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As next-generation sequencing technologies advance rapidly and the cost of metagenomic sequencing continues 
to decrease, researchers now face an unprecedented volume of microbiome data. This surge has stimulated the 
development of scalable microbiome data analysis methods and necessitated the incorporation of phylogenetic 
information into microbiome analysis for improved accuracy. Tools for constructing phylogenetic trees from 
16S rRNA sequencing data are well-established, as the highly conserved regions of the 16S gene are limited, 
simplifying the identification of marker genes. In contrast, metagenomic and whole genome shotgun (WGS) 
sequencing involve sequencing from random fragments of the entire gene, making identification of consistent 
marker genes challenging owing to the vast diversity of genomic regions, resulting in a scarcity of robust 
tools for constructing phylogenetic trees. Although bacterial sequence tree construction tools exist for upstream 
bioinformatics, many downstream researchers—those integrating these trees into statistical models or machine 
learning—are either unaware of these tools or find them difficult to use due to the steep learning curve of 
processing raw sequences. This is compounded by the fact that public datasets often lack phylogenetic trees, 
providing only abundance tables and taxonomic classifications. To address this, we present a comprehensive 
review of phylogenetic tree construction techniques for microbiome data (16S rRNA or whole-genome shotgun 
sequencing). We outline the strengths and limitations of current methods, offering expert insights and step-by-step 
guidance to make these tools more accessible and widely applicable in quantitative microbiome data analysis.
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Advances in microbiome research have increasingly demonstrated 
at the human microbiome— the community of microorganisms resid-
g in and on our bodies—plays a crucial role in maintaining health and 
fluencing disease. For instance, evidence from various studies suggests 
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that microbial dysbiosis plays a critical role in conditions such as obe-
sity [1,2], cardiovascular diseases [3,4], and other disorders [5,6]. To fa-
cilitate studies examining associations between microbial compositions 
and patient outcomes, researchers use high-throughput next-generation 
sequencing (NGS) [7]. This technology enables the quantification and 
analysis of the collective genomic content in biological samples, allow-
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Fig. 1. Cladograms display differences between phylogenetic tree and taxonomy tree. (A) The phylogenetic tree illustrates not only hierarchical structure but 
also biological similarities between taxonomy with different lengths of branches. (B) The taxonomy tree only shows the hierarchical structure of taxonomy with the 
same lengths of branches.
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g for the reconstruction of read counts for different bacterial types to 
present the microbial compositions within a community accurately.
Once NGS data are obtained, quality control, denoising, and align-
ent steps lead to the construction of phylogenetic trees, which provide 
framework to study the evolutionary relationships among microbial 
ecies or strains [8]. Unlike traditional taxonomic trees that only de-
ct the hierarchical classification of taxa, phylogenetic trees represent 
e evolutionary history and genetic similarities between organisms [9]. 
is deeper understanding of evolutionary relationships is critical for 
terpreting the compositional and functional dynamics of microbial 
mmunities. As shown in Fig. 1, phylogenetic trees not only show evo-
tionary relationships between microorganisms but also illustrate lin-
ge and sequence similarities according to the length of branches [9]. 
e aligned the two cladograms to the same angle to maintain consis-
ncy in the representation of phylum taxonomies across both trees. 
hile they share similar taxonomic assignments, their tree structures 
ffer significantly.
Phylogenetic trees play a pivotal role in microbiome analysis, link-
g upstream and downstream analyses (as shown in Fig. 2). As an 
tput of upstream processes, they are generated from raw sequenc-
g data to represent the evolutionary relationships among microbial 
xa. These trees then become essential inputs for downstream steps, 
abling further statistical and functional exploration of microbial com-
unities. To clarify these stages, we define upstream and downstream 
alyses as follows. Upstream analysis refers to the processing of raw 
quencing data and the generation of quantitative measurements (e.g., 
undance tables, taxonomic assignments, and phylogenetic trees) that 
ofile microbial composition. Downstream analysis utilizes these out-
ts to perform tasks such as diversity analysis, statistical modeling, 
sociation studies with clinical or environmental outcomes, and creat-
g informative data visualizations. [10].
For upstream researchers, phylogenetic trees have broad applica-
ns in biology, including phylogenetic placement of metagenomic 
ads, taxonomic affiliation, understanding evolutionary history, and 
assifying genes into families [11–14]. For downstream researchers, 
ylogenetic trees are crucial for quantitative microbiome data anal-
is [15,16]. Incorporating phylogenetic information into these analy-
s enhances understanding and interpretation of microbial communi-
s [17–20]. As illustrated in Fig. 2, many classical statistical meth-
s utilize phylogenetic trees, such as Principal Coordinate Analysis 
CoA) [21], differential abundance testing [22], regression analysis, 
riable selection [17], and network analysis [23]. These methods aid 
alysis of complex microbial data sets, advancing knowledge of micro-
al communities [24,25]. A significant example is one of the widely 
ed beta diversity measures, UniFrac dissimilarity [26], which lever-
3860

es phylogenetic trees to obtain a measure of closeness for related m
ecies and construct a non-Euclidean distance that accurately reflects 
e differences between samples.
However, many researchers face challenges in obtaining phyloge-
tic trees using microbiome sequencing data because public databases 
ten do not provide preconstructed phylogenetic tree files. While 
ta repositories such as Qiita [27], MG-RAST [28], and the National 
nter for Biotechnology Information (NCBI) Sequence Read Archive 
RA) [29] offer raw sequencing data for both 16S rRNA and whole 
nome shotgun (WGS) sequencing, they rarely include the associated 
ylogenetic trees. Although the pipeline for constructing phylogenetic 
ees from 16S rRNA sequencing data is relatively well established, the 
ocess for WGS sequencing data is more complex and less standard-
ed, requiring advanced tools and a deeper understanding of the data. 
oreover, researchers without a bioinformatics background often face 
steep learning curve in navigating the bioinformatics pipelines neces-
ry for phylogenetic tree construction.
In this review, we aim to bridge the gap between upstream and 
wnstream researchers by providing a comprehensive overview of the 
ols and methods used to construct phylogenetic trees from both 16S 
NA and WGS data. We introduce and compare various tools and ap-
oaches used to make the upstream process of tree construction more 
cessible to biostatisticians and other downstream researchers. Our 
al is to offer quick and practical guidance to help researchers build 
ylogenetic trees efficiently, allowing them to focus on the downstream 
atistical analyses that rely on essential methods illustrated in Fig. 2.

 Microbial sequence alignment and phylogeny

For both 16S rRNA and WGS data, the core steps involve in con-
ructing a phylogenetic tree are generally similar, encompassing sample 
llection, quality control and denoising, sequence alignment, and tree 
nstruction. However, the key differences between these two sequenc-
g methods lie in the sequence alignment and tree construction stages.
Sequence alignment and phylogenetic tree construction are closely 
lated but serve distinct roles in bioinformatics. A phylogenetic tree is 
pically a byproduct of sequence alignment, where the tree represents 
olutionary relationships based on the similarities between aligned 
quences. The process of alignment lays the foundation for the tree, 
lowing for the comparison of homologous sequences by positioning 
em to reflect evolutionary events such as mutations or conserved re-
ons. However, sequence alignment is far more versatile than just being 
precursor to tree construction, as it also serves various other purposes 
 microbial genomics. For instance, sequenced RNA, such as expressed 
quence tags and full-length mRNAs, can be aligned to a sequenced 
nome to identify gene locations and gain insights into alternative 
licing [30] and RNA editing [31]. Sequence alignment is also funda-

ental to genome assembly, where overlapping sequences are aligned to 
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Fig. 2. General workflow for microbiome analysis focused on phylogenetic tree construction for 16S rRNA data. The upstream analysis begins with sample 
collection and sequencing, followed by bioinformatic processes such as quality control, denoising, and sequence alignment. Once the feature table is obtained, beta 
diversity can be calculated by calculating the dissimilarities between samples, and phylogenetic trees can be constructed by calculating the similarities between taxa. 
For downstream analysis, various options are available, including Principal Coordinate Analysis (PCoA), differential analysis, regression analysis, variable selection, 
and network analysis, among others.
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rm contigs (long stretches corresponding to contiguous regions, [32]). 
ylogenetic tree construction is only one of the many applications of 
igned sequences, reinforcing that alignment serves as a versatile tool 
yond evolutionary studies.
When comparing the use of sequence alignment in 16S rRNA and 
GS data, key differences emerge. For 16S rRNA data, sequence align-
ent and phylogenetic tree construction rely primarily on sequence 
milarities, as 16S rRNA sequences focus on conserved regions of the 
nome, making direct comparisons of sequences easy and informative. 
 contrast, for WGS data, both sequence alignment and tree construc-
n depend on reference databases owing to the increased complexity 
 WGS sequences. The WGS sequences capture the entire genome, in-
uding not only informative (coding) regions but also noninformative 
on-coding) regions, requiring more sophisticated methods of sequence 
ignment [33].

1. Sequence alignment

Sequence alignment is the process of arranging sequences of DNA, 
A, or proteins [34–36] to identify regions of similarity that may in-
cate functional, structural, or evolutionary relationships among the 
quences [37]. A detailed description of alignment procedures for dif-
rent data types is provided in Section 1 of the supplementary mate-
als. Through sequence alignment, gaps are inserted into sequences to 
timize the match between similar regions, helping to reveal evolution-
y patterns [34]. By aligning sequences, researchers can systematically 
mpare bases or amino acids at corresponding positions in DNA, RNA, 
 protein sequences. This process helps in detecting conserved regions, 
utations, or variations among sequences, which are critical for under-
anding evolutionary relationships, gene function, and structural sim-
rities. These aligned regions are then used to construct phylogenetic 
ees, revealing the evolutionary distance and relationships between 
ecies or samples.
The two primary types of sequence alignment are global alignment 
d local alignment. Global alignment compares two sequences by align-
g their entire lengths to maximize overall similarity; the Needleman-
unsch algorithm [34] is a commonly used method for this. Local 
ignment, on the other hand, focuses on sequence regions with the 
3861

ghest density of matches, typically using the Smith-Waterman algo- re
thm [38]. Specifically, when applying sequence alignment to long 
ads, several challenges arise. Global alignment, while offering a more 
mprehensive comparison across the entire length of sequences than lo-
l alignment does, requires significantly more computational resources, 
rticularly when dealing with long or complex reads. Local alignment 

 better suited for long reads as it focuses on aligning regions of high 
milarity. This reduces the computational burden, making local align-
ent faster and more efficient for WGS applications. However, local 
ignment may sacrifice accuracy, especially when applied to reads with 
ninformative regions or when crucial sequence variations lie outside 
e aligned regions.
Both global and local alignment can be applied to 16S rRNA and 
GS data. However, because of the respective advantages and disad-
ntages of these data types, global alignment is more commonly used 
r 16S rRNA data. Tools like MAFFT [39,40], Clustal Omega [41], and 
USCLE [36] are popular choices for 16S data, as their sequences are 
latively short and focus on highly conserved regions, making global 
ignment ideal for maximizing sequence similarity across the entire se-
ence length. In cases where efficiency is a priority, local alignment 
ethods such as Lambda [42] also can be used.
For WGS data, which is more complex than 16S data and often in-
lves much longer sequences, local alignment methods like Bowtie 
[43], HISAT 2 [44], and Minimap 2 [45] are generally preferred. Lo-
l alignment is more efficient than global alignment for WGS because it 
cuses on aligning only the most similar regions in sequences, which is 
itical given the vast amount of noninformative or repetitive genomic 
ntent in whole genomes.
Another key difference between 16S and WGS sequence alignment 

 the need for a reference database. For WGS, a reference database 
 essential owing to the complexity of the data. WGS sequences span 
tire genomes, including both coding and noncoding regions, as well 
 potentially mobile genetic elements. Without a reference database 
 map these diverse, extensive regions, accurately assigning taxonomy 
d performing phylogenetic analysis would be challenging. In contrast, 
S rRNA sequencing targets a well-conserved gene, enabling direct 
ignment of sequences without always requiring such comprehensive 

ference databases.
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2. Tree construction methods

Another crucial difference between 16S rRNA and WGS data lies in 
e strategies used to build phylogenetic trees after sequence alignment. 
r 16S rRNA data, tree construction is typically based on calculating se-
ence similarities between the conserved regions of the 16S gene. This 
lows for the application of various mathematical algorithms, such as 
eighbor-Joining (NJ) [46], maximum likelihood [47], and Bayesian 
ference [48,49]. Researchers have developed many tools for tree con-
ruction based on these theories, including FastTree [50], RAxML [51], 
-TREE [52], and PhyML [53] for maximum likelihood methods, and 
AST [54], PhyloBayes [55], and MrBayes [56] for Bayesian inference. 
 Section 2 of supplementary materials, we provide a detailed descrip-
n of different phylogenetic tree construction methods.
Building phylogenetic trees from 16S data is generally fast owing to 
e relatively short and conserved nature of the sequences. However, 
is can result in misplacement of highly similar sequences belonging to 
fferent biological groups, leading to inaccuracies in phylogenetic tree 
nstruction [57].
In contrast, WGS data presents a more complex challenge owing 

 the high variability across different genome regions. Directly build-
g phylogenetic trees from sequence similarities alone for WGS data 
 difficult. A common approach is to create a subset of a reference 
ylogenetic tree. A reference tree is a preconstructed phylogenetic 
ee containing comprehensive evolutionary information from a large 
tabase that enhances the reliability of the results of phylogenetic tree 
nstruction. The reference tree built from WGS data provides a more 
curate framework for identifying and correcting potential misplace-
ents or errors in phylogenetic trees constructed from 16S rRNA data. 
is is because the 16S tree relies primarily on sequence similarities 
d is often generated using tools like FastTree, which may limit its 
ecision. In contrast, WGS-based phylogenetic trees incorporate more 
mprehensive genomic information, leading to greater accuracy and 
nsistency in the classification of taxa. Additionally, a reference tree 
duces computational costs for downstream researchers when phylo-
netic trees are required for further analysis.
In summary, 16S rRNA phylogenetic trees are often built on the ba-

s of sequence similarities, whereas WGS relies on reference trees. In 
e discussion section, we will address potential improvements in con-
ructing 16S phylogenetic trees to overcome these limitations.

 Tools for phylogenetic tree construction using 16S rRNA and 
GS data

In this section, we explore the tools and workflows used for phy-
genetic tree construction 16S rRNA and WGS data. Researchers have 
veloped different pipelines to address the unique challenges of both 
quencing methods. Specifically, we describe below some of the most 
idely used tools for both 16S and WGS data, such as QIIME 2 [58] and 
tuS2 [59] for 16S rRNA data, and MetaPhlAn 4 [60] and Woltka [61]
r WGS data. In Fig. 3, we present four tools discussed in this paper to 
plicitly highlight the differences in the features of these four tools.

1. Tools for 16S rRNA phylogenetic tree construction

While the core steps for building phylogenetic trees, as outlined 
 section 2, are similar for both 16S rRNA and WGS data, there are 
gnificant differences in how these steps are executed for each data 
pe. Specifically, in 16S rRNA analysis, Operational Taxonomic Units 
TUs) [62] and Amplicon Sequence Variants (ASVs) play crucial roles 
 linking the denoising and clustering of sequences with the processes 
 sequence alignment and phylogenetic tree construction.
OTUs and ASVs are key to organizing raw 16S sequences into bio-
gically meaningful units. OTUs are generated by clustering sequences 
sed on similarity thresholds (typically 97%), which groups closely 
3862

lated sequences as proxies for species [63]. Although this has been in
Computational and Structural Biotechnology Journal 23 (2024) 3859–3868

idely used, the arbitrary clustering threshold can sometimes obscure 
e taxonomic distinctions. ASVs [64], generated through denoising 
gorithms like DADA2 [65], offer higher resolution than OTUs by dis-
guishing sequences at 100% similarity. Unlike OTUs, which cluster 
milar sequences, ASVs retain even small sequence differences, allow-
g for more detailed analysis of microbial communities.

2. Introduction to QIIME 2 and LotuS2

QIIME 2 and LotuS2 are both comprehensive tools for analyzing 16S 
NA data, but they exhibit key similarities and differences in their 
orkflows. From a global perspective, QIIME 2 provides a fully inte-
ated platform for microbiome data analysis, where each core step is 
ilt into the internal system of QIIME 2, allowing for the customiza-
n of parameters at every stage. This integration makes QIIME 2 well 
ited for users who have to adjust parameters to accommodate specific 
ta characteristics. However, the level of customization also introduces 
steep learning curve, which can be challenging for downstream re-
archers new to bioinformatics. In contrast, LotuS2 provides a stream-
ed approach with which users only have to input raw sequence files 
d select tools with default parameters. The platform automatically 
oduces all upstream outputs, including an ASV/OTU table, taxonomic 
assification, and phylogenetic tree, making it particularly appealing 
r high-throughput environments. This approach is very user-friendly 
t is less flexible than QIIME 2, limiting users’ ability to customize spe-
fic steps in the upstream process.
To comprehensively compare QIIME 2 and LotuS2, we examined 
ch core step involved in the phylogenetic tree construction pipeline. 
th tools use raw sequence files in FASTA or FASTQ format as input, 
suring compatibility with a wide range of sequencing outputs.
Regarding quality control, QIIME 2 employs DADA2, a denoising al-
rithm that models sequence abundance using a Poisson model based 
 quality scores obtained during sequencing [65]. This probabilistic 
proach enables DADA2 to handle low-quality sequences effectively, 
stinguishing between biological variants and sequencing noise. By not 
scarding all low-quality sequences, DADA2 captures valuable infor-
ation from noisy data, which enhances the accuracy of downstream 
alysis. In comparison, LotuS2 adopts a more stringent quality con-
ol strategy, relying on a combination of predefined quality control 
etrics, including average quality scores, detection of homonucleotide 
peats, removal of reads lacking amplicon primers, and a probabilistic 
odel [59], while this approach is highly efficient at filtering high-
ality reads, it may be overly strict, potentially excluding informative 
quences from lower quality datasets.
Sequence alignment is another area in which these two tools dif-

r significantly. QIIME 2 commonly uses MAFFT for alignment. MAFFT 
 a tool designed for global alignment that excels in aligning entire 
quences, prioritizing accuracy but requiring more computational re-
urces than local alignment methods [40]. Conversely, LotuS2 uses 
mbda, a local alignment method that offers increased speed but sac-
fices some accuracy, especially when important differences across the 
ll lengths of sequences are present. As discussed in section 2.1, these 
rategic differences between global and local alignment reflect the 
ade-offs between precision and computational efficiency.
For phylogenetic tree construction, both QIIME 2 and LotuS2 use 
stTree, a tool that employs the maximum likelihood method to build 
ees. FastTree constructs phylogenetic trees based solely on sequence 
milarities and does not rely on a reference database. It is highly ef-
ient and capable of handling large datasets, but it is slightly less 
curate than more computationally intensive methods [50,66]. While 
is makes FastTree a suitable choice for most routine 16S rRNA se-
ence analyses, it may not be ideal for cases where maximum accuracy 

 critical.
In terms of output files, both QIIME 2 and LotuS2 generate ASV/OTU 
bles, taxonomy tables, and phylogenetic trees. Notably, LotuS2 can 

tegrate these outputs into a “phyloseq” object [67], providing added 
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g. 3. Framework for different tools used in microbiome analysis. There are two main sequencing methods for microbiome studies: 16S rRNA sequencing and 
otgun sequencing. For 16S rRNA sequencing, QIIME 2 and LotuS2 are included in the manuscript. For shotgun sequencing, tools such as MetaPhlAn 4 and Woltka 
e widely used. The differences between different steps are illustrated in each box for each tool.

Table 1

Literature summary.
Topic Method Description Tools References

Alignment DNA Alignment Aligning DNA sequences through 
pairwise sequence alignment

Bowtie 2, HISAT 2, 
Minimap 2, MAFFT

[38,43–45,40]

Protein Alignment Aligning amino acid sequences to 
identify regions of similarity

Clustal Omega, MAFFT [41,40]

Phylogenetic tree 
construction

Distance-based method Mapping a dissimilarity matrix 
representing biological data to a tree 
structure

Neighbor-joining (NJ), 
Unweighted pair group 
method with arithmetic 
mean (UPGMA), 
Molecular Evolutionary 
Genetic Analysis 
(MEGA), Tree analysis 
using New Technology 
(TNT)

[68–71]

Maximum likelihood 
method

Identifying tree that maximizes the 
likelihood of observing the given 
sequence data under a specific 
evolutionary model

FastTree, RAxML, 
IQ-Tree, PhyML

[66,51–53]

Bayesian inference 
method

Combining the prior information of 
parameters with the likelihood of 
sequence data to obtain posterior 
information of parameters

BEAST, PhyloBayes, 
MrBayes

[48,49,54–56]

Phylogenetic tree 
construction in microbiome

16S Sequencing method Amplifying and sequencing the 16S 
rRNA gene to identify and classify 
bacteria, followed by alignment and 
tree-building methods to elucidate 
evolutionary relationships.

QIIME 2, MAFFT, 
FastTree

[58,40,39,50]

Shotgun Metagenomic 
Sequencing method

Sequencing random fragments of 
microbial genomes, followed by 
assembly, annotation, and alignment to 
reconstruct evolutionary relationships 
across the entire microbial community.

MetaPhlAn 4, Woltka, 
Bowtie 2

[72,61,73,43]

whole genome shotgun 
sequencing method

Sequencing random fragments of an 
entire genome, providing 
comprehensive coverage of all genetic 
material, including coding and 
non-coding regions, mobile genetic 
elements, and strain-level variations.

Kraken 2, Bowtie 2 [74,43]
3863
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nvenience for downstream researchers conducting further statistical 
alysis. In Section 3 of the supplementary materials, we have applied 
IIME 2 and LotuS2 to a real data example to show the difference of phy-
genetic tree structures from the perspective of taxonomy distribution. 
ble 1 in supplementary materials provides a summary of comparisons 
r QIIME 2 and LotuS2 for each core step.
Although LotuS2 provides an automated, streamlined workflow, it 

ill requires users to study tutorials when selecting configuration files 
r quality control. Since LotuS2 uses predefined metrics for quality 
ntrol, it offers various configuration files with different parameters. 
ithout familiarity with these configurations, users may encounter 
e-consuming debugging processes. Additionally, the reliance on pre-
fined metrics makes LotuS2 less flexible and customizable compared 
 QIIME 2. Therefore, QIIME 2 is more widely recognized for its com-
ehensive capabilities within the microbial research community. As an 
en-source platform, QIIME 2 not only supports reproducible research 
t also fosters innovation by enabling the global research community 
 contribute new plugins, workflows, and features for microbiome data 
alysis. This adaptability enables researchers to integrate the latest 
ols and methodologies into their analyses. Therefore, although LotuS2 
mplifies upstream analysis with predefined options, we recommend 
IIME 2 as the primary tool for 16S rRNA phylogenetic analysis given its 
xibility, broad community support, and ability to incorporate cutting-
ge advancements.

3. Guide for phylogenetic tree construction using QIIME 2

Phylogenetic trees are built with QIIME 2 in four steps:

ep 1: Import raw FASTA/FASTQ files and demultiplex them.
ep 2: Denoise sequences and generate an ASV table.
ep 3: Align sequences using the MAFFT plugin.
ep 4: Build a phylogenetic tree using the Fasttree plugin.

r the detailed guidance of programming, please refer to the website 
tps://raytaoliu .github .io /phylogeny /posts /phylogenetic _trees/.

4. Tools for WGS phylogenetic tree construction

Similar to the use of OTUs and ASVs in 16S rRNA data analy-
s, WGS data analysis also involves clustering sequences into biolog-
ally meaningful units. However, because of the vast diversity and 
ount of WGS data, researchers have developed more advanced con-
pts for WGS data analysis, such as metagenomic OTUs (mOTUs) [75], 
etagenome-Assembled Genomes (MAGs) [60], Species-Level Genome 
ns (SGBs) [76], and Operational Genome Units (OGUs) [61].
Metagenome-Assembled Genomes (MAGs) became a breakthrough 
ncept in 2013, allowing researchers to assemble near-complete mi-
obial genomes directly from metagenomic data without the need for 
ltivation [77,78]. MAGs are constructed by binning sequences from 
etagenomic datasets based on sequence similarity, coverage patterns, 
d other genomic features, followed by assembly into longer contigu-
s sequences (contigs) and scaffolds. This approach revolutionized the 
ld by recovering genomes from unculturable species, shedding light 
 microbial diversity, and facilitating the discovery of novel species. 
day, MAGs play a foundational role in many upstream analyses, of-
ring high-resolution, species-level insights essential for microbial ecol-
y, evolutionary studies, and comparative genomics.
Metagenomic Operational Taxonomic Units (mOTUs), introduced in 
13, offer a faster, more efficient way to cluster WGS data compared 
 full genome assembly [79]. By using species-specific marker genes in-
ead of requiring full genomes, mOTUs significantly reduce the compu-
tional burden [80]. This makes them particularly useful when working 
ith fragmented genomes, allowing for rapid and accurate taxonomic 
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OTUs have made them popular in large-scale metagenomic studies, 
pecially when profiling both known and unknown species.
Species-Level Genome Bins (SGBs), introduced around 2019, build 
on MAGs by grouping genomes based on species-level similarity [81]. 
Bs combine known reference genomes with novel MAGs, creating a 
mprehensive framework that expands our understanding of micro-
al diversity. By clustering previously uncharacterized genomes at the 
ecies level, SGBs provide a powerful tool for classifying novel species 
d integrating them into established taxonomies, significantly enhanc-
g our knowledge of the microbial world [72].
Operational Genome Units (OGUs), a more recent development 

om 2022, take genome classification to the next level by using 
hole-genome sequences instead of marker genes [61]. This allows for 
nome-wide variation analysis, providing a more refined view of mi-
obial relationships. OGUs are particularly valuable for high-resolution 
ylogenetic studies, offering detailed evolutionary insights across en-
e genomes and enabling researchers to trace microbial evolution with 
precedented precision.
In summary, OTUs to mOTUs, MAGs, OGUs, and SGBs reflect the 
vancement of microbiome research from basic taxonomic clustering 
 genome-wide approaches that offer more detailed insights into mi-
obial diversity, evolution, and function. Each concept builds upon its 
edecessors, addressing their limitations and pushing the field toward 
ore accurate, comprehensive, and functional analyses of microbial 
mmunities. This trajectory underscores the increasing importance of 
hole-genome data in microbiome research and the ongoing refinement 
 tools and methods to handle the complexity of microbial ecosystems.

5. Introduction to MetaPhlAn 4 and Woltka

In this section, we compare the four core phylogenetic tree construc-
n steps using MetaPhlAn 4 and Woltka as described in section 2. A 
y distinction between constructing phylogenetic trees from 16S rRNA 
d WGS data lies in the use of reference databases for sequence align-
ent and phylogenetic tree construction. Therefore, we also examine 
e reference databases used with MetaPhlAn 4 and Woltka, exploring 
w both tools build and use databases to perform taxonomic classifi-
tion and phylogenetic analysis.
From a global perspective, MetaPhlAn 4 operates as an end-to-
d pipeline, directly processing raw sequence files (FASTA/FASTQ) 
d generating taxonomic profiling outputs. This seamless integra-
n streamlines the workflow in sequence alignment and taxonomy 
assification, optimizing processing speed and efficiency and making 
etaPhlAn 4 well suited for high-throughput environments. In compar-
on, Woltka primarily functions as a taxonomy classification tool that 
lies on alignment files (SAM/BAM) as inputs. This introduces addi-
nal complexity, as users must manually perform sequence alignment 
ing external tools like Bowtie 2 before running Woltka. This extra step 
n result in a steeper learning curve, particularly for downstream re-
archers who are less familiar with alignment processes than others.
For details of each step of the phylogenetic tree construction, 
etaPhlAn 4 accepts raw sequence data in FASTA/FASTQ format and 
ocesses it directly, streamlining the workflow. In contrast, Woltka re-
ires prealigned sequence data in SAM/BAM format, which adds an 
ditional preprocessing step.
Quality control is essential when working with WGS data in both 
etaPhlAn 4 and Woltka. Ensuring that only high-quality reads are re-
ined is critical for accurate taxonomic and functional profiling, as it 
rectly impacts the reliability of downstream analyses. However, in 
ntrast with tools like QIIME 2 and LotuS2, which integrate quality 
ntrol tools such as DADA2, MetaPhlAn 4 and Woltka do not include 
ternal quality control mechanisms. Instead, they rely on external tools 
e FastQC [82], which provides a straightforward way to perform 
ality checks of raw sequence data from high-throughput sequencing 

pelines.
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In terms of sequence alignment, MetaPhlAn 4 automates the process 
 integrating Bowtie 2 [43] as a plug-in, making it user-friendly and 
cient, particularly for high-throughput analyses. This automation re-
ces manual effort for researchers, while Woltka requires users to man-
lly apply Bowtie2 for alignment before proceeding to taxonomic clas-
fication. Although this offers flexibility, it introduces additional com-
exity and can increase the time and computational resources needed 
r sequence alignment. When processing sequences with Woltka, this 
anual sequence alignment step may pose a challenge for users who are 
ss familiar with alignment tools, especially when working with large 
tasets.
For both 16S and WGS data, a reference database is required for 
quence alignment and phylogenetic tree construction. The choice of 
tabase can significantly influence the structure and accuracy of the re-
lting phylogenetic trees. In particular, the database affects which taxa 
e detected, how the taxa are classified, and how evolutionary relation-
ips are inferred, ultimately shaping the overall structure of the phy-
genetic tree [25]. MetaPhlAn 4 uses the ChocoPhlAn database [83], 
hich is built on core marker genes selected for their ability to dis-
guish between species. This SGBs database includes more than 5.1 
illion marker genes across 21,978 known SGBs and 4,992 unknown 
Bs [72]. This focused approach to identifying species ensures a high-
solution taxonomy assignment for well-represented species, leading 
 precise phylogenetic trees. However, MetaPhlAn 4 may struggle with 
vel or rare organisms not represented in the reference database, lim-
ng its ability to detect unknown taxa and affecting the complete-
ss of the tree. In comparison, Woltka uses the Web of Life (WoL) 
tabase [73], which is based on a phylogenetic framework of 10,575 
cterial and archaeal genomes. WoL employs 381 highly conserved 
arker genes to map whole-genome sequences, providing broad cov-
age of taxa, including many that may not be well-characterized. This 
lows Woltka to detect more novel or unclassified taxa than MetaPhlAn, 
sulting in a more comprehensive though less specific phylogenetic 
ee. The inclusion of unclassified or ambiguous taxa can sometimes 
troduce uncertainty into a tree structure, inhibiting the clarity of evo-
tionary relationships among species.
Additionally, for phylogenetic tree construction, both MetaPhlAn 4 
d Woltka rely on reference trees for phylogenetic inference. However, 
e reference databases and the tree-building approaches they employ 
n significantly impact the construction and resolution of these refer-
ce trees, as we illustrate with a real data example in Section 4 of the 
pplementary material. MetaPhlAn uses PhyloPhlAn [84], which lever-
es highly conserved marker genes to efficiently build species-level 
ylogenies. In comparison, Woltka employs ASTRAL [85], which is bet-
r suited for detailed strain- or subspecies-level analyses by integrating 
ne trees and handling incomplete lineage sorting. These distinctions 
ghlight how these tools approach tree building differently depending 
 the evolutionary scope of the analysis.
For output files of results, both MetaPhlAn and Woltka generate tax-
omy profiling tables that describe microbiome composition. A key 
stinction between them is that MetaPhlAn 4, by default, generates rel-
ive abundance tables, whereas Woltka produces absolute abundance 
bles. Absolute abundance tables are often preferred by downstream 
searchers for statistical modeling and differential abundance testing 
cause they provide raw data that can be directly integrated into 
atistical frameworks. Woltka’s count tables in particular enhance its 
rsatility for subsequent analyses, including functional profiling and 
fferential abundance analysis.
In summary, while MetaPhlAn’s marker gene-based approach offers 

fast and efficient solution for many studies, researchers seeking more 
tailed resolution, raw data for statistical modeling, or greater adapt-
ility in their workflows should consider Woltka. In Table 2 of the 
pplementary materials, we have provided a summary table to com-
re each step of phylogenetic tree constructions using MetaPhAln 4 
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6. Guide for phylogenetic tree construction using Woltka

A reference tree for Woltka can be downloaded from https://biocore .
thub .io /wol /data /trees/. The steps to construct phylogenetic trees us-
g Woltka are as follows:

ep 1: Install a Custom Database with Bowtie 2: install the Web of Life 
database [73] as the reference database for Bowtie 2.

ep 2: Sequence Alignment: use Bowtie 2 to align raw sequence files 
against the WoL database.

ep 3: Taxonomy profiling: perform taxonomy classification using 
Woltka to generate OGU tables.

ep 4: Build the Phylogenetic Tree: use the ape package in R [86], you 
can create a subset tree by mapping your OGUs to the reference 
tree and build a phyloseq object [67].

 sections 5 of the supplementary materials, we provide detailed de-
riptions of phylogenetic tree construction using MetaPhlAn 4. For the 
tailed guidance of programming, please refer to the website https://
ytaoliu .github .io /phylogeny /posts /phylogenetic _trees/.

 Discussion

Phylogenetic tree construction for 16S rRNA data is generally 
sed on sequence similarities of the 16S rRNA gene, focusing on spe-
fic marker regions. Although many tools are available to streamline 
is process, significant challenges remain. A primary concern is that 
milarity-based methods can sometimes misgroup sequences due to 
gh homology among different species, leading to misclassification 
d inaccurate evolutionary relationships. A promising future direc-
n could involve building a comprehensive reference tree specifically 
r 16S rRNA data, similar to the approach used for WGS data. SATé-
abled phylogenetic placement (SEPP) [57] is a method that facilitates 
e insertion of 16S rRNA sequences into pre-existing phylogenetic trees, 
lowing researchers to build and extend 16S reference trees efficiently. 
owever, these reference trees are often less accurate compared to those 
nstructed using WGS data, which leverages entire gene sequences to 
ovide finer resolution and better capture evolutionary relationships 
r taxa. Additionally, SEPP currently relies on outdated versions of 16S 
NA databases, such as older versions of SILVA and Greengenes [87]
tabases, limiting the precision of phylogenetic placement. Moving for-
ard, developing a consensus, up-to-date reference tree for 16S rRNA 
ta will be essential to improve the accuracy and reliability of these 
alyses.
For WGS data, tree construction typically utilizes reference trees de-

ved from whole-genome comparisons within comprehensive genomic 
tabases, offering a broader, genome-wide evolutionary context. Tools 
e MetaPhlAn 4 and Woltka, which were introduced earlier in Sec-
n 3.5, facilitate this process by leveraging these databases for accurate 
ylogenetic placement and analysis. In contrast, alternative tools such 
 Kraken 2 [74], introduced in Section 6 of the supplementary materi-
s, take a different approach by focusing on rapid classification through 
mer-based methods, rather than leveraging whole-genome reference 
ees for phylogenetic analysis. However, WGS data presents distinct 
allenges due to the complexity of entire genomes, which encompass 
th coding and noncoding regions. The growing number of tools for 
ality control, taxonomic classification, sequence alignment, and phy-
genetic tree construction requires a careful evaluation of each step 
 the analysis pipeline. For instance, FastANI [88] calculates the aver-
e nucleotide identity (ANI) between two genomes by fragmenting the 
ery genome and comparing it to a reference genome, making it partic-
arly valuable for working with MAGs and SGBs, where precise genome 
sembly is essential. Importantly, after calculating the ANI scores be-
een multiple genomes, the resulting similarity matrix can be used as 
put for phylogenetic tree construction, thereby providing an evolu-

nary context for the relationships between genomes. As reference 

https://biocore.github.io/wol/data/trees/
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tabases continue to expand, the demand for efficient tree construc-
n tools that can seamlessly incorporate updates from these genomic 
sources is increasing.
Another challenge arises when researchers obtain different upstream 
sults with the same dataset across different platforms. This lack of 
andardization presents a significant barrier to generating reproducible 
d comparable microbiome analysis results for both 16S rRNA and 
GS data. Without a standardized reference database and reference 
ee, taxonomic classifications and phylogenetic tree constructions can 
ry significantly depending on the platform or tool used. The varia-
n in reference databases and trees affects how microbial sequences 
e aligned, classified, and interpreted, leading to inconsistencies in the 
mber of taxa identified and their evolutionary relationships. Such dis-
epancies hinder effective data comparison across studies and make 
tegration of 16S rRNA and WGS sequencing results challenging. Devel-
ing a consensus, regularly updated reference database and reference 
ee would resolve this issue. Such a resource would ensure consistency 
 taxonomic identification across platforms, facilitating reproducible 
d comparable results. An integration database for 16S rRNA and WGS 
ta called Greengenes 2 [89] has made strides in this direction by 
tegrating both 16S and WGS data into a comprehensive reference 
ee. However, a more streamlined, universally accepted solution is still 
eded to bridge the gap between ASVs and genome-level identifiers, ul-
ately enabling more reliable and reproducible microbial community 
alyses. As for downstream researchers, the reliability and consistency 
 phylogenetic trees are essential for generating consensus results for 
e same study, especially when developing novel statistical models that 
tegrate phylogenetic information. As more advanced statistical mod-
s incorporate phylogenetic trees [90,91,23], the need for a combined, 
nsensus reference tree for both 16S and WGS data becomes even more 
essing. This would result in more comparable results of different statis-
al models and improve the accuracy of microbial community analysis.
Moreover, the development of computer hardware and artificial in-
lligence (AI) is playing an increasingly important role in microbial re-
arch [92,93], leading to improvements in the efficiency and accuracy 
 microbial data processing. There are already many existing meth-
s using deep learning in upstream analysis including phylogenetic 
alysis [94–97]. As tools for building phylogenetic trees become more 
vanced and user-friendly, they will enable downstream researchers 
 develop novel statistical models that can provide deeper insights 
to microbial communities. However, despite the progress in upstream 
plications, there remains a notable gap in developing innovative sta-
tical models that fully integrate AI and microbiome data, with only 
few researchers currently exploring this area [98]. The combination 
 AI-driven methods and statistical modeling hold significant potential 
r both upstream and downstream researchers, opening up new oppor-
nities to unravel the complexities of microbial ecosystems.
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