
For sake of contradiction, suppose there is a sphere S in R the crosses more than c5 D41
subcubes @;. Note that we will not make any serious attempts to optimize the constant cs.!

Let T C [n]9N S be a subset of points [n]¢ N S obtained by selecting 1 point from each
subcube Q; that S crosses. Hence, |T| > ¢s D!, Let G = (T, E) be an auxiliary graph on
T, where two points in T are adjacent if their distance is less than n/D. Since two points in
T have distance less than n/D only if they lie in adjacent subcubes @Q); and @, this implies
that G has maximum degree 3¢ — 1. By Turan’s theorem, we can find a subset T/ C T,
such that the minimum distance between any two points in 7" is at least n/D. Moreover,
IT"| > (c5/3%) D1,

For each point p € T”, consider the spherical cap C), obtained by intersecting S with the
ball B, centered at p with radius n/(2D). Since the minimum distance among the points in
T’ is at least n/D, the collection of spherical caps corresponding to the points in 7" will have
pairwise disjoint interiors. Moreover, since each spherical cap arises from a ball whose center
is on S with radius n/(2D), each spherical cap will have area at least cg(n/D)%~! where
¢ = cg(d). Hence, the total area of all of the spherical caps corresponding to the points in
T’ is at least

|T"|cg(n/D)4 1 > —C;G nd-1,

1 A careful calculation shows that one can take cs = 2°(%. Another proof follows from a simple inductive
argument with cs = dO@
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On the other hand, all of the spherical caps on S will lie inside of a “large” ball B with
radius dn. Hence, the area of all of the spherical caps is at most the surface area of the ball
B with radius dn. Since the surface area of B is at most ¢zn%~1, where ¢; = c7(d), we have

d—1 - 6566 _d—1
crmn > 3d n .

By setting c5 sufficiently large, we have a contradiction. |

d
By the observation above, E?Zl |S;| = O(D*1|S|). Putting all of these bounds together
and applying Jensen’s inequality, the number of incidences between A and S is at most

D¢ D¢
1By | < mes/siosn N7 (11 7 4 15 )
j=1 j=1
D¢ D¢
< 2n3+C4/loglognD7d Z ‘S]‘%ﬂ + nz:4/loglogn Z |Sj|
j=1 j=1
_d_
pé EES
< 2,”/3—&-04/log;logn‘D—dDdiJrl Z|S]| +65Dd—1n04/loglogn‘8|
j=1

_d_ _d d _
SQC;+1RB+C4/lOgIOgnD T |S|T+1 +C5Dd 1n54/loglogn‘8|.

Set D to be a power of 2 such that

3(d+1) 1 3(d+1) 1
nd2+d—1 |S| Zrd—1 < ) < QndZ+d—1 ‘S| daZyd—1

Note that |S| < |A|9t!. From above, the number of incidences between S and A is at most

3(d2—1) d2
55— +cg/loglogn
2 S 2

nd +d—1 | |cL +d 17

where cg = cg(d). Let S, C S denote the set of r-rich spheres in S, that is, the set of spheres
in § with at least r points from A. Then we have

3(d2-1) a2
—S——~+cg/loglogn —
7=|ST| < pdZtd—1 s/ loglog |ST|d,2-¢-d—17
which implies

2 —
|Sr| S n3(d+1)+08/loglognr— d ;'_dl 1

Let 7; C S be the set of spheres in S with at least 2¢ points from A, and at most 2/+!
from A. Hence

|Ti| < |Sa:i| = n3(d+l)+cs/loglog”27id2‘ﬁfl

Therefore, the number of (d + 2)-tuples of A that lie on a common sphere S € § is at most

log | A| log |A|

i+1
Z |7;| <3+ 2> < nB(d+1)+Cg/loglogn Z 27iﬁ < n3(d+1)+03/loglogn.
=1 =1
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We now consider a random subset A’ C A obtained by selecting each point in A inde-
pendently with probability p, where p will be determined later. Let X be the number of
(d 4+ 2)-tuples of A’ that lie on a common sphere or a hyperplane. Then, by linearity of
expectation, we have

E[X] < n3(d+1)+03/loglognpd+2 + O(n2d+5)pd+2 S n3(d+1)+09/log lognpd+2’

and
E[|A']] = plA| > n®p/2,

where cg = co(d). Hence, there is a ¢19 = ¢19(d) such that for p = n=3% (d+1h)—c10/loglogn e
have E[X] < E[|A’|]/4. By Lemma 5, there is a subset A’ C A of size at least p|A|/2, such
that A’ contains at most p|A|/4 (d + 2)-tuples on a sphere or a hyperplane. By deleting one
point from each (d + 2)-tuple on a sphere or a hyperplane, we obtain a subset A” C A’ of
size at least

- 3 3
|A|p/4 > naiz—2e0/loglogn — gz —o(l)

such that no d + 2 members in A” lie on a sphere or a hyperplane. |

4  Concluding remarks

Several authors [13, 12, 4] observed that if n is prime, then by selecting n points from [n]?
on the “modular moment curve” (z,z%,...,2%) mod n, for x = 1,...,n, no d + 1 points
will lie on a hyperplane, and moreover, no 2d 4+ 1 points lie on a sphere. Unfortunately,
this construction may contain (d 4+ 2)-tuples on a sphere. Nevertheless, one can make the

following simple observation.

» Theorem 10. Let d > 2 be a fized positive integer. Then there is a subset of the d-
dimensional lattice cube [n]? of size Q(n) with no d + 1 points on a hyperplane, and no 2d
points on a sphere.

Proof. Let n be prime, and let A C [n]¢ be points from the d-dimensional cube on the
moment curve (z,22,...,2%) mod n, for 1 < z < |n/(4d)|. Hence, |A| = |n/(4d)]. For
sake of contradiction, suppose there is a sphere S in R?, such that S contains 2d points from
A. Note that this means S contains 2d of [n]? when viewed as a sphere in F¢. Let the center
of S C Fd be (cy,...,cq) and radius 7, such that S contains 2d points from A. Then we have
2d solutions s1, So,..., S2q to the equation

(x—c1)?+@® =)+ (2% —cy)* —r* =0 mod n.
On the other hand, by the division algorithm, we have

(x—c1)?+ (@ =)+ (a7 —ca)’ = = (z —51)(x — 82) - (¥ — 524) mod n,
which implies that sq +- - -+ S2¢ = 0 mod n as the coefficient of z2¢~!
s; < n/(4d), which implies s; + - -+ + s94 # 0 mod n, contradiction. Hence, no 2d points
in A lie on a sphere and no d + 1 points lie on a hyperplane. If n is not prime, we apply
Bertrand’s postulate to obtain a prime n’ < n such that n’ > n/2, and apply the argument
above to [n/]%. <

is 0 mod n. However,
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Another natural question is to determine the maximum number of points that can be
selected from [n

]¢ with no d+ 2 points on a sphere, but allowing many points on a hyperplane.

Since each point from [n]? lies on a sphere centered at the origin with radius /¢, where
t=1,2,...,dn? we have an upper bound of d(d + 1)n? for this problem. Using Lemma

8 and the probabilistic method, one can show the existence of n2=4/(d+1)—o(1) points from

[n]?
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