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Abstract Replacing the conventional imaging optics in machine vision systems with
diffractive optical neural networks (DONNs) that leverage spatial light modulation
and optical diffraction have been promising to enable new machine learning in-
telligence and functionality in optical domain, and reduce computing energy and
resource requirements in electrical domain. In this chapter, the fundamental models
to describe and design DONNs are first reviewed. Passive DONNs systems operat-
ing in the terahertz and short wavelength ranges are then introduced. Moreover, the
advanced architectures that are resilient to hardware imperfections, that demonstrate
improved performance, and that are implemented in photonic integrated circuits are
discussed. Furthermore, the implementations of system reconfigurability through
hybrid optoelectronic approaches are described. In addition, the effects from the
physical model inaccuracy and how physics-aware training is used to correct deploy-
ment errors from both models and hardware are discussed. Finally, an all-optical
reconfigurable DONNs system based on cascaded liquid-crystal spatial light modu-
lators is demonstrated.
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1 Introduction

Machine learning (ML) algorithms have seen unprecedented performance not only
in imaging science and technology, including computer vision and autonomous driv-
ing [1, 2, 3], but also in broad scientific domains, such as the discovery of materials
and molecules [4, 5] and chip and circuit design [6]. However, the execution of ML
algorithms on hardware requires substantial computational and memory resources
and consumes substantial energy. With the end of Dennard scaling and Moore’s law,
the energy consumption and integration density of electronic circuits have started
to hit a bottleneck of further reducing the energy consumption and increasing the
integration density of electronic circuits for processing trillions of operations [7, 8],
which thus urgently calls for new high-throughput and energy-efficient hardware
ML accelerators. Recently, optical architectures are emerging as high-performance
ML hardware accelerators by leveraging fundamentally different particles, photons,
to break the electronic bottleneck thanks to the extreme parallelism from the weak
interaction and multiplexing of photons as well as low static energy consumption [9].
In addition to the demonstrations of two-dimensional (2D) integrated optical ML
circuits [10, 11, 12, 13, 14], three-dimensional (3D) free-space optical systems
exploit the out-of-plane light routing and can host millions of compact active de-
vices [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Among these demonstrations, diffractive optical neural networks (DONNs) can
optically perform ML tasks through the spatial light modulation and optical diffrac-
tion of coherent light in multiple diffractive layers (Fig. 1a). Specifically, spatial
light modulation on each diffractive layer regulates the amplitude and phase of in-
put electric field, and optical diffraction creates interconnects between diffractive
layers, which mimic deep neural network architectures. In order to perform ML
tasks, amplitude and phase values in all diffractive layers are optimized so that co-
herent input images (e.g., Modified National Institute of Standards and Technology
(MNIST) handwritten digit images) can be converged to one of predefined regions
on a detector array that represents the label in supervised learning (e.g., numbers).
The classification criterion is thus to find the detector region with the largest signal.
Figure 1b displays an illustration that an input image with a handwritten digit 5
passes through multiple diffractive layers and then is focused onto one predefined
region representing number 5. Replacing the conventional imaging optics in machine
vision systems with DONNs can reduce the computational complexity and resource
requirement on backend electronic processing units, and can bring new functionality
to low-resolution imaging systems [29].

This chapter reviews the fundamentals and current development of free-space
DONNs and is organized as follows. Section 2 describes the mathematical descrip-
tions of DONNs and how the widely used backpropagation algorithm in ML is
utilized for training and optimizing the parameters of diffractive layers. Section 3 dis-
cusses the pioneering hardware implementations of DONNs in the terahertz (THz)
wavelength range, which benefit from the easy fabrication of diffractive layers. Sec-
tion 4 further describes the DONNs in more accessible short wavelength ranges,
where optical and optoelectronic components are mature. Section 5 summarizes a
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Fig. 1 Overview and the first demonstration of a THz DONNs system. (a) Schematic and
(b) 3D illustration of a DONNs system. (c) Diagram of a DONNs model. Adapted from Ref. [30].
(d) A THz DONNs system implemented with 3D printing technology. (b) and (d) are adapted by
permission from Dr. Aydogan Ozcan group from University of California, Los Angeles, U.S.A.

few advanced architectures with multiple hardware channels and optical multiplex-
ing for high-performance and multifunctional DONNs. Section 6 discusses a few
on-chip DONNs implemented in photonic integrated circuits in the telecommuni-
cation wavelength range. Section 7 describes reconfigurable hybrid DONNs with
electronic systems. Section 8 discusses the discrepancies between physical models
and hardware systems and how physics-aware training can mitigate them. Section 9
describes our latest demonstration of an all-optical reconfigurable DONNs with
physics-aware modeling and training and without any intermediate electrical-optical
conversions. Section 10 summarizes this chapter.

2 Fundamentals of DONNs

Figure 1c shows a detailed description of building blocks in a DONNs system illus-
trated in Fig. 1a. Input images are generated by shining coherent light, which mathe-
matically correspond to complex-valued tensors. As input images propagate toward
the detector array, which is called forward propagation, the input complex-valued
tensors go through two fundamental operations. One is the free-space diffractive
propagation and the other is the pixel-wise complex-valued multiplication when
transmitting through diffractive layers. Both are included in the forward propagation
model of a DONNs system as described in Section 2.1. The obtained images on the
detector plane after forward propagation are generally different from desired output
images. A loss function to quantify such difference, such as mean square error and
cross entropy, is defined. The spatial lightmodulation parameters on diffractive layers
are optimized to minimize the loss function, which is called backward propagation.
Since the mathematical operations of DONNs are naturally tensor operations, the
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state-of-the-art ML framework and hardware, such as PyTorch and general-purpose
graphics processor units (GPUs), can be leveraged to substantially accelerate the
optimization process, which is described in Section 2.2.

2.1 Forward propagation model

The optical diffraction is described by a shift-invariant Dyadic green’s function,
which can be approximated by Rayleigh-Sommerfeld diffraction equation
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If the field is assumed to be uniform over each pixel with area ( and the spatial
sampling is adequate, the input field �8,<+1 of the 8-th pixel on the (< + 1)-th layer
from the diffraction of transmitted field � C< on the <-th layer can be expressed as
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where r8,< is the position vector of the 8-th pixel on the <-th layer.
Regarding the spatial light modulation, the optical response of each pixel is

assumed to be that from the periodic array of that pixel under uniform illumination,
which is
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where C8,< is the complex-valued transmission coefficient of the 8-th pixel on the
<-th layer. The detectors on the layer � only capture light intensity �8,� as |�8,� |2.
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Since the diffraction equation (Eq. 2) is shift-invariant, the convolution theorem
and Fast Fourier Transform (FFT) can be utilized to substantially speed-up the
calculation of Eq. 4, which is the most computationally intensive in DONNs models.
The computation complexity of the direct summation in Eq. 4 for # × # pixels is
$ (#4), which is reduced to $ (#2log(#)) through FFT.

2.2 Backward propagation model

The training or optimization of diffractive layers for a fixed single pair of input and
output images can be done with the Gerchberg-Saxton (GS) algorithm, which has
been a standard approach for hologram design [31]. However, the iterative nature
of GS algorithm makes it difficult to be modified for the training with a large
number of input images and optimization parameters, which is ubiquitous in ML
tasks. Backpropagation algorithm, where the gradient propagates according to chain
rules and along the descent direction, has been a widely used efficient ML training
approach [32]. According to Eq. 4 and a loss function L, the gradients with respect
to the field can be calculated recursively from the final layer to the first layer as
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The gradients with respect to the diffractive layer parameters of the <-th layer can
be calculated as
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Nowadays, the PyTorch (version> 1.8)ML framework has provided fast and efficient
computation of FFT and its gradient backpropagation, which can substantially speed-
up the calculations of forward the backward propagation models in DONNs.

3 Terahertz-wavelength DONNs

Mature 3D printing technologies have enabled precise and versatile manufacturing
of diffractive optical components in long-wavelength ranges. With such capabil-
ity, Lin et al. have implemented the first hardware DONNs system in the terahertz
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(THz) wavelength range [15]. Figure 1d shows the fabricated five-layer THz DONNs
system illuminated by a coherent THz source. Each diffractive layer consists of
200 × 200 pixels in an 8 × 8 cm2 area. As described before, this system can perform
image classification tasks in the MNIST and Fashion-MNIST datasets with good
classification accuracies. Once the diffractive layers are fabricated, the inference of
ML tasks using this system does not consume energy. In addition, such inference is
performed in a single-clock-cycle forward propagation at the light speed. Thus, the
implemented THz DONNs system is an energy-efficient and high-throughput ML
inference hardware accelerator. In each diffractive layer, each pixel is assumed to
possess the phase-only transmission response, which is directly correlated with the
pixel height through a simple relationship between the phase delay and plane wave
propagation distance. By defining the loss function and employing the backprop-
agation algorithm described in Section 2, the optimized phase values of pixels in
diffractive layers can be obtained and these diffractive layers can be fabricated with
corresponding pixel heights using 3D printers.

The THz DONNs system is trained as an image classifier to perform automated
classification of handwritten digits from 0 to 9 in the MNIST dataset. Input images
are binary encoded by letting the input THz light pass through the metal plates
with engraved hollow digits from input images. The loss function is minimized
to maximize the optical signal for desired detector region for accurate classifica-
tion. The calculated test classification accuracy is 91.75% and the experimental
one from selected 50 images is 88%. Furthermore, deep architectures with more
diffractive layers are shown to be better in classification accuracies than those with
less diffractive layers, suggesting that DONNs exhibit “depth” advantages despite
without nonlinear functions.

However, the performance of DONNs is generally vulnerable to hardware imper-
fection. One strategy to construct imperfection-resilient DONNs is to incorporate the
modeled imperfection into the training process. For example, the classification accu-
racies of THz DONNs are sensitive to the translation, scaling, and rotation of input
images, which are inevitable in practical systems and machine vision applications. In
order to construct DONNs systems that are resilient to these object transformations,
Mengu et al. first quantify the sensitivity of DONNs to these uncertainties as shown
in Fig. 2a and further develop a training strategy that incorporates the formulated
input object translation, scaling, and rotation as uniformly distributed random vari-
ables [33]. As a result, this training approach successfully guides the optimization of
diffractive layers toward a shift-, scale-, and rotation-invariant solution. Furthermore,
Mengu et al. model layer-to-layer misalignments as random variables and introduce
them in the training process to train vaccinated DONNs to be robust against 3D
misalignments, while at the cost of reduced classification accuracy [34].

Another strategy to improve the robustness of DONNs systems is to explore
different architectures with reduced complexity. Li et al. propose a robust multiscale
diffractive U-Net (MDUNet) DONNs framework by introducing sampling and skip
connections [35]. Instead of having high pixel resolution for each diffractive layer,
the sampling processes, including downsampling and upsampling, change the pixel
size and resolution as shown in Fig. 2b. The sampling module can greatly improve
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Fig. 2 Hardware-imperfection resilient DONNs. (a) Translation, scaling, and rotation of input
images in DONNs. Adapted by permission from American Chemical Society: ACS Photonics,
Scale-, Shift-, and Rotation-Invariant Diffractive Optical Networks, Mengu, D. et al., © 2020.
(b) Schematic of theMDUNet architecture, and downsampling and upsampling principles. Adapted
under the terms of the Optica Open Access Publishing Agreement from Optica Publishing Group:
Optics Express, Multiscale diffractive U-Net: a robust all-optical deep learning framework modeled
with sampling and skip connections, Li, Y. et al., © 2022.

the system robustness by reducing the complexity of diffractive layers. Furthermore,
the skip connections can fusion the multiscale features from diffractive layers with
various resolution, which can achieve the similar performance compared to cascaded
fully connected DONNs while with reduced model parameters.

4 Short-wavelength DONNs

The practical technologies for generating, manipulating, and detecting THz elec-
tromagnetic radiations are limited. This has been widely recognized as the THz
gap, meaning that efficient and feasible THz components are challenging to be
implemented using either electronic or optical approaches [36]. As a result, the
implementation of such THz DONNs systems requires special, costly, and sophis-
ticated equipment. Moreover, there is a vast majority of imaging applications in
shorter wavelengths, including visible and near-infrared wavelengths. Thus, it is es-
sential to extend the operation of DONNs to these wavelengths. In addition to more
accessible optical hardware in these wavelengths, compact and advanced diffractive
components, such as metasurfaces, can be incorporated [37].

Short visiblewavelengths, on the order of hundreds of nanometers, requiremodern
nanofabrication technologies to manufacture diffractive layers. As shown in Fig. 3a,
Chen et al. employ a multi-step photolithography-etching process to produce five
diffractive layers on SiO2 substrates and construct a visible-wavelength DONNs
classifier at a singlewavelength 632.8 nm to recognize original images of handwritten
digits in the MNIST dataset and modified images that are covered or altered [38].
The calculated classification accuracy is 91.57% and the experimental accuracy
is 84%. Moreover, Goi et al. utilize galvo-dithered two-photon nanolithography
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(a) (b)

Fig. 3 DONNs in visible wavelengths. (a) Schematic diagram and experimental setup of the
visible-light DONNs system for the classification of MNIST images. Adapted under a Creative
Commons license CC BY-NC-ND 4.0 from Elsevier: Engineering, Diffractive Deep Neural Net-
works at Visible Wavelengths, Chen, H. et al., © 2021. (b) Experimental demonstration of multi-
plexed metasurface-enabled on-chip DONNs. Adapted under a Creative Commons Attribution 4.0
International License from Springer Nature: Light: Science & Applications, Metasurface-enabled
on-chip multiplexed diffractive neural networks in the visible, Luo, X. et al., © 2022.

with axial nanostepping of 10 nm to achieve a pixel density of > 5 × 106 mm−2 in
diffractive layers [39], which are further integrated with complementary metal-oxide
semiconductor (CMOS) chips for optical decryptors in the near-infrared range.

Furthermore, Luo et al. employ metasurfaces that consist of subwavelength
rectangular TiO2 nanopillars in diffractive layers and demonstrate a multiplexed
metasurface-based DONNs system integrated with a CMOS imaging sensor for a
chip-scale architecture, which can process information directly at physical layers
for energy-efficient and ultra-fast image processing in the visible range [40]; see
Fig. 3b. Metasurfaces consisting of subwavelength resonators can manipulate the
wavefront of light in nearly arbitrary manners and have enabled high-efficiency and
broadband holograms [41] and the miniaturized systems to perform mathematical
operations [42], such as differentiation [43, 44] and convolution [45]. Due to the com-
pact and thin characteristics of metasurfaces, Luo et al. achieve a pixel areal density
up to 6.25 × 106 mm−2 multiplied by the number of channels, highlighting a signif-
icant contrast to the THz DONNs system with a low pixel density 6.25mm−2 [15].
The multiplexing feature is discussed in Section 5.2.
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5 Advanced DONNs architectures

The state-of-the art convolutional neural networks in electronic systems can achieve
theMNIST classification accuracy > 99.9 % [46]. Despite the promising capabilities
in demonstrated DONNs, there is a noticeable gap of the classification accuracy be-
tween DONNs and their electronic counterparts. In addition, one DONNs system is
typically designed for only one specific ML task. This section summarizes a few re-
cent efforts of exploring advanced DONNs architectures with improved performance
and expanded functionalities.

5.1 Multichannel DONNs

One reason why DONNs underperform is due to the limitation that detectors can
only capture nonnegative real-valued light intensity without phase information. To
mitigate this constraint, Li et al. propose a differential measurement technique shown
in Fig. 4a [47]. Each class is assigned to a pair of detectors and the largest pair reading
difference is the classification criterion and training target. Moreover, divided indi-
vidual classes in a target dataset are processedwith two jointly trainedDONNs in par-
allel, which can achieve the calculated classification accuracies of 98.52%, 91.48%,
and 50.82% for MNIST, Fashion-MNIST, and grayscale CIFAR-10 datasets, respec-
tively. These values are close to those obtained in some all-electronic deep neural
networks, such as LeNet, which achieves 98.77%, 90.27%, and 55.21% for the
same datasets, respectively.

Furthermore, Rahman et al. propose the approach of using feature engineering and
ensemble learning with multiple independently trained diffractive layers to substan-
tially improve the classification performance of DONNs [48]. A set of input filters
are first utilized to extract features from preprocessed input images and each feature
image passes through a DONNs system with differential detection scheme, as shown
in Fig. 4b.With carefully selected ensemble of DONNs, this approach can achieve an
classification accuracy of CIFAR-10 images as 62.13 ± 0.05 %, which demonstrate
an accuracy improvement of > 16 % compared to the average performance of the
individual DONNs.

The DONNs systems we have discussed so far are purely passive. Thus, deploying
different ML tasks requires the complete rebuilding of the entire system, which
substantially degrades the hardware utilization efficiency. Li et al. propose amultitask
learning DONNs architecture in Fig. 4c, which can automatically recognize which
task is being deployed in real-time and performcorresponding classification task [49].
Instead of constructing two separate DONNs systems for the image classifications in
the MNIST and Fashion-MNIST datasets, a few diffractive layers are shared and two
split branches of diffractive layers are tailored for these two different but related ML
tasks. The loss function regularization is employed in the training process to balance
the performance of each task and prevent overfitting. The numerical calculation
results demonstrate that the multitask DONNs system can achieve the same accuracy
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(a)

(b)

(c)

Fig. 4 Multichannel DONNs. (a) Illustration of differential and class-specific differential DONNs
systems. Adapted under a Creative Commons Attribution 4.0 Unported License from SPIE: Ad-
vanced Photonics, Class-specific differential detection in diffractive optical neural networks im-
proves inference accuracy, Li, J. et al., © 2019. (b) An ensemble of DONNs systems consisting of
multiple different DONNs systems with the features of input images engineered by a set of input
filters before each DONNs system that forms the ensemble. Adapted under a Creative Commons
Attribution 4.0 International License from Springer Nature: Light: Science & Applications, En-
semble learning of diffractive optical networks, Rahman, M.S.S. et al., © 2021. (c) Illustration of
a multitask DONNs architecture with two image classification tasks deployed. Adapted under a
Creative Commons Attribution 4.0 International License from Springer Nature: Scientific Reports,
Real-time multi-task diffractive deep neural networks via hardware-software co-design, Li, Y. et
al., © 2021.



Diffractive Optical Neural Networks 11

for both tasks compared to two separate DONNs while with > 75 % improvement in
hardware utilization efficiency.

5.2 Multiplexing DONNs

In addition to introducing multiple hardware channels, including detector channels
and multiple optical paths, as summarized in Section 5.1, the intrinsic physical
features of optical electromagnetic waves, such as polarization and wavelength, can
enable parallel processing with multiplexing and thus boost the performance and
functionalities of DONNs systems.

(a) (b)

(c)

Fig. 5 Multiplexing DONNs. (a)Metasurface-enabled polarization-multiplexed DONNs system
for two classification tasks. Adapted under a Creative Commons Attribution 4.0 International
License from Springer Nature: Light: Science & Applications, Metasurface-enabled on-chip mul-
tiplexed diffractive neural networks in the visible, Luo, X. et al., © 2022. (b) Schematic of spectral
encoding of spatial information for object classification, and (c) experimentally measured and the
numerically calculated optical power spectra and classification confusion matrices of MNIST im-
ages with a single-pixel detector. (b) and (c) are adapted under a Creative Commons Attribution
License 4.0 from American Association for the Advancement of Science: Science Advances, Spec-
trally encoded single-pixel machine vision using diffractive networks, Li, J. et al, © 2021.

For example, the metasurfaces developed by Luo et al. can enable not only
visible-wavelength compact integrated DONNs as discussed in Section 4 but also
the polarization-multiplexing capability. The rectangular cross-section of subwave-
length TiO2 nanopillars produces different effective refractive indices along the two
crossed axes, which is the fundamental mechanism for polarization multiplexing.
These two orthogonal polarization channels are utilized to experimentally construct
a multitask DONNs system for the simultaneous recognition of input images from
the MNIST and Fashion-MNIST datasets, as shown in Fig. 5a. Furthermore, Li
et al. propose a polarization-multiplexed diffractive processor to all-optically per-
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form multiple arbitrarily-selected linear transformations by inserting an array of
linear polarizers with predetermined orientations in the middle of trainable isotropic
diffractive layers [50].

The multiplexing technique can also lower the requirement of hardware resource,
which is particularly crucial for technically challenging THz wavelength range.
For example, instead of assigning class in the detector array, Li et al. utilize a
broadband THz illumination to assign each digit/class in the MNIST dataset to 10
wavelengths [51]. Thus, only a single-pixel detector is needed at the output end
as shown in Fig. 5b. Furthermore, the calculated classification accuracy is > 95 %
and the experimentally obtained classification accuracy using 50 images is 88%, as
shown in the confusion matrices in Fig. 5c.

6 DONNs in photonic integrated circuits

Although DONNs are mainly implemented in free space, there have been re-
cent efforts of creating on-chip DONNs in 2D silicon photonic integrated circuits
(PICs). The compact footprint, lithography-defined optical alignment, and CMOS-
compatible and mass manufacturing of silicon PICs make a promising platform for
miniaturized DONNs systems.

Zarei et al. propose an integrated on-chip five-layer DONNs consisting of five
one-dimensional (1D)metalines at a telecommunicationwavelength of 1.55 `m[52].
Each element in ametaline is an etched rectangle slot with subwavelength dimensions
on a silicon-on-insulator substrate, which diffracts the in-plane propagating optical
waves. Thus, a metaline behaves like a 1D-version diffractive layer in a free-space
DONNs system. A 2D input image is flattened to a 1D array and a 1D on-chip
detector array is utilized to capture output signals. Wang et al. later experimentally
implement such a system as illustrated in Fig. 6a [53]. The chip contains ∼ 103

nanoscale diffractive etched slot elements in a 0.135mm2 area. The test images
are three binary letters “X”, “Y”, and “Z” with random amplitude and phase noises,
which are encoded and coupled into the chip through an array of grating couplers. As
light propagates through multiple metalines or metasurfaces, three detector channels
at the output end represent the class of input images and picking up the largest
detector signal among three channels is the classification criterion, as shown in
Fig. 6b. Figure 6c displays the confusion matrices obtained from numerical finite-
difference-time-domain (FDTD) simulations, continuous-wave (CW) excitation, and
pulsed excitation, which have the classification accuracies of 96 %, 92 %, and 89 %,
respectively.

Furthermore, Zhu et al. experimentally demonstrate a more compact integrated
DONNs shown in Fig. 6d [54]. The ultracompact diffractive cell is a 10-input-10-
output multimode interferometer. The input image encoding and nonlinear activation
functions are implemented by a mesh of electrically-controllable Mach-Zehnder
interferometers (MZIs) with thermal-optic phase shifters, as well as detectors. The
number of phase shifters, which determines the footprint and energy consumption
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Fig. 6 DONNs in photonic integrated circuits. (a) Schematic and in-plane field distribution of
the integrated DONNs system with on-chip diffractive metasurfaces. (b) Comparison of measured
optical intensities (dots with error bars) and the simulated optical distribution (gray curve) on the
output plane. (c) Confusion matrices obtained from FDTD simulations, as well as CW and pulse
light excitation. (a), (b), and (c) are adapted under a Creative Commons Attribution 4.0 International
License from Springer Nature: Nature Communications, Integrated photonic metasystem for image
classifications at telecommunication wavelength, Wang Z. et al., © 2022. (d) Schematic of an
experimental on-chip space-efficient DONNs device. (e) The numerical testing results of accuracy
and loss versus epoch number for the Fashion-MNIST dataset and the experimentally obtained
confusion matrix. (d) and (e) are adapted under a Creative Commons Attribution 4.0 International
License from Springer Nature: Nature Communications, Space-efficient optical computing with an
integrated chip diffractive neural network, Zhu H.H. et al., © 2022.

of the whole chip, scales linearly with the input data dimension. The calculated and
experimentally obtained classification accuracies for the MNIST dataset are 92.6%
and 91.4%, respectively. These two values for the Fashion-MNIST dataset are 81.4%
and 80.4% as shown in Fig. 6e.

7 Reconfigurable hybrid DONNs

We have so far mainly focused on passive DONNs, in which the spatial light mod-
ulation responses of diffractive layers are fixed once they are fabricated. Thus, the
fabricated passive DONNs system can only be utilized for a specific ML task. Al-
thoughmultitasking andmultiplexing architectures described in Section 5 can handle
a few but still limited tasks, it is more desirable to be able to dynamically adjust
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the response of diffractive layers for reconfigurable DONNs systems. The central
component for such implementation is a spatial light modulator (SLM), which can
regulate the amplitude and phase of the free-space propagating wavefront under the
control of external stimulus.

Figure 7a summarizes a few free-space all-optical and hybrid optoelectronic com-
puting paradigms, which can potentially achieve reconfigurability [55]. Scheme (i)
represents all-optical DONNs as we have discussed in prevision sections. Scheme
(ii) represents a canonical 4 5 Fourier imaging processing system, where a diffrac-
tive layer spatially modifies the wavefront. The output image is further processed
through electronic neural networks for performing ML tasks. Scheme (iii), which
is similar to Scheme (ii), further removes any diffractive layer and relies only on
the free-space propagation for photonic extreme ML [56]. In Schemes (i) to (iii),
the encoding method of input images is fixed. Instead, Wu et al. propose Scheme
(iv) that electronic neural networks are trained to encode input images so that the
optical free-space propagation can perform ML tasks [55]. Schemes (ii) to (iv) are
hybrid optoelectronic systems and the reconfigurability can be implemented by up-
dating electronic systems. However, strictly speaking, these are not reconfigurable
optical systems. Miscuglio et al. experimentally demonstrate some level of optical
reconfigurability in Scheme (ii) as shown in Fig. 7b [57]. Specifically, a digital mi-
cromirror device (DMD), which is one type of SLM for amplitude-only modulation,
is used as a diffractive layer. The electronic system is trained to performML tasks by
reading out images captured by the camera and sending the control signal to DMD.
The experimental results show the classification accuracies of 98% for the MNIST
dataset and 54% for the CIFAR-10 dataset. However, the computation is still heavily
performed in the electrical domain, which significantly compromises the advantages
of optical computing such as high energy efficiency and parallelism.

Zhou et al. have demonstrated a major advance of implementing large-scale
reconfigurable DONNs by replacing diffractive layers shown in Scheme (i) of Fig. 7a
with an electrically-controllable liquid-crystal SLM [58]. Specifically, the authors
construct a reconfigurable diffractive processing unit (DPU) consisting of a DMD,
a phase-only SLM, and a CMOS detector, as shown in Fig. 7c. The DMD encodes
input images; the SLM is a reconfigurable diffractive layer; and the CMOS reads
out the output image to the electrical domain. Multiple DPU blocks can be utilized
to construct complex neural network architectures, such as a hybrid DONNs system
shown in Fig. 7d. In contrast to all-optical DONNs, there are electrical-to-optical
(E/O) and optical-to-electrical (O/E) conversions between layers. TheCMOS readout
from the DPU in the previous layer is electronically processed to control the DMD
and SLM from the DPU in the next layer. In addition, nonlinear activation is applied
during these E/O and O/E conversions. But the system reconfigurability is achieved
by SLMs in the optical domain. Although the demonstrated system is still hybrid or
optoelectronic, an advantage is its versatility to construct different architectures, such
as diffractive recurrent neural networks (DRNNs) shown in Fig. 7e. However, the
disadvantages from E/O and O/E conversions include increased energy consumption
and processing latency, as well as the discrepancy between models and physical
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(i) All-optical DONNs

(ii) Optoelectronic CNNs

(iii) Photonic extreme ML

(iv) Optoelectronic DNN

(a)

(c)

(b)

DONNs DRNNs

Optical

Electronic

(d) (e)

Fig. 7 Reconfigurable hybrid DONNs. (a) The computing paradigms of all-optical and hybrid
optoelectronic neural network. Adapted under the terms of the Optica Open Access Publish-
ing Agreement from Optica Publishing Group: Optics Express, Only-train-electrical-to-optical-
conversion (OTEOC): simple diffractive neural networks with optical readout, Wu, L. et al., ©
2022. (b) Schematic and photo of a hybrid optoelectronic Fourier neural network experimental
setup. Adapted under the terms of the Optica Open Access Publishing Agreement from Optica Pub-
lishing Group: Optica, Massively parallel amplitude-only Fourier neural network, Miscuglio, M. et
al., © 2020. (c) Schematic of a DPU including a DMD, a phase-only SLM, and a CMOS sensor.
Two neural network architectures constructed using DPUs including (d)DONNs and (e) DRNNs.
(c), (d), and (e) are adapted by permission from Springer Nature: Nature Photonics, Large-scale
neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit, Zhou, T.
et al., © 2021.

systems, which limits the reconfigurability. The model inaccuracy and physics-aware
training for correction are discussed in Section 8.

8 Model inaccuracy and physics-aware training

In addition to hardware imperfection, there are always discrepancies between calcu-
lation models and hardware systems, which can also lead to the deployment errors
of trained models to experimental systems. This section first describes our recent
discovery of some origins of the model inaccuracy, which come from the over-
simplification of the electromagnetic wave interaction and propagation in diffractive
layers and free space in the analytical model described in Section 2.1. Although the
hardware-imperfection training approaches described in Section 3 can provide some
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model resilience, they are typically at the sacrifice of system performance. This
section further introduces two physics-aware training frameworks to minimize the
deployment errors from both models and hardware.

8.1 Model inaccuracy

The analytical model described in Section 2.1 does not consider any multiple
reflection-diffraction effect circulating between diffractive layers as shown in Fig. 8a
. Lou et al. incorporate this effect through transfer matrix method and iterative calcu-
lations as a modified trainable model. The DONNs system is trained with theMNIST
dataset using the analytical model without reflection and the accuracy drops when
the trained model is evaluated using the modified model with reflection. Figure 8b
displays the accuracy drop as a function of a round-trip reflected energy ratio over the
total energy (URT) for different trained diffractive masks with different material in-
dices. The reflection effect is negligible with low-index materials such as 3D printing
polymers with the refractive index ∼ 1.7 in THz DONNs systems [15, 59]. However,
it is substantial with high-index materials, which are generally involved in advanced
DONNs. For example, the metasurfaces made of high-index dielectric materials
can enable compact and high-density DONNs systems as described in Section 4.
In addition, reconfigurable DONNs can be constructed with emerging chalcogenide
phase change materials, which have THz indices > 10 [60] and visible-near-infrared
indices > 3 [61]. Thus, it is crucial to consider reflection effect when developing
next-generation compact and multifunctional DONNs.

In addition, Lou et al. analyze the interpixel interaction effect by comparing the
classification accuracies obtained from the analytical model and full-wave FDTD
simulations, which can precisely describe experiments [62]. For a two-layer DONNs
system, Fig. 8c demonstrates that a high accuracy needs a large pixel complexity,
which represents a fast-varying spatial response of trained diffractive layers. How-
ever, the large complexity leads to a low matching rate between the analytical model
and FDTD simulations, which is because the pixel optical response is considerably
affected by neighboring pixels and deviates from the periodic pixel assumption in
the analytical model. Deep DONNs can help to break down such trade-off. As shown
in Fig. 8d, the pixel complexity for a one-layer DONNs system is much larger than
that in a five-layer DONNs system to achieve similar high classification accuracies.
But the matching rate and thus experimental deployment of the five-layer DONNs
system is better, highlighting the “depth” advantage in achieving high accuracy and
accurate deployment simultaneously.
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(b)

(c)

(d)

(a)

Fig. 8 Model inaccuracy. (a) Illustration of interlayer reflection effect. (b) Accuracy drop as a
function of average round-trip power ratio URT, avg for multiple trained diffractive masks with differ-
ent refractive indices. (c) Classification accuracy obtained from analytical and FDTD approaches
and their matching rate as a function of the pixel complexity of diffractive layers. (d) Classification
accuracy obtained from the analytical model and FDTD simulations, as well as diffractive layer
complexity as a function of depth. Adapted by permission from Optica Publishing Group: Op-
tics Letters, Effects of interlayer reflection and interpixel interaction in diffractive optical neural
networks, Lou, M. et al., © 2022.

8.2 Physics-aware training

As discussed before, both hardware-imperfection and model inaccuracy can lead to
deployment errors. In order to correct these errors, the training processes incorpo-
rating hardware physics emerge as effective approaches. As shown in the flowchart
in Fig. 9a, Zhou et al. develop an adaptive training approach to circumvent system
deployment errors in their reconfigurable hybrid neural networks as discussed in
Section 7 [58]. Specifically, the in silico trained model is deployed onto the prac-
tical system and the in-situ experimental outputs from each DPU CMOS sensor
are utilized to update the trained model during the forward propagation. As shown
in Fig. 9b, the direct deployment of trained model leads to a substantial accuracy
drop because of the accumulated errors betweenmodels and physical systems as light
propagates. In contrast, the adaptive training process successfully recovers a high ac-
curacy. Furthermore, as illustrated in Fig. 9c, Wright et al. introduce a generic hybrid
in situ-in silico physics-aware training algorithm that takes experimentally measured
intermediate physical quantities during forward propagation ( 5p) into the compu-
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(a)

(b) (c)

Direct
deployment

Fig. 9 Physics-aware training. (a) Flowchart of the proposed adaptive training approach.
(b) Convergence plots of hybrid optoelectronic DONNs evaluated on the MNIST test dataset. The
blue plot shows the pre-training process. Orange, brown and yellow plots represent the adaptive
training with full, 20%, and 2% training sets, respectively. (a) and (b) are adapted by permission
from Springer Nature: Nature Photonics, Large-scale neuromorphic optoelectronic computing with
a reconfigurable diffractive processing unit, Zhou, T. et al., © 2021. (c) Schematic of the full train-
ing loop for the physics-aware training algorithm applied to arbitrary physical neural networks.
5p is the physical forward function, 5m is the approximate forward function in the mode, and 6)
is the gradient of the loss function respect to parameter ). Adapted under a Creative Commons
Attribution 4.0 International License from Springer Nature: Nature, Deep physical neural networks
trained with backpropagation, Wright, L.G. et al., © 2022.

tation of backpropagation gradients (6)) with the approximate model ( 5m) [63].
This approach allows training any controllable physical systems, even when physical
layers lack any mathematical isomorphism to conventional neural network layers.

9 All-optical reconfigurable DONNs

This section describes our latest demonstration of an all-optical reconfigurable
DONNs system based on cascaded liquid-crystal SLMs as shown in Fig. 10a [64].
The system is exactly the fully reconfigurable version of Scheme (i) in Fig. 7a with-
out any electrical-optical conversions. The fullstack implementation of software and
hardware has considered the imperfections from both models and systems. Thus, the
in silico trained model can be accurately deployed to the physical system without the
need for further tuning. Specifically, the diffraction model is modified to be system-
specific through a convolutional Fresnel method [65]. Furthermore, each liquid-
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(a) (d)

(b)

(c)

(e)

Fig. 10 All-optical reconfigurable DONNs. (a) A photo of the experimental system of all-optical
reconfigurable DONNs. Reconfigurable diffractive layers (RDAs) are based on liquid-crystal SLMs.
(b) The coupled amplitude and phase modulation responses for used SLMs. (c) Illustration of imple-
menting differentiable discrete complex mapping via Gumbel-Softmax for device-specific physics-
aware training. (d) An input image of a handwritten digit 1 from theMNIST dataset, experimentally
measured diffraction pattern and corresponding intensity distribution, and calculated diffraction
pattern and corresponding intensity distribution. (e) Confusion matrices of the computer-trained
model and experimental measurement. Adapted by permission from Wiley: Laser & Photonics
Reviews, Physics-Aware Machine Learning and Adversarial Attack in Complex-Valued Reconfig-
urable Diffractive All-Optical Neural Network, Chen, R. et al., © 2022.

crystal SLM has a coupled amplitude and phase modulation. Figure 10b displays
experimentally measured nonmonotonic and coupled modulation curves under 256
discrete grey levels, which break down the backpropagation algorithm. In order to in-
corporate such device response, the authors develop a device-specific physics-aware
training approach through differentiable discrete mapping based on the categorical
reparameterization with Gumbel-Softmax, as illustrated in Fig. 10c. This approach
can incorporate arbitrary device response. In addition, the full reconfigurability of
this system enables fast and precise pixel-by-pixel optical alignment.

With the accurate diffraction calculation, device-specific physics-aware training,
and precise hardware alignment, the trained gray levels of SLMs can be fast and
precisely deployed on the experiment setup. The input images of three digits 1,
2, and 7 from the MNIST dataset are used for training. Figure 10d displays an
excellent agreement between experimentally measured and calculated output images
and corresponding optical intensity distribution. Furthermore, the confusionmatrices
and accuracies obtained from calculations and experiments in Fig. 10e also match
well.

10 Summary

This chapter has described the fundamentals and current development of both passive
and actively reconfigurable DONNs systems. Various implementations of diffrac-
tive layers at different wavelengths, such as THz and visible dielectric components,
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compact and integrated metamaterials, and active spatial light modulators, as well as
versatile system architectures have been proposed and experimentally demonstrated
to enable high-performance and multifunctional DONNs systems. Furthermore, the
deployment errors from hardware imperfections and models, as well as the training
strategies to correct these errors have been introduced. We believe that the future
development of DONNs systems will focus on reducing the footprint of individual
diffractive pixels and overall architecture, and enhancing the capability of handling
sophisticatedML tasks, which will require not only fast-computed, trainable, and ac-
curate physical models but also newmaterial platforms and their enabling innovative
devices.
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