

1 Rethinking large scale phylogenomics with EukPhylo v1.0, a flexible toolkit to enable
2 phylogeny-informed data curation and analyses of diverse eukaryotic lineages

3

4 **Running title:** Large scale phylogenomics with EukPhylo for analyses of diverse eukaryotes

5

6

7 Laura A. Katz^{1,2*#}, Auden Cote-L'Heureux^{1**}, Marie Leleu^{1*}, Godwin Ani^{1,2}, Rebecca Gawron¹

8

9

10

11 *Authors contributed equally.

12

13

14

15

16

17 ¹ Department of Biological Sciences, Smith College, Northampton, Massachusetts, United
18 States of America

19 ² Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst,
20 Massachusetts, United States of America

21

22 *Current Address: Department of Mathematics and Statistics, University of Massachusetts
23 Amherst, Amherst, Massachusetts, United States of America

24

25 # Corresponding author: Laura A. Katz; lkatz@smith.edu

26

27

28

29 **ABSTRACT**

30 Eukaryotic diversity is largely microbial, with macroscopic lineages (plant, animals and fungi)
31 nesting among a plethora of diverse protists. Understanding the evolutionary relationships
32 among eukaryotes is rapidly advancing through 'omics analyses, but phylogenomics are
33 challenging for microeukaryotes, particularly uncultivable lineages, as single-cell sequencing
34 approaches generate a mixture of sequences from hosts, associated microbiomes, and
35 contaminants. Moreover, many analyses of eukaryotic gene families and phylogenies rely on
36 boutique datasets and methods that are challenging for other research groups to replicate. To
37 address these challenges, we present EukPhylo v1.0, a modular, user-friendly pipeline that
38 enables effective data curation through phylogeny-informed contamination removal, estimation
39 of homologous gene families (GFs), and generation of both multisequence alignments and gene
40 trees. For GF assignment, we provide the 'Hook Database' of ~15,000 ancient GFs, which users
41 can easily replace with a set of gene families of interest. We demonstrate the power of
42 EukPhylo, including a suite of stand-alone utilities, through phylogenomic analyses of 500
43 conserved GFs sampled from 1,000 diverse species of eukaryotes, bacteria and archaea. We
44 show improvements in estimates of the eukaryotic tree of life, recovering clades that are well
45 established in the literature, through successive rounds of curation using the EukPhylo
46 contamination loop. The final trees corroborate numerous hypotheses in the literature (e.g.
47 Opisthokonta, Rhizaria, Amoebozoa) while challenging others (e.g. CRuMs, Obazoa,
48 Diaphoretickes). The flexibility and transparency of EukPhylo sets new standards for curation of
49 'omics data for future studies.

50

51

52

53

54

55 **IMPORTANCE**

56 Illuminating the diversity of microbial lineages is essential for estimating the tree of life and
57 characterizing principles of genome evolution. However, analyses of microbial eukaryotes (e.g.
58 flagellates, amoebae) are complicated by both the paucity of reference genomes and the
59 prevalence of contamination (e.g. by symbionts, microbiomes). EukPhylo v1.0 enables
60 taxon-rich analyses 'on the fly' as users can choose optimal gene families for their focal taxa,
61 and then use replicable approaches to curate data in estimating both gene and species trees.
62 With multiple entry points and curated datasets from up to 15,000 gene families from 1,000 taxa
63 ready for use, EukPhylo provides a powerful launching point for researchers interested in the
64 evolution of eukaryotes.

65 Introduction

66

67 Most of our knowledge about the nature and evolution of eukaryotic life has emerged from
68 studies of macroscopic organisms, with a focus on 'model' lineages such as *Drosophila* and
69 *Arabidopsis*. However, such models represent relatively narrow slices of the eukaryotic tree of
70 life (EToL) as the bulk of eukaryotic diversity is microbial (e.g. 1, 2). Insights from microbial
71 eukaryotes (a.k.a. protists) expand our understanding of the 'rules' of evolution by their
72 tremendous diversity of morphologies, life cycles and genome properties (3, 4). The gap in
73 knowledge about microbial eukaryotes can be most efficiently filled through taxon-rich
74 phylogenomic analysis methods. However, current practices often rely on boutique datasets and
75 decisions (e.g. in removing contaminants and identifying orthologs) that lack independence and
76 can be challenging to replicate (e.g. 2, 5–7). To address these challenges, we developed
77 EukPhylo v1.0, a flexible phylogenomic pipeline designed for replicable analyses of diverse
78 eukaryotes. EukPhylo includes curated datasets from diverse lineages, a workflow to process
79 omics data and to deploy phylogeny-informed contamination removal, and a suite of utilities to
80 enable efficient estimation of gene families and phylogenies.

81

82 Phylogenomic inference faces numerous challenges, including incongruence among loci, long
83 branch attraction (8, 9), and lateral gene transfer, which confounds inferences (10). These
84 issues are especially prevalent in microeukaryotes, where whole genome assemblies are still
85 rare; moreover, many microeukaryotes possess their own microbiome, often resulting in high
86 levels of contamination in transcriptomic samples. Such incongruences lead to conflicting and
87 often spurious tree topologies that can be mitigated by careful selection of taxa and thorough
88 curation of data (11, 12). Another issue that is exacerbated for studies of diverse eukaryotes is
89 the frequent reuse of gene families, and even orthologs in concatenated analyses (e.g. 13–16),
90 as this violates the assumption of independence that lies at the heart of phylogenetics (17–19).
91 The EukPhylo pipeline addresses this non-independence by allowing users to select from our
92 database of ~15,000 conserved gene families and then to automate ortholog selection for
93 concatenation.

94

95 The recent increase in molecular data and bioinformatic methods has spurred the creation of
96 numerous pipelines to infer homology, multisequence alignments (MSAs), gene trees and
97 species-level phylogenies (e.g. 20–23). These phylogenomic tools differ in their intentions,
98 allowed inputs (e.g. GenBank vs. user-generated data), and intended outputs (e.g. MSAs,
99 trees); yet few include the type of curation needed for analyses of data from microbial
100 eukaryotes given issues with contamination (i.e. from microbiomes and environmental
101 sequences). The first step of many pipelines is to collect homologous sequences, which can be
102 gathered directly from public databases such as GenBank (24), Pfam (25), or OrthoDB (26).
103 Many recent pipelines rely solely on BLAST (27) or other similarity-searching algorithms (e.g.
104 USearch (28), VSearch (29), and Diamond (30)) to infer homology. However, BLAST is based
105 on similarity only and does not take into account biological relationships (31), and further
106 processing is necessary to confidently establish the source of sequences as well as homology.
107

108

109 Phylogenomic pipelines generally include a multi-sequence alignment (MSA) step, which can be
110 challenging when dealing with data from diverse eukaryotes that span ~1.8 billion years of
111 evolution (32). For the subsequent estimation of species trees, recent phylogenomic
112 approaches include methods that use gene trees as inputs in inferring species-level
113 relationships (33). Such methods have been used for projects like the Open Tree of Life (34),
114 and in studies of plants (35), animals (36) and viruses (37). An example of pipelines that follow
115 these general steps is NovelTree, which performs homology assessment and gene tree
116 construction, though it only accepts protein sequences as input data (20). Other examples that
117 accept nucleotide sequences are PhyloTa (23), which focuses on homologous identification and
118 collection, and Sumac (22), which focuses on supermatrix building. PhyloFisher is a pipeline
119 that allows users to add new data to a manually curated set of 204 genes that have been used
120 in estimating eukaryotic relationships, but it does not enable *de novo* (aka 'on the fly')
121 exploration of contaminants, sequence statistics, or alternative gene families (38).

122

123 The importance of a taxon-rich dataset for estimating phylogeny accurately is well established
124 (39, 40), and adding diverse lineages (e.g. taxonomic position, rates of evolution, levels of
125 missing data) can improve estimates of species relationships (41–44). However, even recent
126 estimates of the EToL rely on relatively few taxa (e.g. 234 taxa in Burki et al., (45), 186 taxa in Al
127 Jewari & Baldauf (46), 158 taxa in Cerón-Romero et al., (47) and 109 taxa in Strassert et al.,
128 (48)), and many groups now resample the same genes/data matrix in generating species trees
129 (15, e.g. 45, 48, 49). The availability of user-friendly tools that facilitate the parallel processing of
130 large numbers of taxa, therefore, has the power to increase the accuracy of large-scale
131 estimates of eukaryotic phylogeny.

132

133 Here we present EukPhylo version 1.0, a phylogenomics pipeline that supports taxon-rich
134 analyses of gene families and gene trees through extensive data curation, and that includes a
135 suite of stand-alone tools plus curated databases. EukPhylo, parts of which are based on a
136 pre-existing pipeline PhyloToL (50, 51), includes two main components, which we refer to as
137 EukPhylo parts 1 and 2. EukPhylo part 1 takes input sequences from whole genome or
138 transcriptome assemblies, applies several curation steps, and provides initial homology
139 assessment against a customizable database of reference sequences to assign GFs. EukPhylo
140 part 1 outputs curated coding sequences with gene families assigned, as well as a dataset of
141 descriptive statistics for each input sample. EukPhylo part 2 is highly modular: for a given
142 selection of taxa and GFs, it stringently assesses homology and produces MSAs by iterating the
143 external tool Guidance (52, 53). From MSAs, EukPhylo part 2 builds gene trees, and then
144 includes an innovative workflow for tree topology-based contamination removal.

145

146 In addition to presenting the core pipeline, we describe the results of an example analysis of
147 500 conserved GFs from 1,000 taxa, demonstrating how EukPhylo allows users to explore how
148 varying gene sets, taxon sets, or criteria for contamination removal lead to different biological
149 inferences (e.g. differentiating host vs. contaminant material, phylogeny). To this end, we
150 provide a suite of stand-alone tools that describe tree topologies, and demonstrate the
151 effectiveness of our novel tree-based contamination removal methods in improving tree

152 topologies by assessing the monophyly of clades (e.g. ciliates, dinoflagellates, metazoa)
153 supported by robust synapomorphies as well as larger taxa (e.g. Amoebozoa, Archaeplastida,
154 Opisthokonta, SAR).

155

156 Results

157 We divide our results into three sections: 1) a broad overview of EukPhylo v1.0; 2) a section on
158 performance of the core pipeline that focuses on the power of the approach through a
159 description of part 1 (gene family assignment), part 2 (MSAs and single-gene trees) and utilities;
160 and 3) a section on the performance of the contamination loop accompanied by a case study of
161 phylogenomic analyses of 1000 diverse species and 500 genes for which we build species trees
162 at each of four stages of the contamination loop. For the latter, our intent is to emphasize the
163 power and transparency (i.e. in recording ‘rules’ and retaining removed sequences) of EukPhylo
164 for analyzing complex data generated for uncultivable microbial eukaryotes.

165

166 Overview: The pipeline and accompanying scripts

167 EukPhylo v1.0 is a flexible and modular pipeline that enables efficient phylogenomic analysis of
168 eukaryotes and includes phylogeny-informed curation of ‘omics’ data. Compared to its
169 predecessor PhyloToL (50, 51), EukPhylo v1: streamlines the workflow for assigning gene
170 families to data from transcriptomes and genomes (EukPhylo part 1), expands options for data
171 curation both before and after producing MSAs and gene trees (EukPhylo part 2), and provides
172 an extensive set of utilities that can be used within or independent of EukPhylo. To supplement
173 the power of EukPhylo, we publish several accompanying databases, described below. All
174 components of the toolkit are written in Python and are available for download on GitHub
175 (<https://github.com/Katzlab/EukPhylo>) and Zenodo (DOI:10.5281/zenodo.13323372), and we
176 provide a containerized version through Docker; the GitHub site also includes a detailed user
177 manual and quickstart guide. All references below to files available through Figshare refer to
178 this Figshare page: https://figshare.com/projects/EukPhylo_Supplemental_Files/196552.

179

180 The core pipeline (parts 1 and 2)

181

182 EukPhylo is designed to take as input assembled transcripts, genomic CDSs or any sequences
183 with names matching simple criteria (i.e. a 10 digit taxon code plus a unique identifier) as
184 described in the methods (see also Supporting Information). Curation steps are built into both
185 parts of the pipeline, first enabling analysis of data within a taxon based on sequence properties
186 (e.g. GC content, codon usage; see Table S1 and File S3 at
187 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552) and then using homology
188 assessment by Guidance (52, 53) and phylogeny-informed removal of contaminants (Fig. 1).
189 EukPhylo part 1 allows users to either use the built-in Hook Database of ~15,000 eukaryotic
190 gene families (GFs), or a user-supplied custom database, to produce curated amino acid and
191 nucleotide sequences for each taxon (Fig. 1). EukPhylo part 2 takes these files as input and
192 constructs an MSA and gene tree for each gene family (Fig. 1). EukPhylo part 2 also includes a
193 novel workflow for phylogeny-informed contamination removal that we refer to as the

194 ‘contamination loop’, which identifies both likely contaminant sequences and most robust clades
195 (i.e. ‘clade grabbing’) and writes putative contaminant sequences out into a file that users can
196 publish to increase the transparency of their curation methods.

197

198 **The contamination loop**

199

200 We provide an additional overview of the “contamination loop” included in EukPhylo part 2 as it
201 is among the more unique features and is particularly important for the curation of transcriptome
202 data from uncultivable microeukaryotes. This contamination loop has two modes, both of which
203 rely on user-defined rules. The first is “sister/subsister” removal, in which single sequences are
204 removed based on their taxonomic position in single gene trees, and which can be implemented
205 with a requirement that these putative contaminants sit on short branches. The second is
206 “clade-grabbing,” which retains sequences for which we have greatest confidence based on
207 taxonomic density in single-gene trees. Examples where sister and subsister rules are
208 applicable include cases where a taxon, or a pair of taxa, is contaminated by a food source or
209 by a known host in the case of parasites. The clade-grabbing mode is more applicable for
210 well-sampled taxonomic groups that form sizable clades in single-gene trees, in which case
211 sequences that do not fall into clades of a certain size are removed. We note that this process
212 likely removes a considerable amount of vertically-inherited data by retaining only the most
213 robust clades and hence should be used with caution in studies that focus on the history of
214 individual genes. EukPhylo includes a set of scripts (e.g. ContaminationBySisters.py and
215 CountTaxonOccurrence.py, see methods) that help users to assess taxon presence and sister
216 relationships across single-gene trees to establish sets of rules to use in each mode of the
217 contamination loop. We believe that EukPhylo’s ability to document both rules and sequence
218 choice in a transparent manner is a substantial improvement to best practices in the field, and
219 we exemplify the effect of the contamination loop in estimating EToL in the final section of the
220 results

221

222 **Databases**

223

224 To provide an option for users interested in exploring data from a limited number of species (e.g.
225 transcriptomes or genomes generated by their research groups) we provide several taxon-rich
226 databases aimed at analyses of eukaryotic phylogeny: 1) our Hook reference database of
227 ~15,000 proteins for GF assignment; 2) files for 1,000 species containing amino acid and
228 nucleotide sequence that have been assigned to these GFs (called ReadyToGo files), which we
229 use in our assessment of the performance of EukPhylo described below; and 3) curated MSAs
230 and trees for 500 conserved gene families. The Hook Database is composed of 1,426,763
231 sequences across 15,138 GFs (see Table S3 and File S1 at
232 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). It captures a broad
233 diversity of eukaryotic gene families and was built starting from OrthoMCL version 6.13 (54),
234 which we sampled to select for GFs that are present across the eukaryotic tree and/or present
235 in under-sampled lineages of eukaryotes (see methods; Fig. 2, Fig. S1). To add value for users,
236 we also include functional annotations for each GF in the Hook (Table S4 at Figshare; see
237 methods in Supporting Information). Alternatively, users can insert their own Diamond-formatted

238 database *in lieu* of the Hook, to target only specific genes of interest; in this case, we encourage
239 users to include some housekeeping genes (e.g. actin, HSP70) as controls.

240

241 To develop an exemplary taxon set for users, we choose 1,000 species, balancing taxonomic
242 diversity and data quality and focusing on diversity of eukaryotic lineages. Starting with more
243 than 2,500 genomes and transcriptomes (from public databases and our own sequencing
244 effort), we used the EukPhylo toolkit to retain 1,000 species based on data quality (analyzing the
245 GC content at the silent site fingerprint and phylogeny based identification of proportion of
246 contamination as a proxy for quality) and taxonomic representation. The 1,000 species include
247 628 eukaryotes of which 199 are represented by annotated genome sequences and 429 by
248 transcriptome data (44 coming from our own sequencing effort; Table S1, S7 at Figshare). This
249 set of eukaryotes emerged from pilot analyses that aimed to maximize taxonomic representation
250 with the best available data at the time of the launch of the project. We also include 275 bacteria
251 and 97 archaea, all of which have whole genome sequences (Table S1, S7 at Figshare). As
252 described in more detail in the methods section, each species is represented by a 10 digit code
253 that captures taxonomy, at least as understood when the data were first processed. For
254 example, humans are coded as Op_me_Hsap (Opisthokonta: metazoa: *Homo sapiens*) and
255 *Arabidopsis thaliana* as PI_gr_Atha (PI for Archaeplastida, gr for green algae).

256

257 Utilities

258

259 Besides the main pipeline, EukPhylo includes a set of stand-alone utility scripts that aim to
260 increase the power of analyses done with or without the core EukPhylo pipeline. We divide
261 these scripts into five main categories: basic statistics, composition tools, MSA tools, gene tree
262 description, and contamination removal (Table S2 at Figshare), and we provide details of each
263 on the GitHub wiki. The EukPhylo utilities can be used with outputs from the pipeline, or with
264 external files (generally fasta files and/or Newick strings), so long as taxon names have been
265 modified to match the 10-digit criteria used by EukPhylo. Examples of such utilities include: a
266 script to calculate the 'sharedness' of gene families across taxa, which allows users to identify
267 focal gene families for each study, as well as tools for coloring and relabeling gene trees, which
268 can be very helpful in exploring taxon-rich data and generating figures for publication.

269

270 Performance of the core pipeline

271 We divide our description of performance into two sections to reflect the two major parts of
272 EukPhylo (Part 1: GF assignment; Part 2: generation of MSAs and trees), and for each we start
273 with a brief description of computation resources needed before moving into specifics of the
274 tool. We demonstrate the performance of part 1 with an analysis of data from 1,000 species. We
275 then demonstrate part 2 on a select set of 500 gene families from the output of part 1, focusing
276 on generation of MSA and initial gene trees. We discuss the contamination loop in the
277 "performance of the contamination loop" section below.

278

279 EukPhylo Part 1

280

281 **Computational resources**

282 To benchmark the resources needed for EukPhylo part 1, we compared the speed in processing
283 assembled transcriptomes and genomes through to 'ReadyToGo' files for EukPhylo part 1.
284 Using a desktop computer (iMac Pro 2017, 64GB of RAM, 10 cores) and a high performance
285 computing cluster (HPC; 128GB of RAM, 24 cores), we processed 10 and 100 transcriptomes
286 and genomes (Table S5 at https://figshare.com/projects/EukPhylo_Supplemental_Files/196552).
287 As expected, processing genomes with EukPhylo part 1 was considerably faster compared to
288 the transcriptomes on both computers as coding domains are already called for genomes. On
289 the desktop computer it took roughly 2 hours for 10 transcriptomes (513,904 transcripts) and 24
290 hours for 100 transcriptomes (3,294,484 transcripts) while the same datasets took 2 and 16
291 hours respectively on the HPC. Processing the genomes, it took 1 hour 20 minutes and 24
292 hours on the desktop computer for 10 (106,249 CDS) and 100 taxa (1,158,224 CDS)
293 respectively, and 25 minutes and 21 hours on the HPC to run the same set of taxa. This
294 demonstrates the feasibility of running EukPhylo part 1 on desktop or even laptop computers if
295 an HPC is not available.

296 **Gene family assignments with optional curation for composition**

297 To demonstrate the capabilities of EukPhylo for exploring eukaryotic GFs, we assigned
298 sequences from our 1,000 focal taxa (Table S7 at Figshare) to GFs from our Hook Database
299 using EukPhylo part 1. Despite the fact that the starting OrthoMCL database is biased in terms
300 of taxonomic availability (e.g. biased towards parasitic lineages (54)), the 15,138 GF Hook
301 Database assigned gene families to a broad diversity of taxa, including poorly represented taxa
302 like *Telonema*, Centrohelidae and other orphan lineages (labeled EE for "everything else"; Fig.
303 2, Table S1 at Figshare). In fact, the taxonomic distribution of major clades in our ReadyToGo
304 files is greater than in the Hook itself, with more than 75% of the GFs present in at least four
305 major clades in the ReadyToGo files (Fig. 2a), and with an increase in the number of species
306 per GF in the R2G files (blue dots on Fig. 2b) compared to the Hook (red line on Fig. 2b),
307 demonstrating the power of EukPhylo to assign gene families to a great diversity of taxa.
308 Nevertheless, the distribution of GFs across taxa is highly variable, reflecting at least three
309 phenomena: the differences between transcriptome and whole genome data, the prevalence of
310 gene loss in some lineages (e.g. fungi (55) and parasites), and the challenges of identifying
311 fast-evolving homologs using default Guidance and BLAST parameters (Fig. 2c). Users can
312 address the latter difficulty, which could give rise to 'false negatives' (i.e., divergent sequences
313 being excluded from the analysis because they were not assigned a GF or were assigned the
314 wrong GF), by: 1) adjusting parameters such as the BLAST e-value for GF assignment in
315 EukPhylo part 1 or the Guidance sequence removal cutoff in part 2; and/or 2) customizing the
316 reference database for GF assignment to contain examples of fast-evolving homologs.

317

318 Using EukPhylo utilities (CUB.py, GC_identifier.py), we further refined data based on
319 taxon-specific GC content ranges (see Supporting Information) to produce ReadyToGo files with
320 sequences labeled by composition (OG6 if in GC3S range for each species, OGG and OGA if
321 more GC rich or AT rich, respectively). This is possible as each organism tends to use G+C (as
322 opposed to A+T) at a particular average proportion; GC content among genes within eukaryotic

323 genomes tend to vary in a relatively narrow range, particularly at silent sites (56, 57). Therefore,
324 a wide range of GC content within a sample of coding sequences is likely to denote that signal
325 from multiple organisms (i.e. contamination) is being captured. This is the same theory behind
326 widely-used contamination assessment tools such as BlobToolKit (58), though we explore both
327 composition and codon usage through our toolkit (e.g. CUB.py, 57).

328

329 We provide the resulting ReadyToGo databases containing sequences from the focal 1,000
330 species that match the ~15,000 gene families in the Hook Database. These data can be used
331 by researchers interested in efficiently placing species into a broad phylogenomic context.
332 Among eukaryotes, the average number of sequences per species that are assigned to Hook
333 gene families is 6,681, and these fall among 3,287 gene families. The numbers are smaller for
334 bacteria and archaea, with an average of 1,804 and 1,233 sequences being assigned to 1,274
335 and 948 gene families respectively (Tables S1 and S3, and File S2 at

336 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). The use of a relatively
337 relaxed e-value cutoff of 10^{-5} ensures that we capture putative homologs from eukaryotes that
338 have elevated rates of evolution (e.g. parasites), and we improve homology inferences with
339 Guidance (52, 53), the tool we use for MSA reconstruction as described in part 2 below.

340

341 **EukPhylo Part 2**

342

343 **Computational resources**

344

345 To benchmark the resources needed to run EukPhylo part 2, we measured the time required for
346 processing gene families for both the pre- and post-contamination removal stages, and with and
347 without a 'blacklist' (i.e. non-homologs removed by previous runs Guidance). Using a high
348 performance computing cluster, we processed 50 of the 500 GFs in our pilot analysis, carefully
349 tracking run times (Table S5). On the HPCs, it took roughly 25 hrs to get to the first trees for the
350 50 GFs using an array (1 GF per job), and then 44.5 hrs to run the phylogeny informed
351 contamination removal process (50 GFs per job, Table S5). Using a blacklist improved running
352 time considerably; 3.25 hrs to produce aligned files compared to 9 hrs without (Table S5).

353 Concatenation within EukPhylo after the post-contamination removal stages for the 50 OGs was
354 fast, taking only 15 mins. Note that for these analyses, we used the same versions of programs
355 as our pilot study described below with the exception of Guidance, for which we used an
356 updated version (v2.1 as available on GitHub, accessed June 17, 2024). We ran comparisons
357 and found that this newer Guidance version (2.1) produced similar results as the older version
358 (v2.0.2), but more efficiently (likely because the new version is parallelizable). Given this, we
359 have updated EukPhylo to include this newer Guidance on GitHub and Zenodo.

360

361 **Initial MSAs and single-gene trees**

362

363 To demonstrate the power of EukPhylo in estimating gene family membership, we selected 500
364 gene families based on taxonomic presence using two criteria: 1) they are among the most
365 shared GFs in our 1000 taxa and 2) these GFs have relatively low paralogy, making analyses
366 more efficient; both parameters estimated using the SharedOGs.py utility script. Starting with

367 the 1,000 ReadyToGo files generated by EukPhylo part 1 (see above), we ran EukPhylo part 2
368 to generate 500 MSAs and single-gene trees (Table S13 at
369 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). We choose to use the
370 “similarity filter” with an amino acid identity cutoff of 99% to remove highly-similar sequences
371 (e.g. recent paralogs, alleles) within species as a means of shortening processing times (see
372 supplemental methods). EukPhylo generates MSAs using Guidance (52, 53), which we also use
373 as a filter to remove putative non-homologs. In our analyses of 500 GFs across 1,000 species,
374 15,486 sequences out of 581,539 (2.66%) were removed by Guidance as putative
375 non-homologs (File S7 at Figshare). We offer several options for tools to build single-gene trees
376 from the resulting MSAs, which are easily configured by the user when running the pipeline. The
377 default option is the “fast” mode of IQ-Tree (59), and we include other modes of IQ-Tree, as well
378 as RAxML (see methods and manual on GitHub), or users can stop EukPhylo after MSA
379 generation to use other phylogeny programs.

380

381

382 **Performance of the contamination loop assessed by species 383 tree estimates**

384

385 In this section, we first describe the specifics of contamination removal for the analyses of 500
386 gene families sampled from 1,000 species. Then we estimate ET_{OL} at four stages to
387 demonstrate the performance of the phylogeny-based contamination removal tool built into
388 EukPhylo. The four stages are: 1) before the contamination loop (Fig. 4a); 2) after applying
389 sister-based rules to iteratively remove sequences determined to be potential contaminants
390 based on user-established rules (Fig. 4b); 3) after clade-grabbing by retaining only sequences
391 for which we have the greatest confidence based on user-established expectations of taxon
392 density (Fig. 4c); and 4) after removing gene families that include putative endosymbiotic gene
393 transfers (EGTs, Fig. 4d). All files related to this analysis, for each step of the contamination
394 loop, can be found on Figshare as a demonstration of another aspect of EukPhylo: the ability to
395 easily retain intermediate files and track removed sequences.

396

397 **Applying the contamination loop**

398

399 **Sisters/subsisters removal**

400

401 EukPhylo allows users to remove sequences that may be contaminants (e.g. in single-cell
402 transcriptomes contaminated by food sources) by setting rules, which can include a requirement
403 for short branches. To demonstrate this phylogeny-informed contamination removal, we set
404 sisters/subsister rules based on our knowledge of the biology of the taxa plus inspection of
405 single gene trees generated for 500 GFs and 1,000 species. For example, we set a rule to
406 remove sequences from the ciliate *Favella* (Sr_ci_Fehr) when it falls sister to a haptophyte
407 (EE_ha), a known food source (Table S8 at
408 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). We also set ‘blanket’
409 sister rules, removing any single species from well-sampled clades (e.g. ciliates, animals) that

410 fall sister to bacteria or archaea regardless of branch length; for less-well sampled clades (e.g
411 haptophytes and cryptophytes), we removed single sequences only if they fell on short
412 branches (i.e. 0.5 times the average node-to-tip distance for a given tree) sister to bacteria or
413 archaea (Table S8 at Figshare). Such an approach is an efficient way to remove the
414 contamination in ‘omics’ datasets, but also should be used with caution given the limited power
415 single gene trees have in estimating eukaryotic phylogeny. In addition, this approach has the
416 potential to remove recent lateral gene transfers and hence should be used with caution in
417 studies asking questions about individual genes.

418

419 EukPhylo also allows the removal of sequences that are “co-contaminants,” affecting pairs of
420 sequences. As an example of this, inspection of individual gene trees showed that the
421 transcriptomes of fungus-like species *Aphelidium insulamus* and *Aphelidium tribonematis*
422 (Op_ap_Ains and Op_ap_Atri) are highly contaminated and frequently branch together among
423 lineages including stramenopiles and Amoebozoa; we therefore infer that these taxa are
424 contaminated by same sources (perhaps in laboratory preparation or in sequencing), so we use
425 the ‘subsisters’ option to remove these sequences when together they fall sister to
426 non-Opisthokonta. After applying both sister and subsisters rules (Tables S8 and S9 at Figshare
427 respectively), the greatest proportion of removed sequences are from taxa within the major
428 clade SAR (abbreviated as Sr), which includes a majority of the field-caught single cell
429 transcriptomic samples (ciliates, foraminifera) from our lab (File S8 at Figshare). At the end of
430 the sisters mode of the contamination loop, EukPhylo removed 50,903 of 565,225 sequences
431 (Table S13, File S8 at FigShare). Importantly, all removed sequences are recorded for anyone
432 interested in tracking specific cases.

433

434 **Retaining ‘best’ sequences by clade-grabbing**

435

436 The second type of phylogeny-informed contamination removal allows users to retain
437 sequences with the greatest confidence based on their presence in robust clades, again using
438 user-defined rules that can be easily shared on publication of analyses. We first ran
439 clade-grabbing only for ciliates (a clade whose monophyly is not controversial) as we had a
440 strong signal of contamination of parabasalid sequences putative mislabeled as ciliate from
441 species isolated from the digestive system of cows; here, ciliate transcriptomes containing
442 parabasalid sequences (Ex_pa; Fig. 3c) cause the ciliates to spuriously fall near parabasalids
443 (Fig. 4b). After addressing the high level of contamination of ciliate data, we deployed
444 “clade-grabbing” more broadly using clade sizes determined empirically based on the EukPhylo
445 utility script CladeSizes.py (see methods). For example, given that we have a total of 45 diverse
446 metazoa, we kept only clades containing at least 11 metazoan species (i.e. Op_me); here we
447 allow up to 10% of a clade to be non-metazoan species to account for long-branch orphan
448 lineages that ‘wander’ in single gene trees (Table S1 and S6 at Figshare).

449

450 Clade grabbing works best for well-sampled clades and should be used with caution when
451 including sequences from orphan lineages. Given this, we identified a list of ‘exceptions’ (i.e.
452 taxa with few close relatives in our analyses; for example orphan lineages as *Mantamonas* and
453 *Hemimastix*) for which all sequences are retained independent of clade size; these lineages lack

454 robust sisters in our analyses, so the topology of single-gene trees does not inform the
455 robustness of sequences from these taxa. In the end, clade grabbing removed 129,458 of
456 514,272 sequences, and we share rules and sequences in the supplementary material. Here
457 again, we emphasize on the importance of transparency and user defined rules for clade
458 grabbing, as this process will most likely remove “good” sequences as well as contaminants,
459 while selecting for the strongest signals in single-tree topologies.

460

461 **Removing gene families that may be affected by EGT**

462

463 Given the many papers demonstrating a substantial effect of endosymbiotic gene transfer (EGT)
464 from plastid genomes to nuclear genomes (reviewed in 60), we conducted a final analysis by
465 removing gene families that may have been affected by primary and/or secondary EGT. This
466 provides an example of how the methods built into the contamination loop can be extended
467 beyond their basic applications. To start, we used the utility scripts CladeGrabbing.py and
468 CladeSize.py to identify gene-families with a putative photosynthetic history; here we define
469 gene families possibly affected by primary EGT as gene families with photosynthetic lineages
470 nested among bacteria (often cyanobacteria, but allowing other bacterial sisters given the
471 prevalence of gene loss and LGT among bacteria) while secondary EGTs are identified as gene
472 families with the greatest proportion of sequences of intermingled photosynthetic lineages (e.g.
473 dinoflagellates nested among diatoms; Table S12 and File S5 at Figshare). After removing 169
474 GFs possibly affected by primary and/or secondary EGT, respectively, we ran concatenated and
475 Asteroid (61) analyses and we compare the resulting “EGT removal” trees below (Fig. 4d).

476

477 **Inferring EToL at four stages**

478

479 To demonstrate the power of the contamination loop, we discuss the topology of EToL inferred
480 from before the contamination loop (Fig 4a) plus three stages after deploying contamination
481 loop tools (Figs. 4b-f). For these analyses, we generated both a concatenated alignment using
482 EukPhylo’s concatenation feature, which aims to select the most robust orthologs based on
483 density of close-relatives (see methods), and an Asteroid tree (61); for all alignments, we
484 masked columns to remove those with $\geq 95\%$ and $\geq 50\%$ missing data. As a measure of
485 robustness, we focus on the presence of clades whose monophyly is supported through
486 ultrastructure and/or by robust synapomorphies (e.g. ciliates, dinoflagellates, metazoa, fungi,
487 green algae), as well as higher-level taxa (e.g. Amoebozoa, Archaeplastida, Opisthokonta,
488 SAR). Our phylogenomic results are subject to numerous caveats, described below, and the
489 importance of this section lies in the comparison across stages of contamination removal rather
490 than inferences about the structure of EToL. We find that tree topologies are generally
491 concordant through the various stages of our analysis of 1,000 species, though with marked
492 improvements through data curation (Fig. 4a-e, with monophyletic clades represented by filled
493 triangles (a-d) or filled circles (e); Figure S3, Table S12 at
494 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552).

495

496 The estimate of EToL prior to the contamination loop is largely consistent with the published
497 literature (Figs. 4a, 4e) as our taxon-rich approach recovers many clades with robust

498 synapomorphies across all analyses (50% and 95% gap trimmed, concatenated and Asteroid),
499 including fungi, dinoflagellates, cryptophytes, haptophytes, and Tubulinea (Fig 4a, Fig 4e; Table
500 S12 at Figshare). However, the monophyly of some clades is disrupted by single species: the
501 non-monophyly of Rhizaria is due to the placement of the foraminifera *Notodendrodes*
502 *hyalinospheira* (Sr_rh_ArpA) among bacteria, and the parasite *Piridium sociabile* (Sr_co_Psoc)
503 falls within animals in concatenated analyses prior to contamination removal (Fig. 4a, Table S12
504 at Figshare). Other aberrant observations include the placement of Microsporidia (a lineage
505 known to have elevated rates of evolution (62, 63)) and Archamoebae (another parasitic
506 lineage) towards the base of the eukaryotic portion of the tree. Asteroid (61) analyses of these
507 data reveals further evidence of contamination as numerous clades (e.g. ciliates, Euglenozoa,
508 green algae; Table S12 at Figshare) are non-monophyletic, which highlights the impact of
509 contamination in omics data from microeukaryotes.

510

511 The iterative contamination removal in EukPhylo improves tree topology as we remove
512 contamination based on user-set sister/subsister rules and then retain only the most robust
513 sequences through clade grabbing (Table S8 and Table S9 at Figshare). Deploying rules for
514 sister-based contamination removal improves the topology of EToL in that we consistently
515 recover clades like metazoa, Euglenozoa, colpodellids and Rhizaria (Figs 4b,e, Table S12 at
516 Figshare). However, the monophyly of ciliates, another clade with robust synapomorphies (cilia
517 and dimorphic nuclei (1)) emerges only after deploying the second tree-based contamination
518 method by clade-grabbing based on only retaining clades with a pre-set number of target taxa
519 (Table S10 and File S5 at Figshare). Here, clade-grabbing allowed us to distinguish ciliate signal
520 from contamination by parabasalids among a subset of ciliates isolated from the rumen of cows
521 (see above). Our final curation step, 'EGT removal', excluded gene families that may be affected
522 by primary and/or secondary EGT (Fig 4d, Table S12 and Files S5-6at Figshare). Intriguingly,
523 two members of the genus *Rhodelphysis* fall sister to red algae only in concatenated analyses
524 after EGT removal (Fig. 4d), consistent with previous analysis of these 'orphan' species (64).

525

526 We also assessed changes in higher-level eukaryotic taxa throughout stages of contamination
527 removal. Opisthokonta (animals, fungi, and their microbial relatives) emerges consistently only
528 after sister/subsister removal for both Asteroid (61) and concatenated analyses (Fig. 4, Table
529 S12 at Figshare). The monophyly of SAR (Stramenopila, Alveolata, and Rhizaria) and
530 Amoebozoa are recovered in a subset of analyses following contamination removal (Fig 4b-e).
531 The orphan lineage Hemimastigophora is consistently sister to the Ancyromonidida, falling
532 nested among 'excavate' and orphan lineages towards the root of our trees. The placement of
533 other orphan lineages (purple branches, Fig. 4a-4d; Figure S3, Table S9 at Figshare) varies
534 across analyses, with some lineages like Breviata, Malawimonadida and *Mantomonas* falling
535 towards the root of EToL (Fig 4a-d, Figure S3, File S9 at Figshare), though missing data likely
536 confounds the placements of all of these lineages (see below). Other proposed eukaryotic
537 "supergroups" (e.g. CRuMs, Obazoa, Diaphoretickes) are not recovered in any analysis, and the
538 proposed clade 'TSAR' (*Telonema* + SAR) is recovered only in the clade-grabbed trees
539 analyzed by Asteroid with 50% gap-trimming (Figure S3; Table S12 and File S9 at
540 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552).

541

542 Discussion

543 EukPhylo v1.0 provides a platform for the efficient curation and analysis of 'omics data from
544 eukaryotes, using phylogeny-informed methods that enable exploration of both gene families
545 and species relationships. Key aspects of EukPhylo are its repeatability, flexibility, and
546 transparency as users can record parameters (e.g. in identifying contaminants) and report both
547 retained and removed sequences through every step. Analyses of diverse microbial eukaryotes,
548 and particularly uncultivable lineages characterized by single-cell 'omics, require curation to
549 select the gene families most shared among focal species, identify homologs, and remove
550 contamination (e.g. from contaminants and/or symbionts). In recent literature, numerous
551 'boutique' approaches that require time-consuming hand curation have been used to estimate
552 eukaryotic phylogeny from a relatively small number of gene families (e.g. 13, 48, 65–67). Given
553 the effort required here, some studies rely on resampling data (i.e. choosing orthologs to match
554 previous concatenated gene sets), which can lead to issues arising from a lack of independence
555 (reviewed in 68). While standards of curation and data quality have been developed for
556 analyses such as genome assembly and annotation (e.g. 69, 70), analogous standards do not
557 yet exist for phylogenomics and we believe that EukPhylo will in part fill this gap by providing
558 transparent and repeatable methods.

559

560 EukPhylo provides a streamlined method for processing both genomic and transcriptomic data
561 that enables users to maximize analytical power by choosing most shared gene families for
562 each study, and to expedite data curation *via* both per-taxon and tree-based comparative
563 approaches (Fig. 3). The databases and scripts require minimal effort for installation and are
564 structured for users with modest bioinformatic skills, as accessibility and usability are key
565 considerations in designing scientific tools (71). We provide EukPhylo with default settings for
566 parameters that we believe are a reasonable starting place for analyses, though all parameters
567 are easily customizable. Alongside the code, there is a comprehensive manual on GitHub that
568 describes how to use the EukPhylo toolkit (<https://github.com/Katzlab/EukPhylo-6/wiki>). For
569 those interested in a taxon-rich dataset for analyzing data from previously uncharacterized taxa,
570 we provide the EukPhylo Database, a set of curated data sampled from 1,000 diverse
571 transcriptomes and genomes from eukaryotes, bacteria, and archaea (Table S1 and File S2 at
572 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). Hence, EukPhylo enables
573 large-scale phylogenomic analyses of eukaryotes.

574

575 EukPhylo's modular nature allows users to stop and restart the pipeline at multiple points, add
576 preferred methods that are not built into EukPhylo (e.g. removing long branches and/or
577 bootstrapping single-gene trees prior to concatenation) and easily replace the Hook Database
578 with a set of gene families of interest, extending beyond previous phylogenomic approaches
579 (e.g. 2, 5, 6). In addition to varying the input data, EukPhylo users have a large amount of
580 leeway in deciding how to remove putative contamination from their dataset (e.g. by setting
581 rules for sister/subsister with or without branch length constraints, and exploring different
582 numbers of taxa in parameterizing 'clade grabbing'). Further, as we demonstrate in our EGT
583 analyses, EukPhylo's suite of stand-alone utility tools allows users to explore hypotheses
584 relevant to their particular questions.

585

586 Our exemplary analysis of 500 conserved gene families demonstrates the power of EukPhylo to
587 analyze large, diverse eukaryotic datasets, and to improve topologies through tree-based
588 contamination removal. Even species trees produced by EukPhylo from both the concatenated
589 and Asteroid analysis prior to phylogeny-informed contamination removal are largely concordant
590 with published literature (Fig. 4a, Table S12 at Figshare), particularly for morphologically-defined
591 clades like dinoflagellates, animals, red algae, Tubulinea, and Euglenozoa (e.g. 1, 2, 46–48).
592 Importantly, many previously-published analyses of EToL rely on many fewer genes and taxa,
593 and some fail to demonstrate monophyly of clades with robust synapomorphies.

594

595 The EukPhylo phylogeny-informed contamination loop improves estimates of EToL by removing
596 putative contaminants, first based on sister/subsister analysis (Fig. 4b) and then by retaining
597 sequences for which we have the greatest confidence through ‘clade grabbing’ (Fig. 4c).
598 Following these steps, we see additional major clades supported (e.g. Opisthokonta, Alveolata).
599 Importantly, we recover SAR and the sister relationship between the genus *Rhodelphia* and red
600 algae (Fig. 4d) only after removal of gene families most affected by putative EGT; these
601 analyses suggest that EGT may be a driver in inferences about EToL. Finally, we do not recover
602 a number of eukaryotic ‘supergroups’ like Amorphea, CrumS, Cryptista, Diaphoretickes,
603 Haptista, Obazoa, or TSAR (Fig. 4, Table S12 at Figshare), suggesting the possibility that they
604 emerged through resampling of the same data across analyses.

605

606 Across all stages of the contamination loop, we obtain a root among excavate taxa (e.g.
607 parabasalids, fornicate, both of which were formerly assigned to the ‘supergroup’ Excavata),
608 generally consistent with the hypothesis in Al Jewari and Baldauf (2023). The placement of
609 these lineages plus a few orphan species at the root of EToL may be due in part to a high
610 amount of missing data; clades with the greatest proportion of gaps and fewest numbers of
611 gene families (e.g. Breviata, Fornicata, Jakobida, Malawimonadida, Microsporidia, and
612 Preaxostyla) tend to be most unstable across analyses and to fall close to the root of the
613 eukaryotic portion of the tree (Fig 4, Table S14 at Figshare, Fig S4). Alternatively, the long
614 branches of these predominantly-parasitic lineages may drive the placement of these lineages
615 towards the root of EToL; rigorously testing the root would likely require more attention to
616 gene-family selection, visual inspection of individual gene trees and mitigation the effect of both
617 missing data and long branch attraction.

618

619 In sum, EukPhylo allows for ‘phylogeny on the fly’ as users can reset gene families and
620 contamination-removal rules, and then run the pipeline and associated toolkit with flexibility,
621 modularity, and transparency. EukPhylo can also allow researchers to rapidly compare
622 hypotheses regarding the placement of disputed lineages (e.g. Telonemia (48) or
623 Hemimastigophora (14)) through taxon-rich analyses and by leveraging the ability of the
624 contamination loop to treat data from ‘orphan’ taxa differently (e.g. more leniency in curation)
625 than data from taxa belonging to better sampled clades. Moreover, because researchers can
626 choose gene families independently for each study for up to 1,000 taxa provided by this study
627 (or by using a custom-built ‘hook’), EukPhylo will help to mitigate the problem of recovering
628 similar topologies across resampled datasets (15, e.g. 45, 48, 49). In sum, EukPhylo provides a

629 broad set of tools to facilitate large phylogenomic analyses from start to finish, providing a
630 model for establishing best practices in a field that now relies on omics data from diverse
631 lineages.

632

633 **Caveats**

634 There are several important caveats to consider when using EukPhylo. While the EukPhylo
635 pipeline is built to be generalizable, it includes stringent data-quality filters that may remove
636 sequences of interest in certain studies (i.e. false negatives), and is therefore best suited for
637 processing data for large-scale evolutionary or population-level analyses (e.g. generating many
638 diverse gene trees for a supertree approach to phylogeny). Given this, EukPhylo is likely not an
639 appropriate tool for the study of individual gene families, where more nuanced curation is
640 required to interpret gene loss, lateral gene transfer, and the placement of fast-evolving
641 sequences. Hence, users interested in the evolutionary history of specific genes should use
642 EukPhylo with caution as vertically-inherited sequences may be removed by quality filters and
643 through the contamination loop. To mitigate this, EukPhylo makes it easy to detect cases where
644 'good' sequences are removed by the contamination loop as it provides intermediate files and
645 lists of removed sequences as output for inspection by users.

646

647 More broadly, parameters that we applied universally (such as the Guidance sequence cutoff,
648 (52, 53)) are likely not appropriate for all taxonomic groups, and there is room for improving the
649 flexibility of parameter fitting by taxon. An alternative approach would be to inspect
650 per-sequence Guidance scores for every gene of interest, resetting cutoffs depending on score
651 distributions (i.e. an approach analogous to the use of a gamma parameter to model rate
652 heterogeneity in phylogenetics). Finally, we note that though the stochasticity associated with
653 aligning sequences and building gene trees makes some aspects of analyses not completely
654 replicable, the structure of EukPhylo increases transparency (i.e. by recording user-defined
655 rules and removed sequences) to enable streamlined and large-scale phylogenomic studies.

656

657 **Synthesis**

658 Currently, studies of microbial eukaryotes rely heavily on bioinformatics tools developed for
659 microbes and/or bacteria; however, such tools do not incorporate workflows that are critical for
660 accurate analysis of eukaryotic lineages where the underlying data must be rigorously cleaned
661 in light of contamination and non-vertical gene transfer (i.e. LGT and EGT). In light of increased
662 attention to the importance of democratizing biology research, especially in the realm of
663 software tools (71–73), we designed EukPhylo to be accessible to researchers with a limited
664 bioinformatic background. Combining the novel phylogeny-informed contamination removal
665 methodology with the modularity that enables user to integrate their preferred
666 phylogenetic/phylogenomic approaches, EukPhylo has the potential to increase the standards
667 and repeatability of studies of eukaryotic phylogeny.

668

669 Our intention with the case study of 500 gene families across 1,000 species is to demonstrate
670 the flexibility and power of EukPhylo, setting the stage for other researchers to deploy EukPhylo
671 to assess hypotheses on ETOL, and on eukaryotes in general. For example, an assessment of
672 the root of ETOL could be done by using EukPhylo tools to simultaneously select gene families

673 that likely originated in LACA (the last common ancestor of eukaryotes and archaea,
674 representing the host at eukaryogenesis) and in LBCA (genes that may trace to a common
675 ancestor of eukaryotes and bacteria, a set that would include contributions from the ancestral
676 mitochondrion plus other ‘ghost’ bacterial symbionts). Scientists interested in gene family
677 evolution can either add in their own reference database for GF assignment or select from our
678 ~15,000 gene families to explore gene sets underlying the systems such as the cytoskeleton,
679 metabolism, central dogma, and much more as demonstrated by our analysis of an epigenetic
680 toolkit (74); however, those interested in this type of approach should carefully read the caveats
681 section above. Because of its modularity, EukPhylo outputs can be used alongside other
682 phylogenomic/bioinformatic tools to allow users to deploy a plurality of approaches in analyzing
683 data, including in identifying orthologs and supporting the generation of multiple sequence
684 alignments for analyses of structure with tools like AlphaFold (75). In sum, we are optimistic that
685 EukPhylo will enhance exploration of gene and genome evolution in diverse eukaryotes.

686

687 Materials and Methods

688

689 Here we provide an overview of methods, including descriptions of taxa and gene families, the
690 development of the EukPhylo Hook Database, brief descriptions of the functionality of EukPhylo,
691 and details on our exemplary analyses of 500 gene families in 1000 taxa. Further details are
692 provided in the supplemental text section within the Supporting Information.

693

694 EukPhylo v1.0 is based on carefully controlled names of both clades and species that facilitate
695 analyses. Each transcriptome and genome in the EukPhylo database is identified using a
696 ten-digit code, which represents either an individual cell or GenBank accession, or a pool of
697 transcripts as noted in Table S1 at

698 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552. The first two digits of the
699 code identify one of eight ‘major’ clades as follows: Ba, Bacteria; Za, Archaea; Op,
700 Opisthokonta; Am, Amoebozoa; Ex, excavate lineages (formerly the clade ‘Excavata’); Sr, SAR
701 (Stramenopila, Alveolata, and Rhizaria); Pl, Archaeplastida; EE, orphan lineages. The next two
702 digits identify the taxonomy of the taxon at the ‘minor’ clade level (e.g. within Opisthokonta are
703 the minor clades Op_me for Metazoa; Op_fu for Fungi; Op_ch for choanoflagellates; and Op_ic
704 for Ichthyosporea; Table S6 at Figshare). The last four digits identify the species and, if
705 applicable, sample ID within a species (e.g. Am_tu indicates the minor clade Tubulinea, and
706 there are multiple samples of *Hyalosphenia papilio*, identified as Am_tu_Hp01, Am_tu_Hp02,
707 etc.; Table S1 at Figshare). Gene families (GFs) are identified as per the notation in OrthoMCL
708 version 6.13 (54), with the prefix OG6_ followed by a unique six digit sequence (see sections on
709 Hook Database and composition-based curation below). All sequence identifiers used in
710 EukPhylo databases are unique and begin with the ten-digit taxon identifier, then are labeled by
711 a unique contig/CDS ID designated either by an assembler or by annotations as downloaded
712 from GenBank, and end with a ten-digit GF identifier.

713

714 Development of the Hook Database

715 As a starting place for evolutionary analyses of lineages sampled across the ETOL, we
716 developed a Hook Database of 15,138 GFs selected for presence across a representative set of
717 eukaryotes. The Hook allows assignment of sequences to GFs and can easily be replaced by
718 researchers interested in specific gene families (e.g. gene families involved in epigenetics, in
719 meiosis, etc.). To develop the Hook Database (Fig. S1), we started with 'core' orthologs from the
720 OrthoMCL version 6.13 database (495,339 GFs). We then proceeded to several curation steps
721 to achieve the following goals of 1) reducing the database size while retaining diversity within
722 eukaryotes; 2) retaining only GFs that are present in a representative set of eukaryotes given
723 our focus on microbial lineages (i.e. we undersample animal-specific and plant-specific GFs);
724 and 3) removing GFs and sequences within GFs that are likely to cause sequences to be
725 misassigned or assigned to groups of sequences without useful functional meaning (e.g.
726 sequences that comprise only a single common domain, or chimeric sequences). To accomplish
727 these goals, we assessed the taxonomic diversity and the quality of each GF using a variety of
728 custom scripts (DOI:10.5281/zenodo.13323372). We detail these curation steps in the
729 Supporting Information, and reiterate the goal of generating a set of representative gene
730 families to use in analyses of diverse eukaryotes.

731 EukPhylo Part 1

732 EukPhylo comprises two components: the first (EukPhylo part 1) provides initial gene family
733 assignment to sequences and the second (EukPhylo part 2) builds alignments and
734 phylogenetic trees. Central to all of EukPhylo is the use of consistent taxon codes (see above).
735 EukPhylo part 1 has two versions. The first is intended for use with transcriptomic data, and
736 accepts as input assembled transcripts as produced by rnaSpades (Fig. S2 at
737 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552). Users may use other
738 assembly tools, as long as sequence names follow the rnaSpades output format (i.e. including a
739 contig identifier, k-mer coverage and length). The second version is for use with whole genome
740 data, and accepts as input nucleotide coding sequences (CDS). Each step can be run
741 individually across any number of input samples, runs can be paused and resumed at any
742 stage, and this can be flexibly managed using a wrapper script provided in the Zenodo
743 repository (DOI:10.5281/zenodo.13323372)

744 Transcriptomic pipeline

745 The transcriptomic pipeline requires three inputs: a fasta file of correctly named contigs (see
746 manual), a file specifying a genetic code (if known) for each taxon, and for those interested in
747 removing sequences misidentified due to index-hopping, a list of names of conspecifics (i.e.
748 taxa/samples that are expected to share identical nucleotide sequences). As described in detail
749 in the Supplementary Text and in Fig. S2 (at Figshare), EukPhylo part 1 removes sequences
750 based on length parameters, and optionally sequences that are likely incorrectly labeled due to
751 index hopping (76, 77) in the same sequencing run. Next, putative rRNA sequences are moved
752 to a separate folder and remaining sequences are labeled as possible prokaryotic contamination
753 (ending in _P) for users to inspect downstream. To provide initial gene family assignments,
754 Diamond (54) is used to compare sequences either to the EukPhylo Hook Database (described

755 above) or a user-provided database. As the Hook Database is replaceable and customizable,
756 this step offers an opportunity to filter transcriptomic data for a group of gene families/functional
757 groups of interest. EukPhylo then captures ORFs as both nucleotide and amino acid
758 sequences. Finally, EukPhylo part 1 removes putative chimeric and partial transcripts to produce
759 “ReadyToGo” fasta files and calculates various statistics for both sequences and taxa.

760 Genomic pipeline

761 The version of EukPhylo part 1 applicable to coding domain sequences (CDSs) from whole
762 genome assemblies is similar to the version for transcriptomic data described above and in the
763 Supplementary Text, but with some important differences. Given that coding domains are
764 already determined, this version of EukPhylo part 1 has no length filter, and instead immediately
765 evaluates in-frame stop codon usage and translates the nucleotide CDSs to amino acids, at
766 which point it uses Diamond BLASTp to assign gene families against the same reference
767 database (in our analyses, the Hook Database). Next, the pipeline filters sequences by relative
768 length, removing any sequence less than one third or more than 1.5 times the average the
769 length of its gene family in the Hook Database. After some reformatting, EukPhylo part 1 then
770 outputs the same “ReadyToGo” files as the transcriptome version of the pipeline: a nucleotide
771 and amino acid fasta file with gene families assigned for each taxon, a tab-separated file of
772 BLASTp data against the Hook Database, and summary statistics.

773 EukPhylo Part Two

774 The second major component of the pipeline (EukPhylo part 2) starts from the “ReadyToGo”
775 files produced by part 1 (or any set of per-taxon sequences with names that match PLT6
776 criteria) and generates multisequence alignments and trees. Prior to running Guidance (52, 53)
777 for homology assessment, optional filters are available in the script ‘preguidance.py’, to select
778 the sequences to use for the analysis based on GC composition or high similarity proportions
779 (details in the Supplementary Text), on the whole dataset or on specific taxon.

780

781 Then EukPhylo part 2 runs Guidance (52, 53) in an iterative fashion to remove non-homologous
782 sequences defined as those that fall below the sequence score cutoff. (We note that there is
783 some stochasticity here given the iteration of alignments built into the method.) After inspecting
784 a diversity of gene families, we have lowered the default sequence score cutoff from 0.6 to 0.3,
785 though this may not be appropriate for all genes (see caveats section below). To remove
786 regions with large gaps that can confound tree building, the resulting MSAs are then run through
787 TrimAI (78) to remove all sites in the alignment that are at least 95% gaps (again, a parameter a
788 user could alter). The last step of EukPhylo part 2 before phylogeny-based contamination
789 removal is to construct gene trees, though users can stop EukPhylo after Guidance to build
790 trees with other softwares as they prefer. Currently EukPhylo supports RAxML (79), IQ-Tree
791 (with the hardcoded protein LG+G model (59)), and FastTree (80).

792

793 Phylogeny-based contamination removal

794 A key innovation in EukPhylo v1.0 is the “contamination loop”, an iterative tool to identify and
795 remove contamination based on analyses of single gene trees. This tool incorporates two main

796 methods of contamination assessment informed by tree topology. The first method – ‘sisters’
797 mode – is intended to target specific instances of contamination. It enables users to remove
798 sequences based on cases of repeated contamination in target taxa, determined by prior
799 assessment of trees (aided by the utility script `ContaminationBySisters.py` or known
800 contaminants; Fig. 3). We provide additional details in the Supporting Information. The second
801 method – “clade-based contamination removal” – is intended for cases when the user is
802 interested in genes present in a group of organisms with multiple representative samples and/or
803 species in the gene trees (Fig. 3). For a given set of target taxa, this method identifies robust,
804 monophyletic clades containing those taxa within each gene tree (allowing a user set number of
805 contaminants), and re-aligns and re-builds the tree excluding all sequences from the target taxa
806 that do not fall into these robust clades. In both cases, sister and clade grabbing, a user-defined
807 set of rules is necessary and can be built using the set of utility scripts provided with the main
808 pipeline. Given that these methods incorporate tree-building on each iteration, users should
809 expect some amount of stochasticity in which sequences are removed.

810

811 Ortholog selection for concatenation

812 EukPhylo part 2 includes an option to concatenate representative sequences per GF into a
813 supermatrix from which users can construct a species tree. This can be done as part of an
814 end-to-end EukPhylo run, or by inputting already complete alignments and gene trees and
815 running only the concatenation step. If a GF has more than one sequence from a taxon,
816 EukPhylo keeps only the sequences falling in the monophyletic clade in the tree that contains
817 the greatest number of species of the taxon’s clade as determined by its sample identifier. If
818 multiple sequences from the taxon fall into this largest clade, then the sequence with the highest
819 ‘score’ (defined as length times k-mer coverage for transcriptomic data with k-mer coverage in
820 the sequence ID as formatted by `rnaSpades`, and otherwise just length) is kept for the
821 concatenated alignment. If a GF is not present as a taxon, its missing data are filled in with gaps
822 in the concatenated alignment. Along with the concatenated alignment, this part of the pipeline
823 outputs individual alignments with orthologs selected (and re-aligned with MAFFT), in case a
824 user wants to construct a model-partitioned or other specialized kind of species tree.

825

826 Conserved OG analysis

827 To demonstrate the power of EukPhylo, we conducted a phylogenetic analysis on 500
828 conserved gene families among 1,000 species. Selection of taxa and gene families to include in
829 this study was based on quality of data and taxon presence. We went through several rounds of
830 curation and selection that are detailed in the supplementary text within our Supporting
831 Information; the final selection of taxa is described in Table S1 and S7 at
832 https://figshare.com/projects/EukPhylo_Supplemental_Files/196552. We used EukPhylo part 1
833 to produce fasta formatted CDS files (genomes) and assembled transcripts (transcriptomes) for
834 each of the genomes and transcriptomes downloaded from public databases plus data
835 generated in our lab.

836 We then reran EukPhylo part 2 with these 1000 taxa, using only the sequences labeled as
837 ‘OG6’, based on GC composition (see Supporting Information for details), with five iterations of

838 Guidance (52, 53), and built trees using IQ-Tree (-m LG+G; File S4 at Figshare). For this study,
839 we also implemented the ‘similarity filter’ with an amino acid identity cutoff of 99% to remove
840 highly similar sequences within species (see supplemental methods). We then removed
841 sequences identified as contaminants by the contamination loop in EukPhylo part 2. We first ran
842 ten iterations in ‘sisters’ mode, using the rules file provided in Table S8 at Figshare, followed by
843 five iterations of ‘subsisters’ rules on a select number of taxa (Table S9 at Figshare). Next, we
844 ran two separate iterations of the ‘clade’ mode, the first one to remove only the ciliate parasites
845 of Parabasalids (Ex_pa) that occurred when transcriptome data were generated from
846 co-contaminated rumen ciliates, and the second one to remove sequences from all other
847 well-sampled taxa (see Table S10 and S11 at Figshare for rules, and Supporting Information for
848 details).

849 For the final analyses, we removed gene families that showed evidence of either primary or
850 secondary endosymbiotic gene transfer (EGT). We first used the utility script CladeSizes.py to
851 identify trees where multiple photosynthetic lineages nest in a single clade. We identified
852 putative primary EGT events as clades comprising only photosynthetic eukaryotes and bacteria
853 (and occasionally archaea), with many of these including cyanobacteria; we used this broad
854 approach in light of the possibility of either LGTs among prokaryotes (i.e. from cyanobacteria to
855 other prokaryotes) after transfer to eukaryotes, and because of the possibility of multiple
856 sources of photosynthetic machinery in eukaryotes (e.g. 81). We identified putative secondary
857 (or tertiary) EGT events as cases in which we found interdigitation of multiple lineages of
858 photosynthetic eukaryotes (e.g. photosynthetic stramenopiles nested in red algae). We manually
859 examined all trees with a large number of putative primary and/or secondary EGT events
860 (identified using the utility script CladeSize.py), resulting in a set of 169 OGs total that we
861 removed to construct our final EGT-removed species tree (Fig. 4d).

862 To build species trees, we used two methods: Asteroid (61) and the concatenation option
863 included in EukPhylo. At each step of the process, we selected orthologs (i.e. removed putative
864 paralogs) and built a concatenated alignment using the methods built into EukPhylo part 2 (see
865 Supporting Information and the EukPhylo v1.0 GitHub wiki page for more information); species
866 trees were then built with IQTREE (-m LG+G; Files S4-6 at Figshare). We also used Asteroid
867 (61) to build super trees with trees generated by EukPhylo, at each step of the contamination
868 loop (File S9 at Figshare). We ran this Conserved OG analysis with Guidance v2.0.2 as this was
869 the version available at the time, but we subsequently updated the pipeline and estimated the
870 performance with Guidance v2.1 accessed in June 2024 (Table S5).

871

872 Data and Software Availability

873 The main EukPhylo pipeline and accompanying scripts, including all scripts used for this study,
874 are available on GitHub (<https://github.com/Katzlab/EukPhylo>) and Zenodo
875 (DOI:10.5281/zenodo.13323372). All results and outputs generated by this study, including
876 Tables 1 to 15 and Files 1 to 10 listed in the manuscript, are available on Figshare
877 (https://figshare.com/projects/EukPhylo_Supplemental_Files/196552).

878

879

880

881 Acknowledgements

882 We are grateful to Elinor Sterner, Julian Hernandez (Smith College) and Xyrus Maurer-Alcalá
883 (AMNH) for their help in early stages of this study, and to the Unity Cluster (Massachusetts
884 Green High Performance Computing Center) for HPC resources. We also thank the two
885 reviewers whose comments led to substantial improvements to the manuscript. Recent support
886 for LAK has come from three recent NSF awards (DEB-2230391, DEB-2439030,
887 OCE-1924570) as well as funding from the NIH (R15HG01040).

889 **References**

890 1. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown
891 MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, del Campo J, Dunthorn M, Edvardsen
892 B, Egli Y, Guillou L, Hampl V, Heiss AA, Hoppenrath M, James TY, Karnkowska A, Karpov
893 S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall L, Lynn DH, Mann DG,
894 Massana R, Mitchell EAD, Morrow C, Park JS, Pawłowski JW, Powell MJ, Richter DJ,
895 Rueckert S, Shadwick L, Shimano S, Spiegel FW, Torruella G, Youssef N, Zlatogursky V,
896 Zhang Q. 2019. Revisions to the Classification, Nomenclature, and Diversity of
897 Eukaryotes. *J Eukaryot Microbiol* 66:4–119.

898 2. Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The New Tree of Eukaryotes. *Trends
899 Ecol Evol* 35:43–55.

900 3. Collens A, Katz LA. 2021. OPINION: Genetic conflict with mobile elements drives
901 eukaryotic genome evolution, and perhaps also eukaryogenesis. *J Hered* 112:140–144.

902 4. Parfrey LW, Lahr DJG, Katz LA. 2008. The dynamic nature of eukaryotic genomes. *Mol
903 Biol Evol* 25:787–794.

904 5. Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, Schön ME, Seitz KW, Dombrowski
905 N, Lewis WH, Homa F, Saw JH, Lombard J, Nunoura T, Li W-J, Hua Z-S, Chen L-X,
906 Banfield JF, John ES, Reysenbach A-L, Stott MB, Schramm A, Kjeldsen KU, Teske AP,
907 Baker BJ, Ettema TJG. 2023. Inference and reconstruction of the heimdallarchaeal
908 ancestry of eukaryotes. *Nature* 618:992–999.

909 6. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN,
910 Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson
911 R, Thomas BC, Banfield JF. 2016. A new view of the tree of life. *Nat Microbiol* 1:16048.

912 7. Keeling PJ, Burki F. 2019. Progress towards the Tree of Eukaryotes. *Curr Biol*
913 29:R808–R817.

914 8. Simion P, Delsuc F, Philippe H. 2020. To What Extent Current Limits of Phylogenomics
915 Can Be Overcome?, p. 2.1:1-2.1:34. *In* Scornavacca, C, Delsuc, F, Galtier, N (eds.),
916 *Phylogenetics in the Genomic Era*. No commercial publisher | Authors open access book.

917 9. Susko E, Roger AJ. 2021. Long Branch Attraction Biases in Phylogenetics. *Syst Biol*
918 70:838–843.

919 10. Steenwyk JL, Li Y, Zhou X, Shen X-X, Rokas A. 2023. Incongruence in the phylogenomics
920 era. *Nat Rev Genet* 1–17.

921 11. Cote-L'Heureux A, Maurer-Alcalá XX, Katz LA. 2022. Old genes in new places: A
922 taxon-rich analysis of interdomain lateral gene transfer events. *PLOS Genet* 18:e1010239.

923 12. Kapli P, Yang Z, Telford MJ. 2020. Phylogenetic tree building in the genomic age. 7. *Nat*
924 *Rev Genet* 21:428–444.

925 13. Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI,
926 Hashimoto T, Simpson AGB, Roger AJ. 2018. Phylogenomics places orphan protistan
927 lineages in a novel eukaryotic super-group. *Genome Biol Evol* 10:427–433.

928 14. Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Alastair G. B. Simpson. 2018.
929 Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. 7736. *Nature*
930 564:410–414.

931 15. Eglit Y, Shiratori T, Jerlström-Hultqvist J, Williamson K, Roger AJ, Ishida K-I, Simpson
932 AGB. 2024. Meteora sporadica, a protist with incredible cell architecture, is related to
933 Hemimastigophora. *Curr Biol* 34:451-459.e6.

934 16. Torruella G, Galindo LJ, Moreira D, López-García P. 2024. Phylogenomics of neglected
935 flagellated protists supports a revised eukaryotic tree of life
936 <https://doi.org/10.1101/2024.05.15.594285>.

937 17. Felsenstein J. 1985. Phylogenies and the comparative method. *Am Nat* 125:1–15.

938 18. Edwards SV. 2016. Phylogenomic subsampling: a brief review. *Zool Scr* 45:63–74.

939 19. Mongiardino Koch N. 2021. Phylogenomic Subsampling and the search for
940 phylogenetically reliable loci. *Mol Biol Evol* 38:4025–4038.

941 20. Celebi FM, Chou S, McGeever E, Patton AH, York R. 2023. NovelTree: Highly parallelized
942 phylogenomic inference. *Arcadia Sci* <https://doi.org/10.57844/arcadia-z08x-v798>.

943 21. Drori M, Rice A, Einhorn M, Chay O, Glick L, Mayrose I. 2018. OneTwoTree: An online tool
944 for phylogeny reconstruction. *Mol Ecol Resour* 18:1492–1499.

945 22. Freyman WA. 2015. SUMAC: Constructing Phylogenetic Supermatrices and Assessing
946 Partially Decisive Taxon Coverage. *Evol Bioinforma* 11:EBO.S35384.

947 23. Sanderson MJ, Boss D, Chen D, Cranston KA, Wehe A. 2008. The PhyLoTA browser:
948 Processing GenBank for molecular phylogenetics research. *Syst Biol* 57:335–346.

949 24. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW.
950 2017. GenBank. *Nucleic Acids Res* 45:D37–D42.

951 25. Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer ELL. 1999. Pfam 3.1:
952 1313 multiple alignments and profile HMMs match the majority of proteins. *Nucleic Acids
953 Res* 27:260–262.

954 26. Kuznetsov D, Tegenfeldt F, Manni M, Seppey M, Berkeley M, Kriventseva EV, Zdobnov

955 EM. 2023. OrthoDB v11: annotation of orthologs in the widest sampling of organismal
956 diversity. *Nucleic Acids Res* 51:D445–D451.

957 27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search
958 tool. *J Mol Biol* 215:403–410.

959 28. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
960 *Bioinformatics* 26:2460–2461.

961 29. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open
962 source tool for metagenomics. *PeerJ* 4:e2584.

963 30. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND.
964 *Nat Methods* 12:59–60.

965 31. Pearson WR. 2013. An introduction to sequence similarity (“homology”) searching. *Curr
966 Protoc Bioinforma Chapter* 3:3.1.1-3.1.8.

967 32. Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and
968 ambiguously aligned blocks from protein sequence alignments. *Syst Biol* 56:564–577.

969 33. Sanderson MJ, Purvis A, Henze C. 1998. Phylogenetic supertrees: Assembling the trees of
970 life. *Trends Ecol Evol* 13:105–109.

971 34. Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, Crandall KA,
972 Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA, Laughinghouse HD th, McTavish
973 EJ, Midford PE, Owen CL, Ree RH, Rees JA, Soltis DE, Williams T, Cranston KA. 2015.
974 Synthesis of phylogeny and taxonomy into a comprehensive tree of life. *Proc Natl Acad Sci
975 U A* <https://doi.org/10.1073/pnas.1423041112>.

976 35. Escobar S, Helmstetter AJ, Montufar R, Couvreur TLP, Balslev H. 2022. Phylogenomic
977 relationships and historical biogeography in the South American vegetable ivory palms
978 (Phytolopheae). *Mol Phylogenet Evol* 166:107314.

979 36. Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, Field DJ, Ksepka DT, Chesser
980 RT, Moyle RG, Braun MJ, Brumfield RT, Faircloth BC, Smith BT, Braun EL. 2019. A
981 Phylogenomic Supertree of Birds. *Divers-BASEL* 11:109.

982 37. Li T, Liu D, Yang Y, Guo J, Feng Y, Zhang X, Cheng S, Feng J. 2020. Phylogenetic
983 supertree reveals detailed evolution of SARS-CoV-2. *Sci Rep* 10:22366.

984 38. Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme
985 L, Roger AJ, Rokas A, Shen X-X, Strassert JFH, Kolísko M, Brown MW. 2021.
986 PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. *PLOS Biol*
987 19:e3001365.

988 39. Heath TA, Hedtke SM, Hillis DM. 2008. Taxon sampling and the accuracy of phylogenetic
989 analyses. *J Syst Evol* 46:239–257.

990 40. Zwickl DJ, Hillis DM. 2002. Increased taxon sampling greatly reduces phylogenetic error.
991 *Syst Biol* 51:588–598.

992 41. Nabhan AR, Sarkar IN. 2012. The impact of taxon sampling on phylogenetic inference: a
993 review of two decades of controversy. *Brief Bioinform* 13:122–134.

994 42. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D.
995 2011. Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough.
996 *PLOS Biol* 9:e1000602.

997 43. Roure B, Baurain D, Philippe H. 2013. Impact of missing data on phylogenies inferred from

998 empirical phylogenomic data sets. *Mol Biol Evol* 30:197–214.

999 44. Wiens JJ. 2006. Missing data and the design of phylogenetic analyses. *J Biomed Inform*
1000 39:34–42.

1001 45. Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A,
1002 Mylnikov AP, Keeling PJ. 2016. Untangling the early diversification of eukaryotes: a
1003 phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista.
1004 *Proc Biol Sci* 283.

1005 46. Al Jewari C, Baldauf SL. 2023. An excavate root for the eukaryote tree of life. *Sci Adv*
1006 9:eade4973.

1007 47. Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. 2022.
1008 Phylogenomic analyses of 2,786 Genes in 158 Lineages support a root of the eukaryotic
1009 tree of life between opisthokonts and all other lineages. *Genome Biol Evol* 14:evac119.

1010 48. Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. 2019. New phylogenomic
1011 analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. *Mol*
1012 *Biol Evol* 36:757–765.

1013 49. Yabuki A, Gyaltshen Y, Heiss AA, Fujikura K, Kim E. 2018. *Ophirina amphinema* n. gen., n.
1014 sp., a New Deeply Branching Discobid with Phylogenetic Affinity to Jakobids. *Sci Rep*
1015 8:16219.

1016 50. Cerón-Romero MA, Maurer-Alcalá XX, Grattepanche JD, Yan Y, Fonseca MM, Katz LA.
1017 2019. PhyloToL: A taxon/gene-rich phylogenomic pipeline to explore genome evolution of
1018 diverse eukaryotes. *Mol Biol Evol*, 2019/05/08 ed. 36:1831–1842.

1019 51. Grant JR, Katz LA. 2014. Building a phylogenomic pipeline for the eukaryotic tree of life -

1020 addressing deep phylogenies with genome-scale data. PLoS Curr, 2014/04/08 ed. 6.

1021 52. Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. 2010. GUIDANCE: a web
1022 server for assessing alignment confidence scores. Nucleic Acids Res 38:W23–W28.

1023 53. Sela I, Ashkenazy H, Katoh K, Pupko T. 2015. GUIDANCE2: accurate detection of
1024 unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic
1025 Acids Res 43:W7-14.

1026 54. Chen F, Mackey AJ, Stoeckert CJ, Roos DS. 2006. OrthoMCL-DB: querying a
1027 comprehensive multi-species collection of ortholog groups. Nucleic Acids Res
1028 34:D363–D368.

1029 55. Corradi N. 2015. Microsporidia: Eukaryotic Intracellular Parasites Shaped by Gene Loss
1030 and Horizontal Gene Transfers. Annu Rev Microbiol 69:167–183.

1031 56. Bohlin J, Pettersson JH-O. 2019. Evolution of Genomic Base Composition: From Single
1032 Cell Microbes to Multicellular Animals. Comput Struct Biotechnol J 17:362–370.

1033 57. Cote-L'Heureux AE, Sterner EG, Maurer-Alcalá XX, Katz LA. 2025. Lost in translation:
1034 conserved amino acid usage despite extreme codon bias in foraminifera. mBio
1035 0:e03916-24.

1036 58. Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. BlobToolKit – Interactive Quality
1037 Assessment of Genome Assemblies.

1038 59. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
1039 Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
1040 Inference in the Genomic Era. Mol Biol Evol, 2020/02/06 ed. 37:1530–1534.

1041 60. Sibbald SJ, Archibald JM. 2020. Genomic Insights into Plastid Evolution. *Genome Biol*
1042 *Evol* 12:978–990.

1043 61. Morel B, Williams TA, Stamatakis A. 2023. Asteroid: a new algorithm to infer species trees
1044 from gene trees under high proportions of missing data. *Bioinformatics* 39:btac832.

1045 62. Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM. 1999. Microsporidia
1046 are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other
1047 proteins. *Proc Natl Acad Sci U S A* 96:580–585.

1048 63. Keeling PJ, Fast NM. 2002. Microsporidia: biology and evolution of highly reduced
1049 intracellular parasites. *Annu Rev Microbiol* 56:93–116.

1050 64. Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ.
1051 2019. Non-photosynthetic predators are sister to red algae. *Nature* 572:240–243.

1052 65. Lax G, Cho A, Keeling PJ. 2023. Phylogenomics of novel ploiotid taxa contribute to the
1053 backbone of the euglenid tree. *J Eukaryot Microbiol* 70:e12973.

1054 66. Li H. 2006. TreeFam: a curated database of phylogenetic trees of animal gene families.
1055 *Nucleic Acids Res* 34:D572–D580.

1056 67. Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH,
1057 Pinhassi J, Worden AZ, Keeling PJ, Ettema TJG, Wideman JG, Burki F. 2021. Single cell
1058 genomics reveals plastid-lacking Picozoa are close relatives of red algae. 1. *Nat Commun*
1059 12:6651.

1060 68. Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA.
1061 2006. Evaluating support for the current classification of eukaryotic diversity. *PLoS Genet*
1062 2:e220.

1063 69. Lawniczak MKN, Durbin R, Flicek P, Lindblad-Toh K, Wei X, Archibald JM, Baker WJ,
1064 Belov K, Blaxter ML, Marques Bonet T, Childers AK, Coddington JA, Crandall KA,
1065 Crawford AJ, Davey RP, Di Palma F, Fang Q, Haerty W, Hall N, Hoff KJ, Howe K, Jarvis
1066 ED, Johnson WE, Johnson RN, Kersey PJ, Liu X, Lopez JV, Myers EW, Pettersson OV,
1067 Phillippy AM, Poelchau MF, Pruitt KD, Rhie A, Castilla-Rubio JC, Sahu SK, Salmon NA,
1068 Soltis PS, Swarbreck D, Thibaud-Nissen F, Wang S, Wegrzyn JL, Zhang G, Zhang H,
1069 Lewin HA, Richards S. 2022. Standards recommendations for the Earth BioGenome
1070 Project. *Proc Natl Acad Sci* 119:e2115639118.

1071 70. Whibley A, Kelley JL, Narum SR. 2021. The changing face of genome assemblies:
1072 Guidance on achieving high-quality reference genomes. *Mol Ecol Resour* 21:641–652.

1073 71. Bolchini D, Finkelstein A, Perrone V, Nagl S. 2009. Better bioinformatics through usability
1074 analysis. *Bioinformatics* 25:406–412.

1075 72. Krampis K. 2022. Democratizing Bioinformatics through easily Accessible Software
1076 Platforms for Non-Experts in the Field. *BioTechniques* 72:36–38.

1077 73. Lawlor B, Sleator RD. 2020. The democratization of bioinformatics: A software engineering
1078 perspective. *GigaScience* 9:giaa063.

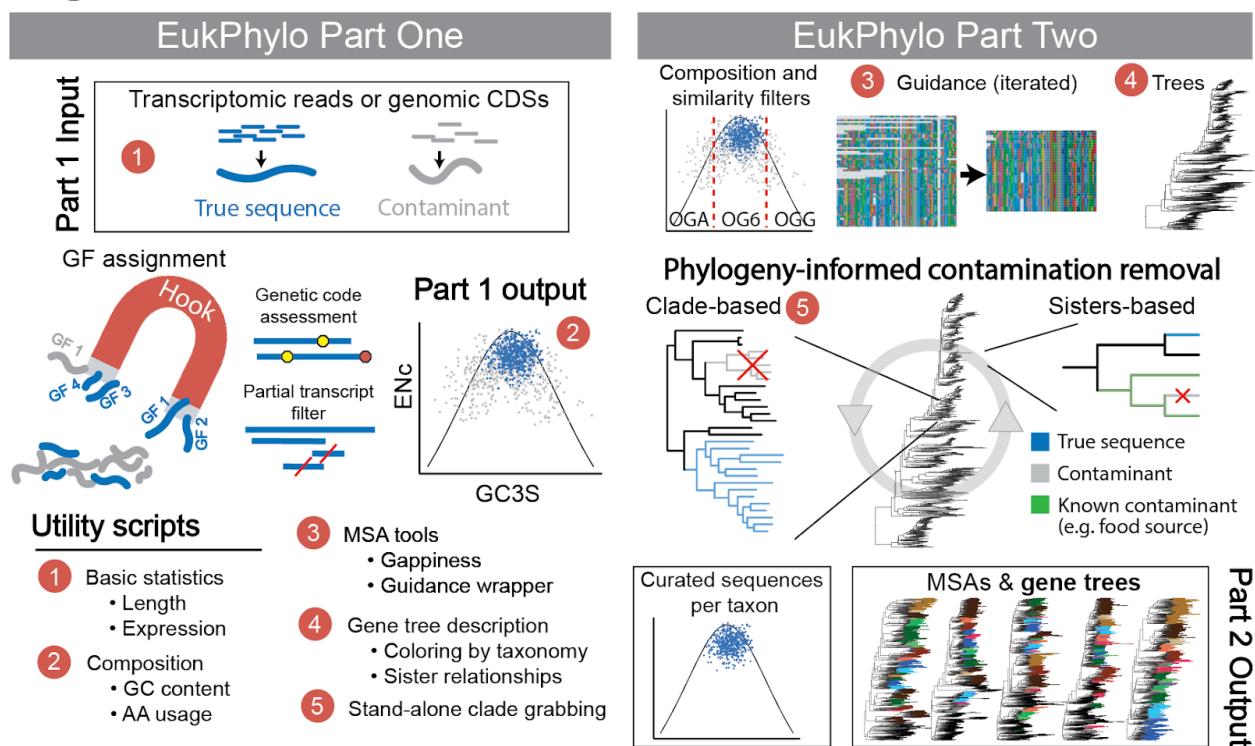
1079 74. Weiner AKM, Cerón-Romero MA, Yan Y, Katz LA. 2020. Phylogenomics of the Epigenetic
1080 Toolkit Reveals Punctate Retention of Genes across Eukaryotes. *Genome Biol Evol*
1081 12:2196–2210.

1082 75. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K,
1083 Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A,
1084 Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E,
1085 Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals

1086 O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. 2021. Highly accurate protein structure
1087 prediction with AlphaFold. *Nature* 596:583–589.

1088 76. Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S, Holmes L, Granger B, Green L,
1089 Howd T, Mason T, Vicente G, Dasilva M, Brodeur W, DeSmet T, Dodge S, Lennon NJ,
1090 Gabriel S. 2018. Characterization and remediation of sample index swaps by
1091 non-redundant dual indexing on massively parallel sequencing platforms. *BMC Genomics*
1092 19:332.

1093 77. MacConaill LE, Burns RT, Nag A, Coleman HA, Slevin MK, Giorda K, Light M, Lai K,
1094 Jarosz M, McNeill MS, Ducar MD, Meyerson M, Thorner AR. 2018. Unique, dual-indexed
1095 sequencing adapters with UMIs effectively eliminate index cross-talk and significantly
1096 improve sensitivity of massively parallel sequencing. *BMC Genomics* 19:30.


1097 78. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
1098 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973.

1099 79. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
1100 large phylogenies. *Bioinformatics* 30:1312–1313.

1101 80. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees
1102 for large alignments. *Plos One*, 2010/03/13 ed. 5:e9490.

1103 81. Larkum AW, Lockhart PJ, Howe CJ. 2007. Shopping for plastids. *Trends Plant Sci*
1104 12:189–95.

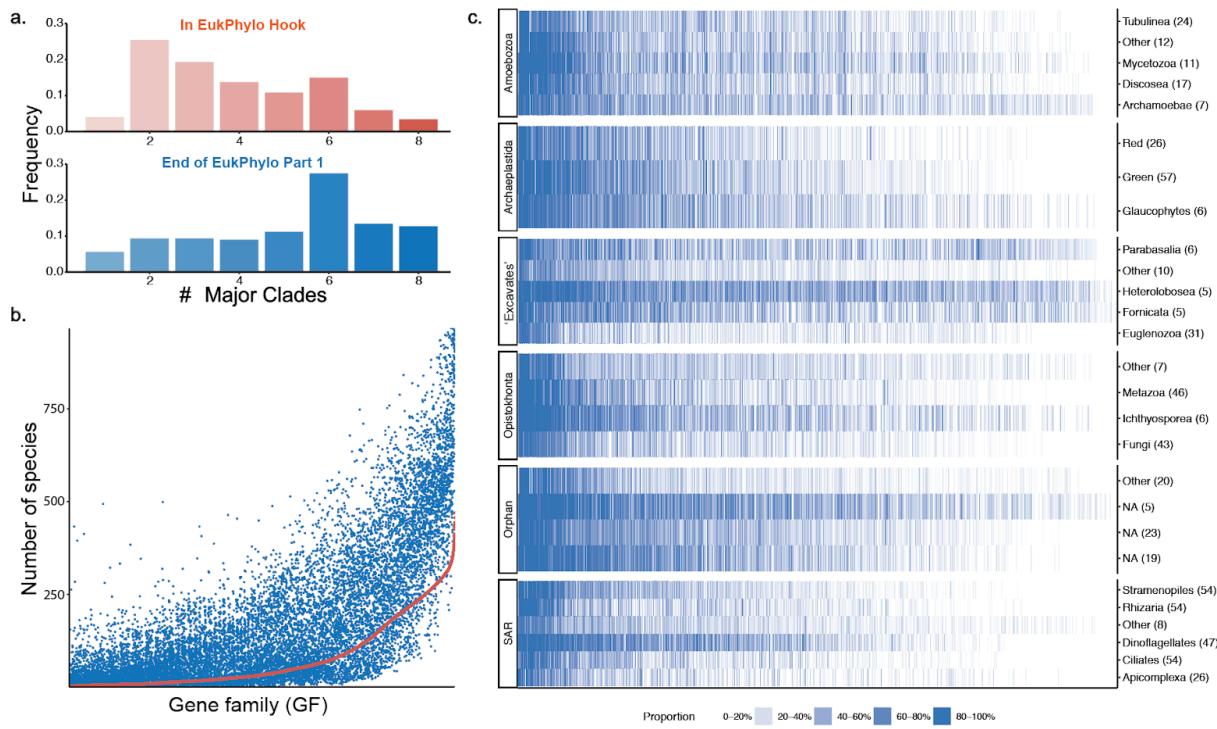
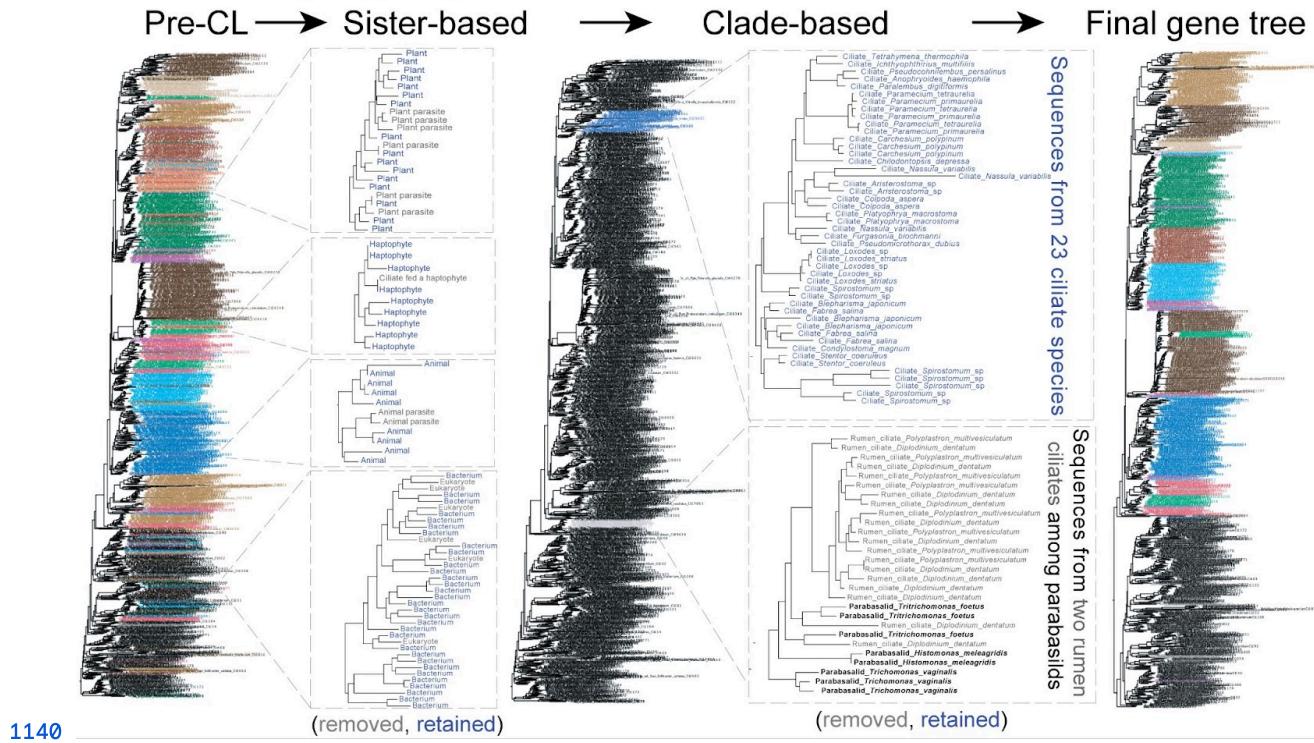

1105
1106

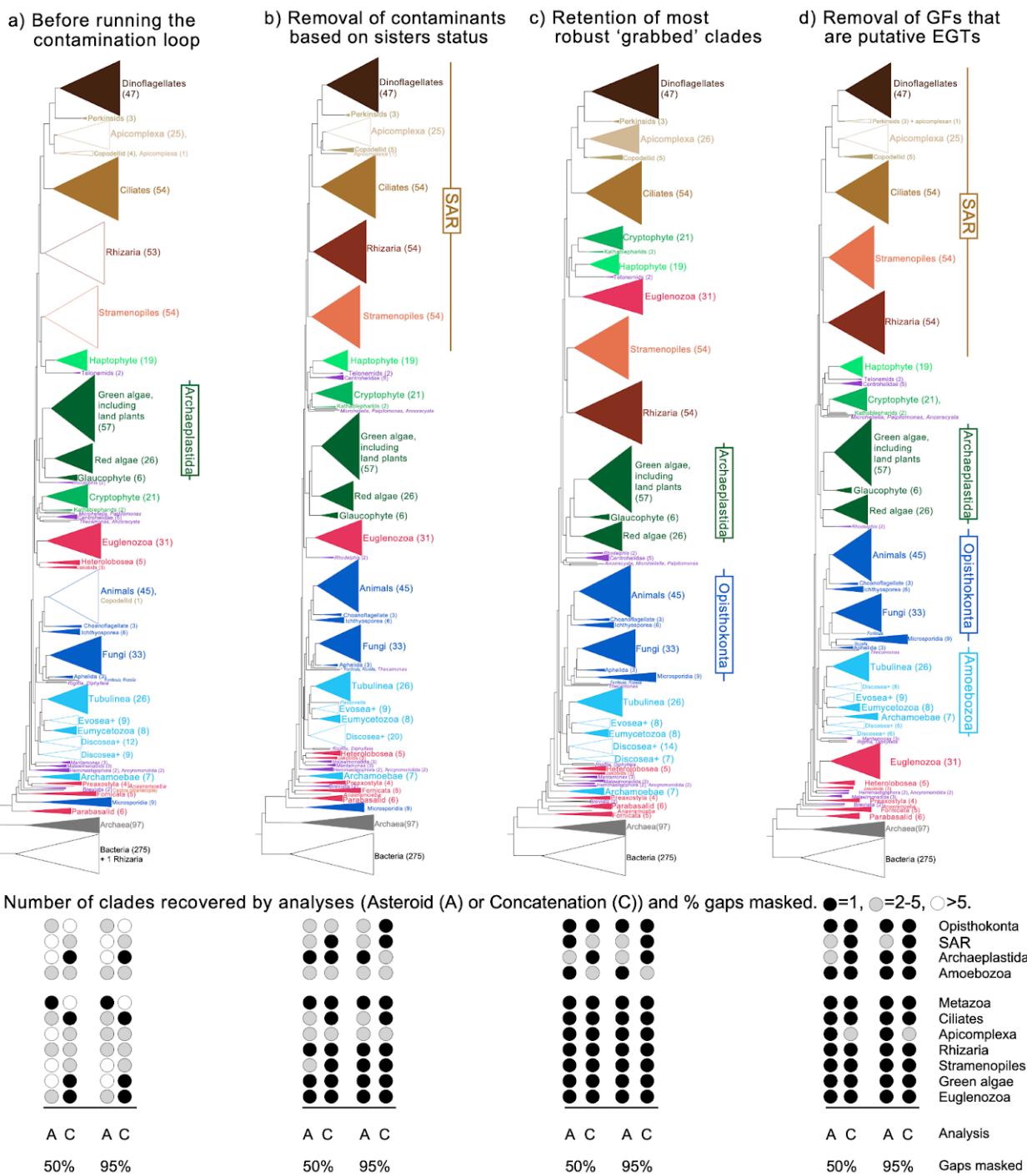
Figure 1

1110 **Fig. 1.** A schematic of the EukPhylo v1.0 core pipeline. EukPhylo comprises two main
1111 components, Part One and Part Two. Part One is primarily intended to apply preliminary
1112 filtration steps and assign gene families using a reference database. This reference database
1113 can be the Hook version 1.0 as described in the main text, or a custom database. Part One
1114 takes as input assembled transcripts or genomic CDS, and is able to flexibly handle a variety of
1115 genetic codes. In the graph under the “Part 1 Output” heading we show using silent-site GC
1116 content (GC3S) vs. the effective number of codons (ENC) that the true sequences from the
1117 sequenced sample (blue) tend to have similar composition, with contaminant sequences (gray)
1118 lying outside of this range (red dashed lines represent user-selected cutoffs for removing
1119 putative contaminant sequences based on GC3S; see Supporting Information). Part Two builds
1120 MSAs by iterating Guidance (52, 53) multiple (by default 5) times for rigorous homology
1121 assessment of each gene family, and then builds gene trees. We present a novel
1122 phylogeny-informed approach to contamination removal, where contamination is removed from
1123 trees in an iterative fashion, either by keeping only sequences in robust clades (“Clade-based”)
1124 or removing sequences sister next to known contaminants (“Sisters-based”). We also exemplify
1125 the suite of utility tools accompanying this core pipeline, identified by numbers (red circles)
1126 where the tool can be applied.

1127


1128

1129


1130 **Fig. 2.** The Hook reference database, which is used in EukPhylo part 1, effectively captures
 1131 taxonomic diversity in Gene Families (GFs) assignment. We divided the taxonomic diversity
 1132 between 8 major clades, of which 6 are Eukaryotic. While most GFs as represented in the Hook
 1133 database are only present in 2-4 major clades, once assigned to our more diverse dataset, most
 1134 GFs are present in 5-8 major clades, with a mode of 6 (the number of eukaryotic major clades)
 1135 (a). The number of species with a GF in the ReadyToGo files (blue) correlates with the number
 1136 of species with that GF in the Hook (red), with very few GFs losing diversity (b). Panel (c)
 1137 describes the proportion of species (intensity of color) in each of the 6 eukaryotic major clades
 1138 (rows; divided in minor clades detailed on the right of the panel) in which each GF (columns) is
 1139 found. GFs found in more species are on the left, and those with fewer species are on the right.

Phylogeny-informed contamination removal

Fig. 3. A cartoon depicting phylogeny-informed contamination removal, which is a component of EukPhylo part 2. Users can use the contamination loop to iteratively remove sequences based on their sister species in single-gene trees. Depicted here are sequences (gray) that are either from hosts in analyses of parasites (upper left) or bacterial sequences that come as contaminants in analyses of eukaryotic transcriptomes (lower left). In a second method of contamination removal, users can 'grab' (retain) sequences falling in monophyletic clades that meet user-specified robustness criteria (e.g. minimum target group species count and maximum number of non-group species). In the case depicted here, we identified substantial contamination of a subset of ciliate transcriptomes by parabasalids with which the ciliate species are known to share an environment (cow rumen). To remove this ciliate contamination, we used EukPhylo to retain only ciliate sequences falling in clades with at least 12. For clade-based contamination removal, an example of a retained clade is given in blue, and a removed clade in gray in the bottom right.

1155 Figure 4

f) Summary of other clades across analyses

Examples of clades always monophyletic

Dinoflagellates (SAR), Rhodophytes (Archaeplastida), Cryptophytes, Haptophytes, Tubulinea (Amoebozoa), Fungi (Opisthokonta)

Examples of clades never monophyletic

Amorphea, CRuMS, Cryptista, Diaphoreticke
Haptista, Obazoa, TSAR *

1161
1162 **Fig. 4:** a-d) Concatenated analyses (50% gap trimming) at four stages in the contamination-removal
1163 process are generally concordant with published hypotheses as most morphological-defined clades (e.g.
1164 dinoflagellates, green algae, Euglenozoa, stramenopiles) are recovered consistently. The four analyses
1165 are: a) before contamination loop, b) after removal of contaminants based on sister/subsister rules; c)
1166 after clade grabbing to keep 'best' sequences; and d) after removal of trees possibly affected by both
1167 primary and secondary endosymbiotic gene transfer (EGT). Notably, the monophyly of Opisthokonta
1168 emerges after clade grabbing (c) while the monophyly of Amoebozoa and SAR only appear after
1169 removing trees affected by EGT (d). Some "orphan" lineages (purple) are stable across trees (i.e.
1170 telonemids are always sister to haptophytes, breviates are always towards the root) while other lineages
1171 (e.g. Centrohelidae, Hemimastigophora + Ancyromonida) move position across trees; this likely reflects a
1172 combination of the effects of missing data and a lack of close relatives. Across each stage of the
1173 contamination removal process, the number of key eukaryotic groups that are monophyletic increases in
1174 both Asteroid (A) and concatenated (C) analysis removing sites that are either 50% and 95% gaps (e).
1175 Finally, f) we report groups that are always monophyletic and others that are never found; * indicates that
1176 TSAR is recovered only in the Asteroid analysis (50% gap trimmed) after clade-grabbing.