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Abstract
A curve in the plane is x-monotone if every vertical line intersects it at most once. A family of
curves are called pseudo-segments if every pair of them have at most one point in common. We
construct 2Ω(n4/3) families, each consisting of n labelled x-monotone pseudo-segments such that their
intersection graphs are different. On the other hand, we show that the number of such intersection
graphs is at most 2O(n3/2−ε), where ε > 0 is a suitable constant. Our proof uses an upper bound
on the number of set systems of size m on a ground set of size n, with VC-dimension at most d.
Much better upper bounds are obtained if we only count bipartite intersection graphs, or, in general,
intersection graphs with bounded chromatic number.
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1 Introduction

The intersection graph of a collection C of sets has vertex set C and two sets in C are adjacent
if and only if they have nonempty intersection. A curve is a subset of the plane which is
homeomorphic to the interval [0, 1]. A string graph is the intersection graph of a collection
of curves. It is straightforward to show the intersection graph of any collection of arcwise
connected sets in the plane is a string graph. A collection of curves in the plane is called
a collection of pseudo-segments if every pair of them have at most one point in common.
Finally, we say that a curve in the plane is x-monotone if every vertical line intersects it in
at most one point.

For a family F of simple geometric objects (namely those that can be defined by semi-
algebraic relations of bounded description complexity), such as segments or disks in the
plane, Warren’s theorem [24] can be used to show that the number of labelled graphs on n

vertices which can be obtained as the intersection graph of a collection of n objects from F is
2O(n log n) (see [16, 15]). Moreover, for many simple geometric objects, a result of Sauermann
[19] shows that these bounds are essentially tight. Unfortunately, for general curves, Warren’s
theorem cannot be applied. In this paper, we estimate the number of graphs which can be
obtained as the intersection graph of curves in the plane under various constraints.
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4:2 Enumeration of Intersection Graphs of x-Monotone Curves

In [17], Pach and Tóth showed that the number of intersection graphs of n labelled pseudo-
segments is at most 2o(n2). This bound was later improved by Kynčl [13] to 2O(n3/2 log n). It
was noted in both papers that the best known lower bound on the number of intersection
graphs of n labelled pseudo-segments is 2Ω(n log n), the number of different labellings of the
vertex set. Our first result significantly improves this bound.

▶ Theorem 1. There are at least 2Ω(n4/3) labelled n-vertex intersection graphs of x-monotone
pseudo-segments.

In the other direction, we prove the following.

▶ Theorem 2. There is an absolute constant ε ∈ (0, 1) such that the following holds. There
are at most 2O(n3/2−ε) labelled n-vertex intersection graphs of x-monotone pseudo-segments
in the plane.

The ε in the theorem above can be taken to be roughly 1/D, where D is the VC-dimension of
intersection graphs of pseudo-segments in the plane. A result of result of Pach and Tóth [17]
states that D is at most a tower of 2’s of height 8.

In the case of small clique number, we obtain the following.

▶ Theorem 3. There are at most 2O(kn log2 n) labelled n-vertex intersection graphs of x-
monotone pseudo-segments with clique number at most k. Moreover, for k < n1/3, this bound
is tight up to a polylogarithmic factor in the exponent.

In [17], Pach and Tóth showed that the number of string graphs on n labelled vertices is
2

3
4 (n

2)+o(n2). Moreover, their result holds for x-monotone curves. Our next result shows that
there are far fewer bipartite intersection graphs of x-monotone curves in the plane.

▶ Theorem 4. There are at most 2O(n log2 n) labelled n-vertex bipartite intersection graphs
of x-monotone curves in the plane.

Let us remark that the x-monotone condition in the theorem above cannot be removed.
An interesting construction due to Keszegh and Pálvölgyi [12] implies that the number of
n-vertex bipartite string graphs is at least 2Ω(n4/3).

For the non-bipartite case, suppose G is an n-vertex intersection of graph of x-monotone
curves, such that G has chromatic number q ≥ 3. Then we can partition V (G) into q parts
such that each part is an independent set. By further partitioning each part, arbitrarily,
such that the size of each remaining part is at most n/q, we end up with at most 2q parts.
By applying Theorem 4 to each pair of parts, we obtain the following corollary.

▶ Corollary 5. There are at most 2O(qn log2 n) labelled n-vertex intersection graphs of x-
monotone curves with chromatic number at most q.

Two drawings of a graph are isomorphic if the intersection graphs of their edges (with
edges labelled by their endpoints) are the same. A topological graph is a graph drawn in the
plane with possibly intersecting edges, and it is called simple if every pair of edges intersect
at most once. A topological graph is k-quasiplanar if it has no k pairwise crossing edges
with distinct endpoints.

The above results can be used to get upper bounds on the number of non-isomorphic
drawings of a graph with certain properties. The next result is an immediate corollary of
Theorem 3, combined with the theorem of Valtr [23] stating that the number of edges of a
k-quasiplanar simple topological graph on n vertices with x-monotone edges is Ok(n log n).
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▶ Corollary 6. Given any n-vertex graph G, the number of non-isomorphic drawings of G as
a k-quasiplanar simple topological graph with x-monotone edges is 2Ok(n log3 n).

In Theorems 3 and 4 and Corollaries 5 and 6, we conjecture that one of the logarithmic
factors in the exponent can be removed. (In the case of Corollary 6, perhaps a factor log2 n

in the exponent can removed). We discuss what is known from below at the end of the paper.
Our paper is organized as follows. In the next section, we prove Theorem 1. In Section 3,

we establish a bound on the number of set systems of size m on a ground set of size n with
VC-dimension d. After completing this work, we learned that Alon, Moran, and Yehudayoff [3]
also found a proof of this result. Together with the well-known cutting lemma, we prove
Theorem 2 in Section 4. In Section 5, we prove Theorem 4. We conclude the paper with
some remarks.

2 Proof of Theorem 1

The proof of Theorem 1 is based on a well-known construction from incidence geometry. We
prove the following more general result.

▶ Theorem 7. For k ≤ n1/3, there are at least 2Ω(kn) n-vertex labelled intersection graphs
of x-monotone pseudo-segments with clique number at most k.

Proof. Let k and n be integers such that k ≤ n1/3. Take

P = {(a, b) ∈ N2 : a < n1/3, b < n2/3}

and

L = {a′x + b′ = y : a′, b′ ∈ N, a′ < k, b′ < n2/3/2}.

Then we have |P | ≤ n and |L| ≤ kn2/3/2 ≤ n, and each line in L is incident to at
least n1/3/4 points from P . For each point p = (a, b) in P , we replace p with a very short
horizontal segment p with endpoints (a, b) and (a + ϵ, b). Let H be the resulting set of
horizontal segments.

For each line ℓ ∈ L, we modify ℓ in a small neighborhood of each point in P that is
incident to ℓ as follows. Let ℓ : y = a′x + b′ and p ∈ ℓ. Inside the circle C centered at p with
radius ϵ

2a′ , we modify ℓ so that it is a half-circle along C that lies either above or below p.
After performing this operation at each point p on ℓ, and performing a small perturbation,
we obtain an x-monotone curve ℓ̃. Moreover, any two resulting x-monotone curves will cross
at most once. See Figure 1. Let Lx be the resulting set of x-monotone curves, and note that
H ∪ Lx is a set of x-monotone pseudo-segments.

We now count the number of intersection graphs between H and Lx. Since each line
ℓ ∈ L was incident to at least n1/3/4 points in P , the number of different neighborhoods that
can be generated for ℓ̃ is 2Ω(n1/3). Moreover, two x-monotone curves ℓ̃, ℓ̃′ ∈ Lx cross if and
only if their original line configuration ℓ, ℓ′ ∈ L have distinct slope. Thus, the intersection
graph of H ∪ Lx has clique number at most k, and number of such intersection graphs we
can create between H and Lx is at least 2Ω(kn). This completes the proof of Theorem 7. ◀
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4:4 Enumeration of Intersection Graphs of x-Monotone Curves

p

Figure 1 Modifying lines through p.

3 Tools from VC-dimension theory

In this section, we recall and prove results related to the notion of VC-dimension. The
VC-dimension of a set system F on a ground set V is the largest integer d for which there
exists a d-element set S ⊂ V such that for every subset B ⊂ S, one can find a member A ∈ F
with A ∩ S = B. Note that for a multiset system (which allows for the sets to necessarily be
distinct), the VC-dimension is the same as for the set system where we include each set that
appears once.

Given a graph G = (V, E), we define the VC-dimension of G to be the VC-dimension
of the set system formed by the neighborhoods of the vertices, where the neighborhood of
v ∈ V is N(v) = {u ∈ V : uv ∈ E}. In [2], Alon et al. proved that the number of bipartite
graphs with parts of size n and VC-dimenison at most d is at most

2O(n2−1/d(log n)d+2).

They further asked if the logarithmic factors can be removed. We make progress on this
question, obtaining a better bound for a more general problem. By following their proof but
using the Haussler packing lemma [11] (stated below) instead of Lemma 26 in [2], one can
obtain a stronger and more general bound. In addition to this, we use a different counting
strategy that further removes an additional logarithmic factor.

For the sake of completeness, we include the short proof below. First, we will need some
definitions. Given two sets A, B ∈ F , the distance between A and B is d(A, B) := |A △ B|,
where A △ B = (A ∪ B) \ A ∩ B) is the symmetric difference of A and B. We say that the
set system F is δ-separated if the distance between any two members in F is at least δ. The
following packing lemma was proved by Haussler in [11].

▶ Lemma 8 ([11]). Let δ > 0 and F be a set system on an n-element ground set V such
that F has VC-dimension d. If F is δ-separated, then |F| ≤ c1(n/δ)d where c1 = c1(d).

Let hd(m, n) denote the number of multiset systems consisting of m subsets of [n] that
have VC-dimension at most d. Let h′

d(m, n) denote the number of set systems of m subsets
of [n] that have VC-dimension at most d. Clearly, h′

d(m, n) ≤ hd(m, n). For simplicity, we let(
n

≤d

)
:=

∑d
i=0

(
n
i

)
. The Sauer-Shelah lemma [18, 21] says that any set system with ground

set [n] and VC-dimension d has size at most
(

n
≤d

)
. It follows that h′

d(m, n) = 0 if m >
(

n
≤d

)
.

Further, we can relate the two as follows. If we pick a multiset system consisting of m sets
that has VC-dimension at most d, then by throwing out repeated sets, we get a set system
on the same ground set consisting of m′ ≤ m sets. We then have to fill out these m′ sets to
m sets with repeats, including each set at least once. We thus have

hd(m, n) =
∑

m′≤m

h′
d(m′, n)

(
m − 1
m′ − 1

)
. (1)
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In what follows, d is fixed and the implicit constant in the big-O depends on d.

▶ Theorem 9. Let d ≥ 2 be fixed and n, m ≥ 2. Then the number hd(m, n) of multiset
systems of m subsets of [n] with VC-dimension at most d satisfies

hd(m, n) = 2O(m1−1/dn log m).

Furthermore, if m > nd, then

hd(m, n) = 2O(nd log m).

Proof. Consider a linear ordering of the subsets of [n]. Let F be a multiset system of m

subsets of [n]. Let S1 be the first set in F by the linear ordering. We will order the sets in
F as S1, S2, . . . , Sm as follows. After picking S1, . . . , Si−1, let

δi = max
S∈F\{S1,...,Si−1}

min
1≤j≤i−1

d(S, Sj),

and Si be a set S that obtains the maximum, and ji be a j that obtains the minimum
d(Si, Sj). By our choice of the sets, we have the minimum of d(Sa, Sb) over all 1 ≤ a < b ≤ i

is d(Sji
, Si). By the Haussler packing lemma, we thus have i = O((n/δi)d), or equivalently,

δi = O(i−1/dn).
We now upper bound the number of choices of F . There are at most 2n choices of S1.

Each ji is a positive integer at most i − 1, so there are at most (m − 1)! ≤ mm choices
of j2, . . . , jm. Having picked out this sequence of ji’s, and having picked S1, . . . , Si−1, we
know Si must have symmetric difference at most ti := O(i−1/dn) from Sji

. Thus given this
information, the number of choices for Si is at most

(
n

≤ti

)
. Thus we get the number of choices

of F is at most

2nmm
m∏

i=2

(
n

≤ ti

)
≤ 2nmm

m∏
i=2

(O(i1/d))O(i−1/dn)

= 2nmm2n
∑m

i=2
O(i−1/d log i)

= 2nmm2O(m1−1/dn log m).

Note that the 2n factor is at most the last factor. Hence we get that the count is at most
mm2O(m1−1/dn log m). If m ≤ nd, then the last factor is largest and this gives the desired
bound.

So we may assume we are in the case m > nd >
(

n
≤d

)
. In this case, by equation (1), the

fact that h′
d(m′, n) = 0 for m′ > nd and h′

d(m′, n) ≤ hd(nd, n), we get

hd(m, n) ≤ hd(nd, n)
∑

m′≤nd

(
m − 1
m′ − 1

)
= 2O(nd log m).

Notice that in this case, the first bound still holds, as m1−1/dn log m ≥ nd log m. ◀

4 Intersection graphs of x-monotone pseudo-segments

In this section, we prove Theorem 2. We will need the following lemmas. Recall that
a pseudoline is a two-way infinite x-monotone curve in the plane. An arrangement of
pseudolines is a finite collection of pseudolines such that any two members have at most one
point in common, at which they cross, and each intersection point has a unique x-coordinate.
Given an arrangement A of n pseudolines, we obtain a sequence of permutations of 1, . . . , n

GD 2024



4:6 Enumeration of Intersection Graphs of x-Monotone Curves

Figure 2 Vertical decomposition of A.

by sweeping a directed vertical line across A. This sequence of permutations is often referred
to as an allowable sequence of permutations, which starts with the identity permutation
(1, . . . , n), such that i) the move from one permutation to the next consists of swapping
two adjacent elements, and ii) each pair of elements switch exactly once. We say that two
pseudoline arrangements A1 and A2 are x-isomorphic if they give rise to the same sequence
of permutations, that is, a sweep with a vertical line meets the crossings in the same order.

▶ Lemma 10 ([22]). The number of arrangements of m pseudolines, up to x-isomorphism,
is at most 2Θ(m2 log m).

We will also need the following result, known as the zone lemma for pseudolines.

▶ Lemma 11 ([8]). Let A be an arrangement of m pseudolines. Then for any α ∈ A, the
sum of the numbers of sides in all the cells in the arrangement of A that are supported by α

is at most O(m).

The next lemma we will need is the following result due to Pach and Tóth.

▶ Lemma 12 ([17]). Let G be the intersection graph of a collection of pseudo-segments in
the plane. Then the VC-dimension of G is at most an absolute constant d.

We say that a collection A of x-monotone pseudo-segments in the plane is double grounded
if there are vertical lines ℓ1 and ℓ2 (called grounds) such that each curve in A has its left
endpoint on ℓ1 and its right endpoint on ℓ2. We start by bounding the number of intersection
graphs between a family A of double grounded x-monotone curves and a family B of
x-monotone curves such that A ∪ B is a collection of pseudo-segments.

Let A be a collection of double grounded x-monotone pseudo-segments in the plane. The
vertical decomposition of the arrangement of A is obtained by drawing a vertical segment
from each crossing point and endpoint in the arrangement, in both directions, and extend it
until it meets the arrangement of A, else to ±∞. Since A is double grounded, the grounds
will appear in the vertical decomposition. The vertical decomposition of A partitions the
plane into cells called generalized trapezoids, where each generalized trapezoid is bounded
by at most two curves from A from above or below, and at most two vertical segments on
the sides. See Figure 2. By applying standard random sampling arguments (e.g., see [6] or
Lemma 4.6.1 in [14]), we obtain the following result known as the weak cutting lemma.

▶ Lemma 13 ([6, 14]). Let A be a collection of m double grounded x-monotone pseudo-
segments in the plane. Then for any parameter r, where 1 ≤ r ≤ m, there is a set of at most
s = 6r log m curves in A whose vertical decomposition partitions the plane R2 = ∆1 ∪· · ·∪∆t

into t generalized trapezoids, such that t = O(s2), and the interior of each ∆i crosses at most
m/r members in A.
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Let f(m, n) denote the number of labelled intersection graphs between a collection A
of m double grounded x-monotone curves whose grounds are the vertical lines at x = 0
and x = 1, and a collection B of n x-monotone curves whose endpoints lie inside the strip
S = [0, 1] × R such that A ∪ B is a collection of pseudo-segments. By Lemma 12, there is an
absolute constant d such that the VC-dimension of any intersection graph of pseudo-segments
in the plane is at most d. We now prove the following.

▶ Lemma 14. For m, n ≥ 1, we have

f(m, n) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m) + 2O(n3/2−1/d log n) + 2O(m log3 m).

Proof. We can assume that m, n are sufficiently large. Let A ∪ B be a collection of pseudo-
segments where A and B are as above.

Suppose n > m2. Then by the first part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(n, m) ≤ 2O(mn1−1/d log n) ≤ 2O(n3/2−1/d log n). (2)

If n < m1/d log2 m, then by the second part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(m, n) ≤ 2O(m1−1/dn log m) ≤ 2O(m log3 m). (3)

Let us assume that m1/d < n < m2. Set r = nd/(2d−1)

(m log2d m)1/(2d−1) and s = 6r log m. Since
m and n are sufficiently large, we have 1 ≤ r < s ≤ m. For a set of m double grounded
x-monotone curves whose grounds are on the vertical lines x = 0 and x = 1, there are (m!)2

ways to order the left and right endpoints. Let us fix such an ordering.
Let A′ ⊂ A be a set of at most s = 6r log m curves from A whose arrangement gives

rise to a vertical decomposition satisfying Lemma 13 with parameter r. Note that there are
at most ms choices for A′, and by Lemma 10, there are at most 2O(s2 log s) ways to fix the
arrangement, up to x-isomorphism, for A′. Once the arrangement of A′ is fixed, the vertical
decomposition of A′ is determined.

Let R2 = ∆1 ∪· · ·∪∆t be the vertical decomposition corresponding to A′, where t = O(s2).
Let Ai ⊂ A be the curves in A that cross the cell ∆i. For each curve α ∈ A′, by Lemma
11, at most O(s) vertical segments from the vertical decomposition have an endpoint on α.
Moreover, at most m curves from A cross α. Among these O(s + m) points along α, let us
fix the order in which they appear along α, from left to right. Since there are at most s2

vertical segments, there are at most (s2 + m)O(s+m) = mO(m) ways to fix this ordering, and
therefore, there are at most mO(sm) ways to fix such an ordering for each curve α ∈ A′.

Let β ∈ B. Then there are O(s4) choices for the cells ∆i for which the endpoints of β

lie in. Suppose that the left endpoint of β lies in cell ∆i and the right endpoint lies in ∆j ,
and consider the vertical lines ℓ1 and ℓ2 that goes through the left and right endpoint of β

respectively. Then for each α′ ∈ A \ (Ai ∪ Aj), we have already determined if α′ crosses β.
Indeed, let us consider the left endpoint of β and the cell ∆i. By the vertical decomposition,
∆i is bounded either above or below by some curve α ∈ A′. Without loss of generality, let
us assume that ∆i is bounded from above by α. Let p be the point on α that intersects
the left side of ∆i. Then for any α′ ∈ A \ (Ai ∪ Aj), we have already determined if the left
endpoint of α′ is above or below the left endpoint of α along the ground x = 0. Moreover,
we have already determined if α′ crosses α to the left of point p. Since α′ does not cross ∆i,
we have determined if α′ crosses ℓ1 above or below β. See Figure 3. By the same argument,
we have determined if α′ crosses ℓ2 above or below the right endpoint of β. Therefore, by
the pseudo-segment condition, we have determined if α′ crosses β.

GD 2024
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i∆

p

l1

α

β

Figure 3 Cell ∆i bounded above by α and contains the left endpoint of β.

It remains to determine how many ways β can cross the curves in Ai and Aj . By
Lemma 13, |Ai| ≤ m/r. Let Bi denote the curves in B that has at least one endpoint in the
cell ∆i. Set ni = |Bi|. By Theorem 9, there are at most

hd(|Ai|, |Bi|) ≤ 2O((m/r)1−1/dni log m)

ways the curves in Ai cross the curves in Bi. Putting everything together, the number of
ways the curves in A cross the curves in B is at most

(m!)2ms2O(s2 log s)mO(sm) (
s4)n

t∏
i=1

2O((m/r)1−1/dni log m).

Since t = O(s2), r = nd/(2d−1)

(m log2d m)1/(2d−1) , and s = 6r log m ≤ m, this quantity is at most

2O((m/r)1−1/dn log m+s2(m/r) log m) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m). (4)

Combining (2), (3), and (4), we have

f(m, n) ≤ 2O(nd/(2d−1)m(2d−2)/(2d−1) log2 m) + 2O(n3/2−1/d log n) + 2O(m log3 m). ◀

Hence, we have f(n, n) ≤ 2O(n3/2−1/(4d−2) log2 n), where d is the absolute constant from
Lemma 12.

Proof of Theorem 2. Let d be the absolute constant from Lemma 12. Let g(n; p) be the
number of labeled intersection graphs of at most n x-monotone pseudo-segments in the
vertical strip [0, 1] × R, such that there are at most p endpoints with x-coordinate in (0, 1).
Note that some pseudo-segments may contribute two endpoints to p. Then we have the
following recurrence.

▷ Claim 15. We have

g(n; p) ≤ 2O(n3/2−1/(4d−2) log2 n)g2(⌈p/2⌉; ⌈p/2⌉).

Proof. For n x-monotone curves in the strip S = [0, 1] × R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct x-coordinates. We partition the
interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R has at most
⌈p/2⌉ endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip Si. Note that there are n! ways to label the curves.
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Among the curves restricted to the strip Si, let Ai denote the set of curves that go
entirely through Si, and let Bi be the curve what at least one endpoint in the interior of Si.
There are at most n! ways to determine the intersection graph among the curves in Ai. By
Lemma 14, there are at most

f(|Ai|, |Bi|) ≤ f(n, n) ≤ 2O(n3/2−1/(4d−2) log2 n)

ways to determine the intersection graph between Ai and Bi. Finally, there are at most
g(⌈p/2⌉; ⌈p/2⌉) ways to determine the intersection graph among the curves in Bi. Putting
everything above together gives the desired recurrence. ◁

Since p ≤ 2n, the recurrence above gives

g(n; 2n) ≤ 2

log n∑
i=1

2iO((n/2i)3/2−1/(4d−2) log2(n/2i))
g(1; 1) ≤ 2O(n3/2−1/(4d−2) log2 n). ◀

Intersection graphs with small clique number
In this subsection, we prove Theorem 3.

Proof of Theorem 3. Next, we prove Theorem 3. Let gk(n; p) be the number of labeled
intersection graphs of at most n x-monotone pseudosegments with clique number at most k

in the vertical strip [0, 1] × R, such that there are at most p endpoints with x-coordinate in
(0, 1). Similar to above, we will show

gk(n; p) ≤ n6n+2kpg2
k(⌈p/2⌉; ⌈p/2⌉).

Indeed, for n x-monotone pseudosegments in the strip S = [0, 1] × R, with p endpoints
in the interior of S, we can assume that these p endpoints have distinct x-coordinate. We
partition the interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R
has at most ⌈p/2⌉ endpoints. We now bound the number of labeled intersection graphs of
the curves restricted to S1.

There are at most n! ways to label the curves in S1. There are at most 2n ways to choose
the set A of pseudo-segments that goes entirely through S1. Let GA denote its intersection
graph of A, restricted to S1. Then GA depends entirely on the permutation of the endpoints
of A. Hence, there are at most n! ways to determine GA. Since GA has clique number at
most k, by Dilworth’s theorem [7], GA has has chromatic number at most k. Thus, there
are at most kn ways to properly color the vertices of GA. After fixing such a coloring, let
A1, . . . , Ak denote the color classes. Since the curves in Ai are pairwise disjoint and goes
through S1, for each curve γ with an endpoint in the interior of S1, there are at most n2 ways
γ can intersect the curves in Ai. Therefore, there are at most (n2)k ways γ can intersect the
curves in A. Since k ≤ n, there are at most

n!2nn!kn(n2)kp/2gk(⌈p/2; p/2⌉) ≤ n4n+kpgk(⌈p/2⌉; ⌈p/2⌉)

labeled intersection graphs among the curves restricted to S1. A similar argument holds for
the curves restricted to S2. Hence,

gk(n; p) ≤ n8n+2kpg2
k(⌈p/2⌉; ⌈p/2⌉).

Iterating the inequality above t times gives

gk(n; p) ≤ n8n+2kp
(p

2

)8p+2kp ( p

22

)8p+2kp

· · ·
( p

2t−1

)8p+2kp

g2t

(⌈p/2t⌉; ⌈p/2t⌉).

GD 2024



4:10 Enumeration of Intersection Graphs of x-Monotone Curves

Hence for t = ⌈log2 n⌉, we have

gk(n; p) ≤ n8n+2kpp(8p+2kp)t.

By setting p = 2n, we have

gk(n; 2n) ≤ 2O(kn log2 n),

and Theorem 3 follows. ◀

5 Bipartite intersection graphs of x-monotone curves

In this section, we prove Theorem 4. The proof is very similar to the proof of Theorem 3
above. Let w(n; p) be the number of labeled bipartite intersection graphs of at most n

x-monotone curves in the vertical strip [0, 1] × R, such that there are at most p endpoints
with x-coordinate in (0, 1). We establish the following recurrence.

▶ Lemma 16. We have

w(n; p) ≤ n6nw2(⌈p/2⌉; ⌈p/2⌉).

Proof. For n x-monotone curves in the strip S = [0, 1] × R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct x-coordinate. We partition the
interval [0, 1] into two parts I1, I2, so that the interior of each strip Si = Ii × R has at most
⌈p/2⌉ endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip Si. Note that there are n! ways to label the curves.

For each curve γ, as the graph is bipartite, let us count the number of ways γ intersects
the set of pairwise disjoint curves that go entirely through Si. By ordering these pairwise
disjoint curves vertically, this intersection set is an interval with respect to this vertical
ordering. Hence, γ has at most n2 ways to intersect the family of curves that goes entirely
through Si. This gives a total of at most n!(n2)n < n3n ways of determining the intersection
graph in Si, apart from the induced subgraph on the curves with at least one endpoint in the
interior of Si. Since there are p/2 such endpoints, there are at most p/2 such curves. Thus
we have at most w(⌈p/2⌉; ⌈p/2⌉) possible such intersection graphs of the curves with one end
point in Si. Thus we have at most n3nw(⌈p/2⌉, ⌈p/2⌉) possible intersection graphs restricted
to Si. Since the intersection graph of all n curves is the union of the intersection graphs on
S1 and S2, we get in total at most (n3nw(⌈p/2⌉; ⌈p/2⌉))2 such choices. ◀

Proof of Theorem 4. It suffices to bound w(n; 2n) as the original n curves have 2n endpoints.
Iterating the recurrence in Lemma 16 t times gives

w(n; p) ≤ n6n
(p

2

)6p ( p

22

)6p

· · ·
( p

2t−1

)6p

w2t

(⌈p/2t⌉; ⌈p/2t⌉).

Thus for t = ⌈log2 n⌉, we get

w(n; p) ≤ n6np6pt.

Hence,

w(n; 2n) ≤ 2O(n log2 n). ◀

Let us remark that in [9], the first two authors showed that there is an absolute constant
c > 0 such that every n-vertex string graph with clique number k has chromatic number at
most (C log n

log k )c log k. Together with Corollary 5, we obtain the following.

▶ Corollary 17. For every ϵ > 0, there is δ > 0 such that the number of intersection graphs
of n x-monotone curves with clique number at most nδ is at most 2n1+ϵ .
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6 Concluding remarks

An important motivation for enumerating intersection graphs of curves of various kinds
came from a question in graph drawing [17]: How many ways can one draw a graph? The
number of different (non-isomorphic) drawings of Kn, a complete graph of n vertices, can
be upper-bounded by the number intersection graphs of

(
n
2
)

curves. By [17], this is at most
2(3/25+o(1))n4 .

The number of non-isomorphic straight-line drawings of Kn cannot exceed the the
number of different intersection graphs of

(
n
2
)

segments in the plane, which is 2(4+o(1))n2 log n;
see [19, 16]. However, the true order of magnitude of the number of straight-line drawings
of Kn is much smaller. As was pointed out in [17], this quantity is equal to the number of
order types of n points in general position in the plane. The latter quantity is 2(4+o(1))n log n,
according to seminal results of Goodman–Pollack [10] and Alon [1], based on Warren’s
theorem in real algebraic geometry [24].

Recall that Theorem 9 in Section 3 shows that for d ≥ 2 fixed and m, n ≥ 2, the number
h′

d(m, n) of set systems of m subsets of [n] that have VC-dimension at most d is at most
2O(nm1−1/d log m). It would be interesting to remove the logarithmic factor in the exponent,
which would answer the question of Alon et al. [2] mentioned in the beginning of Section 3.
A natural approach, which has worked for similar enumerative problems, is to recast the
problem as counting independent sets in an auxiliary hypergraph and use the hypergraph
container method. Consider the 2d+1-uniform hypergraph H with vertex set 2[n] (so the
vertices are just the subsets of [n]) and a 2d+1-tuple of vertices forms an edge if they shatter
a subset of the ground set of size d + 1. The function h′

d(m, n) then just counts the number
of independent sets of size m in H . The hypergraph container method (introduced in [4, 20],
see also [5]) is a powerful tool that is useful for counting independent sets in similar settings.
It would be interesting if one could adapt these techniques to give better bounds on h′

d(m, n).

The last five results in the introduction give upper bounds on the number of intersection
graphs or the number of non-isomorphic drawings of graphs under various constraints. It
would be interesting to close the gap between these upper bounds and lower bounds.

The following simple construction shows that there are 2Ω(n log n) unlabelled bipartite
graphs on n vertices that are intersection graphs of segments. One can fix the first k = n/ log n

segments to be vertical and cross the x-axis, and then have the freedom to choose the remaining
n − k segments to be horizontal, deciding which interval of vertical segments (ordered by
x-axis intersection point) to intersect. By having, for i ∈ [k], a horizontal segment that
intersects precisely the first i of the vertical segments, we can fix the underlying ordering of
the vertical segments, up to reversing the order, and use the remaining n − 2k horizontal
segments to pick any interval of the vertical segments to intersect. One gets 2(2−o(1))n log2 n

labelled bipartite intersection graphs (and hence at least 2(1−o(1))n log2 n unlabelled bipartite
intersection graphs). This shows that Theorem 4 is tight up to a single logarithmic factor in
the exponent.

Viewing the same construction as a drawing of a matching (with the endpoints of
segments as vertices of the matching), gives 2Ω(n log n) non-isomorphic straight-line drawings
of a matching on n vertices whose edge-intersection graph is bipartite, providing a lower
bound for Corollary 6.
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