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Commentaries

W) Check for updates

Suggestions on Using Machine Learning Models and
Cautions for Analyzing Censored Time-To-Event Outcomes
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The advancement of machine learning techniques and statistical methods have piqued the
interest of many clinical investigators. As a journal that aims to advance the science and practice
of precision oncology and define genomics- and other biomarker-driven clinical care of pa-
tients with cancer, JCO PO is highly receptive to cutting-edge data analysis methods. None-
theless, we have noted some incorrect applications of machine learning models in previous
paper review processes. In addition, inappropriate survival data analyses, particularly in de-
fining of study groups and initial time of the analysis, have been frequently observed by re-
viewers. In this short commentary, we would like to shed light on common errors we have
encountered and provide advice to potential authors.

Understand the Difference Between Machine Learning Models and Conventional
Statistical Inference

Both conventional statistical models and machine learning models have their own strengths.
Conventional statistical models are universally recognized, easier to comprehend, and provide
statistical inferences such as CIs and P values. Conversely, machine learning models are
considerably more flexible and often deliver more accurate predictions. The most important
disadvantage of machine learning models is the lack of interpretability. There are tools im-
proving the interpretability of machine learning models, including Local Interpretable Model-
Agnostic Explanations,* Shapley values,> and Integrated Gradients.? Nevertheless, many times,
machine learning models operate like a black box.

Tip: Many machine learning models, such as random forest,* boosting,> BART,® and deep neural
network—based models, can handle feature interactions to some extent automatically. As a
result, it is usually unnecessary to manually code interaction terms into these models.

Use the Most Appropriate Method, Not the Fanciest or the Most Accessible

Machine learning is one of the fastest-evolving fields in modern science and technology. We
expect clinical researchers to use cutting-edge methods for data analysis, but the solidity of the
biomedical science should take precedence over the novelty of the model used. Also, some R or
Python packages offer easy-to-implement functions or machine learning methods. We en-
courage authors to use those tools, but not at the expense of losing important information.

Example of improper model application: Authors find scikit-learn has an easy-to-access
function for categorical outcomes, so they dichotomize survival outcomes at a landmark
time point.

The above practice can have two potential drawbacks:

1. It discards the rich information on individual survival time contained in the survival data.
2. For censored individuals, exact event times are unknown. Simple dichotomizing may
introduce bias.

When dichotomizing survival outcomes at a landmark time point t (eg, 5-year overall survival),
survival status at time t is unknown for those with censored observations before time t.
Therefore, it is important to clarify how those patients were handled in the analysis. Removing
patients with censored observations from the analysis or assuming they were alive at t may lead
to biased results. We recommend using appropriate methods to handle the censored
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observations. For example, for evaluating a model to predict
survival status at 5 years from diagnosis, there are methods
that can accommodate censored observations such as an
inverse probability of censoring weighting (IPCW)-based
method’ or a time-dependent receiver operating charac-
teristic (ROC) method.® These methods can be implemented
using the PHREG procedure (option = IPCW) in SAS and the
survivalROC package in R.

Speaking of machine learning models, one of the most
trending topics in the field is deep learning, or artificial deep
neural networks (DNNs). DNNs use multiple layers to pro-
gressively extract high-level features from raw input.
However, for tabular data, DNNs might not be the most
suitable choice, and most biomedical data sets are tabular,
with each column representing a specific attribute, such as
blood pressure or age. Compared with other data types such
as raw text or images, tabular data are typically clearer but
more costly to gather. They also often have smaller sample
sizes, and certain data augmentation methods, such as
upsampling, are not applicable.

Previously, Shwartz-Ziv and Armon® performed a compar-
ative study of various machine learning techniques, in-
cluding DNNs, in their paper, “Tabular data: Deep learning is
not all you need.” The study concluded that XGBoost®
consistently outperformed deep models across different
data sets, even those used in papers proposing the deep
models. Apart from performance issues, Shwartz-Ziv and
Armon® noted that deep learning may require more fine-
tuning, as factors such as the number of layers, neurons in
each layer, and the choice of activation function will sig-
nificantly affect the results. Here, we want to point out that
although machine learning techniques generally prioritize
prediction over inference, some methods can provide in-
terpretable feature importance measures. For instance,
random forest provides a feature importance index that is
straightforward to interpret. These merits should be con-
sidered when deciding which model to use.

It is also important to note that complex machine learning
models, which have more parameters, often demand mod-
erate to large sample sizes. If your labeled data set is not
sufficient to train a deep neural network from scratch,
transfer learning could be a viable alternative, provided you
have access to a network pretrained on a large data set for a
similar task. This pretrained neural network should have the
same form of input. From another standpoint, we kindly ask

authors to share their trained neural networks as part of their
paper submission, which will serve as a springboard for
future researchers interested in transfer learning.

Machine Learning Model Does Not Guarantee
Superior Performance

Example of inferior machine learning model accuracy: Au-
thors used and reported both the Cox model and the
DeepSurv model for a survival data set, and Cox model has a
c-index of 0.75, higher than that of the DeepSurv (0.52).

Often, when people opt for machine learning models over
conventional statistical models, they exchange interpret-
ability for prediction accuracy. In the above example, the
DeepSurv** model performance index is worse than that of
conventional method, which suggests a failure in model
fitting. We provide a table of measurements of model fit as
well as conventional model to compare for different types
of outcomes (Table 1). Regardless of the method used
(whether a machine learning method or a conventional
statistical method), point estimates of model performance
measures should be reported with corresponding
(bootstrap) Cls.

Complex models are susceptible to overfitting, where the
trained model perfectly fits the provided data set but fails to
generalize to new data. Overfitting can be mitigated by using
cross-validation during model training. We recommend
having a separate test data set to avoid overestimating the
performance of the trained models.

Define the Comparison Groups and Time Zero in
Survival Analysis

When comparing survival probabilities between responder
and nonresponder groups, there are two possible analysis
populations—(1) all patients and (2) only patients who have
survived beyond a landmark time point, t. Regarding the
analysis population (1), a patient’s response status is un-
known at the start of treatment (ie, time zero of the survival
curves). Therefore, a comparison of survival probabilities
between two groups is subject to a so-called survival bias or
guaranteed time bias in favor of the responder group and
thus is potentially invalid. Although this issue has been
discussed in several tutorial papers a long time ago,*>'7 we
still see some manuscripts that do not appropriately handle
this issue.

TABLE 1. Conventional Models and Measures of Model Fit, Organized by Outcome Type

Outcome Type Conventional Model

Measurement Index

Continuous Linear regression Mean squared error, absolute prediction error
Binary Logistic regression c-index (ROC-AUC), accuracy, F1 score
Survival Cox regression c-index'?'®

Integrated Brier score'*

Abbreviation: ROC-AUC, area under the receiver operating characteristic curve.
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Example: Authors compared the survival probabilities be-
tween a group of patients who had adverse events and a
group of patients who did not. However, the starting time
point of the Kaplan-Meier curves in the analysis was the time
of treatment initiation, at which no patient’s adverse event
status can be determined.

In the example above, everyone starts as the negative group
(the nonresponder or nonadverse event group). We will
only know the group label later in the study. Patients in the
adverse event group must survive long enough for adverse
events to be evaluated. However, patients with poor sur-
vival prognoses who die early (eg, death due to disease) do
not have a chance to enter the adverse event group, which
may contribute to poor survival for the nonadverse event

group.

One of the alternatives would be a landmark analysis using
the analysis population (2). Although the analysis population
is restricted to a subset of the entire study population, a
comparison of survival time between the two groups (ie,
responders v nonresponders) will not be subject to survival
bias. The responder and nonresponder groups will be defined
on the basis of the response status information available at a
landmark time point, t. Another alternative would be a
method that considers response status (or adverse event
status) as a time-varying covariate.’®

Concluding Remarks and Guidance for Future Authors

The machine learning discussion of this brief commentary
paper mainly focuses on supervised learning, where data are
clearly labeled. Important problems related to unsupervised
learning and semisupervised learning are untouched in this
short commentary. Also, several important aspects of ma-
chine learning are not discussed, including the unintentional
bias introduced in artificial intelligence'® and patient privacy
protection.>® To summarize, we suggest the following when
using and reporting machine learning models:

1. Specify the model optimization goal.

2. Apply conventional statistical methods on your data to
ascertain whether the machine learning model truly offers
a predictive advantage.
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3. Elucidate your model structure. For instance, for DNN
models, indicate the number of layers in the model and the
number of neurons in each layer (can be in supplemental
materials).

4. Disclose training techniques used, such as dropout, batch
normalization, L1 or L2 normalization (can be in sup-
plemental materials).

From our review experience, we propose the following key
considerations for handling censored time-to-event data:

1. Opt for survival models that leverage the comprehensive
data available, rather than dichotomizing the outcomes. If
a survival outcome that is dichotomized at a landmark
time point (eg, 5-year overall survival) is of primary in-
terest, use an appropriate method that handles patients
whose survival status at the landmark time point is un-
known because of censoring.

2. Ensure fairness in comparison when the groups are de-
fined later in the study. To appropriately compare survival
between groups, make sure that the groups to be com-
pared are defined using the information available at the
starting time point of the survival curves (ie, time zero).

This paper outlines some common problems we observed
during the review process, and we hope it can serve as a guide
for future authors. To summarize, we offer these general
recommendations for data analysis in research:

1. Engage with statisticians or data scientists regularly.

2. For clinical studies, prioritize biomedical significance over
the novelty of data analysis methods.

3. Clearly document model inputs and sample size, possibly
through a table that summarizes predicting covariates,
specifying which are categorical and which are continuous.

4. Select models that effectively use all pertinent data,
avoiding the temptation to chase after new models.

5. Precisely define your outcome of interest, noting whether
it is continuous, categorical, or time-to-event.

6. Allocate a portion of your data as test data for validation
purposes to avoid overestimating the performance of the
derived model.

7. Share your model publicly on platforms such as GitHub.
Provide comprehensive details about input and outcome
variables, the model itself, and a thorough model
description.
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