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—— Abstract

A curve in the plane is x-monotone if every vertical line intersects it at most once. A family of

curves are call(;d pseudo-segments if every pair of them have at most one point in common. We
4/3

construct 24" families, each consisting of n labelled z-monotone pseudo-segments such that their

intersection graphs are different. On the other hand, we show that the number of such intersection

graphs is at most 20("3/2_5)7 where £ > 0 is a suitable constant. Our proof uses an upper bound
on the number of set systems of size m on a ground set of size n, with VC-dimension at most d.
Much better upper bounds are obtained if we only count bipartite intersection graphs, or, in general,

intersection graphs with bounded chromatic number.
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1 Introduction

The intersection graph of a collection C of sets has vertex set C and two sets in C are adjacent
if and only if they have nonempty intersection. A curve is a subset of the plane which is
homeomorphic to the interval [0, 1]. A string graph is the intersection graph of a collection
of curves. It is straightforward to show the intersection graph of any collection of arcwise
connected sets in the plane is a string graph. A collection of curves in the plane is called
a collection of pseudo-segments if every pair of them have at most one point in common.
Finally, we say that a curve in the plane is x-monotone if every vertical line intersects it in
at most one point.

For a family F of simple geometric objects (namely those that can be defined by semi-
algebraic relations of bounded description complexity), such as segments or disks in the
plane, Warren’s theorem [24] can be used to show that the number of labelled graphs on n
vertices which can be obtained as the intersection graph of a collection of n objects from F is
20(nlogn) (see [16, 15]). Moreover, for many simple geometric objects, a result of Sauermann
[19] shows that these bounds are essentially tight. Unfortunately, for general curves, Warren’s
theorem cannot be applied. In this paper, we estimate the number of graphs which can be
obtained as the intersection graph of curves in the plane under various constraints.
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In [17], Pach and Téth showed that the number of intersection graphs of n labelled pseudo-
segments is at most 2°(n*) | This bound was later improved by Kynél [13] to 20(n* *logn) 1
was noted in both papers that the best known lower bound on the number of intersection
graphs of n labelled pseudo-segments is 22(*1°¢™) " the number of different labellings of the
vertex set. Our first result significantly improves this bound.

» Theorem 1. There are at least 22"*"™) labelled n-vertex intersection graphs of x-monotone
pseudo-segments.

In the other direction, we prove the following.

» Theorem 2. There is an absolute constant € € (0,1) such that the following holds. There
are at most 2°0"*"* ™) labelled n-verter intersection graphs of x-monotone pseudo-segments

in the plane.

The ¢ in the theorem above can be taken to be roughly 1/D, where D is the VC-dimension of
intersection graphs of pseudo-segments in the plane. A result of result of Pach and Téth [17]
states that D is at most a tower of 2’s of height 8.

In the case of small clique number, we obtain the following.

» Theorem 3. There are at most 207198 ") Igbelled n-vertex intersection graphs of x-
monotone pseudo-segments with clique number at most k. Moreover, for k < n'/3, this bound
is tight up to a polylogarithmic factor in the exponent.

In [17], Pach and T6th showed that the number of string graphs on n labelled vertices is
2%(Z)+0(”2). Moreover, their result holds for z-monotone curves. Our next result shows that
there are far fewer bipartite intersection graphs of xz-monotone curves in the plane.

» Theorem 4. There are at most 2°01°8° ™) [abelled n-vertex bipartite intersection graphs
of x-monotone curves in the plane.

Let us remark that the z-monotone condition in the theorem above cannot be removed.
An interesting construction due to Keszegh and PAalvolgyi [12] implies that the number of
n-vertex bipartite string graphs is at least 20(n*/%),

For the non-bipartite case, suppose G is an n-vertex intersection of graph of z-monotone
curves, such that G has chromatic number ¢ > 3. Then we can partition V(@) into ¢ parts
such that each part is an independent set. By further partitioning each part, arbitrarily,
such that the size of each remaining part is at most n/q, we end up with at most 2¢ parts.
By applying Theorem 4 to each pair of parts, we obtain the following corollary.

» Corollary 5. There are at most 20(anlog®n) 1abelled n-verter intersection graphs of x-
monotone curves with chromatic number at most q.

Two drawings of a graph are isomorphic if the intersection graphs of their edges (with
edges labelled by their endpoints) are the same. A topological graph is a graph drawn in the
plane with possibly intersecting edges, and it is called simple if every pair of edges intersect
at most once. A topological graph is k-quasiplanar if it has no k pairwise crossing edges
with distinct endpoints.

The above results can be used to get upper bounds on the number of non-isomorphic
drawings of a graph with certain properties. The next result is an immediate corollary of
Theorem 3, combined with the theorem of Valtr [23] stating that the number of edges of a
k-quasiplanar simple topological graph on n vertices with z-monotone edges is Oy (nlogn).
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» Corollary 6. Given any n-vertex graph G, the number of non-isomorphic drawings of G as
(nlog®n) )

a k-quasiplanar simple topological graph with x-monotone edges is 2°%

In Theorems 3 and 4 and Corollaries 5 and 6, we conjecture that one of the logarithmic
factors in the exponent can be removed. (In the case of Corollary 6, perhaps a factor log®n
in the exponent can removed). We discuss what is known from below at the end of the paper.

Our paper is organized as follows. In the next section, we prove Theorem 1. In Section 3,
we establish a bound on the number of set systems of size m on a ground set of size n with
VC-dimension d. After completing this work, we learned that Alon, Moran, and Yehudayoff [3]
also found a proof of this result. Together with the well-known cutting lemma, we prove
Theorem 2 in Section 4. In Section 5, we prove Theorem 4. We conclude the paper with
some remarks.

2 Proof of Theorem 1

The proof of Theorem 1 is based on a well-known construction from incidence geometry. We
prove the following more general result.

» Theorem 7. For k < n'/3, there are at least 2°*™) n-vertex labelled intersection graphs
of x-monotone pseudo-segments with clique number at most k.

Proof. Let k and n be integers such that k < n'/3. Take
P ={(a,b) e N>: a < n'/? b < n?3}

and
L={dz+V =y:d,V eNd <k <n??/2}.

Then we have |P| < n and |£| < kn?/3/2 < n, and each line in £ is incident to at
least n'/3 /4 points from P. For each point p = (a,b) in P, we replace p with a very short
horizontal segment p with endpoints (a,b) and (a + €,b). Let H be the resulting set of
horizontal segments.

For each line ¢ € £, we modify ¢ in a small neighborhood of each point in P that is
incident to £ as follows. Let £ : y = a’x + V' and p € £. Inside the circle C centered at p with
radius 557,
After performing this operation at each point p on ¢, and performing a small perturbation,
we obtain an z-monotone curve £. Moreover, any two resulting z-monotone curves will cross
at most once. See Figure 1. Let £, be the resulting set of x-monotone curves, and note that
H UL, is a set of z-monotone pseudo-segments.

We now count the number of intersection graphs between H and L£,. Since each line
¢ € £ was incident to at least n'/3 /4 points in P, the number of different neighborhoods that
can be generated for ¢ is 20(n'/%), Moreover, two z-monotone curves ¢, ¢ € L, cross if and
only if their original line configuration ¢, ¢ € £ have distinct slope. Thus, the intersection
graph of H U L, has clique number at most k, and number of such intersection graphs we
can create between H and £, is at least 22(*”) This completes the proof of Theorem 7. <«

we modify ¢ so that it is a half-circle along C' that lies either above or below p.
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Figure 1 Modifying lines through p.

3 Tools from VC-dimension theory

In this section, we recall and prove results related to the notion of VC-dimension. The
VC-dimension of a set system F on a ground set V is the largest integer d for which there
exists a d-element set S C V such that for every subset B C S, one can find a member A € F
with AN S = B. Note that for a multiset system (which allows for the sets to necessarily be
distinct), the VC-dimension is the same as for the set system where we include each set that
appears once.

Given a graph G = (V, E), we define the VC-dimension of G to be the VC-dimension
of the set system formed by the neighborhoods of the vertices, where the neighborhood of
veVis Nw)={ueV:uv € E}. In [2], Alon et al. proved that the number of bipartite
graphs with parts of size n and VC-dimenison at most d is at most

20(n271/d(10g n)d+2) )

They further asked if the logarithmic factors can be removed. We make progress on this
question, obtaining a better bound for a more general problem. By following their proof but
using the Haussler packing lemma [11] (stated below) instead of Lemma 26 in [2], one can
obtain a stronger and more general bound. In addition to this, we use a different counting
strategy that further removes an additional logarithmic factor.

For the sake of completeness, we include the short proof below. First, we will need some
definitions. Given two sets A, B € F, the distance between A and B is d(A, B) := |A A B,
where AA B =(AUB)\ AN B) is the symmetric difference of A and B. We say that the
set system F is d-separated if the distance between any two members in F is at least . The
following packing lemma was proved by Haussler in [11].

» Lemma 8 ([11]). Let § > 0 and F be a set system on an n-element ground set V such
that F has VC-dimension d. If F is 6-separated, then |F| < c1(n/8)¢ where ¢; = c1(d).

Let hg(m,n) denote the number of multiset systems consisting of m subsets of [n] that
have VC-dimension at most d. Let h/;(m,n) denote the number of set systems of m subsets
of [n] that have VC-dimension at most d. Clearly, h/;(m,n) < hq(m,n). For simplicity, we let
(2) = E?:o (7). The Sauer-Shelah lemma [18, 21] says that any set system with ground
set [n] and VC-dimension d has size at most (2,)- Tt follows that hl(m,n) =0if m > (2,).
Further, we can relate the two as follows. If we pick a multiset system consisting of m sets
that has VC-dimension at most d, then by throwing out repeated sets, we get a set system
on the same ground set consisting of m’ < m sets. We then have to fill out these m’ sets to
m sets with repeats, including each set at least once. We thus have

) = 3 o) (1), 1)

’
m —1
m’'<m
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In what follows, d is fixed and the implicit constant in the big-O depends on d.

» Theorem 9. Let d > 2 be fized and n,m > 2. Then the number hq(m,n) of multiset
systems of m subsets of [n] with VC-dimension at most d satisfies

1-1/d

— 20(m nlogm)

ha(m,n)

Furthermore, if m > n?, then

ha(m,n) = 90(n" logm)
Proof. Consider a linear ordering of the subsets of [n]. Let F be a multiset system of m
subsets of [n]. Let S; be the first set in F by the linear ordering. We will order the sets in
F as 51,52,...,5 as follows. After picking Si,...,S5;i—1, let

e max min d(S, S;),

SEF\{S1,rSi—1} 1<5<i—1

and S; be a set S that obtains the maximum, and j; be a j that obtains the minimum
d(S;, Sj). By our choice of the sets, we have the minimum of d(S,, Sy) over all 1 <a < b <1
is d(Sj,,S;). By the Haussler packing lemma, we thus have i = O((n/8;)?), or equivalently,
0; = O(i_l/dn).

We now upper bound the number of choices of F. There are at most 2™ choices of S;.

Each j; is a positive integer at most ¢ — 1, so there are at most (m — 1)! < m™ choices
of jo,...,jm. Having picked out this sequence of j;’s, and having picked Si,...,S5;_1, we
know S; must have symmetric difference at most ¢; := O(i~*/n) from S;,. Thus given this
information, the number of choices for .S; is at most ( <7;) Thus we get the number of choices
of F is at most

n, m s n n, m s - i~1dn
rar[1(L,) < 2w Tlow)7
=2 =2

_ Qnme’ﬂ ZZz O(i_l/d log 4)

— 2nmm20(m171/dnlogm)

Note that the 2™ factor is at most the last factor. Hence we get that the count is at most
mmzo(ml—l/d
bound.

So we may assume we are in the case m > n¢ > (<"d). In this case, by equation (1), the

fact that hl;(m/,n) =0 for m’ > n¢ and h/;(m’,n) < ha(n?, n), we get

-1
hd(m7n) < hd(nd7n) Z (m ) _ 2O(nd logm).

m/ —1

nlogm) If ;< n?, then the last factor is largest and this gives the desired

m’Snd

Notice that in this case, the first bound still holds, as m'~'/%nlogm > nlogm. <

4 Intersection graphs of xz-monotone pseudo-segments

In this section, we prove Theorem 2. We will need the following lemmas. Recall that
a pseudoline is a two-way infinite z-monotone curve in the plane. An arrangement of
pseudolines is a finite collection of pseudolines such that any two members have at most one

point in common, at which they cross, and each intersection point has a unique z-coordinate.

Given an arrangement A of n pseudolines, we obtain a sequence of permutations of 1,...,n
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Figure 2 Vertical decomposition of A.

by sweeping a directed vertical line across A. This sequence of permutations is often referred
to as an allowable sequence of permutations, which starts with the identity permutation
(1,...,n), such that i) the move from one permutation to the next consists of swapping
two adjacent elements, and ii) each pair of elements switch exactly once. We say that two
pseudoline arrangements A; and Ay are x-isomorphic if they give rise to the same sequence
of permutations, that is, a sweep with a vertical line meets the crossings in the same order.

» Lemma 10 ([22]). The number of arrangements of m pseudolines, up to x-isomorphism,
is at most 20(m” logm)_

We will also need the following result, known as the zone lemma for pseudolines.

» Lemma 11 ([8]). Let A be an arrangement of m pseudolines. Then for any a € A, the
sum of the numbers of sides in all the cells in the arrangement of A that are supported by o
is at most O(m).

The next lemma we will need is the following result due to Pach and Téth.

» Lemma 12 ([17]). Let G be the intersection graph of a collection of pseudo-segments in
the plane. Then the VC-dimension of G is at most an absolute constant d.

We say that a collection A of z-monotone pseudo-segments in the plane is double grounded
if there are vertical lines ¢; and ¢5 (called grounds) such that each curve in A has its left
endpoint on ¢; and its right endpoint on £5. We start by bounding the number of intersection
graphs between a family A of double grounded xz-monotone curves and a family B of
z-monotone curves such that A U B is a collection of pseudo-segments.

Let A be a collection of double grounded z-monotone pseudo-segments in the plane. The
vertical decomposition of the arrangement of A is obtained by drawing a vertical segment
from each crossing point and endpoint in the arrangement, in both directions, and extend it
until it meets the arrangement of A, else to +o0o. Since A is double grounded, the grounds
will appear in the vertical decomposition. The vertical decomposition of A partitions the
plane into cells called generalized trapezoids, where each generalized trapezoid is bounded
by at most two curves from A from above or below, and at most two vertical segments on
the sides. See Figure 2. By applying standard random sampling arguments (e.g., see [6] or
Lemma 4.6.1 in [14]), we obtain the following result known as the weak cutting lemma.

» Lemma 13 ([6, 14]). Let A be a collection of m double grounded x-monotone pseudo-
segments in the plane. Then for any parameter r, where 1 < r < m, there is a set of at most
s = 6rlogm curves in A whose vertical decomposition partitions the plane R? = AjU---UA,
into t generalized trapezoids, such that t = O(s?), and the interior of each A; crosses at most
m/r members in A.
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Let f(m,n) denote the number of labelled intersection graphs between a collection .4
of m double grounded z-monotone curves whose grounds are the vertical lines at x = 0
and z = 1, and a collection B of n z-monotone curves whose endpoints lie inside the strip
S =10,1] x R such that AU B is a collection of pseudo-segments. By Lemma 12, there is an
absolute constant d such that the VC-dimension of any intersection graph of pseudo-segments
in the plane is at most d. We now prove the following.

» Lemma 14. For m,n > 1, we have

4/(2d=1) 1 (2d=2)/(2d=1) | 552 m) 3/2—-1/d

logn) + 20(m log® m)

f(m,n) <200 4 20(n

Proof. We can assume that m,n are sufficiently large. Let AU B be a collection of pseudo-
segments where A and B are as above.

Suppose n > m?2. Then by the first part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(n, m) < 2O(mn171/d logn) < 2O(n3/271/d logn) ) (2)
If n < mt/@ log2 m, then by the second part of Theorem 9, the number of intersection graphs
between A and B is at most

hd(m,n) < 2O(m171/dnlogm) < 20(m log® m)' (3)

nd/(2d—1)

Let us assume that m <n< m2. Set r = W and s = 67 log m. Since

m and n are sufficiently large, we have 1 < r < s < m. For a set of m double grounded

1/d

x-monotone curves whose grounds are on the vertical lines = 0 and x = 1, there are (m!)?
ways to order the left and right endpoints. Let us fix such an ordering.

Let A" C A be a set of at most s = 6rlogm curves from A whose arrangement gives
rise to a vertical decomposition satisfying Lemma 13 with parameter r. Note that there are
at most m? choices for A’, and by Lemma 10, there are at most 20(s” log s) ways to fix the
arrangement, up to z-isomorphism, for A’. Once the arrangement of A’ is fixed, the vertical
decomposition of A’ is determined.

Let R?2 = AjU---UA; be the vertical decomposition corresponding to A’, where t = O(s?).
Let A; C A be the curves in A that cross the cell A;. For each curve a € A’, by Lemma
11, at most O(s) vertical segments from the vertical decomposition have an endpoint on «.
Moreover, at most m curves from A cross a. Among these O(s + m) points along «, let us
fix the order in which they appear along «, from left to right. Since there are at most s?
vertical segments, there are at most (s% + m)o(s+m) =mP™) ways to fix this ordering, and
therefore, there are at most m®©™) ways to fix such an ordering for each curve a € A’.

Let 8 € B. Then there are O(s*) choices for the cells A; for which the endpoints of 3
lie in. Suppose that the left endpoint of 3 lies in cell A; and the right endpoint lies in A,
and consider the vertical lines ¢; and £5 that goes through the left and right endpoint of 3
respectively. Then for each o/ € A\ (A; U A;j), we have already determined if o/ crosses (3.
Indeed, let us consider the left endpoint of 8 and the cell A;. By the vertical decomposition,
A; is bounded either above or below by some curve a € A’. Without loss of generality, let
us assume that A; is bounded from above by a. Let p be the point on « that intersects
the left side of A;. Then for any o/ € A\ (A; U A;), we have already determined if the left
endpoint of o’ is above or below the left endpoint of a along the ground x = 0. Moreover,
we have already determined if o’ crosses a to the left of point p. Since o’ does not cross A;,
we have determined if o’ crosses £; above or below 8. See Figure 3. By the same argument,
we have determined if o’ crosses ¢» above or below the right endpoint of 3. Therefore, by
the pseudo-segment condition, we have determined if o’ crosses §.

4:7
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Figure 3 Cell A; bounded above by « and contains the left endpoint of 5.

It remains to determine how many ways 8 can cross the curves in 4; and A;. By
Lemma 13, |A;| < m/r. Let B; denote the curves in B that has at least one endpoint in the
cell A;. Set n; = |B;|. By Theorem 9, there are at most

ha(lAl, 1Bi]) < 90((m/r)' ="/ *n; log m)

ways the curves in A; cross the curves in B;. Putting everything together, the number of
ways the curves in A cross the curves in B is at most

t
(m!>2m320(32 log s)mO(sm) (84)” H 20((m/r)171/dn,~ log m).

i=1

nd/(2d—1)
(m log2? m)1/(2d—1) "

Since t = O(s?), r = and s = 6rlogm < m, this quantity is at most

2O((m/r)171/dnlog m+s%(m/r) logm) < QO(nd/(2d71>m<2d72)/(2d71) log? m) (4)

Combining (2), (3), and (4), we have

d/(2d—1), (2d—2)/(2d—1) 72 3/2—1/d 3
f(m,n) < 20(n m log® m) +2O(n logn) +2O(mlog m) <

/2-1/(2d-2)
Hence, we have f(n,n) < 90(n?/2 71 ) log? n)
Lemma 12.

, where d is the absolute constant from

Proof of Theorem 2. Let d be the absolute constant from Lemma 12. Let g(n;p) be the
number of labeled intersection graphs of at most n z-monotone pseudo-segments in the
vertical strip [0, 1] x R, such that there are at most p endpoints with z-coordinate in (0, 1).
Note that some pseudo-segments may contribute two endpoints to p. Then we have the
following recurrence.

> Claim 15. We have

gln;p) < 200n** T og?n) 21y 121 /27,

Proof. For n z-monotone curves in the strip S = [0, 1] x R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct z-coordinates. We partition the
interval [0, 1] into two parts Iy, I2, so that the interior of each strip S; = I; x R has at most
[p/2] endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip S;. Note that there are n! ways to label the curves.
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Among the curves restricted to the strip 5;, let A; denote the set of curves that go

entirely through S;, and let B; be the curve what at least one endpoint in the interior of S;.

There are at most n! ways to determine the intersection graph among the curves in A;. By
Lemma 14, there are at most

f(|./4l‘, |Bl|) < f(n, ’I’L) < 20(n3/271/(4d72) log2 n)

ways to determine the intersection graph between A; and B;. Finally, there are at most
g([p/2]; [p/2]) ways to determine the intersection graph among the curves in B;. Putting
everything above together gives the desired recurrence. <

Since p < 2n, the recurrence above gives

log n
> 2°0((n/21)*/2 71/ 447D 1og? (n/21)) 8/2—1/(4d—
g(n;2n) < 2i=1 g(1;1) < 9O (n?/2=1/(44=2) 1og2 ) <

Intersection graphs with small clique number
In this subsection, we prove Theorem 3.

Proof of Theorem 3. Next, we prove Theorem 3. Let gi(n;p) be the number of labeled
intersection graphs of at most n z-monotone pseudosegments with clique number at most &
in the vertical strip [0, 1] x R, such that there are at most p endpoints with z-coordinate in
(0,1). Similar to above, we will show

gi(n;p) < nS"+2RegR([p/2]; [p/2]).

Indeed, for n z-monotone pseudosegments in the strip S = [0, 1] x R, with p endpoints
in the interior of S, we can assume that these p endpoints have distinct z-coordinate. We
partition the interval [0, 1] into two parts Iy, I5, so that the interior of each strip S; = I; x R
has at most [p/2] endpoints. We now bound the number of labeled intersection graphs of
the curves restricted to Si.

There are at most n! ways to label the curves in S;. There are at most 2" ways to choose
the set A of pseudo-segments that goes entirely through S;. Let G4 denote its intersection
graph of A, restricted to S1. Then G 4 depends entirely on the permutation of the endpoints
of A. Hence, there are at most n! ways to determine G_4. Since G 4 has clique number at
most k, by Dilworth’s theorem [7], G 4 has has chromatic number at most k. Thus, there
are at most k™ ways to properly color the vertices of G 4. After fixing such a coloring, let
A1, ..., A denote the color classes. Since the curves in A; are pairwise disjoint and goes
through Si, for each curve v with an endpoint in the interior of Sy, there are at most n? ways
7 can intersect the curves in A;. Therefore, there are at most (n?)* ways v can intersect the
curves in A. Since k < n, there are at most

n12"nlk"™ (n?)* 2 g, (Tp/2;p/2]) < n*" gy ([p/2]; [p/2])

labeled intersection graphs among the curves restricted to S;. A similar argument holds for
the curves restricted to S5. Hence,

gr(n;p) < n® 2P gR([p/2]; [p/2]).

Iterating the inequality above ¢ times gives

P 8p+2kp p 8p+2kp P 8p+2kp _,
gr(n;p) < n®H2p (5) (27> <F) g° ([p/2"7; [p/2').

4:9
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Hence for t = [log, n], we have
gk(n7p) < n8n+2kpp(8p+2k:p)t'

By setting p = 2n, we have
gk(n; 2n) < 20(1@'n10g2 n)7

and Theorem 3 follows. <

5 Bipartite intersection graphs of z-monotone curves

In this section, we prove Theorem 4. The proof is very similar to the proof of Theorem 3
above. Let w(n;p) be the number of labeled bipartite intersection graphs of at most n
x-monotone curves in the vertical strip [0,1] x R, such that there are at most p endpoints
with z-coordinate in (0,1). We establish the following recurrence.

» Lemma 16. We have

w(n;p) < n®"w?([p/2]; [p/2]).

Proof. For n z-monotone curves in the strip S = [0, 1] X R, with p endpoints in the interior
of S, we can assume that these p endpoints have distinct z-coordinate. We partition the
interval [0, 1] into two parts Iy, I2, so that the interior of each strip S; = I; x R has at most
[p/2] endpoints. Next, we upper bound the number of labeled intersection graphs of the
curves restricted to the strip 5;. Note that there are n! ways to label the curves.

For each curve -, as the graph is bipartite, let us count the number of ways - intersects
the set of pairwise disjoint curves that go entirely through ;. By ordering these pairwise
disjoint curves vertically, this intersection set is an interval with respect to this vertical
ordering. Hence, v has at most n? ways to intersect the family of curves that goes entirely
through S;. This gives a total of at most n!(n?)" < n®" ways of determining the intersection
graph in S;, apart from the induced subgraph on the curves with at least one endpoint in the
interior of S;. Since there are p/2 such endpoints, there are at most p/2 such curves. Thus
we have at most w([p/2]; [p/2]) possible such intersection graphs of the curves with one end
point in S;. Thus we have at most n®"w([p/2], [p/2]) possible intersection graphs restricted
to ;. Since the intersection graph of all n curves is the union of the intersection graphs on
S and Sa, we get in total at most (n®"w([p/2]; [p/2]))? such choices. <

Proof of Theorem 4. It suffices to bound w(n;2n) as the original n curves have 2n endpoints.
Iterating the recurrence in Lemma 16 ¢ times gives

wip) <0 (2)7 (2)7 o (525) " (/2: Ip/2)

Thus for t = [log, 1], we get

n6n 6pt .

w(n;p) <n°"'p

Hence,
w(n;2n) < 90(nlog® n) <

Let us remark that in [9], the first two authors showed that there is an absolute constant
¢ > 0 such that every n-vertex string graph with clique number k has chromatic number at
most (C %)Clogk. Together with Corollary 5, we obtain the following.

» Corollary 17. For every € > 0, there is 6 > 0 such that the number of intersection graphs
of n x-monotone curves with clique number at most n® is at most on' '
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6 Concluding remarks

An important motivation for enumerating intersection graphs of curves of various kinds
came from a question in graph drawing [17]: How many ways can one draw a graph? The
number of different (non-isomorphic) drawings of K,,, a complete graph of n vertices, can
be upper-bounded by the number intersection graphs of (g) curves. By [17], this is at most
2(3/2%+o(1))n*

The number of non-isomorphic straight-line drawings of K, cannot exceed the the
number of different intersection graphs of (g) segments in the plane, which is 9(4+o(1))n? logn,
see [19, 16]. However, the true order of magnitude of the number of straight-line drawings
of K, is much smaller. As was pointed out in [17], this quantity is equal to the number of
order types of n points in general position in the plane. The latter quantity is 2(4+e(1)nlogn
according to seminal results of Goodman-Pollack [10] and Alon [1], based on Warren’s

theorem in real algebraic geometry [24].

Recall that Theorem 9 in Section 3 shows that for d > 2 fixed and m,n > 2, the number
hl,(m,n) of set systems of m subsets of [n] that have VC-dimension at most d is at most
1—-1/d

20(nm logm) Tt would be interesting to remove the logarithmic factor in the exponent,

which would answer the question of Alon et al. [2] mentioned in the beginning of Section 3.
A natural approach, which has worked for similar enumerative problems, is to recast the
problem as counting independent sets in an auxiliary hypergraph and use the hypergraph
container method. Consider the 29! uniform hypergraph H with vertex set 2" (so the
vertices are just the subsets of [n]) and a 29+1-tuple of vertices forms an edge if they shatter
a subset of the ground set of size d + 1. The function h/;(m,n) then just counts the number
of independent sets of size m in H. The hypergraph container method (introduced in [4, 20],
see also [5]) is a powerful tool that is useful for counting independent sets in similar settings.

It would be interesting if one could adapt these techniques to give better bounds on hl;(m,n).

The last five results in the introduction give upper bounds on the number of intersection
graphs or the number of non-isomorphic drawings of graphs under various constraints. It
would be interesting to close the gap between these upper bounds and lower bounds.

The following simple construction shows that there are 22("1°87) ynlabelled bipartite
graphs on n vertices that are intersection graphs of segments. One can fix the first k = n/logn
segments to be vertical and cross the xz-axis, and then have the freedom to choose the remaining
n — k segments to be horizontal, deciding which interval of vertical segments (ordered by
z-axis intersection point) to intersect. By having, for i € [k], a horizontal segment that
intersects precisely the first i of the vertical segments, we can fix the underlying ordering of
the vertical segments, up to reversing the order, and use the remaining n — 2k horizontal
segments to pick any interval of the vertical segments to intersect. One gets 2(2—0(1)nlogz n
labelled bipartite intersection graphs (and hence at least 2(1—o(W))nlog; n yplahelled bipartite
intersection graphs). This shows that Theorem 4 is tight up to a single logarithmic factor in
the exponent.

Viewing the same construction as a drawing of a matching (with the endpoints of
segments as vertices of the matching), gives 2°("198") non-isomorphic straight-line drawings
of a matching on n vertices whose edge-intersection graph is bipartite, providing a lower
bound for Corollary 6.
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