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Abstract: Network centrality analyses have proven to be successful in identifying important nodes in
diverse host—pathogen interactomes. The current study presents a comprehensive investigation of
the human interactome and SARS-CoV-2 host targets. We first constructed a comprehensive human
interactome by compiling experimentally validated protein—protein interactions (PPIs) from eight
distinct sources. Additionally, we compiled a comprehensive list of 1449 SARS-CoV-2 host proteins
and analyzed their interactions within the human interactome, which identified enriched biological
processes and pathways. Seven diverse topological features were employed to reveal the enrichment
of the SARS-CoV-2 targets in the human interactome, with closeness centrality emerging as the most
effective metric. Furthermore, a novel approach called CentralityCosDist was employed to predict
SARS-CoV-2 targets, which proved to be effective in expanding the pool of predicted targets. Pathway
enrichment analyses further elucidated the functional roles and potential mechanisms associated
with predicted targets. Overall, this study provides valuable insights into the complex interplay
between SARS-CoV-2 and the host’s cellular machinery, contributing to a deeper understanding of

viral infection and immune response modulation.

Keywords: comprehensive human interactome; SARS-CoV-2 targets; network metrices; centrality analyses

1. Introduction

Networks consist of nodes, which represent the system components within the net-
work, and edges, which represent the connections or relationships between these enti-
ties [1-3]. In biological systems, especially in the contexts of molecular biology and systems
biology, networks often focus on direct and indirect interactions among genes and their
products. For instance, in protein—protein interaction (PPI) networks, every node sym-
bolizes a protein, while edges denote the physical interactions occurring between them.
Cataloging PPIs on a proteome-wide scale is commonly referred to as interactomes [1-3].
Interactomes exemplify the intricate web of static and dynamic interactions within living
organisms, occurring both under normal steady-state conditions and in response to internal
cues or external stressors. Such protein complexes play crucial functions in diverse sig-
naling cascades, distinct cellular pathways, and a wide array of biological processes [4,5].
Specialized pathogens, including viruses, bacteria, and eukaryotic parasites, deploy a
range of pathogenic molecules, including virulent proteins. These proteins have evolved to
interact with crucial targets within the host’s interactomes, leading to significant rewiring of
the information flow [2,3,6-18]. This manipulation of host interactomes plays a pivotal role
in causing disease. Therefore, analyzing the network architecture and structural properties
of host—pathogen interactomes may unveil novel components in microbial pathogenicity.

In cellular networks, this network pattern emerges from universal principles that
govern network organization, indicating consistency across various network characteristics.
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For instance, scale-free topology describes a structure where connections among nodes
exhibit a power law distribution, characterized by a few highly connected nodes and many
with few connections. This “low number of nodes possessing increased connectivity”
suggests that in these networks, a handful of nodes serves as hubs, connecting a significant
portion of the network together. These hubs play a crucial role in maintaining efficient com-
munication within the network, as they facilitate the flow of information between different
regions or clusters of nodes. Besides network connectivity, node position is another crucial
concept. Node betweenness centrality is a measure of how often a node serves as a bridge
along the shortest paths between pairs of other nodes in the network. Nodes with high
betweenness centralities (bottlenecks) are positioned strategically in the network, acting as
critical players in a biological network. Indeed, hubs and bottlenecks are the key targets for
various pathogens, including viruses, bacteria, and eukaryotic pathogens, across plant and
animal interactomes. For instance, following the construction of a comprehensive human
interactome, the analysis of the network centrality unveiled that pan-viral targets predomi-
nantly consist of hubs positioned at the network’s core and are enriched in fundamental
biological processes [19]. A meta-analysis of host—virus interactions across 17 different
viruses indicated that viruses tend to target bottlenecks and hubs. This demonstrates that
viruses have evolved to disrupt the scale-free human interactome by targeting hubs and
proteins that serve as crucial communication nodes [20]. Therefore, the connectivity and po-
sition of specific nodes potentially allow for us to understand how viral pathogens exploit
vulnerable hosts’ cellular networks, facilitating infection, replication, or immune evasion.
In addition, deciphering viral pathogenesis can better prepare us for future pandemics,
similar to the recent global pandemic of COVID-19, caused by the highly contagious and
pathogenic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2).

In this study, we have constructed a comprehensive human interactome by integrating
PPIs from eight large-scale experimental studies and databases. Additionally, we have
compiled a comprehensive set of host targets of SARS-CoV-2. We conducted network
topology analysis that involved computing seven diverse centrality measures, which were
then applied to the human interactome. Subsequently, we overlaid those centrality-based
prioritized nodes with SARS-CoV-2 targets. Our findings indicate that the load centrality is
the most effective in predicting viral targets, followed by PageRank, hubs, and bottlenecks.
We also explored how combining diverse topological features can enhance the predictive
power. Furthermore, we utilized our recently developed algorithm, CentralityCosDist [21],
to predict viral targets, even in the presence of a low fraction of known viral targets.
Overall, this integrative systems biology framework can significantly contribute to our
understanding of viral pathogenesis, the identification of crucial host biological pathways,
and the discovery of potential therapeutic targets.

2. Materials and Methods
2.1. Construction of a Comprehensive Human Protein Interaction Network

In this study, we constructed a comprehensive human protein—protein interaction (PPI) net-
work by integrating data from several large-scale experimental studies and public databases. Our
network included PPIs from BioPlex (“BioPlex_HCT116_55K_Dec_2019” and “BioPlex_293T_
10K_Dec_2019") [18,22,23], CoFrac [24], CUBIC [25], HuRI (“HIR2_EXP”, “HIR2_PRED”, and
“HI_union”) [26], and STRING v12 [27] (Figure 1B and Table S1). We also compiled a set of
1449 SARS-CoV-2 host proteins from three recent studies [28-30].

To ensure consistency, we mapped all the protein identifiers to UniProt accession
numbers using the UniProt API when necessary. Merging the PPI datasets resulted in a
large network, with 26,028 nodes (proteins) and 825,682 edges (interactions) (Figure 1B
and Table S1). Interestingly, 1445 of the 1449 SARS-CoV-2 host’s interactor proteins were
present in this merged network (Figure 1E).
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Figure 1. (A) Integration of multiple protein interaction networks to identify a consensus target cluster.
This figure illustrates a funnel-like integration strategy, where distinct protein interaction networks
from various databases are combined. Each colored cluster represents a unique network. These
networks converge to identify a consensus ‘target’ set, denoted in red. (B) Details of the numbers
of nodes and interactions for a particular network. BioPlex 55k, HuRI, STRING, HIR2 Ex, CUBIC,
CoFrac, BioPlex 10k, and HIR2 P. (C) Schematic to display SARS-CoV-2 open-reading frames (ORFs)
targeting the human interactome. (D) Analysis of the functional enrichment of CentralityCosDist
prioritized genes using the Metascape web application. (E) Integrated or merged human PPI (blue)

network and target proteins (red).
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2.2. Building a SARS-CoV-2 Host-Protein-Specific Human Protein Interaction Network

From this comprehensive network, we extracted a sub-network we call the “open net-
work” that focuses specifically on the 1445 SARS-CoV-2 host proteins and their 19,255 direct
interactions. This sub-network contains 20,700 nodes and 260,231 edges (Figure 1E).

Our integrative approach allowed for us to construct a high-quality human PPI network
that can serve as a valuable resource for studying viral pathogenesis and identifying potential
therapeutic targets. By combining multiple large-scale datasets, we were able to expand the
coverage of known human PPIs and pinpoint those most relevant to SARS-CoV-2 infection.

2.3. Network Centrality Analysis

In our investigation of the “open network”, we employed a range of seven distinct
centrality measures to pinpoint the most crucial nodes within the network. These in-
clude degree centrality, betweenness centrality, eigenvector centrality, closeness centrality,
load centrality, and PageRank; each offers a unique perspective on a node’s importance
(Figure S1). By calculating each centrality measure for every node, we were able to generate
a ranked list, with the most central nodes appearing at the top (Figure 2A). Interestingly,
upon examining this ranked list, we discovered that several of the human proteins known
to interact with SARS-CoV-2 were positioned prominently near the top. This finding sug-
gests that these highly central proteins may play a vital role in the virus’s interaction with
human cells.

2.4. Ranking Nodes with Respect to the SARS-CoV-2 Host Proteins

To identify novel human proteins that SARS-CoV-2 might potentially hijack, we
employed a recently developed method called CentralityCosDist in the “open network”
(Figure S3). This method goes beyond standard network analysis by incorporating multiple
centrality measures. In essence, centrality measures evaluate a node’s importance within
the network. In this study, we utilized seven such measures: degree centrality, betweenness
centrality, eigenvector centrality, closeness centrality, clustering coefficient, load centrality,
and PageRank. Furthermore, to enhance the effectiveness of the CentralityCosDist, we
strategically selected “seed nodes”. These seed nodes act as reference points within the
network, guiding the algorithm’s search for new potential viral targets. We implemented a
two-pronged approach for seed node selection:

i. SARS-CoV-2 Host-Protein-Based Seeds: We utilized two variations. In the first, we
selected 10% of the 1445 known SARS-CoV-2 host proteins. In the second variation,
we included all 1445 known host proteins. This approach prioritizes nodes with
established connections to the virus;

ii.  Centrality-Based Seeds: We identified the top 10% of the nodes based on three central-
ity measures: degree centrality, betweenness centrality, and closeness centrality. These
nodes are inherently very interconnected within the network, making them prime
candidates for further investigation.

By combining these seed node strategies with CentralityCosDist, we aimed to cast a
wide net and uncover a diverse range of potential SARS-CoV-2 targets within the human
protein network.

To preprocess our protein—protein interaction (PPI) data and perform network anal-
yses, we utilized the Python programming language (version 3.11.4) and the NetworkX
package (version 3.1). NetworkX is a widely used, open-source Python library for creating,
manipulating, and studying the structures and dynamics of complex networks. To visualize
our networks and generate publication-quality figures, we used Cytoscape [31] software
(version 3.10.2). To gain biological insights from our network analysis, we performed
functional enrichment analysis using the Metascape web application [32].
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Figure 2. (A) Centrality measure and target protein overlap in the human-SARS-CoV-2 interactome.

This heatmap visualizes the overlap of the target protein nodes based on different centrality measures

within an open network. The x-axis lists various centrality metrics, such as degree, betweenness,

eigenvector, closeness, local, and PageRank centralities. The y-axis represents the percentage of the

nodes within the network, ranging from the top 1% to 100%. Each cell contains a numerical value

indicating the number of nodes that are target proteins across the different centrality measures, with

the corresponding color gradient reflecting the degree of the overlap—ranging from low (blue) to

high (yellow). The high degree of the overlap is indicated by the consistent appearance of higher
values (indicated by yellower shades) at the top percentage, particularly in the top 10%. (B) UpSet
plot of 10% open network’s target centrality overlap. Overlap of top 10% (centrality-ranked nodes)

target proteins’ overlapping nodes.
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3. Results and Discussion
3.1. A Comprehensive Human Protein—Protein Interactome and SARS-CoV-2 Host Targets

To comprehend the intricate network properties of the SARS-CoV-2 host targets, our
initial step involved the assembly of a comprehensive human interactome. This encom-
passed the compilation of experimentally validated PPIs from eight distinct sources. Among
these varied resources, the STRING database [33] emerged as being pivotal, containing a
vast repository of 561,769 experimentally validated interactions involving approximately
18,000 proteins (Figure 1A,B and Table S1). Additionally, we curated PPI data from addi-
tional proteome-scale interactome studies, namely, Human Interactomes I and II, BioPlex,
QUBIC, and CoFrac (as reviewed in [34]), alongside contributions from the Human In-
teractome Resource (HIR) [35] (Figure 1A,B and Table S1). Following the integration of
these diverse PPI datasets, our resultant integrated human interactome featured 825,682 in-
teractions and 26,000 nodes. Our previous study resulted in an experimentally validated
high-quality interactome comprising 18,906 nodes and 444,633 edges [36]. In the current
study, we have nearly doubled the number of interactions, creating a significantly expanded
dataset. This enhanced interactome serves as a valuable resource for future unrelated stud-
ies, providing a more comprehensive understanding of network dynamics and facilitating
further exploration into complex biological processes. Subsequently, we compiled an ex-
haustive compendium of SARS-CoV-2 host targets, which comprises 1449 host proteins
(see the methods section for details; Table S1). Upon querying these host targets within the
human interactome framework, we discovered the presence of 1445 host targets (Table S1).
Intriguingly, among these, 20 host targets were found as singletons, while the remaining
1429 were found to interact amongst themselves, forming a “closed network” encompass-
ing 31,000 interactions (Figure 1C, Table S1). Pathway enrichment analyses conducted
using Metascape revealed a plethora of enriched biological processes. These included
“intracellular protein transport”, “membrane organization”, “viral infection pathways”,
“RNA metabolism”, “ER protein processing and Golgi vesicle trafficking”, “RhoGTPase
signaling”, “influenza infection”, “cell cycle regulation”, and “neutrophil degradation”,
among several other pathways (Figure 1D). Akin to this study, another proteome-scale
mapping of SARS-CoV-2 targets identified 739 high-confidence binary and co-complex
interactions. These interactions were found to be enriched in pathways including protein
translation, mRNA splicing, Golgi transportation, neutrophil-mediated immunity, and glu-
cose metabolism [29]. In contrast to another recent study that relied solely on the STRING
database and focused on 1432 distinct proteins targeted by SARS-CoV-2 [37], our approach
presents a significantly more comprehensive analysis. Their study constructed a SARS-CoV-
2-relevant human interactome comprising 1111 nodes and 7043 edges, identifying enriched
biological processes and functional categories, such as neutrophil-mediated immunity
(GO:0002446), neutrophil-activation-involved immune responses (GO:0002283), and viral
processes (GO:0016032), from the biological process category. Additionally, functional
categories, including dolichyl-diphosphooligosaccharide—protein glycotransferase activity
(GO:0004579), GDP binding (GO:0019003), cadherin binding (GO:0045296), ATPase activity
(GO:0016887), and focal adhesion (GO:0005925), were highlighted [37]. By contrast, our
methodology involved integrating data from diverse sources, resulting in a more extensive
human interactome. This broader dataset facilitated a deeper exploration of network prop-
erties and pathway analyses, allowing for us to uncover a wider range of biological insights.
These findings offer valuable insights into the complex interplay between SARS-CoV-2 and
the host’s cellular machinery. By shedding light on the molecular pathways involved in
viral infection and immune response modulation, our study contributes to a deeper under-
standing of the pathogenesis of SARS-CoV-2 infection and may inform the development
of novel therapeutic strategies. To comprehensively understand SARS-CoV-2 targets and
their interactions within a broader context, we extended our analysis to encompass the first
neighbors of these interactions within the human interactome (Figure 1E). This resulted
in the establishment of a comprehensive human-SARS-CoV-2 interactome, characterized
by 20,700 nodes and 260,231 interactions (Figure 1E, Table S1). By doing so, we aimed to
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understand the connectivity and positioning of SARS-CoV-2 targets within the broader
network, providing insights into their relationships and functional roles within the entire
human interactome.

3.2. Diverse Centrality Measures to Reveal the Enrichment of SARS-CoV-2 Targets in the
Human Interactome

Centrality measures are crucial in network analysis, evaluating nodes’ significance
by examining their connections [21]. Leveraging centrality measures enriches our under-
standing of network behavior, facilitating targeted interventions and revealing underlying
dynamics across various biological systems. In network topology, structural centralities
can generally be classified into three groups [38—40]: (i) neighborhood-based centralities,
such as degree centrality, coreness, and LocalRank, which assess the influences of nodes
by considering their relationships with neighboring nodes; (ii) path-based centralities,
including the shortest path length, betweenness centrality, information centrality, close-
ness centrality, and Katz centrality, which gauge nodes’ influences based on the distances
between them within the network; and (iii) iterative refinement centralities, such as the
eigenvector centrality, PageRank, and LeaderRank, which evaluate nodes” influences by
taking into account both the mutual interactions of node neighbors and their overall impact
within the network [38,39]. We selected seven diverse centrality measures, representing the
three distinct groups discussed above (Supplementary Figure S1), to discern the enrichment
patterns of the SARS-CoV-2 host targets. We employed a top 10% threshold (2602 out
of 26,028 total nodes) to categorize nodes with high centrality across the seven topology
measures. The closeness centrality emerged as the most effective metric for identifying
694 SARS-CoV-2 host targets, exhibiting a prediction power exceeding 26%. Following
closely behind was high-eigenvector information centrality nodes as well as hubs and bottle-
necks, with prediction powers of 24.6%, 24.1%, and 23%, respectively (Figure 2A, Table S2).
Although our network analysis methods provided a ranking of potential protein targets, it
is important to note that these rankings were derived from and supported by underlying
experimentally validated interactions. We acknowledge that experimental validation of all
the predicted interactions is beyond the scope of this computational study. However, our
approach leverages a wealth of existing experimental data to make informed predictions
about potential SARS-CoV-2 targets. These predictions can serve as valuable hypotheses for
future experimental studies focused on validating specific virus-host protein interactions.

Previous studies have made significant contributions to our understanding of SARS-
CoV-2-host protein interactions [41,42]. A tissue-specific network analysis approach identi-
fied potential SARS-CoV-2 targets across different human tissues. This study highlighted
the importance for considering tissue specificity in virus-host interactions and identified
several key proteins and pathways involved in SARS-CoV-2 infection [42]. Using multiple
experimental approaches, including affinity purification mass spectrometry and proximity
labeling, a comprehensive map of the SARS-CoV-2-human ‘contactome’” was provided.
This study identified both previously known and novel virus-host protein interactions,
offering insights into the molecular mechanisms of SARS-CoV-2 infection [41]. Our study
builds upon previous works by integrating a broader range of experimental datasets and
employing different algorithms and prioritization methods, potentially leading to the iden-
tification of both overlapping and novel targets. Additionally, our analysis incorporates the
latest-available data, capturing interactions that may not have been known or considered in
earlier studies. We observed both overlaps and differences in the protein targets identified
by our analysis compared to previous studies. The overlapping targets validate our ap-
proach and highlight the significance of these proteins in SARS-CoV-2 infection. Specifically,
168 out of the 170 HuSCI proteins identified by Kim et al., and all the organ-specific proteins
identified by Feng et al., are present in our merged network, with a significant overlap of
1445 SARS-CoV-2 host interactor proteins from both studies (Figure S2). The differences in
the identified targets can be attributed to dataset differences, methodological variations,
and the inherent biological complexity of virus—host interactions.
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In a previous study, four different centrality measures (degree, betweenness, close-
ness, and eigenvector) were employed on 332 SARS-CoV-2 host targets [43]. That study
concluded that all the centrality measures play a significant role in identifying crucial
nodes within a network. As a result, median ranking scores were calculated, and the top
20 candidates were selected for functional similarity analysis. This analysis informed the
construction of a drug—protein interaction network [43]. Similarly, in our previous study,
network centrality analyses utilizing seven different centrality metrics identified 28 high-
value SARS-CoV-2 targets. These targets are likely involved in crucial processes, such as
viral entry, proliferation, and survival, contributing to the establishment of the infection
and the progression of the disease [36]. In the present study, we identified 406 nodes that
are common across seven different centrality measures. Additionally, we found 66 and
113 nodes that are common across six and five centrality measures, respectively. This indi-
cates a robust convergence of nodes across multiple centrality metrics, highlighting their
potential significance in the network and potential therapeutic targets. Organelle assembly,
protein localization, adaptive immune response, cytokine signaling, diseases of signal
transduction, ribosome biogenesis, and neurodegeneration pathways emerge as prominent
biological pathways enriched across centrality measures (Figure 3). Taken together, we
discovered that centrality measures, particularly the closeness centrality, high-eigenvector
centrality, and information centrality nodes, as well as hubs and bottlenecks, are effective
metrics to identify SARS-CoV-2 host targets.
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Figure 3. Pathway analyses for host targets for diverse centralities.

3.3. CentralityCosDist to Predict SARS-CoV-2 Targets

In our study, we addressed another question of how to expand the limited number of
available SARS-CoV-2 targets, aiming to predict additional targets by leveraging network-
based gene prioritization methods. The existing methods can generally be categorized
into four groups: guilt by association, centrality measures, network propagation/random
walk, and network clustering/communality analysis [21]. Although each method has
its strengths, it also comes with its own limitations. To address these limitations, we
introduced a novel approach called CentralityCosDist [21]. Briefly, this method starts with
a set of seed nodes. In a given network, each node is represented as a seven-dimensional
vector using seven diverse centrality metrices. The cosine distances between the seed
nodes are computed using these centrality vectors. By averaging the distances between
the seed nodes and each of the other nodes, all the nodes are ranked (Figure S3). This
approach allows for prioritizing and ranking the nodes based on their similarity to the seed
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nodes in the seven-dimensional vector space (Figure S3). We applied CentralityCosDist to
a randomly selected a set of 144 SARS-CoV-2 targets (with target seed 10 representing 10%
of all the known host targets). This was compared with target seed 100, representing all the
known host targets in our study. Remarkably, this led us to predict a total of 243 targets
spanning 2070 nodes, with a prediction power exceeding 11.73% (Figure 4A). A similar
number of targets were predicted if seed nodes were selected among the closeness centrality
or hubs (Figure 4A). This highlights the effectiveness of our approach in expanding the
pool of predicted targets when a limited number of host targets are known. This offers
valuable insights for further research into SARS-CoV-2 biology and potential therapeutic
interventions. Pathway enrichment analyses for “target seed 10” revealed enrichment in
several biological pathways. These pathways include the protein catabolic process, protein
localizations, vesicle-mediated transport, membrane organizations, protein processing,
and VEGFAR?2 signaling, among others (Figure 4B). This comprehensive analysis provides
valuable insights into the functional roles and potential mechanisms associated with “target
seed 10”, shedding light on its involvement in various cellular processes.
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tool across different sets of seed networks. The seeds for the CentralityCosDist analysis vary, including
‘open network betweenness’, ‘open network closeness’, and ‘open network degree’, along with
‘target seed 10’, which represent the top 10% of the seeds chosen at random, and ‘target seed 100’,
denoting the full set of seeds, amounting to 1449 nodes. The horizontal bars across the top of the
plot indicate the number of top nodes (2070) identified in each CentralityCosDist run, consistent
across all the seed sets. The filled circles and connecting lines in the matrix reveal the overlapping
results between different seed sets and the “target’, with red circles emphasizing where the ‘target’
overlaps with other sets. The vertical bars on the right side illustrate the intersection sizes. The
largest intersection is observed with the full set of seeds (‘target seed 100’), while the intersections
with ‘target seed 10" and centrality-based seed sets show a graded distribution of smaller sizes.
This analysis demonstrates the consistency of the CentralityCosDist tool in identifying the top
nodes across various seed sets and particularly highlights the influences of different seed selection
strategies on the outcome of the centrality distribution analysis. It offers a nuanced perspective
on how the choice of seeds can affect the identification of the key targets within the network.
(B) Pathway analyses for host targets that are identified through CentralityCosDist.

4. Conclusions

The current study led to the construction of a comprehensive dataset of the human
protein—protein interactome and SARS-CoV-2 host targets. This expanded dataset serves
as a valuable resource for future studies on other viruses and other biological questions.
Additionally, we curated a comprehensive list of 1449 SARS-CoV-2 host proteins and
analyzed their interactions within the human interactome. Moreover, we employed seven
diverse centrality measures in identifying crucial nodes within the network, revealing the
load centrality as being the most effective metric for predicting SARS-CoV-2 host targets.
Our analysis highlighted the convergence of nodes across multiple centrality metrics,
indicating their potential significance in the pathobiology of SARS-CoV-2. Additionally, we
introduced a novel approach called CentralityCosDist to predict SARS-CoV-2 targets, which
proved to be effective in expanding the pool of predicted targets. Pathway enrichment
analyses further elucidated the functional roles and potential mechanisms associated with
these predicted targets, providing valuable insights into their involvements in various
cellular processes. Overall, our study offers a comprehensive understanding of SARS-CoV-
2 host targets and their interactions within the human interactome. This may pave the way
for future research into the pathogenesis of SARS-CoV-2 infection and the development of
novel therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/data9080101/s1: Figure S1: Centrality metrics in network anal-
ysis; Figure S2: Target overlaps with previous studies; Figure S3: Schematics of CentralityCosDist
pipeline; Table S1: Human PPIs and seed sets; Table S2: Human PPIs (open) and seed sets; Table S3:
CentralityCosDist analysis results.
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