

Expanding the Reach of Personalized Medicine in Cancer Care: Current Progress and Future Directions of *JCO Precision Oncology*

Yushu Shi, PhD¹ ; J. Bryan Iorgulescu, MD² ; Stephanie Valladao, MA³; and Danielle F. Atibalentja, MD, PhD⁴

DOI <https://doi.org/10.1200/PO.24.00068>

Tumor genomics and biomarkers are increasingly becoming critical parts of routine clinical care for patients with many cancer types. With these advances also comes a unique challenge to distill these complex and wide-ranging data points into actionable clinical information, so as to expand the reach and benefits of precision medicine to a diverse patient population. To help address the growing need for high-quality research in precision oncology, ASCO introduced the *JCO Precision Oncology* (*JCO PO*) journal in 2016.¹ *JCO PO* strives to meet the growing needs of the precision oncology field. Its mission is to publish quality work that pushes boundaries, expands the field's understanding of cancer genomics, and facilitates the translation of this knowledge into effective cancer therapies.

Since its inception, *JCO PO* has provided an online-only platform for advancing precision oncology research across several peer-reviewed article categories: original reports, evidence-based case reports, expert commentaries, reviews, special issues, and molecular tumor board discussions. Together, these resources are helping to expand the promise and usefulness of genomic-based data in the clinical setting, as reflected by *JCO PO*'s 2022 impact factor of 4.6 (Clarivate).

We (Y.S., J.B.I., and D.F.A.) had the privilege of serving as ASCO Journals Editorial Fellows at *JCO PO*. In this editorial, we build on our experience at *JCO PO* to summarize the historical publication trends of *JCO PO* from 2017 to 2022 and use these data to provide prospective authors with a framework for future research that fits in *JCO PO*'s scope (Fig 1). The opinions shared in this editorial are our own.

TRENDS IN THE IMPACT OF *JCO PO* PUBLICATIONS

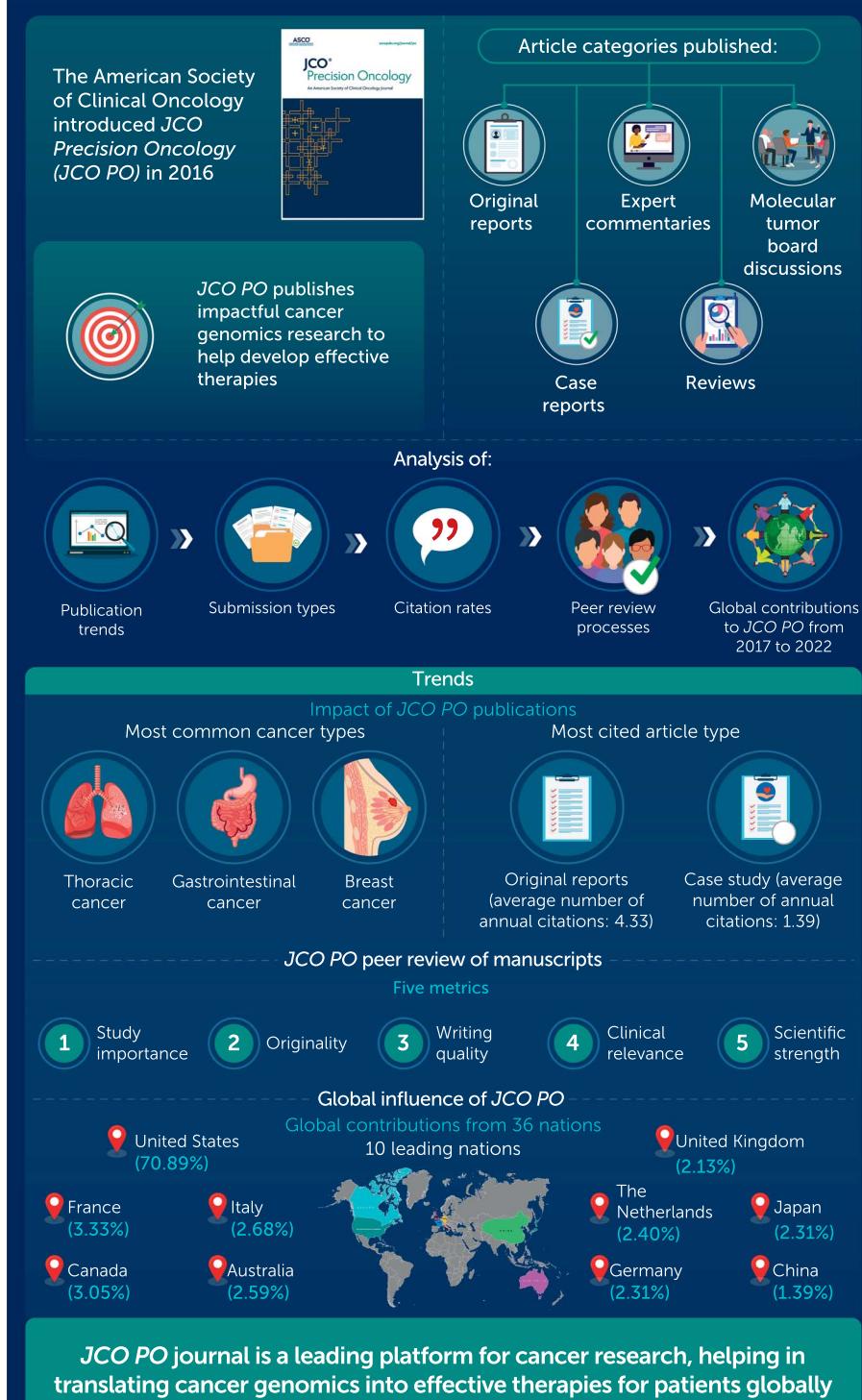
The first issue of *JCO PO* was published in February of 2017. Since then, original reports and case studies have represented the bulk of published content, with a steady increase in submissions annually (Appendix Figs A1A–A1B). Thoracic, GI, and breast cancers were the most common cancer types, as classified by authors at submission. Examination of the most highly cited papers as of 2022 indicated that original reports were the more highly cited article type, with the average number of annual citations for original reports of 4.33 compared with 1.39 for case reports—confirming an increased impact of original reports. To help illustrate the type of research at *JCO PO* that has the broadest impact, in Table 1, we list the most cited publications at *JCO PO* (Table 1, Appendix Tables A1–A2). In general, topics addressed in *JCO PO* have ranged in focus from clinical research (eg, mechanistic studies, basket clinical trials, and exceptional therapeutic response case reports) to expert commentaries, editorials, and reviews, including those that challenge current paradigms or discuss the use and value of genomic analysis in studies of targeted therapies.

TRENDS IN *JCO PO* PEER REVIEW OF MANUSCRIPTS

Manuscript submissions for most article types undergo rigorous peer review at *JCO PO*. Under the guidance of *JCO PO*'s editors during the review process, reviewers are asked to critically appraise a manuscript on the basis of the following five metrics: importance of study, originality, quality of writing, relevance to clinical practice, and scientific strength. Ratings from 1–5 are assigned in each metric, with 1 and 5 being the lowest and highest ratings, respectively. To better understand what features are shared by successful publications at *JCO PO*—and which might help guide readers in their future submissions—we compared reviewer rating scores

ACCOMPANYING CONTENT

Appendix


Accepted March 22, 2024

Published May 30, 2024

JCO Precis Oncol 8:e2400068

© 2024 by American Society of Clinical Oncology

JCO Precision Oncology: Trends in Publication Impact, Peer Review, and Global Influence

Expanding the Reach of Personalized Medicine in Cancer Care: Current Progress and Future Directions of *JCO Precision Oncology*

Shi et al. (2024) | *JCO Precision Oncology* | DOI: 10.1200/PO.24.00068

JCO® Precision Oncology
An American Society of Clinical Oncology Journal

FIG 1. Schematic summary of JCO PO publication trends and impact.

TABLE 1. The Top 10 Cited Articles Published by *JCO PO*

Authors	Article Title	Citations	Published Year
Bonneville et al ³	Landscape of Microsatellite Instability Across 39 Cancer Types	605	2017
Chakravarty et al ⁴	OncoKB: A Precision Oncology Knowledge Base	496	2017
Heeke et al ⁵	Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types	194	2018
Okamura et al ⁶	Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics	178	2018
Middha et al ⁷	Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data	201	2017
Abida et al ⁸	Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making	184	2017
Antonarakis et al ⁹	CDK12-Altered Prostate Cancer: Clinical Features and Therapeutic Outcomes to Standard Systemic Therapies, Poly (ADP-Ribose) Polymerase Inhibitors, and PD-1 Inhibitors	88	2020
Shroff et al ¹⁰	Rucaparib Monotherapy in Patients with Pancreatic Cancer and a Known deleterious BRCA Mutation	122	2018
Stetson et al ¹¹	Orthogonal Comparison of Four Plasma NGS Tests with Tumor Suggests Technical Factors are a Major Source of Assay Discordance	99	2019
Farago et al ¹²	Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion	109	2018

between accepted and rejected manuscripts. As expected, accepted manuscripts (both original and case reports) consistently outperformed rejected manuscripts in all five metrics (Appendix Fig A2), displaying a median score >3.5 in all metrics. No single metric distinguished manuscripts that were accepted from those that were rejected, emphasizing the importance of considering all five metrics in the development of manuscripts for *JCO PO*.

TRENDS IN THE GLOBAL INFLUENCE OF *JCO PO*

The global reach of *JCO PO* has seen a steady increase since the first year of circulation. Altogether, *JCO PO* has accepted manuscripts from a total of 36 nations, as measured by the country where the corresponding author's institution is located. The leading 10 nations contributing publications to *JCO PO* included the United States (767, 70.89%), France (36, 3.33%), Canada (33, 3.05%), Italy (29, 2.68%), Australia (28, 2.59%), the Netherlands (26, 2.40%), Germany (25, 2.31%), Japan (25, 2.31%), the United Kingdom (23, 2.13%), and China (25, 1.39%). In general, we note an upward trajectory in global collaborations among authors submitting to *JCO PO*. Since 2016, the proportion of papers from authors spanning multiple countries has more than doubled from 12.5% in 2016 to 26.5% in 2022. These trends reflect *JCO PO*'s ongoing commitment to engaging with the precision oncology community globally, while highlighting opportunities for authors from across the world to submit their research to *JCO PO*.

LOOKING FORWARD AT *JCO PO* AND GUIDANCE FOR PROSPECTIVE AUTHORS

Above, we conducted an analysis of *JCO PO* publication trends spanning 6 years from 2017 to 2022. Our analysis revealed a few general themes that we hope can serve as a guide to potential authors. Across both original research and case reports, successful submissions were those that had a

translational focus, providing a mechanistic understanding of tumor biology, and using cancer genomics to inform clinical decision making. Although *JCO PO* recognizes the value contributed by clinically informative n-of-1 reports that describe a novel finding with the potential to change practice or stimulate wider studies (ie, new mechanisms of resistance, adverse effects, or exceptional response to biomarker-targeted therapies), *JCO PO* emphasizes the importance of supporting those observations with robust data, investigation of the underlying mechanism, and adherence to proper protection of patients' identity and autonomy. Of note, n-of-1 exceptional therapeutic response to a biomarker-targeted therapy is, by itself, often insufficient for publication in *JCO PO*. Successful case reports expanded beyond an n-of-1 to examine the phenomenon in multiple patients, including across institutions, and/or supported their clinical observations with mechanistic confirmation in vitro or in preclinical models.

As the field of precision oncology advances, the scope of *JCO PO* continues to expand. For instance, our analysis identified several research topics that are currently underrepresented at *JCO PO*, but which are growing areas of interest at *JCO PO* (Appendix Tables A3-A5), including pediatric oncology, sarcomas, ethics, trial methodology, informatics and computational approaches, and statistical methods, as they relate to precision oncology. There is also an increasing recognition of the crucial roles played by germline genetics, pharmacogenetics, molecular diagnostics, and molecular epidemiology of cancer in precision oncology—which are valued topics at *JCO PO* (Appendix Table A5). To help address these gaps in the precision oncology literature, the *JCO PO* has introduced innovative Special Series issues, dedicated to timely topics that affect all of precision oncology (eg, Equity in Precision Medicine, Statistical Methods for Precision Oncology, and Next Generation Sequencing), as well as the Molecular Tumor Board Case Discussion Series article type to

illustrate real-world examples of how to put precision oncology into clinical practice.²

Beyond the practice of precision oncology, we encourage authors to submit their research and correspondence about approaches for assessing the value of precision oncology, patients' access (or barriers) to precision oncology, the design of support systems for precision oncology, and critical appraisal of where precision oncology may be underdelivering on its promises. Precision oncology is ever evolving, and we advocate for submissions that examine how current health economics and the regulatory environment shape precision oncology's development and availability to patients globally.

AFFILIATIONS

¹Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York City, NY

²Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX

³American Society of Clinical Oncology, Alexandria, VA

⁴Department of Medicine, Division of Oncology, Stanford University, School of Medicine, Palo Alto, CA

CORRESPONDING AUTHOR

Danielle F. Atibalentja, MD, PhD; e-mail: dfatibal@stanford.edu.

EQUAL CONTRIBUTION

Y.S., J.B.I., S.V., and D.F.A. contributed equally to this work.

AUTHOR CONTRIBUTIONS

Conception and design: All authors

Collection and assembly of data: J. Bryan Iorgulescu, Stephanie Valladao

Data analysis and interpretation: Yushu Shi, J. Bryan Iorgulescu, Stephanie Valladao, Danielle F. Atibalentja

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

REFERENCES

1. Ford JM: Precision Oncology: A new forum for an emerging field. *JCO Precis Oncol* **10.1200/PO.16.00048**
2. Ford JM: Introducing the *JCO Precision Oncology* molecular tumor board case discussion series. *JCO Precis Oncol* **10.1200/PO.17.00310**
3. Bonneville R, Krook MA, Kautto EA, et al: Landscape of microsatellite instability across 39 cancer types. *JCO Precis Oncol* **10.1200/PO.17.00073**
4. Chakravarty D, Gao J, Phillips S, et al: OncoKB: A precision oncology knowledge base. *JCO Precis Oncol* **10.1200/PO.17.00011**
5. Heeke AL, Pishvaian MJ, Lynce F, et al: Prevalence of homologous recombination-related gene mutations across multiple cancer types. *JCO Precis Oncol* **10.1200/PO.17.00286**
6. Okamura R, Boichard A, Kato S, et al: Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: Implications for NTRK-targeted therapeutics. *JCO Precis Oncol* **10.1200/PO.18.00183**
7. Middha S, Zhang L, Nafa K, et al: Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. *JCO Precis Oncol* **10.1200/PO.17.00084**
8. Abida W, Armenia J, Gopalan A, et al: Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. *JCO Precis Oncol* **10.1200/PO.17.00029**
9. Antonarakis ES, Isaacsson Velho P, Fu W, et al: CDK12-altered prostate cancer: Clinical features and therapeutic outcomes to standard systemic therapies, poly (ADP-Ribose) polymerase inhibitors, and PD-1 inhibitors. *JCO Precis Oncol* **10.1200/PO.19.00399**
10. Shroff RT, Hendifar A, McWilliams RR, et al: Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. *JCO Precis Oncol* **10.1200/PO.17.00316**
11. Stetson D, Ahmed A, Xu X, et al: Orthogonal comparison of four plasma NGS tests with tumor suggests technical factors are a major source of assay discordance. *JCO Precis Oncol* **10.1200/PO.18.00191**
12. Farago AF, Taylor MS, Doebele RC, et al: Clinicopathologic features of non-small-cell lung cancer harboring an NTRK gene fusion. *JCO Precis Oncol* **10.1200/PO.18.00037**
13. Sokol ES, Pavlick D, Khiabanian H, et al: Pan-cancer analysis of BRCA1 and BRCA2 genomic alterations and their association with genomic instability as measured by genome-wide loss of heterozygosity. *JCO Precis Oncol* **10.1200/PO.19.00345**
14. Offin M, Guo R, Wu S, et al: Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. *JCO Precis Oncol* **10.1200/PO.18.00386**
15. Offin M, Somwar R, Rekhtman N, et al: Acquired ALK and RET gene fusions as mechanisms of resistance to osimertinib in EGFR-mutant lung cancers. *JCO Precis Oncol* **10.1200/PO.18.00126**

In the coming years, we envision that the *JCO PO* community will continue to be at the forefront of precision oncology, as it seeks to help expand the application and benefits of precision oncology to an increasingly diverse patient population. Our analysis reveals that, in partnership with its authors and readership, *JCO PO* has been making considerable strides toward this goal. By providing some insight into the history and future directions of *JCO PO*—on the basis of our experience as ASCO Journals Editorial Fellows—we hope to provide the readership with a useful guide as they develop their precision oncology projects and search for an influential journal with a complementary scope.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians ([Open Payments](#)).

Yushu Shi

This author is a member of the *JCO Precision Oncology* Editorial Board. Journal policy recused the author from having any role in the peer review of this manuscript.

J. Bryan Iorgulescu

Consulting or Advisory Role: AstraZeneca

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT

The authors are grateful to Dr Rodrigo Dentsmann for helpful discussions and guidance regarding the content of this editorial.

16. Ortiz MV, Gerdemann U, Raju SG, et al: Activity of the highly specific RET inhibitor selpercatinib (LOXO-292) in pediatric patients with tumors harboring RET gene alterations. *JCO Precis Oncol* [10.1200/PO.19.00401](https://doi.org/10.1200/PO.19.00401)
17. Suzawa K, Offin M, Schoenfeld AJ, et al: Acquired MET exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR-mutated lung cancer. *JCO Precis Oncol* [10.1200/PO.19.00011](https://doi.org/10.1200/PO.19.00011)
18. Batalini F, Moulder SL, Winer EP, et al: Response of brain metastases from PIK3CA-mutant breast cancer to alpelisib. *JCO Precis Oncol* [10.1200/PO.19.00403](https://doi.org/10.1200/PO.19.00403)
19. Dunn IF, Du Z, Mehdi Touat, et al: Mismatch repair deficiency in high-grade meningioma: A rare but recurrent event associated with dramatic immune activation and clinical response to PD-1 blockade. *JCO Precis Oncol* [10.1200/PO.18.00190](https://doi.org/10.1200/PO.18.00190)
20. Silberman R, Steiner DF, Lo AA, et al: complete and prolonged response to immune checkpoint blockade in POLE-mutated colorectal cancer. *JCO Precis Oncol* [10.1200/PO.18.0021](https://doi.org/10.1200/PO.18.0021)
21. Carneiro BA, Collier KA, Nagy RJ, et al: Acquired resistance to poly (ADP-ribose) polymerase inhibitor olaparib in BRCA2-associated prostate cancer resulting from biallelic BRCA2 reversion mutations restores both germline and somatic loss-of-function mutations. *JCO Precis Oncol* [10.1200/PO.17.00176](https://doi.org/10.1200/PO.17.00176)
22. Rüschoff JH, Gradhand E, Kahraman A, et al: STRN-ALK rearranged malignant peritoneal mesothelioma with dramatic response following ceritinib treatment. *JCO Precis Oncol* [10.1200/PO.19.00048](https://doi.org/10.1200/PO.19.00048)
23. Pishvaian MJ, Garrido-Laguna I, Liu SV, et al: Entrectinib in TRK and ROS1 fusion-positive metastatic pancreatic cancer. *JCO Precis Oncol* [10.1200/PO.18.00039](https://doi.org/10.1200/PO.18.00039)

APPENDIX 1. DESCRIPTION OF STATISTICAL ANALYSIS

Section 1. Publication Trends At *JCO PO*

Section 2. Trends in the Impact of *JCO PO* Publications

Our analysis is limited to publications before the year 2022, as academic papers typically require a certain duration to garner attention and citations. Appendix Tables A1 and A2 show that most cited original reports contribute more citations than most cited case reports. The average number of citations for original reports each year is 4.33, while the average number of citations for case reports is 1.39. The mean number of citations per year stands at 3.01.

We undertook an investigation into the correlation between Altmetric scores and citation counts. The Pearson correlation coefficients between Altmetric scores and the number of citations is 0.212 for original research reports, 0.270 for case reports, and 0.222 across all types of publications. It is worth noting that the correlations between Altmetric scores and citation counts are not particularly strong.

Section 3. Trends in *JCO PO* Peer Review of Manuscripts

When evaluating an article, reviewers are asked to provide a score from 1 to 5, with 5 denoting the highest rating for the following five categories: importance of study,

originality, quality of writing, relevance to clinical practice, and scientific strength. In cases where an attribute does not pertain to an article, or if the reviewer is unable to assess a specific element, they are free to designate NA.

We analyzed the assigned scores by taking averages from multiple revisions of each paper and disregarding NA values. In comparing rejected and accepted papers, the *P* values were found to be $<.0001$ for all five ratings using the Mann-Whitney test. Further details are depicted in the box plot of Appendix Figure A2. Accepted papers have median scores >3.5 in all aspects.

Section 4: Trends in the Classifications of Manuscripts At *JCO PO*

Article classifications at the time of manuscript submission are generally used to match manuscripts with the appropriate editors and reviewers for assessment. Choosing classifications is a multistep process. Authors are first prompted to select broad categories that describe their study. Subsequently, they are asked to select a subcategory that most accurately describes their study. In Appendix Table A3, genomics-driven tumor treatments and molecularly selected targeted therapy are two options available in the first step of choosing classifications. Thus, a caveat to this analysis is that the results may simply reflect the menu of available choices and the order in which classifications are presented to authors.

TABLE A1. The Top 10 Cited Original Research Articles Published by *JCO PO*

Authors	Article Title	Citations	Published Year
Bonneville et al ³	Landscape of Microsatellite Instability Across 39 Cancer Types	605	2017
Heeke et al ⁵	Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types	194	2018
Okamura et al ⁶	Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics	178	2018
Middha et al ⁷	Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data	201	2017
Abida et al ⁸	Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making	184	2017
Antonarakis et al ⁹	CDK12-Altered Prostate Cancer: Clinical Features and Therapeutic Outcomes to Standard Systemic Therapies, Poly (ADP-Ribose) Polymerase Inhibitors, and PD-1 Inhibitors	88	2020
Shroff et al ¹⁰	Rucaparib Monotherapy in Patients with Pancreatic Cancer and a Known Deleterious BRCA Mutation	122	2018
Stetson et al ¹¹	Orthogonal Comparison of Four Plasma NGS Tests with Tumor Suggests Technical Factors are a Major Source of Assay Discordance	99	2019
Farago et al ¹²	Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion	109	2018
Sokol et al ¹³	Pan-Cancer Analysis of BRCA1 and BRCA2 Genomic Alterations and Their Association with Genomic Instability as Measured by Genome-Wide Loss of Heterozygosity	62	2020

TABLE A2. The Top 10 Cited Case Report Articles Published by *JCO PO*

Authors	Article Title	Citations	Published Year
Offin et al ¹⁴	Immunophenotype and Response to Immunotherapy of RET-Rearranged Lung Cancers	59	2019
Offin et al ¹⁵	Acquired ALK and RET Gene Fusions as Mechanisms of Resistance to Osimertinib in EGFR-Mutant Lung Cancers	60	2018
Ortiz et al ¹⁶	Activity of the Highly Specific RET Inhibitor Selpercatinib (LOXO-292) in Pediatric Patients With Tumors Harboring RET Gene Alterations	26	2020
Suzawa et al ¹⁷	Acquired MET Exon 14 Alteration Drives Secondary Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in EGFR-Mutated Lung Cancer	33	2019
Batalini et al ¹⁸	Response of Brain Metastases From PIK3CA-Mutant Breast Cancer to Alpelisib	23	2020
Dunn et al ¹⁹	Mismatch Repair Deficiency in High-Grade Meningioma: A Rare but Recurrent Event Associated With Dramatic Immune Activation and Clinical Response to PD-1 Blockade	30	2018
Silberman et al ²⁰	Complete and Prolonged Response to Immune Checkpoint Blockade in POLE-Mutated Colorectal Cancer	23	2019
Carneiro et al ²¹	Acquired Resistance to Poly (ADP-ribose) Polymerase Inhibitor Olaparib in BRCA2-Associated Prostate Cancer Resulting from Biallelic BRCA2 Reversion Mutations Restores Both Germline and Somatic Loss-of-Function Mutations	30	2018
Ruschhoff et al ²²	STRN-ALK Rearranged Malignant Peritoneal Mesothelioma with Dramatic Response Following Ceritinib Treatment	22	2019
Pishvaian et al ²³	Entrectinib in TRK and ROS1 Fusion-Positive Metastatic Pancreatic Cancer	27	2018

TABLE A3. Top 10 Most Identified Classifications by Authors

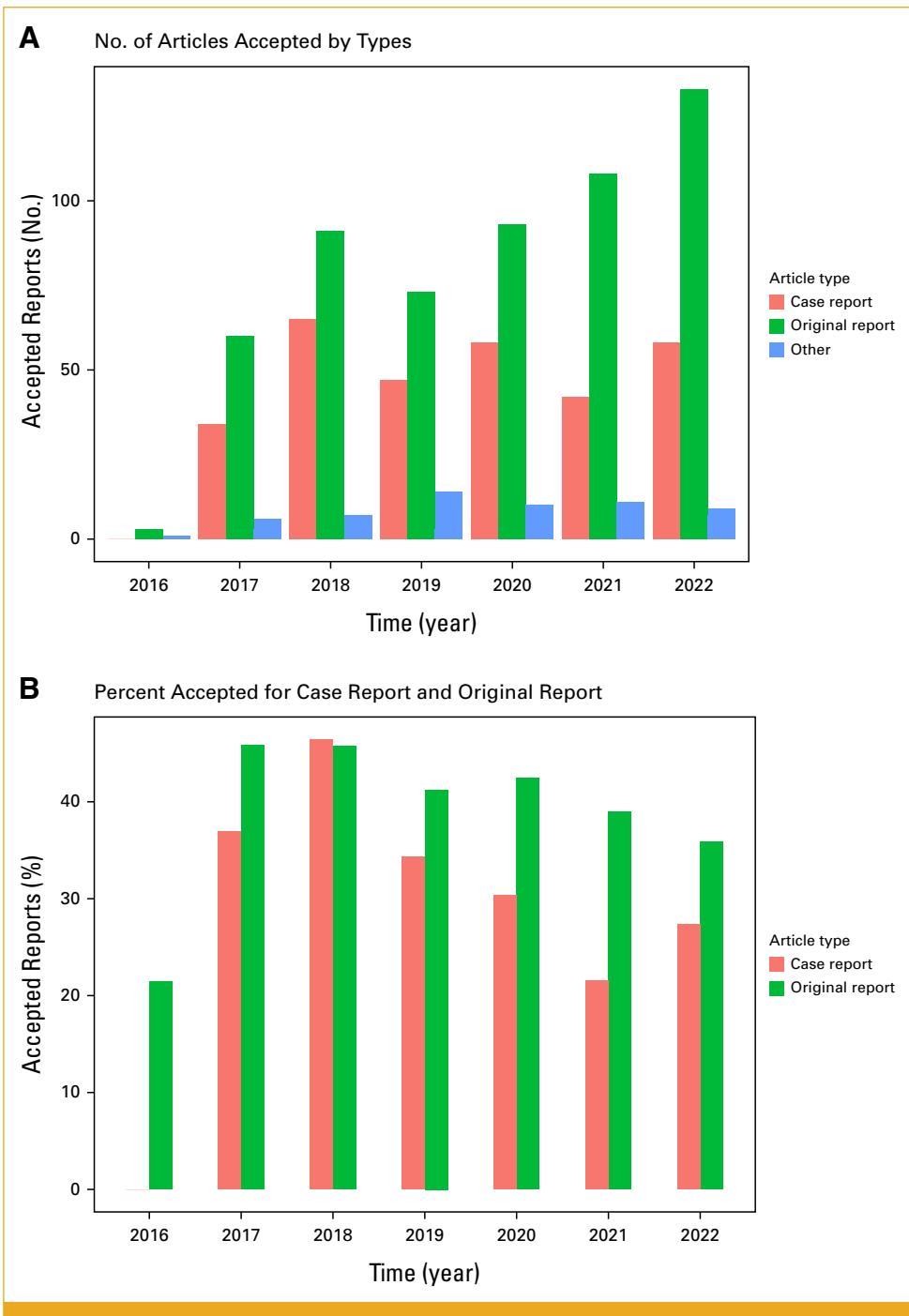

Classification	No. of Papers Submitted	Percentage Among the No. of Papers Submitted
Genomics-driven tumor treatments	1,309	44.25
Molecularly selected targeted therapy	1,286	43.48
Translational oncology	1,182	39.96
Cancer biomarkers	691	23.36
Thoracic oncology	398	13.46
GI cancer	340	11.49
Gene expression and profiling	287	9.7
Biostatistics and clinical trial methodology	241	8.15
Epidemiology, cancer prevention, and control	211	7.13
Breast cancer	198	6.69

TABLE A4. Top 10 Topics of the Papers Accepted and the Percentage Among the Total Number of Papers Accepted

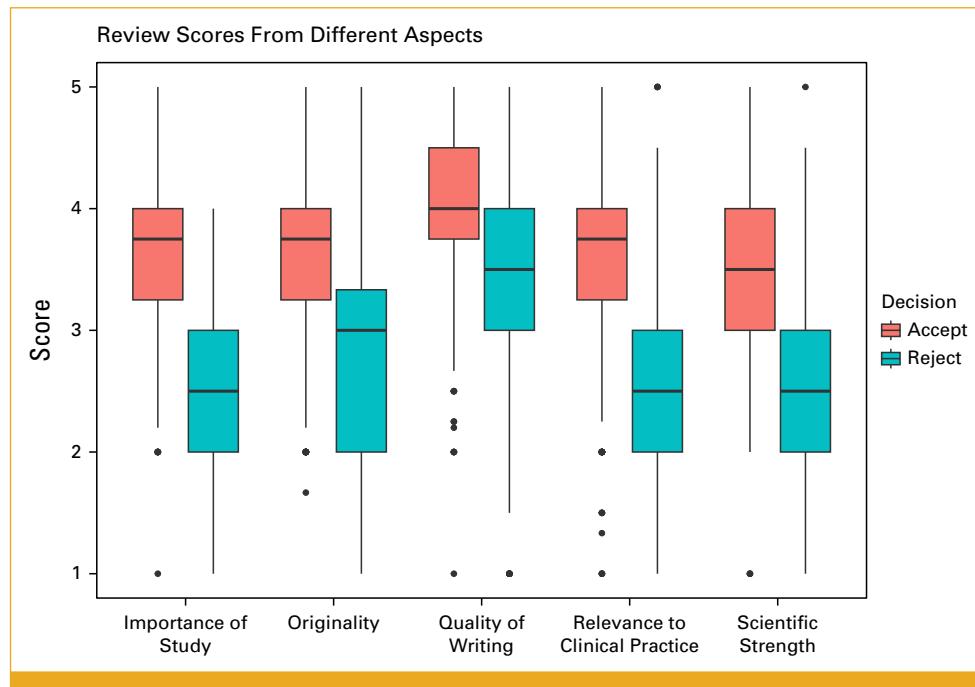

Classification	No. of Papers Accepted	Percentage Among the No. of Papers Accepted
Genomics-driven tumor treatments	474	42.97
Molecularly selected targeted therapy	452	40.98
Translational oncology	415	37.62
Cancer biomarkers	263	23.84
Thoracic oncology	133	12.06
GI cancer	121	10.97
Gene expression and profiling	96	8.7
Breast cancer	90	8.16
Biostatistics and clinical trial methodology	82	7.43
Epidemiology, cancer prevention, and control	72	6.53

TABLE A5. Top 10 Subjects With the Highest Acceptance Rate

Article Subject	No. of Papers Submitted	Success Rate (%)
Bayesian	14	58.33
Pediatric oncology	67	54.47
Basket trials	19	54.29
Ethics	8	53.33
Clinical trials	52	51.49
Genetic epidemiology	44	45.83
Breast cancer	90	45.45
Sarcomas	52	45.22
Cancer etiology	27	43.55
Germline genetic testing	56	43.41

FIG A1. Analysis of articles accepted by *JCO PO* over time, as categorized by article type. The number of papers accepted has been increasing each year, but the acceptance rate has been showing a decreasing trend, which may reflect increased stringency for article quality. Note: submissions started September 2016 and the first issue was published in February of 2017. (A) Number of articles and (B) percent of articles.

FIG A2. Box plot of the review ratings from five metrics for accepted and rejected papers.