TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 378, Number 4, April 2025, Pages 28812921
https://doi.org/10.1090/tran/9347

Article electronically published on December 13, 2024

THE EQUIVARIANT LAZARD RING OF
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ABSTRACT. This paper calculates the equivariant Lazard ring for primary
cyclic groups, in terms of explicit generators and defining relations. This
ring is known to coincide with the coefficient ring of the equivariant stable
complex cobordism spectrum, which I compute by the method of isotropy sep-
aration, using a “staircase diagram.”
constructing equivariant spectra.

This calculation provides new tools for
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1. INTRODUCTION

Equivariant formal group laws for abelian compact Lie groups were introduced
by Cole, Greenlees and Kriz in [4, 5], as the structure universally present on the
rings of Z-graded coefficients of complex-oriented equivariant spectra. From the
beginning, it was conjectured by J. P. C. Greenlees that the stable equivariant
complex cobordism ring (MUg), is the ring supporting the universal G-equivariant
formal group law. This conjecture was recently proved by Hanke and Wiemeler [7]
for G = Z/2, and then in general by Hausmann [8] using global homotopy theory,
and by different methods by Kriz and Lu [11]. The term “stable” signifies the
fact that this is the ring of homotopy groups of the equivariant complex cobordism
Thom spectrum, which, for G # {e}, is known to represent not the actual complex
G-cobordism ring of manifolds, but a certain stabilization. For G = Z/2, the equi-
variant complex cobordism ring of manifolds is represented by a spectrum recently
constructed by J. Carlisle [3], which leads to an interesting extension of the concept
of equivariant formal group laws.

Equivariant formal group laws turn out to be a powerful tool for constructing
and investigating equivariant complex-oriented spectra, similarly as in the non-
equivariant case. This has become clear in the work of Strickland [17], and to
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2882 P. HU

an even greater degree, in the recent paper [9]. However, the algebra is much
more complicated, as is the structure of the equivariant Lazard ring Lg, i.e., the
equivariant cobordism ring (MUg)..

The coefficient ring (MUg), in fact, has long been considered mysterious. The
first efforts at calculating it came during the 1990s in the works of Kriz [10] and
Sinha [15], with a generalization by Abram and Kriz [1], in the form of certain
pullback diagrams and their generalizations. For G = Z/2, a presentation in terms
of generators and relations was first obtained by Strickland [16]. While the ring is
not polynomial as in the non-equivariant case, it can be understood in terms of the
Euler class u of the non-trivial representation of Z/2. Essentially, there is a torsion
part which is the same as on the Borel cohomology of MUz, and a non-torsion
part, which can be thought of as a coordinate neighborhood of an infinite sequence
of blow-ups of a polynomial ring, from a scheme-theoretical point of view. In [17]
and also especially in [9], it has become apparent that the algebraic structure of
Lg = (MUg)s can be used to construct and investigate new equivariant spectra.
However, the constructions and computations of [9] were limited by the fact that
the appropriate presentation was still only known for G = Z/2.

The purpose of this paper is to give this presentation of (MUg), for a general
primary cyclic group G = Z/(p™). The computation is qualitatively more difficult
than in [16], even in the case of G = Z/p, due to the fact that multiple Euler classes
are present. These Euler classes turn out to be multiples of each other, but not unit
multiples: a more delicate statement relating them to each other holds, involving
“carry-over” in p-adic multiplication. From this, one obtains that divisibility by
the different Euler classes is equivalent. The case of G = Z/p is an important
special case in our computation, and is treated separately in Section 2. The main
statement is Theorem 2.2.

The general case of G = Z/p™ is again qualitatively more complex, and new topo-
logical calculations are required. This is treated in Section 3. The main statement
for this case is Theorem 3.1. The essential topological observation which describes a
certain “staircase-shaped” isotropy separation diagram is Proposition 3.4. Substan-
tial work is also needed to show how it applies to the case of complex cobordism,
which involves some complicated algebra, filling out most of the remainder of the
section. While similar “staircase” diagrams have occurred in the literature before
(e.g. [1], [9], [14]), I could not find a convenient reference for the present context,
so I state and prove what I need in Proposition 3.4.

In fact, the relationship between the different staircase diagrams from Section 3
of the present paper and from [1] is quite delicate, and leads to certain special
effects for G = Z/p?. This is described in detail in Section 4.

The main results of this paper are rather technical and require a substantial
amount of background and specialized notation. For this reason, it is not feasible
to state them in the Introduction, and I state them in their respective sections.

One feature of the presentation given in this paper is that it is more explicit
than the presentation given in [11], in the sense of giving explicit control over the
divisibility by Euler classes. This can be used to construct non-isotropically split
examples of complex-oriented Z/p™-equivariant spectra using spectral algebra. In
the case of n = 1, we discuss an explicit example in the Remark at the end of
Section 2. These spectra are non-trivial in the sense of [2]. No such examples, with

Licensed to Wayne St Univ. Prepared on Sun Jul 6 11:28:02 EDT 2025 for download from IP 141.217.244.209.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2883

the exception of those coming directly from geometry or for p = 2 [9], were known
prior to the calculations done in the present paper.

I will give a few comments on the setting and notations here. In this paper,
we work with G-equivariant spectra, where G is a finite group, indexed over the
complete universe, as defined by Lewis-May-Steinberger [13]. For a G-equivariant
space (or another G-spectrum) X, and any virtual representation V of G (i.e.
elements of the representation ring RO(G)), such a spectrum E defines abelian
groups EV X and EyX. By the coefficients of E, we mean the groups E"(x) =
E_, (%), where n € Z, and x* is a point. Recall that F is a commutative associative
ring spectrum if we have maps EA E — E and S — E satisfying the usual axioms.
When F is a commutative associative ring spectrum, then F, = @,z E, (%) forms
a graded commutative associative ring with unit.

The example we are interested in is the equivariant complex cobordism spec-
trum MUg [18]. Let U be the complete G-universe, i.e. the sum of infinitely many
copies of the regular unitary representation of G. For a finite-dimensional com-
plex representation V' in U, let Gr(|V|,U @ V') be the space of all |V |-dimensional
complex vector subspaces of Y ® V. Let Dy be the Thom space of the universal
G-equivariant |V|-dimensional complex bundle on Gr(|V|,U & V). Then for V., W
finite-dimensional orthogonal subrepresentations of U, we have a canonical map

EWDV — DV+W-

The G-spaces {Dy } form a U-prespectrum, and the Thom spectrum MUy is the
spectrification of {Dy }. In this case, this means that

(MUg)v = colim v QY Dy .

We refer to MUg as the equivariant complex cobordism spectrum. The explicit
presentation of the ring Lg = (MUg). for G = Z/(p™) is the subject of this paper.

2. THE G = Z/p CASE

In this section, we consider the case where G = Z/p. For this case, our starting
point is the work of Kriz [10], who considered the Tate diagram (in the sense
of Greenlees and May [6]) for MUz;,. Our method is very similar to that of
Strickland [16], who computed it in the case when p = 2.

Recall that the coefficient ring MU, of the non-equivariant complex cobordism
spectrum MU is the Lazard ring. We denote the universal formal group law on
MU, by F, and the formal n-series of a variable x by [n]px = [n]z. We will write
the universal formal group law as

F(l’,y) = +F y= Z a/i,jxjyiu
4,520
where a; ; € MU,. In particular, a; ; = a;4, ap,1 = a10 =1, and ag = a,o = 0 for
all k # 1. There are also other relations among the a; ; arising from the associativity

of F. Also, recall that the standard grading on MU, has |a; ;| = 2(i +j — 1), so
that if  and y are both given degree -2, then x + g y is also of degree -2.

For each av = 1,...,p — 1, we always use a~! to denote the representative of
a~t € (Z/p)*, with 1 <a~! <p—1. Namely, a~! is the smallest positive integer
such that

a-a b =1+kyp
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2884 P. HU

with k, > 0. We also write
x +F y = Z az,]x ] = Z agz’)xiyj'
4,50 1,720

It is easy to see that for every «, alo) 1, a%) = 0 for every i # 1, and that

\ a; ; \ =2(1—1i—j). Also,
oy =>"aly,
Jj=0

so in particular, ag 1) . We will also write

[plu = Z cjul.
Jj=0
In particular, ¢g = 0, ¢; = p, and |¢;| = 2(1 — j).
For a power series G(x,y) in two variables, and 7 > 0, we denote the coefficient
of ' in G(z,y) as
Coeff i G(x, y).
Clearly,
(2.1) Z Coeff,: G(x,y) - 2* = G(z,y).
i>0
The main result of [10] is the following.

Theorem 2.1 ([10, Theorem 1.1]). There is a pullback square of rings

(MUy,). MU, (08) " i > 0,a € (Z/p)*]

(2.2) l %
MU, [u]}/([p]u) : (MU.[[ull/[p]u)[u™1].
Here, the bottom map v is localization, and
(™) = Coeff . (x +5 [a]u) = Z (70;) ,
(2.3) >0
(b)) =u "

We will write béa) = Uq. Our bga) corresponds to the element bg)ua in the
original statement of Theorem 2.1 in [10]. The notation of (2.3) is consistent in
that

$(ua) = [alu,
so qﬁ(b(()l)) = ¢(uy;) = u. Hence, we will also write u; = w. In particular, in the
lower right corner of (2.2), we have

— (a’l)
u=[a" E a; 7,
j>1
so there is a series with no negative powers of u

w) =3 al (a]u)’

Jj=0
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2885

with fo(u) - [ Ju = u, ( “1fo(u)) - [a]Ju = 1 in the lower right corner of (2.2).
Hence, ¢(u;t) = ([a]u ) = u~!f,(u) exists in the target as claimed.
We will write Y
Ja(u) = Talu

However, this notation is slightly misleading, since in the lower left corner of (2.2),
we only have

[au  u

—_— —u=u.

u  [oju
It only becomes the inverse of ([a]u)/u after we invert u.
Diagram (2.2) is obtained by taking homotopy groups of the fixed points of the

right half of the Tate diagram [6] of MUy, in the sense of Greenlees and May [6].
This is the diagram of Z/p-equivariant spectra

MUy, EZ[p A MUy,

(2.0 L |

—~—

F(EZ[p+, MUsz,,) — EZ[p N F(EZ/p+, MUzp)

where E7Z/p is the standard free contractible Z/p-equivariant space, and ~ denotes
the unreduced suspension. Taking fixed points, the upper right corner becomes the
geometric fixed points ®%/P MUy, /p» and the lower right corner is the Tate cohomol-

ogy J\/[/UZ\/p, while the lower left corner is the Borel cohomology.
Our main theorem for this section is the following. For p = 2, it was proven by
Strickland in [16].

Theorem 2.2. As an MU.,-algebra, (MUy,,). has the following generators:

U,
25) b 205> Lae @),
Aas a€(Z/p)”,
g, J=0
with the relations
(2.6) b((fi =1, b&)— =0 foreveryyj>2,
(2.7) b —al®) = ubl%),
(2.8) g0 =0,
(2.9) g — ¢ = Ugjy1-
(2.10) A =1
and
(2.11) Aa b(a) =1+kaqi whereaa™  =kop+1inZ
as well as
(2.12) Aaqi = o L.
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2886 P. HU

We will write

(2.13) Ua = by = ub?)
and

w'® +1 ifi=1
2.14 p(@) — pl) — ] i1 ’
(2.14) i %0 bg? if i > 2.

With this notation, relation (2.7) extends to all ¢,7 > 0, and u = uy = bOO in
particular. Also, note that relation (2.9) for j = 0 gives ¢gyu = 0. Hence, the
relation

(2.15) Aalla = A b01u: 1+ kagr)u=u

follows. In this sense, A, should be seen as an “approximate” inverse to bgf‘l) . As
will be made explicit in Lemma 2.5, relation (2.11) comes from a corresponding
relation in MU, [[u]]/[p]u.

There is a grading on (MUz,)«, with \b \ = |a | =2(i+j—1), |gj| =l¢j| =

2(j — 1), and |A\o| = 0. In particular, |¢1] = 0, and the Euler classes b(()o) = Uq

are the only elements with negative degree. It is straightforward to check that this
grading is consistent with the relations given in the theorem.
We also note Lemma 2.3.

Lemma 2.3. In R, we have that

modulo u.

Proof. Using bg?‘l) =a+ ng) and p = q¢1 — gou, we have in R
Aaby) = 1+ ko,

Aol + bO 9

Ao (o™ + a_1b0 9

u) =1+ kaq1,

u) =a '+ a tkaqi,

Aa(1+kap+a~ 1b02u) at+atkaqr,
Aa + kapAa + ofl)\abogu =a '+ a tkoq,

Ao+ kol — gou)da + a~  Aab S u

Ao = kadagou + a~ Aab S u

Tt a kaq,

Oéil + Oéilkaql - ka)\aqla
Ao = (karadz +a b u = o™t + Eala g1 — Aadr).

However, the right hand side is a~! by relation (2.12). O
We already have that b((y) = aga]) and g; = ¢; modulo u. These are all the
generators of R, so by Lemma 2.3, we do get

R/(u) = MU.,.

The proof of Theorem 2.2 is analogous to that of [16] for the case of p = 2. Tt
makes use of the following standard result of commutative algebra, a proof of which
was given in [16].
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2887

Proposition 2.4 ([16, Theorem 4]). Let R be a commutative ring, and x an element
of R. Suppose that R has bounded x-torsion, namely that there exists some N such

that
U Ann(d¥) = Ann(d™).
k>0
Then R is the pullback of the following square:
R R[d™Y]

|

Rl/i\ —_— Rg[d_l}.

Let R be the MU,-algebra defined by the generators and relations in Theo-
rem 2.2. We will show that R and R[u~!] are respectively isomorphic to the
upper right corner and the lower left corner of (2.2), in a compatible way, and that
u has bounded torsion in R.

We start by considering the completion of R at u. For any G(u) in MU,[[u]],
denote by G(u)|,>; the terms of G(u) where the power of u is at least j.

Lemma 2.5. There is a map of MU,-algebras
¢ : R — MU, [[u]]/([p]u),

given by
¢(u) =u,
qb(bgz-)) = Coeff (W—M) Z a; j+ku
k>0
6(q5) = '“‘>f = ik,
k>0
1+ kg a1 .
60 = falu) = T Sl el

Jj=0
which induces an isomorphism ¢ : R} — MU,[[u]]/([p]u).
Proof. We need to check that ¢, as described above, respects the relations in R.

For relation (2.6), we have

o)) = (U)JZ_\ZJ‘.

The numerator is u for j = 1, and 0 for j > 2, which gives (2.6). For relation (2.7),
we have

o(0%) —al?) =3 al), b — al?

k>0

_ () K
Zaziﬂc“

k>1

_ (o) l
=u E A i1

1>0

= P(u)d (0% 1,)-
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2888 P. HU

From the definition of ¢(g;), we immediately get ¢(go) = [pJu = 0, giving relation
(2.8). For relation (2.9), we have

&(q;) —¢; = _ et —¢;
E>0

k

k>1

§ l
=Uu Cjt141U
>0

= o(u)e(gj11)-

Relation (2.10) is immediate, since a&)'-u =1 for j = 0, and is 0 else. For

relation (2.11), note that in MU, [[u]], [kap + 1u = [a]([a]u), i.e.
ka j a™t j
D"l =3 e (lauy’

Jj=0 J=20

and
Salu)- @ cu = fo(u) - [au = [kop + 1u.

u
In MU, [[u]], u is a regular element, so

1 .
(216) fa(u) . @ — [kap+ ]U' — a(()’fjfxfi'l)uj

U U -
Jj=0

in MU, [[u]], and hence in MU, [[u]]/([p]u). The left hand side of this is ¢()\O¢)¢(b(()iy1)).
We have that

o + 1t = (o] ([p]) + t = ke[plu + u + higher terms,

where the higher terms either have at least ([p]u)? or both u and [p]u, and become
0 in MU, [[u]]/([p]u) when one reduces the power of u by one. Thus, the right hand
side of (2.16) is

ko (%) +1=koo(qn)+ 1.

Finally, for relation (2.12), note that ¢(\,) = fo(u) has constant term a~!, so

in MU, |[u])/([plu),
o)1) = fulu) - I = o1 I

u u
Hence, the map ¢ is well-defined.
Since MU, [[u]] is complete at u, ¢ induces a map of MU,-algebras

¢ 1 Ry = MU [[u]] — MU.[[u]/([p]u).

To show that ¢ is an isomorphism, we have a map ¢ : M U.l[u]] = RJ, induced
by the obvious map MU,[u] — R that sends u to u. Clearly, o) MU,[[u]] —
MU, [[u]]/([p]w) is the quotient map.

To show that QZ is onto, note that for any n > 0, we have by induction on n

n—1
() _ () K np(a)
bij = Z%Hk“ FUutb; iy
k=0
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The sequence {u"bg Jin

(2.17) b(a) Z a; ]+ku

k>0

} converges to 0 in R.,. Hence,

in R)}. So the same series in MU, [[u]] maps by ¥ to bz(»f;-).
Similarly, one can see by induction on n that
n—1
@i = Gi+nu" + Z cipru
k=0
The sequence {g;+,u™} converges to 0 in R/, so we have

(2.18) ¢ = ZciJrkuk

k>0

2889

in R)}. Hence, the series on the right hand side in MU, [[u]] maps by ¥ to . In

particular, for ¢ = 0,

QZ([PW) =qo=0.

Hence, ;Z factors through a map

¥ MU [[ul] /([plu) = R}

It remains to show that A, is in the image of zZ Since bgfl) becomes 0;"

becomes [pi in R}, relations (2.11) and (2.12) become

(2.19) DU
u u

and

(2.20) Ao - @ =at. @

u u
respectively in R/). Multiplying (2.19) by a~! gives
(2.21) U I Y 1) ()

u u
and multiplying (2.20) by k. gives
(2.22) /\aka@ = k—aofl@.

u u
Now subtract (2.22) from (2.21) gives
(2.23) Ao (a*@ - ka@) =a b

u u
Now
a_l& =a ta+uA(u)
u

for some A(u) € MU, [[u]]. Similarly,

ka% = kocp + UB(U)

for some B(u) € MU,[[u]]. Hence, (2.23) becomes
Ao (@ 'a+uA(u) — kap — uB(u)) = o',
Ao (1 +u(A(u) — B(u))) = o™t
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2890 P. HU

But 1+ u(A(u) — B(u)) is a unit in MU, [[u]], so we get that in R,
Ao = (1 +u(A(u) — B(u)))™t,

where the right hand side is in MU, [[u]]. Hence, this power series in MU, [[u]]/([p]u)
maps to Ay by . |

For inverting u, we have Lemma 2.6.
Lemma 2.6. There is a map of MU,-algebras
kiR — MU ul'|i>0a€ (Z/p)~]

(in the target, we again have u, = béa), u=uy), given by

J

(2.24) Alb) = u b =3 alf)

k=1

J
(2.25) K(g;) = =Y cjpu,
k=1

and
(2.26) K(Aa) = uu .

The map k induces an isomorphism

F: Ru™Y] — MU B, ult i >0,a € (Z/p)].

Proof. Note that for j = 0, we get from (2.24), x(b{*)) = b\, so the notation
makes sense.

For j =1, (2.25) gives x(q1) = 0, so the map is consistent with (2.12). For ¢ =0
and j = 1, we have

D) = — i =,
s0
Ii(/\ab((fél)) =1=1+kor(q1).
This gives that x is consistent with (2.11).
Relation (2.7) in R implies that in R[u™!],

B = u () — )

i,J+ ] 2]
which determines R(b%)) for all ¢ > 0,7 > 1. Namely, by induction on j, one sees
that if we replace the left hand side of (2.24) by bz(‘,(;‘)’ it holds as a relation in Rlu~1].
Hence, n(bgz)) = E(bgz)) must be as given by (2.24). By construction, relation (2.7)
is respected. It also immediately follows that /@(b(()g) = 1, consistent with the first
part of relation (2.6). For j > 2, ag j_; =1 for k= j — 1, and 0 else, so

A(b) = I — ag =it =0,
Thus, the second part of (2.6) is also preserved.
We have r(qp) = k(0) = 0. By relation (2.9), in Rlu™'],

Giv1 =u" (g — ;)
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2891

which determines x(gq;)) = %(g;) for all i. Indeed, by induction on ¢, one sees that
(2.25), with the left hand side replaced by just ¢;, holds in R[u~!], so x(g;) must
be as given by (2.25).

There is an evident map u : MU*[bga),ugl] — R[u~%], with ,u(bl(-a)) = bga),
puzt) = uzt = utA,. Clearly, Ku is the identity. By the versions of (2.24) and

(2.25) in Rlu™1, bgo;) and ¢; are in the image of u, so p is onto. Hence, i is the

inverse to R. O

It still remains to check that the element v has bounded torsion in R. We will
show that the ideal (g1) contains all u-power torsion elements in R.

Lemma 2.7. In R, we have

U Ann(u”) = Ann(u) = (q1).

k>0

Proof. The proof of this lemma is also similar to that of Strickland in [16], by
showing that u is a regular element of R/(q1). Note first that in R/(q1), )\ab((fl) =1

Fix k > 2. Let Ry be the MU, [u]-subalgebra of R/(¢q1) generated by bz(-z) and g;
for j <k, and A\, = (bgal))_l. On the other hand, consider

A = MU, g | (,0) # (0,1)].
For a € (Z/p)*,0<j <k—1,and (i,) # (0,1), consider the element in Ay,

k—j—1
= S ol

Define a map of MU, [u]-algebras
n: ARl(g)) T o€ (2/p) \ {1}] = R

given by n(bﬁ)) = bg k), n(gx) = qx, and n((héi“l))*l) = Ay. By induction, it is easy
to see that in R (and thus also in Ry),

k—j1
(2.27) b = b\ ub I+ Z a®,

which is the same formula that gives hl(:xj)

T}(h((fl)) = b(() 1), so 7 is consistent on (h(()?‘l))_l.

Similarly, consider the element in Ay

. Hence, n(hl(z)) = bz(.f;g)_j. In particular,

k—j—1
gj = qeufI + Z cj_Hul.
1=0
In R, one easily sees by induction that
k—j—1
(2.28) g =aquf 7+ Y e,
1=0
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i.e. the same formula that defines g;, which gives n(g;) = ¢;. Hence, 7 is onto. In
particular, 7(g1) = ¢1 = 0 in Rg, so we get a surjective map

(2.20) 0= Acl(hg)) )/ (91) = B
We claim that 7 is in fact an isomorphism. For its inverse, define

7 Ry, — A[(hS) 7/ (91)

by W(b(a)) = hg?, m(g;) = gj, and 7(A\) = (hé?‘l))*l. To check that 7 is well-defined,
note that the relations in Ry, are the relations for R listed in Theorem 2.2, with the
changes that the relation (2.11) becomes b((f‘l))\a = 1, the relation (2.12) becomes
trivial, and the additional relation ¢; = 0. By their definitions, we have that in the
target,
() (o) _ 7 ()
hij —a; ;= uh”H,
gj = ¢ = Ugj+1
same as in relations (2.7) and (2.9). Also, we have 7(¢1) = g1 = 0. Therefore T

is well-defined. Also, w(b(() ())) = u by this same formula, when we take bO = 0in
the target, so the notation is consistent. It is easy to check that the map 7 is the
inverse of 7, so (2.29) is an isomorphism.

The element v is clearly regular in Ay[(hq(u))~!]. Note that g(u) has a constant
term ¢; = p, which is not a zero divisor in MU,. A standard argument shows
that u is regular in Ag[(ho(w))~Y]/(g(u)). Namely, if uh(u) = 0 modulo g(u),
then uh(u) = g(u)k(u) for some k(u), but from the constant term of g(u), we
get that k(u) = wky(u) for some kq(u). Therefore, since u is regular, we have
h(u) = g(u)ki(u) is in the ideal (g(u)). Therefore, u is also regular in Rj. As
R/(q1) = colimy, Ry, u is regular in R/(q1).

In R, suppose u™y = 0 for some y, and n > 1. Passing to R/(q1), one sees that
u™ 1y = 0 in this quotient ring. Inductively, we get y = 0 in R/(q;). Hence, all
u-power torsion in R are generated by g¢;. |

Theorem 2.2 follows from the lemmas above.

Proof of Theorem 2.2. Tt is straightforward to check that the diagram of MU,-
algebras

R—" s MU, (b)"1 i > 0,0 € (Z/p)~]

(2.30) j ¢l
Usl[u])/([plu) —————— (MU [[u]]/[p)u)[u""]

commutes, with ¢ and ¢ as in Theorem 2.1. By Lemmas 2.5 and 2.6, the three cor-
ners other than R are R[u!], R}, and R/} [u~!]. By Lemma 2.7 and Proposition 2.4,
(2.30) is a pullback square. Hence, by Theorem 2.1, R = (MUz, )« |

Comments.

(1) In [16], for the case p = 2, instead of the generators ¢;, the generators ¢
were used, satisfying the relations

tz — bz = utiJrl.
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These generators are related to our ¢; by

i—1
1
(2.31) g —ti= b,
k=0

In particular, ¢y = t; + 1. To see this, by Proposition 6 of [16] and Lemma 2.5,
after completion at u, we have

i
qi = E A, ;U + ‘!

k+j>i
ti = Z G/k’juk—‘rj_i,
k>1,72>0
so in MU.[[u]}/[plu.
i—1 i—1
hdi_i 1
iot=3 [ 3wt =,
k=0 \j>i—k k=0

by Lemma 2.5.
On the other hand, for p = 2,

¢; = Coeff ,; ([2]u) = Z Ay s

r4+s=j

By Lemma 2.6 and Proposition 7 of [16], we have in (MUz/s).[u™"],

(2.32) ¢ —t; = Z bgljlu_l — Zci_ku_k,
=1 k=1

i—1 i—1 i—1 fi—k
(2.33) bz(cl,sz = Zbi(cl)“_(i_k) - (Z aik:l,kzu_l> .
k=0 k=0 k=0 \1=1

Clearly, the first terms on the right hand sides of (2.32) and (2.33) are the same.
The sums at the end of (2.32) and (2.33) are both

E ansu_l.

r+s+l=i,l>1

Hence, (2.32) and (2.33) are equal in (MUz2).[u""] as well, so they are equal in
(MUzj2)x.

(2) In diagram (2.2), there is a natural action by (Z/p)*: namely, it acts on the
upper right corner MU, [bga),ugl] by permuting the generators, and on the lower
row, it acts by substituting [a]u by u. Hence, it induces an action o of (Z/p)* on
the pullback (MUzp).

To give an example of how to describe this action, consider the case p = 5,

and the generator 2 of (Z/5)*. We will calculate Ug(b((fz). In the completion
MU.[[u])/([5]u), we have that by) is ([2]u)/u, so it should map to ([4]u)/[2]u by
09. What element of R becomes this in the completion? We have that bgfiu = Ug,
so applying oa, we get that

o2(by1)u2 = ua.
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This suggests that we should have 02( ) )\2 modulo ¢;. In the completion,
du  [6]u
p, — [_ Al
0,172 u  [2u

has constant term 12, whereas ([4]u)/([2]u) has constant term 2. This suggests that
we should have

(2.34) aa(bi]) = b5 As — 241
J/([5]u), this is

]
Mo 6, Blu_ [ G, Bl
u Ju u

In R = MU, [u

ﬁ
S

[2u
since in MU, [[u]]/([5]u), any series times ([5]u)/u is equal to its constant term times

([5]u)/u. On the other hand, in R[u~!], bé’z becomes usu~!, and oo takes this to

U4u2_1. However, here we have that bgg Ao —2¢1 becomes (U4u*1)(uu2_1)—0 = U4U2_1

as well, so the formula is correct here as well. Hence, (2.34) is the correct formula
in R= (MUzs5)«.

In general, we can find o, on the generators of R similarly. In particular, note
that Uafl(b(():xl)) = Ao. We also have that 0,(g;) = ¢;. For an example of the

last statement, we calculate o5(q;) directly in the case p = 3. In the completion
MU, [[u]]/([3]w), we have

_ Blu_, [6u
u [2]u
by o2. However, we also have that ¢ = (4 — 3)g1 = (2A2 — 3)g1 = 21 A2 — 3¢1. In

the completion, this is

LB [u Bl 6e [Wu[B

u  [2u u u  [2Ju u
_ (6w [Hu B
2w w 3 u
[y, Bl 8
2w <1+ u > 5 U
[Olu (16w N Blu
o (i 2)
o
[2]u

(3) In the presentation of (MUz,)«, we can replace the generator A, by A, =
Ao +aqy for any a € (MUgz)p).. Since Ann(un) = Ann(u) = (¢1) by Lemma 2.7,
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these are the only choices of A, that satisfy )\;‘ua = u. Every a € (MUyzp)+ has
a = @ modulo u for some @ € MU,. Then relation (2.11) becomes

MBS = 1+ (ko + ad)qy
and relation (2.12) becomes
)\;ql = (Oé_l +Ep)q1

All results in this section carry through with a1 replaced by (a™!) = a™! +ap
and k, replaced by k! = k, + a@, since a(a™1) = 1+k/,p in MU,. In particular,
if @ is an integer, in the completion, A, corresponds to

[1+ & plu
[aJu

Remark. Theorem 2.2 has concrete applications toward constructing interesting
complex-oriented Z/p-equivariant spectra. The sequence

(.TEQ,l‘g, .. )

from MU, is regular in (MUy,,). because it is regular in the associated graded
with respect to (u) (which comes from Borel cohomology), and there is no infinite
u~divisibility by [8,11]. So we have a spectrum E with

(2.35) E. =27 (MUzp)s/ (22,23, . ..).

What is interesting about F is the fact that ®%/PE, is a localization of E,, so
(2.36) Spec(®%/PE,)

is an open set in

(2.37) Spec(FEy).

What we claim is that (2.36) is not a closed subset of (2.37). Thus, the spectrum E
is not isotropically split, so it is a non-trivial example from the point of view of [2].

To see that (2.36) is not a Zariski closed subset of (2.37), we pull back to the
spectrum of a simpler ring. For p = 2, pull back to Spec(R) where

(238) R = E*/(biﬁj for i > 1, bl,j fOI'j > 2, bl,O =1+ 5’[1,),

where  denotes the Bott class. So R is obtained from Z[u] by making u(u + 2)
infinitely u-divisible (by keeping the ¢;s), while the b; ;s are assigned to their “ob-
vious” values in Tate cohomology (see for example [10]). Pulling back to Spec(R)
amounts to forming

(2.39) ®%’E, ®p, R = Zlu,u™].

Thus, the map from (2.38) to (2.39) is not onto, because u is not actually inverted
in R. This shows that the pullback of Spec(®%/?E,) to Spec(R) is not closed in
Spec(R). Therefore, Spec(®%/?E,) is not closed in Spec(E.).
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For p > 2, by Theorem 2.2, the story is analogous if we replace R by the quotient
of E, by the relations

AN g e
) =30 ()t gz
k=j
ple) — Z o ki i1
1,5 k y 124

k=1
bg%) =1+ Bu,
B =0, i>2.

3. THE G = Z/p" CASE

The goal of this section is to state and prove Theorem 3.1, which is our main
theorem for the G = Z/p™-case. The relations here are more complicated than
in the Z/p-case, so we begin with some notations. As in the previous section, we
denote by ¢; the coefficients of [plu € MU,[[u]]. For 1 < a < p™ —1, write a = vp',

with (y,p) = 1. Fort +1 <r < n, let a[;]l be the smallest positive representative

1

of v~1in Z/p"~t, i.e. it is the smallest positive integer such that in Z,

(3.1) a[_r]loz =pt 4+ klTpr
for some kg} > 0.

Next, we need to define certain polynomials that will be needed to state the
relations in (MUz/,n ). Consider a sequence of polynomial generators zj for & > 0.
For 1 <1 < p— 1, the series (z + [lJy)* has terms with x'y’ with i + j > k, so
there is a series

(32) > zk(@ +r [(y)* € MU [z | k> 0][[, y])-
k>0

We rewrite it as

(3.3) Z pgg(zk)xiyj,

§,5>0
where for ¢,j > 0, pgl])(zk) € MU, [z, | k> 0].
()

Similarly as in the Z/p-case, there will be elements A, and by | in (MUz/pn). for
each « = 1,...,p" — 1. There will also be elements q(,1, for each r =0,...,n — 1.
To state the relations involving A,, we need to define certain elements b(()al) as

s

follows. Let p" be the highest power of p less than or equal to «, so we can write
a=Ilp" +s=vpl forsome 1 <I<p—1,and0<s<p"—1. If s=0, then v=1
and r = ¢. In this case, define

plP") _ plip")

0,1 1

If s # 0, then r > t, and we define
(3.4) ﬁ = b(()(,?CI[t],l -1t ﬂ
For convenience, we also write b(l(,)(% =1 and bg?o) = 0 for all other i.
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Theorem 3.1. As an MU.-algebra, (MUzpn )« has the following generators:

UL, Up, ooy Upn—1,

B, ii>0, a=1,2,...p" -1,
(3.5) i = b
Aoy a=1,2...p"—1,
4,y r=0,...,n—1,7=>0.
For each a = 1,...,p" — 1, we write « = Ip" + s, where 1 <[ < p—1 and
0<s<p"—1.
The relations are as follows:

(3.6) b((flr) =1, b(()]?;) =0 for every j > 2,
!

(3.7) b = bl (biy) = wprby s,
(3.8) Qn-1],0 = 0, q[r),0 = Upr1 for every r < mn — 2,
(3.9) Q)5 — Cj = Upr (s j+1-

The relations involving Ay are:
(3.10) Apr=1 for0<r<n-1,
(3.11) Aabod =1+ kg 1 g
and
(3.12) Aad(t],1 " din—1], [n]q Q1)1

For simplicity, we will write

R )

(3.13) qit,r) = 4,1 Qir—1),1

forallt <r <n,so

(314) upt Q[t,r] = upr

by relations (3.9) and (3.8). (Here, take u,n = 0.) Thus, in Theorem 3.1, instead
of all the uy,...,uyn—1, there is actually only the generator u = u;. However, it is
more convenient to write all up- for r =0,...,n — 1.

Let R be the ring described in Theorem 3.1. Before proving the theorem, we
note some relations in R that follow. First, consider the case a = Ip", where

1 <1< p-1. Here, s =0, so the series (3.2), with z; = b(o) reduces to
D), i
Zb;(f)(x +r ) =2 +r lly= Z az(j)x Y.
k>0 3,7>0

Hence, we get that p(l (b(o)) (lj, and relation (3.7) becomes

") @ _ (
(3.15) bié—) —a; ;= upb fﬂ

For general s, the series (3.2), with z; = bé ), has

Coeff o Z b,(f)(x +r [k ] = Z b,(:)xk.

k>0 k>0
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Hence, pg%) = bz(s), and for j =0, (3.7) becomes

(3.16) b = b = uprb(?.

In particular, for i = 0,

(3.17) Ua — s = upr b
Write

a=1lp" +l_p "+ lph
Using induction on r — ¢, while combining (3.16) and (3.15), we get that

(3.18) b = b = 1)

modulo wuy:. If 4 =1, this is 1, and if 7 > 2, this is 0.
We also record the following lemmas.

Lemma 3.2. Let o = Ip" +5 = ', with 1 <1 <p—1,0<s<p —1, and
(v,p) = 1 as before. Then

(@) _
Uptby ;= Uq.

Proof. By induction on r —t. If r — ¢ = 0, then o = Ip”, and relation (3.15) gives

Ua = bo 0= b(a) ag%) = Tbo 1= Uptb(()(,l1)~

@)

But in this case, b( 1) = bg),y
As above, write
a = lrpr + lr—lpT71 +- ltpt
(i.e. in base p, o has r — ¢ digits, followed by ¢ zeros). For general a = [p” + s, with
s > 0, we have

upfbé(yl) = Upt (béal)%] “qr—1],1 +@)

= wyr by + b
But s = dp' for some (§,p) = 1, and also has one fewer non-zero digit than « in

base p, so by the induction hypothesis,

(s) _
Upfb0,1 = Ugs.-

So the statement follows by (3.17). O

Write « = pt = s+ 1Ip" for (y,p) =1, <1 <p—1,0<s<p" —1 as before. If
s # 0, it is straightforward to check that p"—! divides a[;]l — s[;]l Define the integer

-1 -1
Ynl T F[n]
pr—t .

Lemma 3.3. In the notation above, we have:
(1) Modulo uy:,

€ —

(2) Modulo uyt,
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(3) Fora=s+1p", s #0,
Ao = As + €aq[t,r]

modulo upr.

Proof. The first statement is again by induction on r —¢. If r — ¢t =0, a = Ip” for
1<i<p-1. By (3.15),

modulo upt.
For general a, if o = Ip” + s = ypt, and s = 4'pt, then v = Ip"~t + +'. By the
induction hypothesis, we have that béﬂ = v/ modulo u,:. By definition,
b(() 1) = b(()(,?Q[tLl Q-1 t @-
We have
byl =y (67) = by
)

modulo u,-. This is because p(() 1( is the constant term of

Sot O (W)

Upr

But by (3.18), bgs) = 1 modulo wuy:. Also, for each k > ¢, g1 = p modulo uk,
and so modulo u,: as well. So modulo u,

B =lp" Tty =

The second statement about A, is an argument similar to the Z/p case. For
short, write ™! = a[:lll and k, = k:([f] here. We have ya=! = 1 + kop"~!. From
relation (3.11) and the first statement of this lemma, we have that modulo u,,

Aabgﬁ)a_l =a '+ koo g,

Aoya b =

o +k oflq[t n)s
Aa(L4+kap™ ) =a ™ + koo™ g,
e

Aa -

The last congruence follows from relation (3.12) and the fact that g1 = p modulo
upe for all r > ¢, 50 [ = "t modulo wye.
For Statement (3), start with relation (3.11) and multiply both sides by A +
€aq(t,r)- Using the definition of b0 1, we have
Aa(@ + 051 q1e.) (s + €atitr) = (1 + Kadie.n)) s + €atie)-
The right hand side is
()\s + GQQ[t,r]) + kaQ[t,n] ()‘s + EQQ[t,r])

with an extra term

Eaqen)(As + €aqe,r]) = kalrn)(As + €alpe,r))qpe,r)-
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The left hand side is A, plus an extra term
Aa [ksq[r,n] + b(()(,ll) As + eab(S) + b(() feaq[t r] | d[t,r]-

To show that the two extra terms on the left and right are congruent modulo
Upr, SINCE Upt @1,y = Upr, it suffices to show that these two terms, without the factor
q[t,r] at their ends, are congruent modulo u,:. From the right hand side, we have
that modulo up:,

(3.19) koG (As + €aqer) = Eap™ " (s 4 €qp" ) = kqa T p" "
by Part (2) of this lemma.
For the left hand side, we have that modulo u,-, bgi) is congruent to the poly-

nomial
por (b)) = Coettyon | b5 (@ +p [Hupr) | = 1057
j>0

Inductively, b( = 1 modulo uy:, so bO i =l modulo uy,:. So on the left hand side,
modulo uyt,

() ()

Ao k‘SQ[r,n] +b071 As +€ab +b 1 €ad[t,r]
(3.20) .
=a! (kspnr +is7 4+ eaﬁ + leaprt> .

It is straightforward to check that the integers (3.20) and (3.19) match. O

From Lemma 3.2, it follows that
(3.21) AalUa = )\aﬁupt = (1 + kg"]q[tm])upt = Upt.

In this sense, ngl) and A\, are “approximate” inverses to each other.

Comment. The elements b((fl) are examples of certain sequences of elements bgg‘») in

R. For 1 < a < p™ — 1, again write a = yp* with (v, p) = 1. For all «, we have
(@) _ 3(a)
big =big-

The bgz) satisfy the divisibility conditions
(3.22) b — a7 = uyebS) .

Just like b((fl) , the formulas for these elements in terms of bl(.f);-) can be written down
inductively. In particular, if o = Ip” for some 1 <[ < p — 1, then
b(lp ) _ — b(lp )

IV

for all 4, 7, and (3.22) is just (3.15).

As an example, we write down b( 1) explicitly. By the above, bg 1) = 511) Suppose

that blsl) is defined for all s < a. If @« = Ip" + s for some 1 < < p—1 and
1 <s<p"—1, define

b = b + bl
One can check inductively that the d1v181b111ty relation (3.22) is satisfied.
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The proof of the theorem will be by induction on n. For n = 1, this is Theo-
rem 2.2 of the previous section. From now on, we will assume that Theorem 3.1, as
well as all claims in the rest of this section, holds for (M Uz, )«, forr =1,...,n—1.

For our main tool, we will use the pullback diagram

—_~—

MUZ/pn EZ/p/\MUZ/pn
(3.23) l

—_~—

F(EZ/p,,MUzpn) — EZ/p N F(EZ/py, MUz;pn)

which is the right half of the Tate diagram of [6].

Before calculating the three other corners of (3.23) and showing that it is also
a pullback after taking coefficients, we will fit it into a staircase diagram, which
is an approach similar to that used by Abram and Kriz [1] to describe (MUg).
for a general abelian group G. Although this diagram is bigger (the square (3.23)
is a part of it), it gives further understanding of (MUz/,n )+, and also has other
applications, being for example used in [9)].

Recall that for a finite abelian group G and a subgroup H, F[H] is the family
of subgroups K of G with H Z K. The classifying space EF has the property that
EFK isx for K € F, and () for K ¢ F. We also have the family F(H) of subgroups
that are contained in H. For G = Z/p", we have EF(Z/p") = EF|[Z/p""1], which
we write as EZ/p™~" (where Z/p™~" is the quotient group).

Proposition 3.4 is analogous to a special case of Theorem 2 of Abram-Kriz [1].
The diagram set-up, however, is different, and we will clarify the relationship be-
tween this diagram and the one from [1] in Section 4.

Proposition 3.4. A Z/p™-equivariant spectrum E is the pullback of the homotopy
groups of the fixed points of the following maps of Z/p™-equivariant spectra:

E,

Jo-
ln—1

En—l > Fn—l

l@%—l

(3.24) i F

|

ElL%lFl

|+

Ey —2= F
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where

E, = EF|Z/p’) A F(EF(Z/p") 4, E)
— EZ/p ' A F((EZ/p" ")+, E),

F, = EF[Z/pr+Y] A F(EF(Z/p") 1, E)
— EZ/p"" A F((EZ/p" ")+, E).

In our particular case with £ = MUz/,n,

En = EZ/p/\ MUZ/pn,

the geometric fixed points spectrum ®Z/P" MUy /pn> and the upper right corner
of (3.23).

Proof of Proposition 3.4. For 0 < r < n, let X,. be the pullback of the diagram
E,

l%
tn—1

Enfl — anl

(3.25) lml

.\L. — Fn_9
E, s F.
We claim that
(3.26) X, ~ EZ/pn-+1 A E

as a Z/p™-spectrum.
To show claim (3.26), we use induction on n — r. For r = n, we just have

e~

X,=E,=FEZ/pNE.
Suppose the claim holds for 7 + 1. Then X, is the pullback of the diagram

P

X, EZ/p»—" AN E

|

(327) Ei—/\pjfr A F(EZ/p"_r_l,E)
+

|

EZ/p=+\ A F(EZ/p", B) —> EZ/p"~" A F(EZ/p%", E)

where all maps are the obvious ones. Let the space M, be the fiber of the map

EZ?Z—)\'r:r-i-l - EZ/pn—r
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Consider the diagram

e

M, NE———— s FEZ/p" " " ANE———— s FEZ/p" " AE

| |

M, A F(EZp™™", E) —= EZL/pr—"+1 A F(EZ/p"~", B) — EZ/p"— A F(EZ/p""", E)

where the rows are cofiber sequences. However, recall that for 0 < i < n, we have

—~— SO ifi >
E7Z /pn—r Z/p ~ .
(BZ/p"™") {* ife <r
Thus, the Z/p'-fixed points of M, are S® if i = r, and * else. However, the Z/p‘-
fixed points of EZ/p}~" are SY for all i < r. Hence after smashing with M,,
F(EZ/p%"", E) becomes indistinguishable from F(S°, E) = E. In other words, the
left vertical map is an equivalence:

M, N E ~ M, A F(EZ/p""", E).

Also by induction, the right square of the diagram has the property that the two
maps into the lower right corner are jointly onto. Hence, it is a pullback. However,
it is also the same as diagram (3.27), so we get claim (3.26).

For r = 0, this gives that X, the pullback of the entire diagram, is just F
itself. O

We again specialize to the case E = MUgz/,n». For each r, let Y, be the pullback
of the partial diagram

E,
E1 —— Fl
EO I FO
Then
(3.28) Y, ~ F(EZ/p}™", MUz ).

Again, this is shown by induction on r. For f =0, Yy = Eo = F(EZ/p’y, MUz, ).
Suppose (3.28) holds for r — 1. Let N, be the cofiber of the map EZ/p’ "' —
EZ/p™~". Recall that for 0 <i < r, (EZ/p”_T)f/pl is SO if i < r and * if i > 7.
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Hence, (NT)Z/pi is SO only for ¢ = r, and * for all other i. Consider the diagram
(3.29)

F(N,, MUz, ) EZ/pm=r+1 A F(N,, MUy )

|

E, = EZZ?\V:TH NF(EZ/py™", MUz /pn)

|

F(EZ/py ", MUz pn) — F, = EZ/p*~"t A F(EZ/p™ ", MUz/pn)

F(EZ/pY™", MUz )

for all ¢ > r, where the vertical sides are fibration sequences. However, we have
that

(EZ%KT“)Z/”i = 8% for all i >r,

so on F(N,, MUyzp,n), smashing with EZ/pm~+! is indistinguishable from smash-
ing with S°. Hence, the top row of diagram (3.29) is an equivalence, giving that
the bottom square is a pullback. But the pullback of the bottom square is Y, by
definition, giving (3.28).

It is helpful to put everything together and write down a fuller version of dia-

gram (3.24):
MUy X, . X, | —>E,
|+
Y. 1 E, 1 LS F,1
L%l
(3.30) : R L
Y, E,—>F
Jo
By —"—

Diagram (3.23) is now just the topmost “wide” rectangle of (3.30).

Now we come to calculating the three other corners of (3.23) algebraically. For
the upper right corner, recall that in general, for a G-equivariant spectrum E, the
geometric fixed points ®¢F is (EFAE)Y, where F is the family of proper subgroups
of G. Hence, the upper right corner is the geometric fixed points @Z/p"MUZ/pn.
This can be calculated by methods similar to that of [10], using the methods of tom
Dieck [18].

Lemma 3.5. We have
(BZ]p A MUz ), = MU uz Y],

where 1 < a<p"—1,7>0, andua:b(()a).
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Proof. We begin with some notation. For 0 < o < p" — 1, we will denote the
irreducible complex representation of Z/p™, where the generator of Z/p™ acts by
e?™/P" by V,,. The complete Z/p™-universe is

J— oo
u- @ v
0<a<pn-—-1

and U%/P" = R is the trivial universe. For each a € (Z/p")*, let u, be the Euler
class of the irreducible representation V.

Recall also that the prespectrum D giving MUz/,n is as follows. For a finite-
dimensional representation V' of Z/p", let Gr)y (U © V') be the Grassmannian of
all |V|-dimensional complex representations of & & V' (note that this is the same
as Gry(U)), and let vy be the |V|-dimensional canonical bundle on it. The
U-prespectrum D is given by

DV = GT‘V|(U %) V)V‘V‘,
where the superscript denotes Thom space. The point of the geometric fixed point
spectrum is that it can be calculated on the prespectrum level. Namely,
(3.31) O/ MUy = colim= V" (Dy /7"

over all finite-dimensional representations V' C U.
Given a finite-dimensional representation

pt—1
V=P naVa,
a=0

the space (Dy)%/?" can be calculated by the methods of tom Dieck [18]. Namely,
it is
V| Griko, t™P ko A N Gr(ka, V)4 |
1<a<pn-—1
where the wedge sum is taken over all partitions |V| =Y k4, where 0 < o < p™ —1.

Meanwhile, V%/P" = R?" (the multiple of 2 arises from the fact that Vi = C). Also

note that
p"—1 p"—1

VI= 2 ma= 2 ka
a=0 a=0
SO
Z7‘/2/1)” (DV)Z/pn

=\/ =720 Grko, U o A N\ Grlka, V%))

1<a<pn—1

=\/ [ Z7RGr(ko, ™" Yo A N\ B2FT) G (R, Vi) 1)

1<a<pnr—1
Write my, = ko — N. Then this is
\/ (22(”072m‘*)Gr(no—Ema,Z/{Z/pn)%O*Ema A (/\ Ezm‘*Gr(?my + Mg,y Va°°)+)) ,
(mu)

where the wedge sum is over all (p™ — 1)-tuples of integers (mq4)1<a<pn—1-
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To obtain (3.31), we pass to the colimit where all n, go to infinity. This gives

\/ MU A N\ 2*eBU,

(ma) 1<a<pn—1

Let the element bga) correspond to the element b; in
MU*GT(L V;O) = MU*{bo, bl, .. }

(In particular, b’ = u4.) Then the coefficients of

MU A N\ BU.

1<a<pn—1

have generators bz(»a). For the wedge summand suspended by (2m,), we need to

attach the power ul'> for each . This gives the calculation of PL/P" MUz pn. O

The terms (Y}.). on the left hand side of diagram (3.30) can be computed by the
standard methods, namely the Borel cohomology spectral sequence. This spectral
sequence gives an associated graded object of (Y.), as

(MUzpr ) [lupr]]/[P" " Jutpr-
By comparison with the case r = 0, which is the lower left corner of (3.30), we see
that there should also be an extension w,-1q—1j,1 = u,=. We can describe (Y;.).
as follows. For 1 < o < p” —1, take a[_n]loz = pt kM = pt g (k:[an]p"_r)p’“. Instead
of A, choose alternative generator
on = )\oc + Mad[t,r]

in (MUz/pr)«, where

-1 -1
Ul ~ Y]

pr—t

In this presentation of (MUz/pr )+, relation (3.11) is now

meag =

(3.32) Aa (()al) =1+ k" g

and relation (3.12)) is now

(3.33) Xadt,r) = O it

Let (MUz/pr )« be aring with the same generators as (M Uz, ), and all relations
except qr—1],0 = 0 and relations (3.32), (3.33). Write uyr = qr—1],0 = qr—1],1Upr—1-
Complete (MUz/,r )« with respect to u,-. Write

nfr}upr

drn] =

) =

and qf¢] = qp¢,r)q[r,n)- Relation (3.32) becomes
(334) X(y EJ(,Xl) — 1 + kl[xn](J[tm]-
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(This arises from the fact that it needs to map to
[+ k& p"Juye
Upt

if we complete at u,:.) Relation (3.33) becomes

(335) )\aq[t,n] = a[:l]lq[t,n]'
We have
(3~36) (Y ) ((MUZ/;D ) )upr/[pnir]uprv ™~

where ~ are the relations (3.34), (3.35). Lemma 3.3 carries through modulo wu,r,
so we have A\, = oz[;ﬂl modulo uy:. We also have

(3.37) Aol = Uy

It is clear that (3.36), modulo wu,r, becomes (MUz/,-). as it should.
For 1 <o <p" -1, and x a multiple of u,-, write

Ugt+pr = Zbga)xi = uq + Z bga):ﬂi.
>0 i>1
For z = [nJu,r, this is a version of uq +p [n]u, that exists in ((MUz/pr)s)y,, - In
(Y;)«, the A, from the original presentation of (M Uz, ). can be written in terms
of Xa as
Uy F [
U

Ao = + 5aq[t,n] .

Here, the division is done in the obvious manner: we use XQ for the first term
Upt /Uq, and each higher term of the numerator is a multiple of u,:. There is a
correction term by an appropriate integer J, multiple of g ], so that A\, = oz[ ]
modulo u,:. This also gives

Aa = Xoc — Madqit,r]
modulo uy,-. We have

Uyt F [k

st = et

pt
(with the obvious way to divide). Note that the right hand side of this is congruent
to 1+ k‘a q(t,r) modulo uyr.

For simplicity of notation, we write

Using the induction hypothesis and carrying out an argument similar to that of
Lemma 2.5 of the previous section, we have

(3.38) (Sr)e = MU [[u]] /([p"]w).

By Greenlees and May [6], S, is the completion of (MUz/pn )+« at up,r. Also, by Kriz
and Lu [11], no element of (MUz/pn ). can be infinitely divisible by u. Hence, all
vertical maps (MUz/,n )« — S” on the left hand side of (3.30) are injective.
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On coefficients, diagram (3.23) becomes the following pullback diagram:

(MUzjpn ) ——= MU, 0]

(3.39) l laﬁ

Sh_1 —Y Sn—1 [u;rzlflL

where a, i are as in Lemma 3.5. The bottom horizontal map is localization.
Before describing the right vertical map ¢, we record Lemma 3.6.

Lemma 3.6. Forp" <a<p®"—1,p"ta, writea=s+1p" with1 <s<p"—1,
1<1<p™ " —1. Then us+rp[lluyr divides uy in S;.

Proof. Write ¢ = qp;,,1 in this proof. Note that u,- multiplied by a sufficiently high

power of ¢ is divisible by qg,v. Namely, let m be the smallest positive integer such

r—t m(r—t)

that m(r —t) > n —r. Since ¢ = p"~" modulo wu,:, we get ¢ =p modulo
upt, hence g™+ = p™("=Y g modulo u,-. This gives

quupr = pm(“t)qupr modulo uf,r.

However, p"("Du, = [p™"=]u,r = 0 modulo u?,.
Modulo uf,w,

st p [y = s + 08 ([Uupr) + 057 ([Huyr)? + - -
= u, + b\ (luyr)
=us+ (14 uS:\:bg‘ji)lupr

= us + lupr + (usupr-term)
=us(1+ lzq) + (usupr-term).

Write y = —lj\vsq. Then us(l—i—lj\:q) = us(1—y) divides u,r modulo uf,r. Namely,
again take a positive integer m such that m(r —t) > n — r. Then

us(L=p)Asq(L+y + - +y™) = upr (1= y™ ™) = upr —upry™ "

But u,-y™*! is a multiple of ¢*™'u,-, which is congruent to 0 modulo ufjr.
Write the quotient as
Z=XAq(l+y+--+y™).
Then zusuyr = (14 y+--- +y™)u2., so modulo uz,,
2(ustr[lupr) = 2 (us(1 — y) + usuyr-term) = uyr.
This is enough to make u,- divisible by s+ Flllupr in S;. Now we can do long
division in S, to divide u, by us—T—F[l]upr: start with usAs = u,r, and after the

first step, the remainder is a multiple of w,r. ]

Comment. If x is any representative of the quotient from Lemma 3.6, then x+yqj; )
is another representative of the quotient for any y. Examining the proof of the
lemma for r = n — 1, for a = s+ Ip"~! = yp', we see there is an z satisfying
z(us+p[lJupr) =z, with z congruent to an integer modulo u,:. This integer must
be a representative of v~ in Z/p"~t. Adjusting by an appropriate multiple of qt,n)»
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we get another representative x,, of the quotient, which is congruent to a[;L]l modulo
Upt .
Now consider the completion map

Gu : Sn1 = (Sn—1)y, = MU[ul]/[p"]u.

In both cases of «, ¢, (x,) satisfies
([a]w)pu(Ta) = Upt

and ¢, (z4) = a1 modulo u. The only element of MU, [[u]]/([p"|u) satisfying this

: [n]
1S

[a[:l}l]([a]u) P+ I pny
[@Ju [a]u

(where the quotient is taken in the obvious manner), so this must be ¢, (z). Also,
the completion map ¢, is injective as S, _; contains no element that is infinitely
divisible by u, so z,, is unique in S, _;.

Now we can describe the right vertical map ¢ of (3.39). Write o = Ip"~! + s,
with 0 <l <p-1and 0 < s < p* ! —1. In the case of G = Z/p, qb(bga)) is
calculated in Lemma 2.14 of [10]. Examining the proof of that lemma, one sees

that it carries through for G = Z/p™ as well. Namely, for the map going all the
way down the left hand side of (3.30)

(MUsjpn)s = F(E(Z/p") 4, MUz ). = MUL[[u]} /"],

b\ maps to Coeff,: (2 4 [oJu). So we have

(3.40) 3(0\*)) = Coeffys [ S0 (x +p [upn—1)" |,
k>0

as this is the only element of S,,_1 that maps to Coeff,:(z 4+ [a]u). In particular,
for 1 <a<p" ! -1, we get ¢(b (O‘)) = b(a) € (MUz/pn—1)x-

It remains to describe ¢ on the u?!, Wthh is forced by the map on u,. For
a=1p" ! where 1 <1 <p-—1, (3.40) gives

¢(ulpn71) = [l]’u,pn—l .

Write [~! to be the smallest positive representation of the inverse of [ in Z/p. Then
[ ([upn-1) = upn—1 in S,_1, so we must have
[ ([upn—)

— | .
(b(ual) - ’u’pnfl [”up

() j
ZG’OJ-H pr— 1).

7>0

n—1

(3.41)

For p"~! { a (with again a = p'), since upt is a factor of u,n-1, it also becomes
a unit once we invert uyn-1. If1 < $uq <p" ' —1, u, is also a unit in S,_1[u -1 ]

pn— 1

since it divides u,t. Since we have ¢(un) = uq, the inverse must map to ual in

Sn_1 [u;,},l], which is xq[tyn,l]u;},l for any choice of x in S, such that zu, = upyt.
Similarly, if p"~! < «, write o = [p" "' + 5,1 <5 < p"~! — 1. We have

¢(Uo¢) = usq:F[l]upn—l .
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By Lemma 3.6, this is a factor of u,:, so it is a unit in Sn,l[u;nl,l]. Then ¢(u;?!)
must map to ((us+p[Juyn—1)"1 in Sn,l[u;,},l].

We now show that the algebraic diagram (3.39) is also a pullback. Since it is the
coefficient of the right half of a Tate diagram, by a standard result in homological
algebra (see e.g. [10, Lemma 2.1]), it being a pullback is equivalent to the maps
¢ and ¢ being jointly onto as maps of abelian groups. Consider a monomial x =
"y f(upn-1), where m > 0 and f(upn-1) € Sy—1 is a series in upn—1. Then 2 can
be written as T + u;"”flf(upn_l), where T € Im(¢), and f(u,n—1) has only finitely
many terms:

—

m—

Flupn—1) = Z zlui)n,l,

1=0
where each z; is a polynomial in bz(»j-), qir],J and 5\\; (with 1 < o < p* 1t —1).

However, in Sn_l[u;nl_l], all u, are inverted, so Ao = ug'uyr,

_ !
bz(,aj) = up"'l (bEO;)—l —PE,])'—1(b/(:))>
and
G5 = Uy ()51 = ¢5) -

So inductively, all z; can be written as a polynomial in MU, [b
Im(¢). Thus, Im(c) + Im(¢) = Sn_l[u_nl,l].

In the staircase diagram (3.30), eveiy horizontal rectangle is the right half of
a Tate diagram, so a similar argument can be applied to show that it is also a
pullback on coefficients. So on coeflicients, (3.30) is a pullback as well.

The proof of Theorem 3.1 follows from the next lemmas. Let R be the ring given

in the theorem.

()

)

Jug 'l sou ™ f €

Lemma 3.7. We have

(3.42) Rlu.,".) 2= MU ug),

where1>0,1 <o <p" 1, and uy = b(()a).
Lemma 3.8. We have
(3.43) R,  =8S,..

-1

In particular, Lemma 3.8 also gives that
R;\pr = (Snfl);\ =5,

Lemma 3.9 gives that the element u,- has bounded torsion in R.

Lemma 3.9. Form=0,...,n—1,
U Ann(ug.) = Ann(upm) = (gpm.m)
k>0

in R.
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Given Lemmas 3.7 and 3.8, the upper right, lower left, and lower right corners
of diagram 3.9 become

Rlu ]

pnfl

|

R —— R} [u

_1]
Upn—1 Upn—1

pn—l
By Lemma 3.9 and Proposition 2.4, the pullback of this is R, which gives Theo-
rem 3.1.

The remainder of this section is devoted to the proofs of Lemmas 3.7, 3.8, and
3.9.

Proof of Lemma 3.7. By relations (3.8) and (3.9) of Theorem 3.1, as well as (3.21),
forall 1 <o < p" =1, uq is a factor of upn-1, s0 uq is invertible in Ru - L)

As before, we write o = Ip” 4+ s with 1 Slgp—l and 0 < s < p" — 1. We also
write a = yp® with (v, ) = 1. Define a map

kiR — MU ull

as follows:

(a
bij Uy pr kur,

-1
)\a — ua Upt ,
o u e — E cpulid
q["’]v] pr pr+ k pT

Recall that pgljl & are the polynomials defined before Theorem 3.1, whose variables

are bg,i) with m > 0.
For j = 0, we have
by = by,

so the notation is consistent. It is routine to check that  is consistent with rela-
tions (3.7), (3.8), (3.9), and (3.10) in R. For relation (3.6), note that for o = p”,
we have [ = 1 and s = 0, and b} = b
Hence, the series (3.2) becomes

Z W (z+py)" =z +py = Z a;jx'y’,

m>0 1,j 20
so the polynomials pgg) = a; ;. In particular, p(()?])- =1 for j =1, and 0 for all other
values of j. So

=1 for m = 1, and 0 for all other m.

bé{’;)Hu_luP p(()o()J—l—O:l.
For j > 2, we get

Hence, « is consistent with relation (3.6).
For relation (3.11), we claim that for a = ~t, (,p) = 1, we have

(3.44) (b<a>) = u .

p?
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Note that by (3.2), we have
) =) =,
for all s. This gives

(3.45) /@(b((fél)) = u;}ua - uz}lus

for all a. Hence, for the case a = Ip”, us = 0, so (3.44) holds.

For general «, we prove (3.44) by induction. Suppose that (3.44) holds for all
numbers less than . We write o = Ip” + s with s # 0. Note that the highest
power of p that divides o and s is the same, and we denote this power by pt. By

the induction hypothesis, n(b(()s’)) = u;tlus. Also, we have

k(qp,1) = ul}luprﬂ.
So we get

ﬁ = bgf?‘][t],l Q-1 t @

= (e — ) (up e ) -+ (up L upe) + £(65))
= u;tlua - u;tlus + u;tlus
= u;,,lua.

Hence, (3.44) is proven. This gives that
K(Aaby) = 1.

However, ﬁ(q[n,lm) = 0, so the right hand side of relation (3.11) also has
1+ kagpyn- qu-11 — L.
Thus, relation (3.11) is respected by k. Thus, x is well-defined, and induces a map

7 Rlusl L] = (MUgjpn ) b8, uyt).

pn—l (e

We have an obvious map

p MU ugt]) = Rluz L),

Namely,
n(v®) = by
and
pug ') = Aadit],1 " Gin—2],1 U;Llfp
It is straightforward to check that p is the inverse to %. ]

Proof of Lemma 3.8. We define a map

(b : R;\ 1 — Sn,1
similarly as the right vertical map ¢ of (3.39). We start by describing ¢ on the
elements b(o;-). Forl <a< p"_1 —1, let

i,
(@) ()
¢(bi,j ) = bi,j

Licensed to Wayne St Univ. Prepared on Sun Jul 6 11:28:02 EDT 2025 for download from IP 141.217.244.209.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2913

in (MUZ/pn—l)*. For p» ! <a<p?—1, writea=s+1p" ', where 1 <1 <p-—1
and 0 < s < p"~! — 1. Then

(Zk>0 (x +r [lup )k)\upmlIZj

oy

(a)y _ ,
¢(b; ;) = Coeff s

For the elements gy, ;, let
¢(qr1,5) = Q.4
for0<j<n-—2 and

([plupn—1) 11>
(upn—1)7 ‘

It remains to define ¢(\,). If a = Ip"~ 1, let

H(qn—1],;) =

1+ k;gl]p]upnfl B [04[;]1](“]“1)”*1)
[l]upn—l - [l]’u,pn—l

¢(>‘a) =

3

where the division is done in the obvious manner.
For p" 1 fa,if 1 <a < p" !, define

?(Aa) = Ao
For p»~ ! +1 < a < p" — 1, define
¢()\Ot) = J)a,

where z, is the element of S,,_1 defined in the comment after Lemma 3.6.

For all bl s Qirlg» Aipn—1 and A for 1 < a < pt” L _1, it is immediate to see that

7.5
their images under ¢ satisfy the necessary relations. For a > p"~! with p"~! t o,
To = 04[;]1 modulo wuyt, so it satisfies relation (3.12). For relation (3.11), we have

(ably) Jupe = Tatia =y,

SO zabg 1) 1 is in the annihilator of uy:. By construction, the annihilator of uyn-1 in

S,_1 is generated by An—1,n] = ([Plupn—1)/upn-1. In Sy 1 /(upn-1) = (MUz/pn—1)x,
the annihilator of u is (gj,n—1)) by the induction hypothesis, so by a standard
argument, the annihilator of u in S, 1 is (qj,n))- So

(3.46) xaﬁ = 2q[t.n)

for some z. Also, S,—1/(u) = MU,. Write Z € MU, as the class of z modulo w:.
Modulo wy:, (3.46) becomes

Hence Z = k([yn] since MU, is an integral domain. So in S,,_1,
Tabl) =1+ 2 = 1+ K gp 0.

This shows that ¢ is a consistent map.
For the inverse map, define

— A
1/) : (MUZ/pnfl)*u L — Rq/:

o pn—1
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which maps u,n-1 to upn-1. For the generators of (MUz/pn-1)s, 15 takes bgg‘-)

and gp,); to the same elements in R;\n,l, and 5\; to Ay. All relations in

J

(MUz/pn-1)x, " ~, as well as (3.34) and (3.35), are straightforward to check.

Clearly, b; ) for l1<a<pit-1 and qp,1,; for 0 <7 < mn — 2 are in the image
of . Slmﬂarly as in the Z/p-case, we have that

qn—1], ch+ku n—1

k>0

in Rﬁp , 0 1 of this series goes to qp,—1),;. In particular, Y ([plupn—1) = qn_1y,0 =

0. So we can replace the source of ) by S;,_1, and ¢ o 1 is the identity map.
Next, check that bl(.f;-) with p"~! < @ < p" — 1 is in the image of 1. We write

a = s+Ip" ! asusual, where 0 < s < p"~'—1,1 <[ < p—1. Then by relation (3.7)

of Theorem 3.1, we again have that in R}
o

(S0 (@ +r M), 125
nfl)j ’

bl(-f;) = Coeff

(up

so this series maps to bl(.f);-).

It only remains to check that A, is in the image of ¥ for p" ! < o < p™ — 1. If
a = Ip™~1, this is by an argument similar to that of the Z/p-case. For p"~! { a,

by Part (3) of Lemma 3.3, A, is congruent in R to an element a(()a) that is in the
image of 1 modulo u,n-1. So by relations (3.7) and (3.9), every generator of R, and
hence every element of R, is congruent modulo w,»-1 in R to an element that is in

the image of ¢. Write A\, = a(()a) + ega) uyn-1 for some 61 ) € R. Then e(a) = ga)

modulo wu,n-1 for some a( *) ¢ Im(v), and we can write

Ao = a(()a) + aga)upnfl + eéa)upnfl

for some eéa) € R. Continuing this process, we get that in the completion,

)\a = Z aéa)u;n,l,

j=0
where a'® are all in Im(w), so the corresponding series in S,_; map to A,. This
concludes the proof that 1 is onto. |

Note that by the induction hypothesis, we have that the vertical maps on the
left edge of diagram (3.39) give isomorphism

(Sn-1)u,. = S
for all 0 < r < n — 2. Thus, we also have that
R, =S,
It remains to show that the element u,»-1 has bounded torsion in R.
Proof of Lemma 3.9. We have

upwn Q[mﬂl] = 0.
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We will show that wu,m is regular in R/(q(m,n)). In R/(q}rn)), we have )\ab((fél) =1
for every a with p*! { a. Let Ry be the subrlng of R/(q[m,n)) generated by Aa,
b\ and g ; for j < k. We define for k > 2

Ak = MU*[bl('i)aq[s],kvAa | (176) 7& (O7ps)7a = Pm+1’Y][U]

We define two sets of polynomials g:(u), g,(u) in Ay for t =0,...,n—1 (which will
correspond respectively to u,: and gpy,1). Namely,

go(u) = u,
k-2
Ge(u) = (Qt(u))k_l(J[t],k + Z i1 (ge(w)),
1=0
ge+1(u) = Gy (u)ge(u).

Now for 1 < 8 < p™ — 1, B not a power of p, we have 8 = ~p’ for some ¢, and
v € (Z/p)* \ {1}. Define the element

ha(u) = (hy(u))*~ 1b(ﬁ)+2a01+1 (@, (u

These are the elements that correspond to b(()’ﬁ 1) . We do need to impose the relations

that for a = p’~, s > m + 1 and (v,p) =1,

(3.47) Aaho(u) =14+ kage(u) - gno1(u).
Let By be the quotient of Ay by the relations (3.47). Define a map of MU.,-
algebras

Mk : Br[(hp(u) '] = Ry,
given by nk(bﬁjﬁk)) bﬁﬁk), M (qik) = gk Me(w) = w. For p™*! { B, we have
m((hg(u))™1) = A\g = (bg{?)_l. For p™ |8, mi(A\g) = Ag. By induction on j
(similarly as in Lemma 2.7, we have for all j < k

k—j—1

o
Q). = Upe Qe k T+ Z Cjpitih
=0

in R. Now apply induction on t to get
Mk (Ge(w) = )15
M (ge(u)) = upe

and

k—1
(3.48) Tk <gt(U)’“_j que+ Y Cj+z(9t(u))l> = Q) 5-

1=0
For all (i,8) # (0,p®), we write 8 = s + Ip” as usual, with 0 < s < p" — 1, and
1 <1< p—1. Then we also have by induction on j < k

k—j—1
bg’ﬁ) —uk Jb(:@) + Z P’ ]+dud
d=0
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in R, where p§2+d

rem 3.1. Hence,

are polynomials defined in (3.3) before the statement of Theo-

k—j—1
_; 1
(3.49) e ((W))’“ VDS e (gs<u>>d> =),
d=0
By the above, 7y is onto. We define

g(u) =7, (u) -G (w).

Then . (g(u)) = i1+ q—1]1 = 0 in Ry, so we get a surjective map

(3.50) M = Bel(hp(w) ']/ (@(w) = Ri.

We can define a map

Tk : Ry, — By[(hs(w) ™'/ (g(w))
similarly as in Lemma 2.7. Namely, 73 takes qp ; to the left hand side of (3.48),

upt to g¢(u), and bgﬁ-) to the left hand side of (3.49). It is straightforward to show
that 7y is inverse to 7, so 1 is an isomorphism.

We will show that g,,(u) is regular in By[(hs(uw))~!]/(g(u)). The polynomial
gm(u) is regular in Ag[(hg(u))~']. The relation (3.47) does not affect this, so
gm(u) is regular in By[(hs(u))~!]. Note that g,,(u) is a polynomial in g, (u), with
the constant term p. Thus, gmt1(u) = G,,(w)gm(u) is a polynomial in g,,(u) with
no constant term. By induction, it is easy to see that for every ¢t > m, g,(u) is a
polynomial in g, (u), with the constant term p. Hence, 7, (v) = f(gm(u)), where
f(z) is a polynomial with the constant term p™~ ™, which is not a zero divisor
in MU,. Suppose that g, (u) is a zero-divisor modulo f(g.,(u)), then for some
polynomials k(u), m(u)

(3.51) gm (Wk(u) = f(gm(uw))m(u)

in Bi[(hg(u))~1]. By the constant term of f, we get that g, (u) divides p"~"m(u),
hence it divides m(u). Substituting m(u) = gm,(u)m(u) in (3.51) and canceling
gm(u), we get that k(u) is a multiple of g,,(u), so it is 0 in the quotient ring.
Therefore, u,m is regular in Ry for each k. As R/(qim,n)) = colimy Ry, we get
upm is regular in R/(qpm,n)). The statement of the lemma follows. O

n—m

We can now give explicit descriptions of the terms in the staircase diagram (3.30).

Proposition 3.10. We have

(352) (Er)* = r[up_rl—l}
and
(3.53) (Fr)e = Srlup'] = (Br)[uy']-

Note that for all 1 < g < p™ —1. p" 1 3, ug is also inverted in (3.52), since as we
showed above, ug divides u,r-1. Also, since S,_; is complete in u,-, the map ¢ :
R — S,_1 induces a map RQPT ~ S, — S;_1. The vertical maps (E,). — (Fr—1)«
are these maps with w,-—1 inverted.
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4. SPECIAL CALCULATIONS

In this section, we show that at the bottom of the staircase diagram (3.24), there
are in fact different algebraic characterizations of the terms Fy and E;. This allows
one to compare (3.24) with the staircase diagram for MUz, described in [1]. In
particular, for MUz/,2, the two staircase diagrams turn out to be actually the
same. However, this is not true for general MUyz/,». For the rest of this section,
we assume n > 2.

We begin by briefly recalling the staircase diagram of [1], where it was shown
that (M Uz pn )« is the pullback of the coefficients of the diagram of spectra

Cy

l%
tn—1

Cn—l - Dn—l

|

(4.1) =Dy

|

01L>D1

Jo

COLﬁODO

where
—

C, = F(EZ/pY"", EF[Z/p") A MUz )

and

e~ e~

D, = F(EZ/p}y "' EF[Z/p™t'| A F(EZ/p}™", EF[Z/p"] A MUz ).
From [1] and also [9], we have
(C)e = MU uzt [ 1< a <p" = 1,0 > 0)[[upe ]}/ [p" Ty

(where u, = b(()a) as usual) and

(Dr)s = (Cr)slup Dy,

It is easy to see that there is a map from (3.24) to (4.1). In general, this map
is not an isomorphism, except for Ey — Cy, Fy — Do, E1 — Cq, and E,, — C,.
For Ey and E,,, one immediately sees that the corresponding spectra in the two
staircase diagram are the same. We prove the cases of F; and Fj here, which
happen due to connectivity reasons.

Lemma 4.1. We have
(). = (((MTz7).00, /10"y ) [
> (MU g |1 <a<p—1]) /" Muy = (C)..

p

(4.2)
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Proof. 1t is easy to see that
(MUszyp)a[ur '] = MU.[uz*, b\

a77,

with 1 < a<p—1,i>0 (with ug = b, so the right hand side of (4.2) is
____ A
(4.3) (OITz) 1) /" Tup.
It is straightforward to see that on coefficients, the map of spectra F; — C is the
obvious map
. ____ A
() (@020, /" ) ") = ((BL0z7p)[) /0" Ty
P
We need to show that (4.4) is an isomorphism.
By Lemma 2.7, the annihilator of w; is generated by ¢ in (MUgz;p).. In
(MUz;p)«, we have u1q1 = u,, instead of 0, so uy is a regular element of (MUz/,)s,
so the map (MUyz),)s — (MUgz)p)«[uy'] is injective. It is straightforward to

check that for every m, the induced map (MUz/,)«/(uy') — (MUZ/p) [uq 1]/(u;”)

is injective, passing to an injective map on the Completlons ((MUZ/p)*)QP —

(MU, Uzyp)«lug 1])%. Now it is again straightforward to check that the preimage
of the ideal generated by [p"~!]u, is again ([p"~']u,, so we get that

(@1T2)203,) 1"y = (T )i D)3, ) /"y

is injective. This shows that (4.4) is injective.

To show that (4.4) is onto, we will show that every homogeneous series in (4.3)
can be rewritten with only a finite negative power of w1, putting it in the left hand
side of (4.2). Recall that in the grading on (MUz/,,)«, we have |b(a)| =2(i+75-1),
lgjl = lqio,;1 = 2(j — 1), and |[Ao| = 0. Hence, the only elements with negative
degree are u, and u, = go. For any element in (4.3), rewrite all occurrences of u,,

as bg?‘l) u1. So the element can be written as
—k(j
(4.5) ijul (J)ufo
Jj=0
n (4.3), where z; € (MUyz,,). /p)+ has non-negative degree. Assume without loss of
generality that k(j) > 0, then
—k(5) 4 . .
jjur | = | + 2K(5) - 24
is equal to the degree of the homogeneous series. Hence, j — k() is bounded below.
If j — k(j) > —N for some natural number N, by factoring out qu, we may
assume without loss of generality that j — k(j) > 0. In (MUz,).[u;"], we also
have q; = u; 'u,. Thus, (4.5) can be rewritten as
S g Dud k),
7>0
where j — k(j) > 0. In turn, rewrite this as

(46) Z xs,thu;tm

s,t>0
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where z,; € (MUy/,)« with non-negative degree. We will show that this can be
rewritten so that it exists in (((MUZ/p)*)Qp/[p”_l]up) il

Note that from [p" 'Ju, = 0, we get [p" 'lu, = 0 modulo u} in

A
((MUZ/p)*) /Ip" " u,. Dividing once by u1, we get p"~*¢; = 0 modulo u,q; and

P

A
hence also modulo u,,. In fact, p"~1¢; = u,y for some y in ((MUZ/p)*) /10" .
Up

Also, q1 = 0 modulo uq, so ¢? = pg; modulo u, in (MUz,p)«. Hence, we get

2n—2 _— n—1_n—1 _

q; =p" "¢ =0 modulo u,.
Hence,
(2n—2)m _
g " =0 modulo u.

From the above,

(2n—2)m

¢ = Yan—2)mu)’ + terms with v

y4 )

where y(2,—2)ym € (MUz/;,)«, and the higher terms are in

A
(O1Tz,)2) /o™ .
Thus, we get

lUs,tqfuZ = xs7ty(2n,2)mu;+Ls/(Q"_Q)J + terms with uff Ls/(2n=2)J+1,

____\A
Again, the higher terms are in ((MUZ/,,)*) /lp" ' u,. From this, one sees

ya

that (4.6) exists in (((MUz/p)*)Qp/[pnfl]uo [u;']. Hence, (4.4) is onto. O

For the “Tate” terms of the staircases, we also have that in general, (F,), 2%
(D,)«, except for the case r = 0. This is shown using connectivity, similarly as for

(E1)x.

Lemma 4.2. We have
(4.7) (Fo)s = (MU [[ua]]/[p"u)[uy '] = (MUL[[wr]]/[p"]ur) [ur )
Proof. On coefficients, the map Fy — Dy is just the completion map
(4.8) (MU [fua]l/[p"Jun)[ug '] = (MU [[ur])/[p" ) fug 1)

Similarly as in Lemma 4.1, it is straightforward to check that (4.8) is injective. To
show that it is onto, a generic homogeneous series from the right hand side is of
the form

A
[plu1 - (DO)*
A

[plus

> fiun)([plur)?,

Jj=0
where f;(u;1) is a Laurent series in w;. If the f;(u1) have no negative powers of
u1, this can clearly be summed, so without loss of generality, we can assume each
fj(u1) is in fact a polynomial in ul_l. Rearranging terms, the homogeneous series
can be written as

(4.9) 3wy (plun)',

s,t>0
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where z,; € MU, (and hence has non-negative degree). Again, the degree of each
non-zero term is |z ¢|+2s—2¢, which is bounded above, giving that ¢t — s is bounded

below. By factoring out some u; ¥, we can assume without loss of generality that
t—s>0.
We still have the element

@ =Y ciud = ([plur)/ur € MUL[[w]}/[p"un

with ¢; = p modulo u; in this ring, and gyu; = [p]u;. This allows us to rewrite (4.9)
as

(4.10) Z w5145 ([plur)' %,
s,t—s>0

By the same arguments as in Lemma 4.1, we still have that

q§2n72)m =0 modulo ([p]u)™
in (MU, [[u1]]/[p"]u1)[uy '] In fact, we have
0" = Yznaym([pua)™ + terms with ([plur)™ ",
where y(2,,—2ym € MU,, and the higher terms are in MU,[[u1]]/[p"|u1. From this,
we can sum (4.10) in (MU, [[u1]]/[p"]u1)[u; '], giving that (4.8) is onto. O

Now consider the case of MUyz,2. Here, we have shown that in the two five term
staircases, the terms in the positions of Ey, Fy, F1 and Fs all coincide. We have

(F). = (B[] = (MU g ()} /Pl ) [

and
A

(D1)s = ((C0):ly Digy, = (MU0 0 g}/ oLy ) [7])

Clearly, the last completion does nothing as [plu, = 0, so (F1). and (D;). also
coincide. This shows that for MUz,,2, diagram (3.24) coincides with that from [1].
However, this turns out to be false for general MUz,». Further explanation of the
relationship between the staircase diagram from this paper and from [1] is given
in [9].

Plup
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