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Abstract. This paper calculates the equivariant Lazard ring for primary

cyclic groups, in terms of explicit generators and defining relations. This

ring is known to coincide with the coefficient ring of the equivariant stable

complex cobordism spectrum, which I compute by the method of isotropy sep-

aration, using a “staircase diagram.” This calculation provides new tools for

constructing equivariant spectra.
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1. Introduction

Equivariant formal group laws for abelian compact Lie groups were introduced
by Cole, Greenlees and Kriz in [4, 5], as the structure universally present on the
rings of Z-graded coefficients of complex-oriented equivariant spectra. From the
beginning, it was conjectured by J. P. C. Greenlees that the stable equivariant
complex cobordism ring (MUG)∗ is the ring supporting the universal G-equivariant
formal group law. This conjecture was recently proved by Hanke and Wiemeler [7]
for G = Z/2, and then in general by Hausmann [8] using global homotopy theory,
and by different methods by Kriz and Lu [11]. The term “stable” signifies the
fact that this is the ring of homotopy groups of the equivariant complex cobordism
Thom spectrum, which, for G �= {e}, is known to represent not the actual complex
G-cobordism ring of manifolds, but a certain stabilization. For G = Z/2, the equi-
variant complex cobordism ring of manifolds is represented by a spectrum recently
constructed by J. Carlisle [3], which leads to an interesting extension of the concept
of equivariant formal group laws.

Equivariant formal group laws turn out to be a powerful tool for constructing
and investigating equivariant complex-oriented spectra, similarly as in the non-
equivariant case. This has become clear in the work of Strickland [17], and to

Received by the editors June 2, 2023, and, in revised form, April 13, 2024, and October 3,

2024.

2020 Mathematics Subject Classification. Primary 55N22, 55N91.

Key words and phrases. Equivariant complex cobordism, equivariant stable homotopy theory.

The author was supported by NSF grant 2301520.

c©2024 American Mathematical Society

2881

Licensed to Wayne St Univ. Prepared on Sun Jul  6 11:28:02 EDT 2025 for download from IP 141.217.244.209.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2882 P. HU

an even greater degree, in the recent paper [9]. However, the algebra is much
more complicated, as is the structure of the equivariant Lazard ring LG, i.e., the
equivariant cobordism ring (MUG)∗.

The coefficient ring (MUG)∗, in fact, has long been considered mysterious. The
first efforts at calculating it came during the 1990s in the works of Kriz [10] and
Sinha [15], with a generalization by Abram and Kriz [1], in the form of certain
pullback diagrams and their generalizations. For G = Z/2, a presentation in terms
of generators and relations was first obtained by Strickland [16]. While the ring is
not polynomial as in the non-equivariant case, it can be understood in terms of the
Euler class u of the non-trivial representation of Z/2. Essentially, there is a torsion
part which is the same as on the Borel cohomology of MUZ/2, and a non-torsion
part, which can be thought of as a coordinate neighborhood of an infinite sequence
of blow-ups of a polynomial ring, from a scheme-theoretical point of view. In [17]
and also especially in [9], it has become apparent that the algebraic structure of
LG = (MUG)∗ can be used to construct and investigate new equivariant spectra.
However, the constructions and computations of [9] were limited by the fact that
the appropriate presentation was still only known for G = Z/2.

The purpose of this paper is to give this presentation of (MUG)∗ for a general
primary cyclic group G = Z/(pn). The computation is qualitatively more difficult
than in [16], even in the case of G = Z/p, due to the fact that multiple Euler classes
are present. These Euler classes turn out to be multiples of each other, but not unit
multiples: a more delicate statement relating them to each other holds, involving
“carry-over” in p-adic multiplication. From this, one obtains that divisibility by
the different Euler classes is equivalent. The case of G = Z/p is an important
special case in our computation, and is treated separately in Section 2. The main
statement is Theorem 2.2.

The general case of G = Z/pn is again qualitatively more complex, and new topo-
logical calculations are required. This is treated in Section 3. The main statement
for this case is Theorem 3.1. The essential topological observation which describes a
certain “staircase-shaped” isotropy separation diagram is Proposition 3.4. Substan-
tial work is also needed to show how it applies to the case of complex cobordism,
which involves some complicated algebra, filling out most of the remainder of the
section. While similar “staircase” diagrams have occurred in the literature before
(e.g. [1], [9], [14]), I could not find a convenient reference for the present context,
so I state and prove what I need in Proposition 3.4.

In fact, the relationship between the different staircase diagrams from Section 3
of the present paper and from [1] is quite delicate, and leads to certain special
effects for G = Z/p2. This is described in detail in Section 4.

The main results of this paper are rather technical and require a substantial
amount of background and specialized notation. For this reason, it is not feasible
to state them in the Introduction, and I state them in their respective sections.

One feature of the presentation given in this paper is that it is more explicit
than the presentation given in [11], in the sense of giving explicit control over the
divisibility by Euler classes. This can be used to construct non-isotropically split
examples of complex-oriented Z/pn-equivariant spectra using spectral algebra. In
the case of n = 1, we discuss an explicit example in the Remark at the end of
Section 2. These spectra are non-trivial in the sense of [2]. No such examples, with
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2883

the exception of those coming directly from geometry or for p = 2 [9], were known
prior to the calculations done in the present paper.

I will give a few comments on the setting and notations here. In this paper,
we work with G-equivariant spectra, where G is a finite group, indexed over the
complete universe, as defined by Lewis-May-Steinberger [13]. For a G-equivariant
space (or another G-spectrum) X, and any virtual representation V of G (i.e.
elements of the representation ring RO(G)), such a spectrum E defines abelian
groups EV X and EV X. By the coefficients of E, we mean the groups En(∗) =
E−n(∗), where n ∈ Z, and ∗ is a point. Recall that E is a commutative associative
ring spectrum if we have maps E ∧E → E and S → E satisfying the usual axioms.
When E is a commutative associative ring spectrum, then E∗ = ⊕n∈ZEn(∗) forms
a graded commutative associative ring with unit.

The example we are interested in is the equivariant complex cobordism spec-
trum MUG [18]. Let U be the complete G-universe, i.e. the sum of infinitely many
copies of the regular unitary representation of G. For a finite-dimensional com-
plex representation V in U , let Gr(|V |,U ⊕ V ) be the space of all |V |-dimensional
complex vector subspaces of U ⊕ V . Let DV be the Thom space of the universal
G-equivariant |V |-dimensional complex bundle on Gr(|V |,U ⊕ V ). Then for V , W
finite-dimensional orthogonal subrepresentations of U , we have a canonical map

ΣWDV → DV+W .

The G-spaces {DV } form a U-prespectrum, and the Thom spectrum MUG is the
spectrification of {DV }. In this case, this means that

(MUG)V = colimW⊥V ΩWDV+W .

We refer to MUG as the equivariant complex cobordism spectrum. The explicit
presentation of the ring LG = (MUG)∗ for G = Z/(pn) is the subject of this paper.

2. The G = Z/p case

In this section, we consider the case where G = Z/p. For this case, our starting
point is the work of Kriz [10], who considered the Tate diagram (in the sense
of Greenlees and May [6]) for MUZ/p. Our method is very similar to that of
Strickland [16], who computed it in the case when p = 2.

Recall that the coefficient ring MU∗ of the non-equivariant complex cobordism
spectrum MU is the Lazard ring. We denote the universal formal group law on
MU∗ by F , and the formal n-series of a variable x by [n]Fx = [n]x. We will write
the universal formal group law as

F (x, y) = x+F y =
∑

i,j≥0

ai,jx
jyi,

where ai,j ∈ MU∗. In particular, ai,j = aj,i, a0,1 = a1,0 = 1, and a0,k = ak,0 = 0 for
all k �= 1. There are also other relations among the ai,j arising from the associativity
of F . Also, recall that the standard grading on MU∗ has |ai,j | = 2(i + j − 1), so
that if x and y are both given degree -2, then x+F y is also of degree -2.

For each α = 1, . . . , p − 1, we always use α−1 to denote the representative of
α−1 ∈ (Z/p)×, with 1 f α−1 f p− 1. Namely, α−1 is the smallest positive integer
such that

α · α−1 = 1 + kαp
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2884 P. HU

with kα g 0. We also write

x+F [α]y =
∑

i,j≥0

ai,jx
i([α]y)j =

∑

i,j≥0

a
(α)
i,j x

iyj .

It is easy to see that for every α, a
(α)
1,0 = 1, a

(α)
i,0 = 0 for every i �= 1, and that

|a
(α)
i,j | = 2(1− i− j). Also,

[α]y =
∑

j≥0

a
(α)
0,j y

j ,

so in particular, a
(α)
0,1 = α. We will also write

[p]u =
∑

j≥0

cju
j .

In particular, c0 = 0, c1 = p, and |cj | = 2(1− j).
For a power series G(x, y) in two variables, and i g 0, we denote the coefficient

of xi in G(x, y) as

CoeffxiG(x, y).

Clearly,

(2.1)
∑

i≥0

CoeffxiG(x, y) · zi = G(z, y).

The main result of [10] is the following.

Theorem 2.1 ([10, Theorem 1.1]). There is a pullback square of rings

(2.2)

(MUZ/p)∗

��

κ
�� MU∗[b

(α)
i , (b

(α)
0 )−1 | i g 0, α ∈ (Z/p)×]

φ

��

MU∗[[u]]/([p]u)
ι

�� (MU∗[[u]]/[p]u)[u
−1].

Here, the bottom map ι is localization, and

φ(b
(α)
i ) = Coeffxi(x+F [α]u) =

∑

j≥0

a
(α)
i,j u

j ,

φ((b
(1)
0 )−1) = u−1.

(2.3)

We will write b
(α)
0 = uα. Our b

(α)
i corresponds to the element b

(i)
α uα in the

original statement of Theorem 2.1 in [10]. The notation of (2.3) is consistent in
that

φ(uα) = [α]u,

so φ(b
(1)
0 ) = φ(u1) = u. Hence, we will also write u1 = u. In particular, in the

lower right corner of (2.2), we have

u = [α−1]([α]u) =
∑

j≥1

a
(α−1)
j,0 ([α]u)j ,

so there is a series with no negative powers of u

fα(u) =
∑

j≥0

a
(α−1)
j+1,0([α]u)

j
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2885

with fα(u) · [α]u = u, so (u−1fα(u)) · [α]u = 1 in the lower right corner of (2.2).
Hence, φ(u−1

α ) = ([α]u)−1 = u−1fα(u) exists in the target as claimed.
We will write

fα(u) =
u

[α]u
.

However, this notation is slightly misleading, since in the lower left corner of (2.2),
we only have

[α]u

u
·

u

[α]u
· u = u.

It only becomes the inverse of ([α]u)/u after we invert u.
Diagram (2.2) is obtained by taking homotopy groups of the fixed points of the

right half of the Tate diagram [6] of MUZ/p, in the sense of Greenlees and May [6].
This is the diagram of Z/p-equivariant spectra

(2.4)

MUZ/p

��

�� ẼZ/p ∧MUZ/p

��

F (EZ/p+,MUZ/p) �� ẼZ/p ∧ F (EZ/p+,MUZ/p)

where EZ/p is the standard free contractible Z/p-equivariant space, and ˜ denotes
the unreduced suspension. Taking fixed points, the upper right corner becomes the
geometric fixed points ΦZ/pMUZ/p, and the lower right corner is the Tate cohomol-

ogy M̂UZ/p, while the lower left corner is the Borel cohomology.
Our main theorem for this section is the following. For p = 2, it was proven by

Strickland in [16].

Theorem 2.2. As an MU∗-algebra, (MUZ/p)∗ has the following generators:

u,

b
(α)
i,j , i g 0, j g 1, α ∈ (Z/p)×,

λα, α ∈ (Z/p)×,

qj , j g 0

(2.5)

with the relations

b
(1)
0,1 = 1, b

(1)
0,j = 0 for every j g 2,(2.6)

b
(α)
i,j − a

(α)
i,j = ub

(α)
i,j+1,(2.7)

q0 = 0,(2.8)

qj − cj = uqj+1.(2.9)

λ1 = 1(2.10)

and

(2.11) λαb
(α)
0,1 = 1 + kαq1 where αα−1 = kαp+ 1 in Z

as well as

(2.12) λαq1 = α−1q1.
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2886 P. HU

We will write

(2.13) uα = b
(α)
0,0 = ub

(α)
0,1

and

(2.14) b
(α)
i = b

(α)
i,0 =

{
ub

(α)
i,1 + 1 if i = 1,

ub
(α)
i,1 if i g 2.

With this notation, relation (2.7) extends to all i, j g 0, and u = u1 = b
(1)
0,0 in

particular. Also, note that relation (2.9) for j = 0 gives q1u = 0. Hence, the
relation

(2.15) λαuα = λαb
(α)
0,1u = (1 + kαq1)u = u

follows. In this sense, λα should be seen as an “approximate” inverse to b
(α)
0,1 . As

will be made explicit in Lemma 2.5, relation (2.11) comes from a corresponding
relation in MU∗[[u]]/[p]u.

There is a grading on (MUZ/p)∗, with |b
(α)
i,j | = |a

(α)
i,j | = 2(i+ j − 1), |qj | = |cj | =

2(j − 1), and |λα| = 0. In particular, |q1| = 0, and the Euler classes b
(α)
0,0 = uα

are the only elements with negative degree. It is straightforward to check that this
grading is consistent with the relations given in the theorem.

We also note Lemma 2.3.

Lemma 2.3. In R, we have that

λα ≡ α−1

modulo u.

Proof. Using b
(α)
0,1 = α+ b

(α)
0,2u and p = q1 − q2u, we have in R

λαb
(α)
0,1 = 1 + kαq1,

λα(α+ b
(α)
0,2u) = 1 + kαq1,

λα(αα
−1 + α−1b

(α)
0,2u) = α−1 + α−1kαq1,

λα(1 + kαp+ α−1b
(α)
0,2u) = α−1 + α−1kαq1,

λα + kαpλα + α−1λαb
(α)
0,2u = α−1 + α−1kαq1,

λα + kα(q1 − q2u)λα + α−1λαb
(α)
0,2u = α−1 + α−1kαq1,

λα − kαλαq2u+ α−1λαb
(α)
0,2u = α−1 + α−1kαq1 − kαλαq1,

λα − (kαλαq2 + α−1λαb
(α)
0,2 )u = α−1 + kα(α

−1q1 − λαq1).

However, the right hand side is α−1 by relation (2.12). �

We already have that b
(α)
i,j ≡ a

(α)
i,j and qj ≡ cj modulo u. These are all the

generators of R, so by Lemma 2.3, we do get

R/(u) = MU∗.

The proof of Theorem 2.2 is analogous to that of [16] for the case of p = 2. It
makes use of the following standard result of commutative algebra, a proof of which
was given in [16].
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2887

Proposition 2.4 ([16, Theorem 4]). Let R be a commutative ring, and x an element
of R. Suppose that R has bounded x-torsion, namely that there exists some N such
that ⋃

k≥0

Ann(dk) = Ann(dN ).

Then R is the pullback of the following square:

R ��

��

R[d−1]

��

R∧
d

�� R∧
d [d

−1].

Let R be the MU∗-algebra defined by the generators and relations in Theo-
rem 2.2. We will show that R∧

u and R[u−1] are respectively isomorphic to the
upper right corner and the lower left corner of (2.2), in a compatible way, and that
u has bounded torsion in R.

We start by considering the completion of R at u. For any G(u) in MU∗[[u]],
denote by G(u)|u|≥j the terms of G(u) where the power of u is at least j.

Lemma 2.5. There is a map of MU∗-algebras

φ : R → MU∗[[u]]/([p]u),

given by

φ(u) = u,

φ(b
(α)
i,j ) = Coeffxi

(
(x+F [α]u)]u|≥j

uj

)
=

∑

k≥0

a
(α)
i,j+ku

k,

φ(qj) =
([p]u)|u|≥j

uj
=

∑

k≥0

cj+ku
k,

φ(λα) = fα(u) =
[1 + kαp]u

[α]u
=

∑

j≥0

a
(α−1)
0,j+1([α]u)

j

which induces an isomorphism φ̂ : R∧
u → MU∗[[u]]/([p]u).

Proof. We need to check that φ, as described above, respects the relations in R.
For relation (2.6), we have

φ(b
(1)
0,j) =

(u)|u|≥j

uj
.

The numerator is u for j = 1, and 0 for j g 2, which gives (2.6). For relation (2.7),
we have

φ(b
(α)
i,j )− a

(α)
i,j =

∑

k≥0

a
(α)
i,j+ku

k − a
(α)
i,j

=
∑

k≥1

a
(α)
i,j+ku

k

= u
∑

l≥0

a
(α)
i,j+l+1u

l

= φ(u)φ(b
(α)
i,j+1j).
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2888 P. HU

From the definition of φ(qj), we immediately get φ(q0) = [p]u = 0, giving relation
(2.8). For relation (2.9), we have

φ(qj)− cj =
∑

k≥0

cj+ku
k − cj

=
∑

k≥1

cj+ku
k

= u
∑

l≥0

cj+1+lu
l

= φ(u)φ(qj+1).

Relation (2.10) is immediate, since a
(1)
0,j+1 = 1 for j = 0, and is 0 else. For

relation (2.11), note that in MU∗[[u]], [kαp+ 1]u = [α−1]([α]u), i.e.
∑

j≥0

a
(kαp+1)
0,j uj =

∑

j≥0

a
(α−1)
0,j ([α]u)j ,

and

fα(u) ·
[α]u

u
· u = fα(u) · [α]u = [kαp+ 1]u.

In MU∗[[u]], u is a regular element, so

(2.16) fα(u) ·
[α]u

u
=

[kαp+ 1]u

u
=

∑

j≥0

a
(kαp+1)
0,j+1 uj

inMU∗[[u]], and hence inMU∗[[u]]/([p]u). The left hand side of this is φ(λα)φ(b
(α)
0,1 ).

We have that

[kαp+ 1]u = [kα]([p]u) +F u = kα[p]u+ u+ higher terms,

where the higher terms either have at least ([p]u)2 or both u and [p]u, and become
0 in MU∗[[u]]/([p]u) when one reduces the power of u by one. Thus, the right hand
side of (2.16) is

kα

(
[p]u

u

)
+ 1 = kαφ(q1) + 1.

Finally, for relation (2.12), note that φ(λα) = fα(u) has constant term α−1, so
in MU∗[[u]]/([p]u),

φ(λα)φ(q1) = fα(u) ·
[p]u

u
= α−1 ·

[p]u

u
.

Hence, the map φ is well-defined.
Since MU∗[[u]] is complete at u, φ induces a map of MU∗-algebras

φ̂ : R∧
u → MU∗[[u]] → MU∗[[u]/([p]u).

To show that φ̂ is an isomorphism, we have a map ψ̂ : MU∗[[u]] → R∧
u , induced

by the obvious map MU∗[u] → R that sends u to u. Clearly, φ̂ψ̂ : MU∗[[u]] →
MU∗[[u]]/([p]u) is the quotient map.

To show that ψ̂ is onto, note that for any n g 0, we have by induction on n

b
(α)
i,j =

n−1∑

k=0

a
(α)
i,j+ku

k + unb
(α)
i,j+n.
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THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2889

The sequence {unb
(α)
i,j+n} converges to 0 in R∧

u . Hence,

(2.17) b
(α)
i,j =

∑

k≥0

a
(α)
i,j+ku

k

in R∧
u . So the same series in MU∗[[u]] maps by ψ̂ to b

(α)
i,j .

Similarly, one can see by induction on n that

qi = qi+nu
n +

n−1∑

k=0

ci+ku
k.

The sequence {qi+nu
n} converges to 0 in R∧

u , so we have

(2.18) qi =
∑

k≥0

ci+ku
k

in R∧
u . Hence, the series on the right hand side in MU∗[[u]] maps by ψ̂ to qi. In

particular, for i = 0,

ψ̂([p]u) = q0 = 0.

Hence, ψ̂ factors through a map

ψ̂ : MU∗[[u]]/([p]u) → R∧
u .

It remains to show that λα is in the image of ψ̂. Since b
(α)
0,1 becomes [α]u

u and q1

becomes [p]u
u in R∧

u , relations (2.11) and (2.12) become

(2.19) λα ·
[α]u

u
= 1 + kα ·

[p]u

u
and

(2.20) λα ·
[p]u

u
= α−1 ·

[p]u

u

respectively in R∧
u . Multiplying (2.19) by α−1 gives

(2.21) λαα
−1 [α]u

u
= α−1 + kαα

−1 [p]u

u
,

and multiplying (2.20) by kα gives

(2.22) λαkα
[p]u

u
= kαα

−1 [p]u

u
.

Now subtract (2.22) from (2.21) gives

(2.23) λα

(
α−1 [α]u

u
− kα

[p]u

u

)
= α−1.

Now

α−1 [α]u

u
= α−1α+ uA(u)

for some A(u) ∈ MU∗[[u]]. Similarly,

kα
[p]u

u
= kαp+ uB(u)

for some B(u) ∈ MU∗[[u]]. Hence, (2.23) becomes

λα

(
α−1α+ uA(u)− kαp− uB(u)

)
= α−1,

λα (1 + u(A(u)−B(u))) = α−1.
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But 1 + u(A(u)−B(u)) is a unit in MU∗[[u]], so we get that in R∧
u ,

λα = α−1(1 + u(A(u)−B(u)))−1,

where the right hand side is inMU∗[[u]]. Hence, this power series inMU∗[[u]]/([p]u)

maps to λα by ψ̂. �

For inverting u, we have Lemma 2.6.

Lemma 2.6. There is a map of MU∗-algebras

κ : R → MU∗[b
(α)
i , u−1

α | i g 0, α ∈ (Z/p)×]

(in the target, we again have uα = b
(α)
0 , u = u1), given by

κ(b
(α)
i,j ) = u−jb

(α)
i −

j∑

k=1

a
(α)
i,j−ku

−k,(2.24)

κ(qj) = −

j∑

k=1

cj−ku
−k,(2.25)

and

(2.26) κ(λα) = uu−1
α .

The map κ induces an isomorphism

κ : R[u−1] → MU∗[b
(α)
i , u−1

α | i g 0, α ∈ (Z/p)×].

Proof. Note that for j = 0, we get from (2.24), κ(b
(α)
i ) = b

(α)
i , so the notation

makes sense.
For j = 1, (2.25) gives κ(q1) = 0, so the map is consistent with (2.12). For i = 0

and j = 1, we have

κ(b
(α)
0,1 ) = u−1b

(α)
0 − a

(α)
0,0u

−1 = u−1uα,

so

κ(λαb
(α)
0,1 ) = 1 = 1 + kακ(q1).

This gives that κ is consistent with (2.11).
Relation (2.7) in R implies that in R[u−1],

b
(α)
i,j+1 = u−1(b

(α)
i,j − a

(α)
i,j )

which determines κ(b
(α)
i,j ) for all i g 0, j g 1. Namely, by induction on j, one sees

that if we replace the left hand side of (2.24) by b
(α)
i,j , it holds as a relation in R[u−1].

Hence, κ(b
(α)
i,j ) = κ(b

(α)
i,j ) must be as given by (2.24). By construction, relation (2.7)

is respected. It also immediately follows that κ(b
(1)
0,1) = 1, consistent with the first

part of relation (2.6). For j g 2, a0,j−k = 1 for k = j − 1, and 0 else, so

κ(b
(1)
0,j) = u−jb

(1)
0 − a0,1u

−j+1 = 0.

Thus, the second part of (2.6) is also preserved.
We have κ(q0) = κ(0) = 0. By relation (2.9), in R[u−1],

qi+1 = u−1(qi − ci)
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which determines κ(qi)) = κ(qi) for all i. Indeed, by induction on i, one sees that
(2.25), with the left hand side replaced by just qi, holds in R[u−1], so κ(qi) must
be as given by (2.25).

There is an evident map μ : MU∗[b
(α)
i , u−1

α ] → R[u−1], with μ(b
(α)
i ) = b

(α)
i ,

μ(u−1
α ) = u−1

α = u−1λα. Clearly, κμ is the identity. By the versions of (2.24) and

(2.25) in R[u−1], b
(α)
i,j and qi are in the image of μ, so μ is onto. Hence, μ is the

inverse to κ. �

It still remains to check that the element u has bounded torsion in R. We will
show that the ideal (q1) contains all u-power torsion elements in R.

Lemma 2.7. In R, we have
⋃

k≥0

Ann(uk) = Ann(u) = (q1).

Proof. The proof of this lemma is also similar to that of Strickland in [16], by

showing that u is a regular element of R/(q1). Note first that in R/(q1), λαb
(α)
0,1 = 1.

Fix k g 2. Let Rk be the MU∗[u]-subalgebra of R/(q1) generated by b
(α)
i,j and qj

for j f k, and λα = (b
(α)
0,1 )

−1. On the other hand, consider

Ak = MU∗[u][b
(α)
i,k , qk | (i, α) �= (0, 1)].

For α ∈ (Z/p)×, 0 f j f k − 1, and (i, α) �= (0, 1), consider the element in Ak

h
(α)
i,j = b

(α)
i,k u

k−j +

k−j−1∑

l=0

a
(α)
i,j+lu

l.

Define a map of MU∗[u]-algebras

η : Ak[(h
(α)
0,1 )

−1 | α ∈ (Z/p)× \ {1}] → Rk

given by η(b
(α)
i,k ) = b

(α)
i,k , η(qk) = qk, and η((h

(α)
0,1 )

−1) = λα. By induction, it is easy

to see that in R (and thus also in Rk),

(2.27) b
(α)
i,j = b

(α)
i,k u

k−j +

k−j1∑

l=0

a
(α)
i,j+lu

l,

which is the same formula that gives h
(α)
i,j . Hence, η(h

(α)
i,j ) = b

(α)
i,k−j . In particular,

η(h
(α)
0,1 ) = b

(α)
0,1 , so η is consistent on (h

(α)
0,1 )

−1.
Similarly, consider the element in Ak

gj = qku
k−j +

k−j−1∑

l=0

cj+lu
l.

In R, one easily sees by induction that

(2.28) qj = qku
k−j +

k−j−1∑

l=0

cj+lu
l,
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i.e. the same formula that defines gj , which gives η(gj) = qj . Hence, η is onto. In
particular, η(g1) = q1 = 0 in Rk, so we get a surjective map

(2.29) η : Ak[(h
(α)
0,1 )

−1]/(g1) → Rk.

We claim that η is in fact an isomorphism. For its inverse, define

π : Rk → Ak[(h
(α)
0,1 )

−1]/(g1)

by π(b
(α)
i,j ) = h

(α)
i,j , π(qj) = gj , and π(λ) = (h

(α)
0,1 )

−1. To check that π is well-defined,
note that the relations in Rk are the relations for R listed in Theorem 2.2, with the

changes that the relation (2.11) becomes b
(α)
0,1λα = 1, the relation (2.12) becomes

trivial, and the additional relation q1 = 0. By their definitions, we have that in the
target,

h
(α)
i,j − a

(α)
i,j = uh

(α)
i,j+1,

gj − cj = ugj+1

same as in relations (2.7) and (2.9). Also, we have π(q1) = g1 = 0. Therefore, π

is well-defined. Also, π(b
(1)
0,0) = u by this same formula, when we take b

(1)
0,k = 0 in

the target, so the notation is consistent. It is easy to check that the map π is the
inverse of η, so (2.29) is an isomorphism.

The element u is clearly regular in Ak[(hα(u))
−1]. Note that g(u) has a constant

term c1 = p, which is not a zero divisor in MU∗. A standard argument shows
that u is regular in Ak[(hα(u))

−1]/(g(u)). Namely, if uh(u) = 0 modulo g(u),
then uh(u) = g(u)k(u) for some k(u), but from the constant term of g(u), we
get that k(u) = uk1(u) for some k1(u). Therefore, since u is regular, we have
h(u) = g(u)k1(u) is in the ideal (g(u)). Therefore, u is also regular in Rk. As
R/(q1) = colimk Rk, u is regular in R/(q1).

In R, suppose uny = 0 for some y, and n g 1. Passing to R/(q1), one sees that
un−1y = 0 in this quotient ring. Inductively, we get y = 0 in R/(q1). Hence, all
u-power torsion in R are generated by q1. �

Theorem 2.2 follows from the lemmas above.

Proof of Theorem 2.2. It is straightforward to check that the diagram of MU∗-
algebras

(2.30)

R

φ

��

κ
�� MU∗[b

(α)
i , (b

(α)
0 )−1 | i g 0, α ∈ (Z/p)×]

φ

��

MU∗[[u]]/([p]u)
ι

�� (MU∗[[u]]/[p]u)[u
−1]

commutes, with φ and ι as in Theorem 2.1. By Lemmas 2.5 and 2.6, the three cor-
ners other than R are R[u−1], R∧

u , and R∧
u [u

−1]. By Lemma 2.7 and Proposition 2.4,
(2.30) is a pullback square. Hence, by Theorem 2.1, R ∼= (MUZ/p)∗. �

Comments.

(1) In [16], for the case p = 2, instead of the generators qi, the generators ti
were used, satisfying the relations

ti − bi = uti+1.
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These generators are related to our qi by

(2.31) qi − ti =

i−1∑

k=0

b
(1)
k,i−k.

In particular, q1 = t1 + 1. To see this, by Proposition 6 of [16] and Lemma 2.5,
after completion at u, we have

qi =
∑

k+j≥i

ak,ju
k+j−i,

ti =
∑

k≥i,j≥0

ak,ju
k+j−i,

so in MU∗[[u]]/[p]u,

qi − ti =
i−1∑

k=0

⎛
¿ ∑

j≥i−k

ak,ju
k+j−i

À
⎠ =

i−1∑

k=0

b
(1)
k,i−k

by Lemma 2.5.
On the other hand, for p = 2,

cj = Coeffuj ([2]u) =
∑

r+s=j

ar,s.

By Lemma 2.6 and Proposition 7 of [16], we have in (MUZ/2)∗[u
−1],

(2.32) qi − ti =
i∑

l=1

b
(1)
i−lu

−l −
i∑

k=1

ci−ku
−k,

(2.33)
i−1∑

k=0

b
(1)
k,i−k =

i−1∑

k=0

b
(1)
k u−(i−k) −

i−1∑

k=0

(
i−k∑

l=1

ai−k−l,ku
−l

)
.

Clearly, the first terms on the right hand sides of (2.32) and (2.33) are the same.
The sums at the end of (2.32) and (2.33) are both

∑

r+s+l=i,l≥1

ar,su
−l.

Hence, (2.32) and (2.33) are equal in (MUZ/2)∗[u
−1] as well, so they are equal in

(MUZ/2)∗.

(2) In diagram (2.2), there is a natural action by (Z/p)×: namely, it acts on the

upper right corner MU∗[b
(α)
i , u−1

α ] by permuting the generators, and on the lower
row, it acts by substituting [α]u by u. Hence, it induces an action σ of (Z/p)× on
the pullback (MUZ/p)∗.

To give an example of how to describe this action, consider the case p = 5,

and the generator 2 of (Z/5)×. We will calculate σ2(b
(2)
0,1). In the completion

MU∗[[u]]/([5]u), we have that b
(2)
0,1 is ([2]u)/u, so it should map to ([4]u)/[2]u by

σ2. What element of R becomes this in the completion? We have that b
(2)
0,1u = u2,

so applying σ2, we get that

σ2(b
(2)
0,1)u2 = u4.
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This suggests that we should have σ2(b
(2)
0,1) = b

(4)
0,1λ2 modulo q1. In the completion,

b
(4)
0,1λ2 =

[4]u

u
·
[6]u

[2]u

has constant term 12, whereas ([4]u)/([2]u) has constant term 2. This suggests that
we should have

(2.34) σ2(b
(2)
0,1) = b

(4)
0,1λ2 − 2q1.

In R∧
u = MU∗[[u]]/([5]u), this is

[4]u

u
·
[6]u

[2]u
− 2 ·

[5]u

u
=

[4]u

[2]u
·
[6]u

u
− 2 ·

[5]u

u

=
[4]u

[2]u

(
1 +

[5]u

u

)
− 2 ·

[5]u

u

=
[4]u

[2]u
+

[4]u

[2]u
·
[5]u

u
− 2 ·

[5]u

u

=
[4]u

[2]u

since inMU∗[[u]]/([5]u), any series times ([5]u)/u is equal to its constant term times

([5]u)/u. On the other hand, in R[u−1], b
(2)
0,1 becomes u2u

−1, and σ2 takes this to

u4u
−1
2 . However, here we have that b

(4)
0,1λ2−2q1 becomes (u4u

−1)(uu−1
2 )−0 = u4u

−1
2

as well, so the formula is correct here as well. Hence, (2.34) is the correct formula
in R = (MUZ/5)∗.

In general, we can find σα on the generators of R similarly. In particular, note

that σα−1(b
(α
0,1)) = λα. We also have that σα(qj) = qj . For an example of the

last statement, we calculate σ2(q1) directly in the case p = 3. In the completion
MU∗[[u]]/([3]u), we have

q1 =
[3]u

u
�→

[6]u

[2]u

by σ2. However, we also have that q1 = (4− 3)q1 = (2λ2 − 3)q1 = 2q1λ2 − 3q1. In
the completion, this is

2
[3]u

u
·
[4]u

[2]u
− 3

[3]u

u
=

[6]u

u
·
[4]u

[2]u
− 3

[3]u

u

=
[6]u

[2]u
·
[4]u

u
− 3

[3]u

u

=
[6]u

[2]u

(
1 +

[3]u

u

)
− 3

[3]u

u

=
[6]u

[2]u
+

(
[6]u

[2]u
− 3

)
[3]u

u

=
[6]u

[2]u
.

(3) In the presentation of (MUZ/p)∗, we can replace the generator λα by λ′
α =

λα + aq1 for any a ∈ (MUZ/p)∗. Since Ann(uα) = Ann(u) = (q1) by Lemma 2.7,
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these are the only choices of λ′
α that satisfy λ′

α|uα = u. Every a ∈ (MUZ/p)∗ has

a ≡ a modulo u for some a ∈ MU∗. Then relation (2.11) becomes

λ′
αb

(α)
0,1 = 1 + (kα + αa)q1

and relation (2.12) becomes

λ′
αq1 = (α−1 + ap)q1.

All results in this section carry through with α−1 replaced by (α−1)′ = α−1 + ap
and kα replaced by k−1

α = kα+αa, since α(α−1)′ = 1+ k′αp in MU∗. In particular,
if a is an integer, in the completion, λα corresponds to

[1 + k′αp]u

[α]u
.

Remark. Theorem 2.2 has concrete applications toward constructing interesting
complex-oriented Z/p-equivariant spectra. The sequence

(x2, x3, . . .)

from MU∗ is regular in (MUZ/p)∗ because it is regular in the associated graded
with respect to (u) (which comes from Borel cohomology), and there is no infinite
u-divisibility by [8, 11]. So we have a spectrum E with

(2.35) E∗ = x−1
1 (MUZ/p)∗/(x2, x3, . . .).

What is interesting about E is the fact that ΦZ/pE∗ is a localization of E∗, so

(2.36) Spec(ΦZ/pE∗)

is an open set in

(2.37) Spec(E∗).

What we claim is that (2.36) is not a closed subset of (2.37). Thus, the spectrum E
is not isotropically split, so it is a non-trivial example from the point of view of [2].

To see that (2.36) is not a Zariski closed subset of (2.37), we pull back to the
spectrum of a simpler ring. For p = 2, pull back to Spec(R) where

(2.38) R = E∗/(bi,j for i > 1, b1,j for j g 2, b1,0 = 1 + ³u),

where ³ denotes the Bott class. So R is obtained from Z[u] by making u(u + 2)
infinitely u-divisible (by keeping the qjs), while the bi,js are assigned to their “ob-
vious” values in Tate cohomology (see for example [10]). Pulling back to Spec(R)
amounts to forming

(2.39) ΦZ/2E∗ ⊗E∗
R = Z[u, u−1].

Thus, the map from (2.38) to (2.39) is not onto, because u is not actually inverted
in R. This shows that the pullback of Spec(ΦZ/2E∗) to Spec(R) is not closed in
Spec(R). Therefore, Spec(ΦZ/2E∗) is not closed in Spec(E∗).
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For p > 2, by Theorem 2.2, the story is analogous if we replace R by the quotient
of E∗ by the relations

b
(α)
0,j =

α∑

k=j

(
α

k

)
³k−1uk−j , j g 1,

b
(α)
1,j =

α∑

k=i

(
α

k

)
³kuk−j , j g 1,

b
(α)
1,0 = 1 + ³u,

b
(α)
i,j = 0, i g 2.

3. The G = Z/pn case

The goal of this section is to state and prove Theorem 3.1, which is our main
theorem for the G = Z/pn-case. The relations here are more complicated than
in the Z/p-case, so we begin with some notations. As in the previous section, we
denote by cj the coefficients of [p]u ∈ MU∗[[u]]. For 1 f α f pn− 1, write α = ´pt,

with (´, p) = 1. For t + 1 f r f n, let α−1
[r] be the smallest positive representative

of ´−1 in Z/pr−t, i.e. it is the smallest positive integer such that in Z,

(3.1) α−1
[r] α = pt + k[r]α pr

for some k
[r]
α g 0.

Next, we need to define certain polynomials that will be needed to state the
relations in (MUZ/pn)∗. Consider a sequence of polynomial generators zk for k g 0.

For 1 f l f p − 1, the series (x +F [l]y)k has terms with xiyj with i + j g k, so
there is a series

(3.2)
∑

k≥0

zk(x+F [l]y)k ∈ MU∗[zk | k g 0][[x, y]].

We rewrite it as

(3.3)
∑

i,j≥0

p
(l)
i,j(zk)x

iyj ,

where for i, j g 0, p
(l)
i,j(zk) ∈ MU∗[zk | k g 0].

Similarly as in the Z/p-case, there will be elements λα and b
(α)
0,1 in (MUZ/pn)∗ for

each α = 1, . . . , pn − 1. There will also be elements q[r],1 for each r = 0, . . . , n− 1.

To state the relations involving λα, we need to define certain elements b
(α)
0,1 as

follows. Let pr be the highest power of p less than or equal to α, so we can write
α = lpr + s = ´pt for some 1 f l f p− 1, and 0 f s f pr − 1. If s = 0, then ´ = l
and r = t. In this case, define

b
(lpr)
0,1 = b

(lpr)
0,1 .

If s �= 0, then r > t, and we define

(3.4) b
(α)
0,1 = b

(α)
0,1 q[t],1 · · · q[r−1],1 + b

(s)
0,1.

For convenience, we also write b
(0)
1,0 = 1 and b

(0)
i,0 = 0 for all other i.
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Theorem 3.1. As an MU∗-algebra, (MUZ/pn)∗ has the following generators:

u1, up, . . . , upn−1 ,

b
(α)
i,j , i, i g 0, α = 1, 2, . . . , pn − 1,

λα, α = 1, 2, . . . , pn − 1,

q[r],j , r = 0, . . . , n− 1, j g 0.

(3.5)

For each α = 1, . . . , pn − 1, we write α = lpr + s, where 1 f l f p − 1 and
0 f s f pr − 1.

The relations are as follows:

b
(pr)
0,1 = 1, b

(pr)
0,j = 0 for every j g 2,(3.6)

b
(α)
i,j − p

(l)
i,j(b

(s)
k,0) = uprb

(α)
i,j+1,(3.7)

q[n−1],0 = 0, q[r],0 = upr+1 for every r f n− 2,(3.8)

q[r],j − cj = uprq[r],j+1.(3.9)

The relations involving λα are:

λpr = 1 for 0 f r f n− 1,(3.10)

λαb
(α)
0,1 = 1 + k[n]α q[t],1 · · · q[n−1],1(3.11)

and

(3.12) λαq[t],1 · · · q[n−1],1 = α−1
[n]q[t],1 · · · q[n−1],1.

For simplicity, we will write

uα = b
(α)
0,0 , b

(α)
i = b

(α)
i,0 ,

(3.13) q[t,r] = q[t],1 · · · q[r−1],1

for all t < r f n, so

(3.14) upt q[t,r] = upr

by relations (3.9) and (3.8). (Here, take upn = 0.) Thus, in Theorem 3.1, instead
of all the u1, . . . , upn−1 , there is actually only the generator u = u1. However, it is
more convenient to write all upr for r = 0, . . . , n− 1.

Let R be the ring described in Theorem 3.1. Before proving the theorem, we
note some relations in R that follow. First, consider the case α = lpr, where

1 f l f p− 1. Here, s = 0, so the series (3.2), with zk = b
(0)
k , reduces to

∑

k≥0

b
(0)
k (x+F [l]y)k = x+F [l]y =

∑

i,j≥0

a
(l)
i,jx

iyj .

Hence, we get that p
(l)
i,j(b

(0)
k ) = a

(l)
i,j , and relation (3.7) becomes

(3.15) b
(lpr)
i,j − a

(l)
i,j = uprb

(lpr)
i,j+1.

For general s, the series (3.2), with zk = b
(s)
k , has

Coeffy0

⎛
¿∑

k≥0

b
(s)
k (x+F [l]y)k

À
⎠ =

∑

k≥0

b
(s)
k xk.
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Hence, p
(α)
i,0 = b

(s)
i , and for j = 0, (3.7) becomes

(3.16) b
(α)
i − b

(s)
i = uprb

(α)
i,1 .

In particular, for i = 0,

(3.17) uα − us = uprb
(α)
0,1 .

Write

α = lrp
r + lr−1p

r−1 + · · ·+ ltp
t.

Using induction on r − t, while combining (3.16) and (3.15), we get that

(3.18) b
(α)
i ≡ b

(ltp
t)

i ≡ a
(lt)
i,0

modulo upt . If i = 1, this is 1, and if i g 2, this is 0.
We also record the following lemmas.

Lemma 3.2. Let α = lpr + s = ´pt, with 1 f l f p − 1, 0 f s f pr − 1, and
(´, p) = 1 as before. Then

uptb
(α)
0,1 = uα.

Proof. By induction on r − t. If r − t = 0, then α = lpr, and relation (3.15) gives

uα = b
(α)
0,0 = b

(α)
0,0 − a

(α)
0,0 = uprb

(α)
0,1 = uptb

(α)
0,1 .

But in this case, b
(α)
0,1 = b

(α)
0,1 .

As above, write

α = lrp
r + lr−1p

r−1 + · · ·+ ltp
t

(i.e. in base p, α has r− t digits, followed by t zeros). For general α = lpr + s, with
s > 0, we have

uptb
(α)
0,1 = upt(b

(α)
0,1 q[t],1 · · · q[r−1],1 + b

(s)
0,1)

= uprb
(α)
0,1 + uptb

(s)
0,1.

But s = µpt for some (µ, p) = 1, and also has one fewer non-zero digit than α in
base p, so by the induction hypothesis,

uptb
(s)
0,1 = us.

So the statement follows by (3.17). �

Write α = ´pt = s+ lpr for (´, p) = 1, f l f p− 1, 0 f s f pr − 1 as before. If
s �= 0, it is straightforward to check that pr−t divides α−1

[n] −s−1
[n] . Define the integer

εα =
α−1
[n] − s−1

[n]

pr−t
.

Lemma 3.3. In the notation above, we have:

(1) Modulo upt ,

b
(α)
0,1 ≡ ´.

(2) Modulo upt ,

λα ≡ α−1.
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(3) For α = s+ lpr, s �= 0,

λα ≡ λs + εαq[t,r]

modulo upr .

Proof. The first statement is again by induction on r − t. If r − t = 0, α = lpr for
1 f l f p− 1. By (3.15),

b
(α)
0,1 = b

(α)
0,1 ≡ a

(l)
0,1 = l = ´

modulo upt .
For general α, if α = lpr + s = ´pt, and s = ´′pt, then ´ = lpr−t + ´′. By the

induction hypothesis, we have that b
(s)
0,1 ≡ ´′ modulo upt . By definition,

b
(α)
0,1 = b

(α)
0,1 q[t],1 · · · q[r−1],1 + b

(s)
0,1.

We have

b
(α)
0,1 ≡ p

(l)
0,1(b

(s)
k ) = lb

(s)
1

modulo upr . This is because p
(l)
0,1(b

(s)
k ) is the constant term of

∑
k≥1 b

(s)
k ([l]upr )k

upr

.

But by (3.18), b
(s)
1 ≡ 1 modulo upt . Also, for each k g t, q[k],1 ≡ p modulo upk ,

and so modulo upt as well. So modulo upt ,

b
(α)
0,1 ≡ lpr−t + ´′ = ´.

The second statement about λα is an argument similar to the Z/p case. For

short, write α−1 = α−1
[n] and kα = k

[n]
α here. We have ´α−1 = 1 + kαp

n−t. From

relation (3.11) and the first statement of this lemma, we have that modulo upt ,

λαb
(α)
0,1α

−1 = α−1 + kαα
−1q[t,n],

λα´α
−1 ≡ α−1 + kαα

−1q[t,n],

λα(1 + kαp
n−t) ≡ α−1 + kαα

−1q[t,n],

λα ≡ α−1.

The last congruence follows from relation (3.12) and the fact that q[r],1 ≡ p modulo

upt for all r g t, so q[n,t] ≡ pn−t modulo upt .
For Statement (3), start with relation (3.11) and multiply both sides by λs +

εαq[t,r]. Using the definition of b
(α)
0,1 , we have

λα(b
(s)
0,1 + b

(s)
0,1q[t,r])(λs + εαq[t,r]) = (1 + kαq[t,n])(λs + εαq[t,r]).

The right hand side is

(λs + εαq[t,r]) + kαq[t,n](λs + εαq[t,r])

with an extra term

kαq[t,n](λs + εαq[t,r]) = kαq[r,n](λs + εαq[t,r])q[t,r].
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The left hand side is λα plus an extra term

λα

[
ksq[r,n] + b

(α)
0,1λs + εαb

(s)
0,1 + b

(α)
0,1 εαq[t,r]

]
q[t,r].

To show that the two extra terms on the left and right are congruent modulo
upr , since uptq[t,r] = upr , it suffices to show that these two terms, without the factor
q[t,r] at their ends, are congruent modulo upt . From the right hand side, we have
that modulo upt ,

(3.19) kαq[r,n](λs + εαq[t,r]) ≡ kαp
n−r(s−1 + εαp

r−t) = kαα
−1pn−r

by Part (2) of this lemma.

For the left hand side, we have that modulo upr , b
(α)
0,1 is congruent to the poly-

nomial

p
(l)
0,1(b

(s)
j ) = Coeffx0u1

pr

⎛
¿∑

j≥0

b
(s)
j (x+F [l]upr )j

À
⎠ = lb

(s)
1 .

Inductively, b
(s)
1 ≡ 1 modulo upt , so b

(α)
0,1 ≡ l modulo upt . So on the left hand side,

modulo upt ,

λα

[
ksq[r,n] + b

(α)
0,1λs + εαb

(s)
0,1 + b

(α)
0,1 εαq[t,r]

]

≡ α−1

(
ksp

n−r + ls−1 + εα
s

pt
+ lεαp

r−t

)
.

(3.20)

It is straightforward to check that the integers (3.20) and (3.19) match. �

From Lemma 3.2, it follows that

(3.21) λαuα = λαb
(α)
0,1upt = (1 + k[n]α q[t,n])upt = upt .

In this sense, b
(α)
0,1 and λα are “approximate” inverses to each other.

Comment. The elements b
(α)
0,1 are examples of certain sequences of elements b

(α)
i,j in

R. For 1 f α f pn − 1, again write α = ´pt with (´, p) = 1. For all α, we have

b
(α)
i,0 = b

(α)
i,0 .

The b
(α)
i,j satisfy the divisibility conditions

(3.22) b
(α)
i,j − a

(γ)
i,j = uptb

(α)
i,j+1.

Just like b
(α)
0,1 , the formulas for these elements in terms of b

(α)
i,j can be written down

inductively. In particular, if α = lpr for some 1 f l f p− 1, then

b
(lpr)
i,j = b

(lpr)
i,j

for all i, j, and (3.22) is just (3.15).

As an example, we write down b
(α)
i,1 explicitly. By the above, b

(1)
i,1 = b

(1)
i,1 . Suppose

that b
(s)
i,1 is defined for all s < α. If α = lpr + s for some 1 f l f p − 1 and

1 f s f pr − 1, define

b
(α)
i,1 = b

(s)
i,1 + q[t,r]b

(α)
i,1 .

One can check inductively that the divisibility relation (3.22) is satisfied.
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The proof of the theorem will be by induction on n. For n = 1, this is Theo-
rem 2.2 of the previous section. From now on, we will assume that Theorem 3.1, as
well as all claims in the rest of this section, holds for (MUZ/pr )∗, for r = 1, . . . , n−1.

For our main tool, we will use the pullback diagram

(3.23)

MUZ/pn

��

�� ẼZ/p ∧MUZ/pn

��

F (EZ/p+,MUZ/pn) �� ẼZ/p ∧ F (EZ/p+,MUZ/pn)

which is the right half of the Tate diagram of [6].
Before calculating the three other corners of (3.23) and showing that it is also

a pullback after taking coefficients, we will fit it into a staircase diagram, which
is an approach similar to that used by Abram and Kriz [1] to describe (MUG)∗
for a general abelian group G. Although this diagram is bigger (the square (3.23)
is a part of it), it gives further understanding of (MUZ/pn)∗, and also has other
applications, being for example used in [9].

Recall that for a finite abelian group G and a subgroup H, F [H] is the family
of subgroups K of G with H �⊆ K. The classifying space EF has the property that
EFK is ∗ for K ∈ F , and ∅ for K �∈ F . We also have the family F(H) of subgroups
that are contained in H. For G = Z/pn, we have EF(Z/pr) = EF [Z/pr+1], which
we write as EZ/pn−r (where Z/pn−r is the quotient group).

Proposition 3.4 is analogous to a special case of Theorem 2 of Abram-Kriz [1].
The diagram set-up, however, is different, and we will clarify the relationship be-
tween this diagram and the one from [1] in Section 4.

Proposition 3.4. A Z/pn-equivariant spectrum E is the pullback of the homotopy
groups of the fixed points of the following maps of Z/pn-equivariant spectra:

(3.24)

En

φn

��

En−1

ιn−1
��

φn−1

��

Fn−1

· · · ��

��

Fn−2

E1
ι1

��

φ1

��

F1

E0
ι0

�� F0
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where

Er = ˜EF [Z/pr] ∧ F (EF(Z/pr)+, E)

= ˜EZ/pn−r+1 ∧ F ((EZ/pn−r)+, E),

Fr = ˜EF [Z/pr+1] ∧ F (EF(Z/pr)+, E)

= ˜EZ/pn−r ∧ F ((EZ/pn−r)+, E).

In our particular case with E = MUZ/pn ,

En = ẼZ/p ∧MUZ/pn ,

the geometric fixed points spectrum ΦZ/pn

MUZ/pn , and the upper right corner
of (3.23).

Proof of Proposition 3.4. For 0 f r f n, let Xr be the pullback of the diagram

(3.25)

En

φn

��

En−1

ιn−1
��

φn−1

��

Fn−1

· · · ��

��

Fn−2

Er
ιr

�� Fr .

We claim that

(3.26) Xr � ˜EZ/pn−r+1 ∧E

as a Z/pn-spectrum.
To show claim (3.26), we use induction on n− r. For r = n, we just have

Xn = En = ẼZ/p ∧ E.

Suppose the claim holds for r + 1. Then Xr is the pullback of the diagram

(3.27)

Xr
��

��

˜EZ/pn−r ∧ E

��

˜EZ/pn−r ∧ F (EZ/pn−r−1
+ , E)

��

˜EZ/pn−r+1 ∧ F (EZ/pn−r
+ , E) �� ˜EZ/pn−r ∧ F (EZ/pn−r

+ , E)

where all maps are the obvious ones. Let the space Mr be the fiber of the map

˜EZ/pn−r+1 → ˜EZ/pn−r.
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Consider the diagram

Mr ∧ E ��

��

˜EZ/pn−r+1 ∧E ��

��

˜EZ/pn−r ∧E

��

Mr ∧ F (EZ/pn−r
+ , E) �� ˜EZ/pn−r+1 ∧ F (EZ/pn−r

+ , E) �� ˜EZ/pn−r ∧ F (EZ/pn−r
+ , E)

where the rows are cofiber sequences. However, recall that for 0 f i f n, we have

( ˜EZ/pn−r)Z/p
i

�

{
S0 if i > r

∗ if i f r
.

Thus, the Z/pi-fixed points of Mr are S0 if i = r, and ∗ else. However, the Z/pi-
fixed points of EZ/pn−r

+ are S0 for all i f r. Hence after smashing with Mr,

F (EZ/pn−r
+ , E) becomes indistinguishable from F (S0, E) = E. In other words, the

left vertical map is an equivalence:

Mr ∧ E � Mr ∧ F (EZ/pn−r
+ , E).

Also by induction, the right square of the diagram has the property that the two
maps into the lower right corner are jointly onto. Hence, it is a pullback. However,
it is also the same as diagram (3.27), so we get claim (3.26).

For r = 0, this gives that X0, the pullback of the entire diagram, is just E
itself. �

We again specialize to the case E = MUZ/pn . For each r, let Yr be the pullback
of the partial diagram

Er

��· · ·

��

��

E1

��

�� F1

E0
�� F0

Then

(3.28) Yr � F (EZ/pn−r
+ ,MUZ/pn).

Again, this is shown by induction on r. For f = 0, Y0 = E0 = F (EZ/pn+,MUZ/pn).

Suppose (3.28) holds for r − 1. Let Nr be the cofiber of the map EZ/pn−r+1
+ →

EZ/pn−r. Recall that for 0 f i f r, (EZ/pn−r)
Z/pi

+ is S0 if i f r and ∗ if i > r.
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Hence, (Nr)
Z/pi

is S0 only for i = r, and ∗ for all other i. Consider the diagram
(3.29)

F (Nr,MUZ/pn) ��

��

˜EZ/pn−r+1 ∧ F (Nr,MUZ/pn)

��

F (EZ/pn−r
+ ,MUZ/pn) ��

��

Er = ˜EZ/pn−r+1 ∧ F (EZ/pn−r
+ ,MUZ/pn)

��

F (EZ/pn−r+1
+ ,MUZ/pn) �� Fr = ˜EZ/pn−r+1 ∧ F (EZ/pn−r+1

+ ,MUZ/pn)

for all i g r, where the vertical sides are fibration sequences. However, we have
that

( ˜EZ/pn−r+1)Z/p
i

= S0 for all i g r,

so on F (Nr,MUZ/pn), smashing with ˜EZ/pn−r+1 is indistinguishable from smash-

ing with S0. Hence, the top row of diagram (3.29) is an equivalence, giving that
the bottom square is a pullback. But the pullback of the bottom square is Yr by
definition, giving (3.28).

It is helpful to put everything together and write down a fuller version of dia-
gram (3.24):

(3.30)

MUZ/pn ��

��

X1
�� · · · �� Xn−1

�� En

φn

��

Yn−1

��

En−1

ιn−1
��

φn−1

��

Fn−1

...

��

· · · ��

��

Fn−2

Y1

��

E1
ι1

��

φ1

��

F1

E0
ι0

�� F0

Diagram (3.23) is now just the topmost “wide” rectangle of (3.30).
Now we come to calculating the three other corners of (3.23) algebraically. For

the upper right corner, recall that in general, for a G-equivariant spectrum E, the

geometric fixed points ΦGE is (ẼF∧E)G, where F is the family of proper subgroups
of G. Hence, the upper right corner is the geometric fixed points ΦZ/pn

MUZ/pn .
This can be calculated by methods similar to that of [10], using the methods of tom
Dieck [18].

Lemma 3.5. We have

(ẼZ/p ∧MUZ/pn)∗ = MU∗[b
(α)
i , u−1

α ],

where 1 f α f pn − 1, i g 0, and uα = b
(α)
0 .
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Proof. We begin with some notation. For 0 f α f pn − 1, we will denote the
irreducible complex representation of Z/pn, where the generator of Z/pn acts by
e2παi/p

n

,by Vα. The complete Z/pn-universe is

U =
⊕

0≤α≤pn−1

V ∞
α

and UZ/pn

= R∞ is the trivial universe. For each α ∈ (Z/pn)×, let uα be the Euler
class of the irreducible representation Vα.

Recall also that the prespectrum D giving MUZ/pn is as follows. For a finite-
dimensional representation V of Z/pn, let Gr|V |(U ⊕ V ) be the Grassmannian of
all |V |-dimensional complex representations of U ⊕ V (note that this is the same
as Gr|V |(U)), and let ´|V | be the |V |-dimensional canonical bundle on it. The
U-prespectrum D is given by

DV = Gr|V |(U ⊕ V )γ|V | ,

where the superscript denotes Thom space. The point of the geometric fixed point
spectrum is that it can be calculated on the prespectrum level. Namely,

(3.31) ΦZ/pn

MUZ/pn = colimΣ−V Z/pn

(DV )
Z/pn

over all finite-dimensional representations V ⊂ U .
Given a finite-dimensional representation

V =

pn−1⊕

α=0

nαVα,

the space (DV )
Z/pn

can be calculated by the methods of tom Dieck [18]. Namely,
it is

∨
⎛
¿Gr(k0,U

Z/pn

)γk0 ∧ (
∧

1≤α≤pn−1

Gr(kα, V
∞
α )+)

À
⎠ ,

where the wedge sum is taken over all partitions |V | =
∑

kα, where 0 f α f pn−1.
Meanwhile, V Z/pn

= R2n0 (the multiple of 2 arises from the fact that V0 = C). Also
note that

|V | =

pn−1∑

α=0

nα =

pn−1∑

α=0

kα,

so

Σ−V Z/pn

(DV )
Z/pn

=
∨

Σ−2n0

⎛
¿Gr(k0,U

Z/pn

)γk0 ∧ (
∧

1≤α≤pn−1

Gr(kα, V
∞
α )+)

À
⎠

=
∨

⎛
¿Σ−2k0Gr(k0,U

Z/pn

)γk0 ∧ (
∧

1≤α≤pn−1

Σ2(kα−nα)Gr(kα, V
∞
α )+)

À
⎠ .

Write mα = kα − nα. Then this is
∨

(mα)

(
Σ2(n0−

∑
mα)Gr(n0−Σmα,U

Z/pn

)γn0−Σmα ∧ (
∧

Σ2mαGr(mα + nα, V
∞
α )+)

)
,

where the wedge sum is over all (pn − 1)-tuples of integers (mα)1≤α≤pn−1.
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To obtain (3.31), we pass to the colimit where all nα go to infinity. This gives

∨

(mα)

MU ∧

⎛
¿ ∧

1≤α≤pn−1

Σ2mαBU+

À
⎠ .

Let the element b
(α)
i correspond to the element bi in

MU∗Gr(1, V∞
α ) = MU∗{b0, b1, . . .}.

(In particular, b
(α)
0 = uα.) Then the coefficients of

MU ∧

⎛
¿ ∧

1≤α≤pn−1

BU+

À
⎠

have generators b
(α)
i . For the wedge summand suspended by (2mα), we need to

attach the power umα
α for each α. This gives the calculation of ΦZ/pn

MUZ/pn . �

The terms (Yr)∗ on the left hand side of diagram (3.30) can be computed by the
standard methods, namely the Borel cohomology spectral sequence. This spectral
sequence gives an associated graded object of (Yr)∗ as

(MUZ/pr )∗[[upr ]]/[pn−r]upr .

By comparison with the case r = 0, which is the lower left corner of (3.30), we see
that there should also be an extension upr−1q[r−1],1 = upr . We can describe (Yr)∗

as follows. For 1 f α f pr−1, take α−1
[n]α = pt+k

[n]
α pn = pt+(k

[n]
α pn−r)pr. Instead

of λα, choose alternative generator

λ̃α = λα +mαq[t,r]

in (MUZ/pr )∗, where

mα =
α−1
[n] − α−1

[r]

pr−t
.

In this presentation of (MUZ/pr )∗, relation (3.11) is now

(3.32) λ̃αb
(α)
0,1 = 1 + k[n]α pn−rq[t,r]

and relation (3.12)) is now

(3.33) λ̃αq[t,r] = α−1
[n]q[t,r].

Let (MUZ/pr )∗ be a ring with the same generators as (MUZ/pr )∗, and all relations
except q[r−1],0 = 0 and relations (3.32), (3.33). Write upr = q[r−1],0 = q[r−1],1upr−1 .

Complete (MUZ/pr )∗ with respect to upr . Write

q[r,n] =
[pn−r]upr

upr

and q[t,n] = q[t,r]q[r,n]. Relation (3.32) becomes

(3.34) λ̃αb
(α)
0,1 = 1 + k[n]α q[t,n].
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(This arises from the fact that it needs to map to

[1 + k
[n]
α pn−t]upt

upt

if we complete at upt .) Relation (3.33) becomes

(3.35) λ̃αq[t,n] = α−1
[n]q[t,n].

We have

(3.36) (Yr)∗ = ((MUZ/pr )∗)
∧
upr

/[pn−r]upr ,∼,

where ∼ are the relations (3.34), (3.35). Lemma 3.3 carries through modulo upr ,

so we have λ̃α ≡ α−1
[n] modulo upt . We also have

(3.37) λ̃αuα = upt .

It is clear that (3.36), modulo upr , becomes (MUZ/pr )∗ as it should.
For 1 f α f pr − 1, and x a multiple of upr , write

uα+̃Fx =
∑

i≥0

b
(α)
i xi = uα +

∑

i≥1

b
(α)
i xi.

For x = [n]upr , this is a version of uα +F [n]upr that exists in ((MUZ/pr )∗)
∧
upr

. In

(Yr)∗, the λα from the original presentation of (MUZ/pr )∗ can be written in terms

of λ̃α as

λα =
upt+̃F [k

[r]
α ]upr

uα
+ µαq[t,n].

Here, the division is done in the obvious manner: we use λ̃α for the first term
upt/uα, and each higher term of the numerator is a multiple of upt . There is a

correction term by an appropriate integer µα multiple of q[t,n], so that λα ≡ α−1
[r]

modulo upt . This also gives

λα ≡ λα −mαq[t,r]

modulo upr . We have

λαb
(α)
0,1 =

upt+̃F [k
[r]
α ]upr

upt

(with the obvious way to divide). Note that the right hand side of this is congruent

to 1 + k
[r]
α q[t,r] modulo upr .

For simplicity of notation, we write

Sr = (Yr)∗.

Using the induction hypothesis and carrying out an argument similar to that of
Lemma 2.5 of the previous section, we have

(3.38) (Sr)
∧
u = MU∗[[u]]/([p

n]u).

By Greenlees and May [6], Sr is the completion of (MUZ/pn)∗ at upr . Also, by Kriz
and Lu [11], no element of (MUZ/pn)∗ can be infinitely divisible by u. Hence, all
vertical maps (MUZ/pn)∗ → Sr on the left hand side of (3.30) are injective.
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On coefficients, diagram (3.23) becomes the following pullback diagram:

(3.39)

(MUZ/pn)∗ ��

��

MU∗[b
(α)
i , u−1

α ]

φ

��

Sn−1 ι
�� Sn−1[u

−1
pn−1 ],

where α, i are as in Lemma 3.5. The bottom horizontal map is localization.
Before describing the right vertical map φ, we record Lemma 3.6.

Lemma 3.6. For pr < α f pn − 1, pr � α, write α = s+ lpr with 1 f s f pr − 1,
1 f l f pn−r − 1. Then us+̃F [l]upr divides upt in Sr.

Proof. Write q = q[t,r] in this proof. Note that upr multiplied by a sufficiently high

power of q is divisible by q2pr . Namely, let m be the smallest positive integer such

that m(r − t) g n − r. Since q ≡ pr−t modulo upt , we get qm ≡ pm(r−t) modulo

upt , hence qm+1 ≡ pm(r−t)q modulo upr . This gives

qm+1upr ≡ pm(r−t)qupr modulo u2
pr .

However, pm(r−t)upr ≡ [pm(r−t)]upr = 0 modulo u2
pr .

Modulo u2
pr ,

us+̃F [l]upr = us + b
(s)
1 ([l]upr ) + b

(s)
2 ([l]upr)2 + · · ·

≡ us + b
(s)
1 (lupr)

≡ us + (1 + usλ̃sb
(s)
1,1)lupr

≡ us + lupr + (usupr -term)

≡ us(1 + lλ̃sq) + (usupr -term).

Write y = −lλ̃sq. Then us(1+lλ̃sq) = us(1−y) divides upr modulo u2
pr . Namely,

again take a positive integer m such that m(r − t) g n− r. Then

us(1− y)λ̃sq(1 + y + · · ·+ ym) = upr(1− ym+1) = upr − uprym+1.

But uprym+1 is a multiple of qa+1upr , which is congruent to 0 modulo u2
pr .

Write the quotient as

z = λ̃sq(1 + y + · · ·+ ym).

Then zusupr = (1 + y + · · ·+ ym)u2
pr , so modulo u2

pr ,

z(us+̃F [l]upr ) ≡ x (us(1− y) + usupr -term) ≡ upr .

This is enough to make upr divisible by us+̃F [l]upr in Sr. Now we can do long

division in Sr to divide upt by us+̃F [l]upr : start with usλ̃s = upt , and after the
first step, the remainder is a multiple of upr . �

Comment. If x is any representative of the quotient from Lemma 3.6, then x+yq[t,n]
is another representative of the quotient for any y. Examining the proof of the
lemma for r = n − 1, for α = s + lpn−1 = ´pt, we see there is an x satisfying
x(us+̃F [l]upr) = xpt with x congruent to an integer modulo upt . This integer must
be a representative of ´−1 in Z/pn−t. Adjusting by an appropriate multiple of q[t,n],
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we get another representative xα of the quotient, which is congruent to α−1
[n] modulo

upt .
Now consider the completion map

φu : Sn−1 → (Sn−1)
∧
u = MU∗[[u]]/[p

n]u.

In both cases of α, φu(xα) satisfies

([α]u)φu(xα) = upt

and φu(xα) ≡ α−1
[n] modulo u. The only element of MU∗[[u]]/([p

n]u) satisfying this

is
[α−1

[n] ]([α]u)

[α]u
=

[pt + k
[n]
α pn]u

[α]u

(where the quotient is taken in the obvious manner), so this must be φu(xα). Also,
the completion map φu is injective as Sn−1 contains no element that is infinitely
divisible by u, so xα is unique in Sn−1.

Now we can describe the right vertical map φ of (3.39). Write α = lpn−1 + s,

with 0 f l f p − 1 and 0 f s f pn−1 − 1. In the case of G = Z/p, φ(b(α)i ) is
calculated in Lemma 2.14 of [10]. Examining the proof of that lemma, one sees
that it carries through for G = Z/pn as well. Namely, for the map going all the
way down the left hand side of (3.30)

(MUZ/pn)∗ → F (E(Z/pn)+,MUZ/pn)∗ = MU∗[[u]]/[p
n]u,

b
(α)
i maps to Coeffxi(x+F [α]u). So we have

(3.40) φ(b
(α)
i ) = Coeffxi

⎛
¿∑

k≥0

b
(s)
k (x+F [l]upn−1)k

À
⎠ ,

as this is the only element of Sn−1 that maps to Coeffxi(x+F [α]u). In particular,

for 1 f α f pn−1 − 1, we get φ(b
(α)
i ) = b

(α)
i,0 ∈ (MUZ/pn−1)∗.

It remains to describe φ on the u−1
α , which is forced by the map on uα. For

α = lpn−1 where 1 f l f p− 1, (3.40) gives

φ(ulpn−1) = [l]upn−1 .

Write l−1 to be the smallest positive representation of the inverse of l in Z/p. Then
[l−1]([l]upn−1) = upn−1 in Sn−1, so we must have

φ(u−1
α ) = u−1

pn−1 ·
[l−1]([l]upn−1)

[l]upn−1

= u−1
pn−1

∑

j≥0

a
(l−1)
0,j+1([l]upn−1)j .

(3.41)

For pn−1 � α (with again α = ´pt), since upt is a factor of upn−1 , it also becomes

a unit once we invert upn−1 . If 1 f $uα f pn−1−1, uα is also a unit in Sn−1[u
−1
pn−1 ]

since it divides upt . Since we have φ(uα) = uα, the inverse must map to u−1
α in

Sn−1[u
−1
pn−1 ], which is xq[t,n−1]u

−1
pn−1 for any choice of x in Sn−1 such that xuα = upt .

Similarly, if pn−1 f α, write α = lpn−1 + s, 1 f s f pn−1 − 1. We have

φ(uα) = us+̃F [l]upn−1 .
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By Lemma 3.6, this is a factor of upt , so it is a unit in Sn−1[u
−1
pn−1 ]. Then φ(u−1

α )

must map to ((us+̃F [l]upn−1)−1 in Sn−1[u
−1
pn−1 ].

We now show that the algebraic diagram (3.39) is also a pullback. Since it is the
coefficient of the right half of a Tate diagram, by a standard result in homological
algebra (see e.g. [10, Lemma 2.1]), it being a pullback is equivalent to the maps
ι and φ being jointly onto as maps of abelian groups. Consider a monomial x =
u−m
pn−1f(upn−1), where m > 0 and f(upn−1) ∈ Sn−1 is a series in upn−1 . Then x can

be written as x + u−m
pn−1f(upn−1), where x ∈ Im(ι), and f(upn−1) has only finitely

many terms:

f(upn−1) =
m−1∑

l=0

zlu
j
pn−1 ,

where each zl is a polynomial in b
(α)
i,j , q[r], j and λ̃α (with 1 f α f pn−1 − 1).

However, in Sn−1[u
−1
pn−1 ], all uα are inverted, so λ̃α = u−1

α upt ,

b
(α)
i,j = u−1

pr

(
b
(α)
i,j−1 − p

(l)
i,j−1(b

(s)
k )

)

and

q[r],j = u−1
pr

(
q[r],j−1 − cj

)
.

So inductively, all zl can be written as a polynomial in MU∗[b
(α)
i , u−1

α ], so u−m
pn−1f ∈

Im(φ). Thus, Im(ι) + Im(φ) = Sn−1[u
−1
pn−1 ].

In the staircase diagram (3.30), every horizontal rectangle is the right half of
a Tate diagram, so a similar argument can be applied to show that it is also a
pullback on coefficients. So on coefficients, (3.30) is a pullback as well.

The proof of Theorem 3.1 follows from the next lemmas. Let R be the ring given
in the theorem.

Lemma 3.7. We have

(3.42) R[u−1
pn−1 ] ∼= MU∗[b

(α)
i , u−1

α ],

where i g 0, 1 f α f pn−1, and uα = b
(α)
0 .

Lemma 3.8. We have

(3.43) R∧
upn−1

∼= Sn−1.

In particular, Lemma 3.8 also gives that

R∧
upr

∼= (Sn−1)
∧
r
∼= Sr.

Lemma 3.9 gives that the element upr has bounded torsion in R.

Lemma 3.9. For m = 0, . . . , n− 1,
⋃

k≥0

Ann(uk
pm) = Ann(upm) = (q[m,n])

in R.
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Given Lemmas 3.7 and 3.8, the upper right, lower left, and lower right corners
of diagram 3.9 become

R[u−1
pn−1 ]

��

R∧
upn−1

�� R∧
upn−1

[u−1
pn−1 ]

By Lemma 3.9 and Proposition 2.4, the pullback of this is R, which gives Theo-
rem 3.1.

The remainder of this section is devoted to the proofs of Lemmas 3.7, 3.8, and
3.9.

Proof of Lemma 3.7. By relations (3.8) and (3.9) of Theorem 3.1, as well as (3.21),
for all 1 f α f pn − 1, uα is a factor of upn−1 , so uα is invertible in R[u−1

pn−1 ].

As before, we write α = lpr + s with 1 f l f p− 1 and 0 f s f pr − 1. We also
write α = ´pt with (´, α) = 1. Define a map

κ : R → MU∗[b
(α)
i , u−1

α ]

as follows:

b
(α)
i,j �→ u−j

pr b
(α)
i −

j∑

k=1

p
(l)
i,j−ku

−k
pr ,

λα �→ u−1
α upt ,

q[r],j �→ u−j
pr upr+1 −

j−1∑

k=0

cku
k−j
pr .

Recall that p
(l)
i,j−k are the polynomials defined before Theorem 3.1, whose variables

are b
(s)
m with m g 0.

For j = 0, we have

b
(α)
i,0 �→ b

(α)
i ,

so the notation is consistent. It is routine to check that κ is consistent with rela-
tions (3.7), (3.8), (3.9), and (3.10) in R. For relation (3.6), note that for α = pr,

we have l = 1 and s = 0, and b
(s)
m = b

(0)
m = 1 for m = 1, and 0 for all other m.

Hence, the series (3.2) becomes
∑

m≥0

b(0)m (x+F y)m = x+F y =
∑

i,j≥0

ai,jx
iyj ,

so the polynomials p
(0)
i,j = ai,j . In particular, p

(0)
0,j = 1 for j = 1, and 0 for all other

values of j. So

b
(pr)
0,1 �→ u−1

pr upr − p
(0)
0,0 = 1− 0 = 1.

For j g 2, we get

b
(pr)
0,j �→ u−j

pr upr − p
(0)
0,1u

1−j
pr = 0.

Hence, κ is consistent with relation (3.6).
For relation (3.11), we claim that for α = ´t, (´, p) = 1, we have

(3.44) κ(b
(α)
0,1 ) = u−1

pt uα.
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Note that by (3.2), we have

p
(l)
0,0(b

(s)
m ) = b

(s)
0 = us

for all s. This gives

(3.45) κ(b
(α)
0,1 ) = u−1

pr uα − u−1
pr us

for all α. Hence, for the case α = lpr, us = 0, so (3.44) holds.
For general α, we prove (3.44) by induction. Suppose that (3.44) holds for all

numbers less than α. We write α = lpr + s with s �= 0. Note that the highest
power of p that divides α and s is the same, and we denote this power by pt. By

the induction hypothesis, κ(b
(s)
0,1) = u−1

pt us. Also, we have

κ(q[r],1) = u−1
pr upr+1 .

So we get

b
(α)
0,1 = b

(α)
0,1 q[t],1 · · · q[r−1],1 + b

(s)
0,1

�→ (u−1
pr uα − u−1

pr us)(u
−1
pt upt+1) · · · (u−1

pr−1upr ) + κ(b
(s)
0,1)

= u−1
pt uα − u−1

pt us + u−1
pt us

= u−1
pt uα.

Hence, (3.44) is proven. This gives that

κ(λαb
(α)
0,1 ) = 1.

However, κ(q[n−1],1) = 0, so the right hand side of relation (3.11) also has

1 + kαq[r],1 · · · q[n−1],1 �→ 1.

Thus, relation (3.11) is respected by κ. Thus, κ is well-defined, and induces a map

κ : R[u−1
pn−1 ] → (MUZ/pn−1)∗[b

(α)
i , u−1

α ].

We have an obvious map

μ : MU∗[b
(α)
i , u−1

α ] → R[u−1
pn−1 ].

Namely,

μ(b
(α)
i ) = b

(α)
i,0

and

μ(u−1
α ) = λαq[t],1 · · · q[n−2],1 · u

−1
pn−1 .

It is straightforward to check that μ is the inverse to κ. �

Proof of Lemma 3.8. We define a map

φ : R∧
upn−1

→ Sn−1

similarly as the right vertical map φ of (3.39). We start by describing φ on the

elements b
(α)
i,j . For 1 f α f pn−1 − 1, let

φ(b
(α)
i,j ) = b

(α)
i,j
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in (MUZ/pn−1)∗. For p
n−1 f α f pn − 1, write α = s+ lpn−1, where 1 f l f p− 1

and 0 f s f pn−1 − 1. Then

φ(b
(α)
i,j ) = Coeffxi

⎛
¿ (

∑
k≥0 b

(s)
k (x+F [l]upn−1)k)|upn−1 |≥j

(upn−1)j

À
⎠ .

For the elements q[r],j , let

φ(q[r],j) = q[r],j

for 0 f j f n− 2, and

φ(q[n−1],j) =
([p]upn−1)|upn−1 |≥j

(upn−1)j
.

It remains to define φ(λα). If α = lpn−1, let

φ(λα) =
[1 + k

[n]
α p]upn−1

[l]upn−1

=
[α−1

[n] ]([l]upn−1)

[l]upn−1

,

where the division is done in the obvious manner.
For pn−1 � α, if 1 f α f pn−1, define

φ(λα) = λ̃α.

For pn−1 + 1 f α f pn − 1, define

φ(λα) = xα,

where xα is the element of Sn−1 defined in the comment after Lemma 3.6.

For all b
(α)
i,j , q[r],j , λlpn−1 and λα for 1 f α f pn−1−1, it is immediate to see that

their images under φ satisfy the necessary relations. For α > pn−1 with pn−1 � α,
xα ≡ α−1

[n] modulo upt , so it satisfies relation (3.12). For relation (3.11), we have

(xαb
(α)
0,1 )upt = xαuα = upt ,

so xαb
(α)
0,1 −1 is in the annihilator of upt . By construction, the annihilator of upn−1 in

Sn−1 is generated by q[n−1,n] = ([p]upn−1)/upn−1 . In Sn−1/(upn−1) ∼= (MUZ/pn−1)∗,
the annihilator of u is (q[t,n−1]) by the induction hypothesis, so by a standard
argument, the annihilator of u in Sn−1 is (q[t,n]). So

(3.46) xαb
(α)
0,1 = zq[t,n]

for some z. Also, Sn−1/(u) ∼= MU∗. Write z ∈ MU∗ as the class of z modulo upt .
Modulo upt , (3.46) becomes

α−1
[n]´ − 1 = zpn−t.

Hence z = k
[n]
α since MU∗ is an integral domain. So in Sn−1,

xαb
(α)
0,1 = 1 + zq[t,n] = 1 + k[n]α q[t,n].

This shows that φ is a consistent map.
For the inverse map, define

ψ : (MUZ/pn−1)∗
∧

upn−1
→ R∧

upn−1
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which maps upn−1 to upn−1 . For the generators of (MUZ/pn−1)∗, ψ̂ takes b
(α)
i,j

and q[r],j to the same elements in R∧
pn−1 , and λ̃α to λα. All relations in

(MUZ/pn−1)∗
∧

upn−1
, as well as (3.34) and (3.35), are straightforward to check.

Clearly, b
(α)
i,j for 1 f α f pn−1 − 1 and q[r],j for 0 f r f n− 2 are in the image

of ψ. Similarly as in the Z/p-case, we have that

q[n−1],j =
∑

k≥0

cj+ku
k
pn−1

in R∧
upn−1

, so ψ of this series goes to q[n−1],j . In particular, ψ([p]upn−1) = q[n−1],0 =

0. So we can replace the source of ψ by Sn−1, and φ ◦ ψ is the identity map.

Next, check that b
(α)
i,j with pn−1 f α f pn − 1 is in the image of ψ. We write

α = s+lpn−1 as usual, where 0 f s f pn−1−1, 1 f l f p−1. Then by relation (3.7)
of Theorem 3.1, we again have that in R∧

upn−1
,

b
(α)
i,j = Coeffxi

⎛
¿ (

∑
b
(s)
k (x+F [l]upn−1)k)|upn−1 |≥j

(upn−1)j

À
⎠ ,

so this series maps to b
(α)
i,j .

It only remains to check that λα is in the image of ψ for pn−1 f α f pn − 1. If
α = lpn−1, this is by an argument similar to that of the Z/p-case. For pn−1 � α,
by Part (3) of Lemma 3.3, λα is congruent in R to an element a

(α)
0 that is in the

image of ψ modulo upn−1 . So by relations (3.7) and (3.9), every generator of R, and
hence every element of R, is congruent modulo upn−1 in R to an element that is in

the image of ψ. Write λα = a
(α)
0 + e

(α)
1 upn−1 for some e

(α)
1 ∈ R. Then e

(α)
1

∼= a
(α)
1

modulo upn−1 for some a
(α)
1 ∈ Im(ψ), and we can write

λα = a
(α)
0 + a

(α)
1 upn−1 + e

(α)
2 upn−1

for some e
(α)
2 ∈ R. Continuing this process, we get that in the completion,

λα =
∑

j≥0

a
(α)
j uj

pn−1 ,

where a
(α)
j are all in Im(ψ), so the corresponding series in Sn−1 map to λα. This

concludes the proof that ψ is onto. �

Note that by the induction hypothesis, we have that the vertical maps on the
left edge of diagram (3.39) give isomorphism

(Sn−1)
∧
upr

� Sr

for all 0 f r f n− 2. Thus, we also have that

R∧
upr

� Sr.

It remains to show that the element upn−1 has bounded torsion in R.

Proof of Lemma 3.9. We have

upmq[m,n] = 0.
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We will show that upm is regular in R/(q[m,n]). In R/(q[r,n]), we have λαb
(α)
0,1 = 1

for every α with pm+1 � α. Let Rk be the subring of R/(q[m,n]) generated by λα,

b
(α)
i,j and q[s],j for j f k. We define for k g 2

Ak = MU∗[b
(β)
i,k , q[s],k, λα | (i, ³) �= (0, ps), α = pm+1´][u].

We define two sets of polynomials gt(u), gt(u) in Ak for t = 0, . . . , n−1 (which will
correspond respectively to upt and q[t],1). Namely,

g0(u) = u,

gt(u) = (gt(u))
k−1q[t],k +

k−2∑

l=0

cl+1(gt(u))
l,

gt+1(u) = gt(u)gt(u).

Now for 1 f ³ f pn − 1, ³ not a power of p, we have ³ = ´pt for some t, and
´ ∈ (Z/p)× \ {1}. Define the element

hβ(u) = (ht(u))
k−1b

(β)
0,k +

k−2∑

l=0

aγ0,l+1(gt(u))
l.

These are the elements that correspond to b
(β)
0,1 . We do need to impose the relations

that for α = pt´, s g m+ 1 and (´, p) = 1,

(3.47) λαhα(u) = 1 + kαgt(u) · · · gn−1(u).

Let Bk be the quotient of Ak by the relations (3.47). Define a map of MU∗-
algebras

ηk : Bk[(hβ(u))
−1] → Rk

given by ηk(b
(β)
i,k ) = b

(β)
i,k , ηk(q[t],k) = q[t],k, ηk(u) = u. For pm+1 � ³, we have

ηk((hβ(u))
−1) = λβ = (b

(β)
0,1 )

−1. For pm+1|³, ηk(λβ) = λβ . By induction on j

(similarly as in Lemma 2.7, we have for all j f k

q[t],j = uk−j
pt q[t],k +

k−j−1∑

l=0

cj+lu
l
pt

in R. Now apply induction on t to get

ηk(gt(u)) = q[t],1,

ηk(gt(u)) = upt

and

(3.48) ηk

(
gt(u)

k−jq[t],k +
k−1∑

l=0

cj+l(gt(u))
l

)
= q[t],j .

For all (i, ³) �= (0, ps), we write ³ = s + lpr as usual, with 0 f s f pr − 1, and
1 f l f p− 1. Then we also have by induction on j f k

b
(β)
i,j = uk−j

pr b
(β)
i,k +

k−j−1∑

d=0

p
(l)
i,j+du

d
pr
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in R, where p
(l)
i,j+d are polynomials defined in (3.3) before the statement of Theo-

rem 3.1. Hence,

(3.49) ηk

(
(gr(u))

k−jb
(β)
i,k +

k−j−1∑

d=0

p
(l)
i,j+d · (gs(u))

d

)
= b

(β)
i,j .

By the above, ηk is onto. We define

g(u) = gr(u) · · · gn−1(u).

Then ηk(g(u)) = q[r],1 · · · q[n−1],1 = 0 in Rk, so we get a surjective map

(3.50) ηk : Bk[(hβ(u))
−1]/(g(u)) → Rk.

We can define a map

πk : Rk → Bk[(hβ(u))
−1]/(g(u))

similarly as in Lemma 2.7. Namely, πk takes q[t],j to the left hand side of (3.48),

upt to gt(u), and b
(β)
i,j to the left hand side of (3.49). It is straightforward to show

that πk is inverse to ηk, so ηk is an isomorphism.
We will show that gm(u) is regular in Bk[(hβ(u))

−1]/(g(u)). The polynomial
gm(u) is regular in Ak[(hβ(u))

−1]. The relation (3.47) does not affect this, so
gm(u) is regular in Bk[(hβ(u))

−1]. Note that gm(u) is a polynomial in gm(u), with
the constant term p. Thus, gm+1(u) = gm(u)gm(u) is a polynomial in gm(u) with
no constant term. By induction, it is easy to see that for every t g m, gt(u) is a
polynomial in gm(u), with the constant term p. Hence, gn(u) = f(gm(u)), where
f(x) is a polynomial with the constant term pn−m, which is not a zero divisor
in MU∗. Suppose that gm(u) is a zero-divisor modulo f(gm(u)), then for some
polynomials k(u), m(u)

(3.51) gm(u)k(u) = f(gm(u))m(u)

in Bk[(hβ(u))
−1]. By the constant term of f , we get that gm(u) divides pn−mm(u),

hence it divides m(u). Substituting m(u) = gm(u)m(u) in (3.51) and canceling
gm(u), we get that k(u) is a multiple of gn(u), so it is 0 in the quotient ring.

Therefore, upm is regular in Rk for each k. As R/(q[m,n]) = colimk Rk, we get
upm is regular in R/(q[m,n]). The statement of the lemma follows. �

We can now give explicit descriptions of the terms in the staircase diagram (3.30).

Proposition 3.10. We have

(3.52) (Er)∗ = Sr[u
−1
pr−1 ]

and

(3.53) (Fr)∗ = Sr[u
−1
pr ] = (Er)∗[u

−1
pr ].

Note that for all 1 f ³ f pn − 1. pr � ³, ũβ is also inverted in (3.52), since as we
showed above, ũβ divides upr−1 . Also, since Sr−1 is complete in upr , the map φ :
R → Sr−1 induces a map R∧

upr
� Sr → Sr−1. The vertical maps (Er)∗ → (Fr−1)∗

are these maps with upr−1 inverted.
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4. Special calculations

In this section, we show that at the bottom of the staircase diagram (3.24), there
are in fact different algebraic characterizations of the terms F0 and E1. This allows
one to compare (3.24) with the staircase diagram for MUZ/pn described in [1]. In
particular, for MUZ/p2 , the two staircase diagrams turn out to be actually the
same. However, this is not true for general MUZ/pn . For the rest of this section,
we assume n g 2.

We begin by briefly recalling the staircase diagram of [1], where it was shown
that (MUZ/pn)∗ is the pullback of the coefficients of the diagram of spectra

(4.1)

Cn

φn

��

Cn−1

ιn−1
��

φn−1

��

Dn−1

· · · ��

��

Dn−2

C1
ι1

��

φ1

��

D1

C0
ι0

�� D0

where

Cr = F (EZ/pn−r
+ , ˜EF [Z/pr] ∧MUZ/pn)

and

Dr = F (EZ/pn−r−1
+ , ˜EF [Z/pr+1] ∧ F (EZ/pn−r

+ , ˜EF [Z/pr] ∧MUZ/pn).

From [1] and also [9], we have

(Cr)∗ = MU∗[b
(α)
i , u−1

α | 1 f α f pr − 1, i g 0][[upr ]]/[pn−r]upr

(where uα = b
(α)
0 as usual) and

(Dr)∗ = ((Cr)∗[u
−1
pr ])∧[p]upr

.

It is easy to see that there is a map from (3.24) to (4.1). In general, this map
is not an isomorphism, except for E0 → C0, F0 → D0, E1 → C1, and En → Cn.
For E0 and En, one immediately sees that the corresponding spectra in the two
staircase diagram are the same. We prove the cases of E1 and F0 here, which
happen due to connectivity reasons.

Lemma 4.1. We have

(E1)∗ =
(
((MUZ/p)∗)

∧
up
/[pn−1]up

)
[u−1

1 ]

∼=
(
MU∗[b

(α)
i , u−1

α | 1 f α f p− 1]
)∧

up

/[pn−1]up = (C1)∗.
(4.2)
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Proof. It is easy to see that

(MUZ/p)∗[u
−1
1 ] = MU∗[u

−1
α , b

(α)
i ]

with 1 f α f p− 1, i g 0 (with uα = b
(α)
0 , so the right hand side of (4.2) is

(4.3)
(
(MUZ/p)∗[u

−1
1 ]

)∧

up

/[pn−1]up.

It is straightforward to see that on coefficients, the map of spectra E1 → C1 is the
obvious map

(4.4)
(
((MUZ/p)∗)

∧
up
/[pn−1]up

)
[u−1

1 ] →
(
(MUZ/p)∗[u

−1
1 ]

)∧

up

/[pn−1]up.

We need to show that (4.4) is an isomorphism.
By Lemma 2.7, the annihilator of u1 is generated by q1 in (MUZ/p)∗. In

(MUZ/p)∗, we have u1q1 = up instead of 0, so u1 is a regular element of (MUZ/p)∗,

so the map (MUZ/p)∗ → (MUZ/p)∗[u
−1
1 ] is injective. It is straightforward to

check that for every m, the induced map (MUZ/p)∗/(u
m
p ) → (MUZ/p)∗[u

−1
1 ]/(um

p )

is injective, passing to an injective map on the completions ((MUZ/p)∗)
∧
up

→

((MUZ/p)∗[u
−1
1 ])∧up

. Now it is again straightforward to check that the preimage

of the ideal generated by [pn−1]up is again ([pn−1]up, so we get that
(
((MUZ/p)∗)

∧
up

)
/[pn−1]up →

(
((MUZ/p)∗[u

−1
1 ])∧up

)
/[pn−1]up

is injective. This shows that (4.4) is injective.
To show that (4.4) is onto, we will show that every homogeneous series in (4.3)

can be rewritten with only a finite negative power of u1, putting it in the left hand

side of (4.2). Recall that in the grading on (MUZ/p)∗, we have |b
(α)
i,j | = 2(i+ j− 1),

|qj | = |q[0],j | = 2(j − 1), and |λα| = 0. Hence, the only elements with negative
degree are uα and up = q0. For any element in (4.3), rewrite all occurrences of uα

as b
(α)
0,1u1. So the element can be written as

(4.5)
∑

j≥0

xju
−k(j)
1 uj

p

in (4.3), where xj ∈ (MUZ/p)∗ has non-negative degree. Assume without loss of
generality that k(j) > 0, then

|xju
−k(j)
1 uj

p| = |xj |+ 2k(j)− 2j|

is equal to the degree of the homogeneous series. Hence, j−k(j) is bounded below.

If j − k(j) g −N for some natural number N , by factoring out u−N
1 , we may

assume without loss of generality that j − k(j) g 0. In (MUZ/p)∗[u
−1
1 ], we also

have q1 = u−1
1 up. Thus, (4.5) can be rewritten as

∑

j≥0

xjq
k(j)
1 uj−k(j)

p ,

where j − k(j) g 0. In turn, rewrite this as

(4.6)
∑

s,t≥0

xs,tq
s
1u

t
p,
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where xs,t ∈ (MUZ/p)∗ with non-negative degree. We will show that this can be

rewritten so that it exists in
(
((MUZ/p)∗)

∧
up
/[pn−1]up

)
[u−1

1 ].

Note that from [pn−1]up = 0, we get [pn−1]up ≡ 0 modulo u2
p in(

(MUZ/p)∗

)∧

up

/[pn−1]up. Dividing once by u1, we get p
n−1q1 ≡ 0 modulo upq1 and

hence also modulo up. In fact, pn−1q1 = upy for some y in
(
(MUZ/p)∗

)∧

up

/[pn−1]up.

Also, q1 ≡ 0 modulo u1, so q21 ≡ pq1 modulo up in (MUZ/p)∗. Hence, we get

q2n−2
1 ≡ pn−1qn−1

1 ≡ 0 modulo up.

Hence,

q
(2n−2)m
1 ≡ 0 modulo um

p .

From the above,

q
(2n−2)m
1 = y(2n−2)mum

p + terms with um+1
p ,

where y(2n−2)m ∈ (MUZ/p)∗, and the higher terms are in
(
(MUZ/p)∗

)∧

up

/[pn−1]up.

Thus, we get

xs,tq
s
1u

t
p = xs,ty(2n−2)mut+
s/(2n−2)�

p + terms with ut+
s/(2n−2)�+1
p .

Again, the higher terms are in
(
(MUZ/p)∗

)∧

up

/[pn−1]up. From this, one sees

that (4.6) exists in
(
((MUZ/p)∗)

∧
up
/[pn−1]up

)
[u−1

1 ]. Hence, (4.4) is onto. �

For the “Tate” terms of the staircases, we also have that in general, (Fr)∗ �∼=
(Dr)∗, except for the case r = 0. This is shown using connectivity, similarly as for
(E1)∗.

Lemma 4.2. We have

(4.7) (F0)∗ = (MU∗[[u1]]/[p
n]u1)[u

−1
1 ] ∼=

(
(MU∗[[u1]]/[p

n]u1)[u
−1
1 ]

)∧
[p]u1

= (D0)∗.

Proof. On coefficients, the map F0 → D0 is just the completion map

(4.8) (MU∗[[u1]]/[p
n]u1)[u

−1
1 ] →

(
(MU∗[[u1]]/[p

n]u1)[u
−1
1 ]

)∧
[p]u1

.

Similarly as in Lemma 4.1, it is straightforward to check that (4.8) is injective. To
show that it is onto, a generic homogeneous series from the right hand side is of
the form ∑

j≥0

fj(u1)([p]u1)
j ,

where fj(u1) is a Laurent series in u1. If the fj(u1) have no negative powers of
u1, this can clearly be summed, so without loss of generality, we can assume each
fj(u1) is in fact a polynomial in u−1

1 . Rearranging terms, the homogeneous series
can be written as

(4.9)
∑

s,t≥0

xs,tu
−s
1 ([p]u1)

t,
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where xs,t ∈ MU∗ (and hence has non-negative degree). Again, the degree of each
non-zero term is |xs,t|+2s−2t, which is bounded above, giving that t−s is bounded

below. By factoring out some u−N
1 , we can assume without loss of generality that

t− s g 0.
We still have the element

q1 =
∑

cj+1u
j
1 = ([p]u1)/u1 ∈ MU∗[[u1]]/[p

n]u1

with q1 ≡ p modulo u1 in this ring, and q1u1 = [p]u1. This allows us to rewrite (4.9)
as

(4.10)
∑

s,t−s≥0

xs,tq
s
1([p]u1)

t−s.

By the same arguments as in Lemma 4.1, we still have that

q
(2n−2)m
1 ≡ 0 modulo ([p]u)m

in (MU∗[[u1]]/[p
n]u1)[u

−1
1 ]. In fact, we have

q
(2n−2)m
1 = y(2n−2)m([p]u1)

m + terms with ([p]u1)
m+1,

where y(2n−2)m ∈ MU∗, and the higher terms are in MU∗[[u1]]/[p
n]u1. From this,

we can sum (4.10) in (MU∗[[u1]]/[p
n]u1)[u

−1
1 ], giving that (4.8) is onto. �

Now consider the case of MUZ/p2 . Here, we have shown that in the two five term
staircases, the terms in the positions of E0, F0, E1 and E2 all coincide. We have

(F1)∗ = (E1)∗[u
−1
p ] =

(
MU∗[b

(α)
i , u−1

α ][[up]]/[p]up

)
[u−1

p ]

and

(D1)∗ = ((C1)∗[u
−1
p ])∧[p]up

=
((

MU∗[b
(α)
i , u−1

α ][[up]]/[p]up

)
[u−1

p ]
)∧

[p]up

.

Clearly, the last completion does nothing as [p]up = 0, so (F1)∗ and (D1)∗ also
coincide. This shows that for MUZ/p2 , diagram (3.24) coincides with that from [1].
However, this turns out to be false for general MUZ/pn . Further explanation of the
relationship between the staircase diagram from this paper and from [1] is given
in [9].

References

[1] William C. Abram and Igor Kriz, The equivariant complex cobordism ring of a finite abelian

group, Math. Res. Lett. 22 (2015), no. 6, 1573–1588, DOI 10.4310/MRL.2015.v22.n6.a1.
MR3507250

[2] Tobias Barthel, Markus Hausmann, Niko Naumann, Thomas Nikolaus, Justin Noel, and
Nathaniel Stapleton, The Balmer spectrum of the equivariant homotopy category of a finite

abelian group, Invent. Math. 216 (2019), no. 1, 215–240, DOI 10.1007/s00222-018-0846-5.
MR3935041

[3] J. Carlisle, Complex cobordism with involutions and quasi-orientations, arXiv:2202.01253.
[4] Michael Cole, J. P. C. Greenlees, and I. Kriz, Equivariant formal group laws, Proc. London

Math. Soc. (3) 81 (2000), no. 2, 355–386, DOI 10.1112/S0024611500012466. MR1770613
[5] Michael Cole, J. P. C. Greenlees, and I. Kriz, The universality of equivariant complex bordism,

Math. Z. 239 (2002), no. 3, 455–475, DOI 10.1007/s002090100315. MR1893848
[6] J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113

(1995), no. 543, viii+178, DOI 10.1090/memo/0543. MR1230773
[7] Bernhard Hanke and Michael Wiemeler, An equivariant Quillen theorem, Adv. Math. 340

(2018), 48–75, DOI 10.1016/j.aim.2018.10.009. MR3886163

Licensed to Wayne St Univ. Prepared on Sun Jul  6 11:28:02 EDT 2025 for download from IP 141.217.244.209.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE EQUIVARIANT LAZARD RING OF PRIMARY CYCLIC GROUPS 2921

[8] Markus Hausmann, Global group laws and equivariant bordism rings, Ann. of Math. (2) 195
(2022), no. 3, 841–910, DOI 10.4007/annals.2022.195.3.2. MR4413745

[9] Po Hu, Igor Kriz, and Petr Somberg, Equivariant formal group laws and complex-oriented

spectra over primary cyclic groups: elliptic curves, Barsotti-Tate groups, and other examples,
J. Homotopy Relat. Struct. 16 (2021), no. 4, 635–665, DOI 10.1007/s40062-021-00291-7.
MR4343076

[10] Igor Kriz, The Z/p-equivariant complex cobordism ring, Homotopy invariant algebraic struc-

tures (Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI,
1999, pp. 217–223, DOI 10.1090/conm/239/03603. MR1718082

[11] I. Kriz and Y. Lu, On the structure of equivariant formal group laws, https://dept.math.
lsa.umich.edu/~ikriz/zpnfgl21101.pdf.

[12] Peter S. Landweber, Unique factorization in graded power series rings, Proc. Amer. Math.
Soc. 42 (1974), 73–76, DOI 10.2307/2039680. MR330151

[13] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homo-

topy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With
contributions by J. E. McClure, DOI 10.1007/BFb0075778. MR866482

[14] Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018),
no. 2, 203–409, DOI 10.4310/ACTA.2018.v221.n2.a1. MR3904731

[15] Dev P. Sinha, Computations of complex equivariant bordism rings, Amer. J. Math. 123

(2001), no. 4, 577–605. MR1844571
[16] N. P. Strickland, Complex cobordism of involutions, Geom. Topol. 5 (2001), 335–345, DOI

10.2140/gt.2001.5.335. MR1825665
[17] N. P. Strickland, Multicurves and equivariant cohomology, Mem. Amer. Math. Soc. 213

(2011), no. 1001, vi+117, DOI 10.1090/S0065-9266-2011-00604-0. MR2856125
[18] Tammo tom Dieck, Bordism of G-manifolds and integrality theorems, Topology 9 (1970),

345–358, DOI 10.1016/0040-9383(70)90058-3. MR266241

Department of Mathematics, Wayne State University, 656 W. Kirby St., Detroit,

Michigan 48202

Email address: pohu@wayne.edu

Licensed to Wayne St Univ. Prepared on Sun Jul  6 11:28:02 EDT 2025 for download from IP 141.217.244.209.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	2. The 𝐺=\Z/𝑝 case
	3. The 𝐺=\Z/𝑝ⁿ case
	4. Special calculations
	References

