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1 Introduction

Flow and clogging of capillary droplets

*@ Benjamin F. Lonial, ©2® Shivnag Sista,® David J. Meer,”
© Mark D. Shattuck @2 ¢ and Corey S. O'Hern

Yuxuan Cheng,
Anisa Hofert,” Eric R. Weeks, adef
Capillary droplets form due to surface tension when two immiscible fluids are mixed. We describe the
motion of gravity-driven capillary droplets flowing through narrow constrictions and obstacle arrays in
both simulations and experiments. Our new capillary deformable particle model recapitulates the shape
and velocity of single oil droplets in water as they pass through narrow constrictions in microfluidic
chambers. Using this experimentally validated model, we simulate the flow and clogging of single
capillary droplets in narrow channels and obstacle arrays and find several important results. First, the
capillary droplet speed profile is nonmonotonic as the droplet exits the narrow orifice, and we can tune
the droplet properties so that the speed overshoots the terminal speed far from the constriction.
Second, in obstacle arrays, we find that extremely deformable droplets can wrap around obstacles,
which leads to decreased average droplet speed in the continuous flow regime and increased
probability for clogging in the regime where permanent clogs form. Third, the wrapping mechanism
causes the clogging probability in obstacle arrays to become nonmonotonic with surface tension I'. At
large I', the droplets are nearly rigid and the clogging probability is large since the droplets can not
squeeze through the gaps between obstacles. With decreasing I', the clogging probability decreases as
the droplets become more deformable. However, in the small-I" limit, the clogging probability increases
since the droplets are extremely deformable and wrap around the obstacles. The results from these
studies are important for developing a predictive understanding of capillary droplet flows through
complex and confined geometries.

obstacle arrays in microfluidic chambers,®* cell sorting

instruments,**™® and cell encapsulation devices.'”*° However,

Capillary droplets, which consist of immiscible liquid droplets
dispersed in another continuous phase, are ubiquitous in
food science,"”* the pharmaceutical industry,>* petroleum
products,™® and pollution remediation.” Being able to control
how capillary droplets flow and interact with their surround-
ings is crucial for enhancing food emulsion stability, optimiz-
ing drug production and delivery, and improving oil recovery
rates, while minimizing environmental risks associated with oil
exploration. For example, the flow rate of capillary droplets can
be tuned by varying the channel width and by designing

“ Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
E-mail: yuxuan.cheng@yale.edu

b Department of Physics, Emory University, Atlanta, GA 30322, USA

¢ Benjamin Levich Institute and Physics Department, The City College of New York,
New York, New York 10031, USA

 Department of Mechanical Engineering and Materials Science, Yale University,
New Haven, Connecticut, 06520, USA

¢ Program in Computational Biology and Bioinformatics, Yale University,
New Haven, Connecticut, 06520, USA

f Department of Applied Physics, Yale University, New Haven, Connecticut, 06520,
USA. E-mail: Corey.ohern@yale.edu

8036 | Soft Matter, 2024, 20, 8036-8051

we do not yet have a fundamental understanding of the
dynamics of capillary droplets flowing through complex, con-
fined geometries as a function of the droplet properties.

Flows of hard, frictional grains through narrow constrictions,
such as hoppers, silos, and obstacle arrays, display complex
spatiotemporal dynamics.”*>* Over 50 years ago, Beverloo and
co-workers carried out experimental studies of hopper flows for a
wide range of dry granular materials and proposed an empirical
form for the flow rate Q (in the continuous flow rate regime) versus
the orifice width w: Q ~ (W/oyg — k)ﬁ , where 0, is the mean grain
size, the flow arrests for w/oae < &, k 2 1.5 for rigid grains, and
p is the power-law scaling exponent that can be tuned by varying
the ratio of the dissipation from particle-particle contacts and
from the background fluid.>* In addition, researchers have found
that placing an obstacle ~30,,, above the orifice can reduce
clogging in silo flows of hard, frictional grains.>>*' Experimental
and computational studies have also shown that the permeability
of an obstacle array to granular flow can be tuned by varying the
density, shape, and size of the obstacles.****

In contrast, for deformable particles, it is possible to obtain
Q > 0 with no clogging even for w/c,,, < 1. Unlike hard grains,
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deformable particles can change their shapes to squeeze
through narrow constrictions that are much smaller than their
undeformed diameters. However, there have been few studies
of flows of deformable particles through narrow constrictions.
Many experimental studies have instead focused on hydrogel
particle flows in hoppers and silos with w/e,,s ~ 2-3, which do
not give rise to large particle deformation. For example, recent
studies have found that hydrogel particles with smaller elastic
moduli are less likely to clog®®*™*® and possess flow rates that are
much faster than those for hard particles, such as glass
beads.?* These prior results for hydrogel particles do not
address how particle flow rates are affected by large particle
deformation. Thus, an important open question is: does sig-
nificant particle shape change (i.e. by more than 50%) still
enhance flow through narrow constrictions and other confined
geometries?

The interplay between particle deformability and the geo-
metry of obstacle arrays can give rise to a new physical
mechanism, particle wrapping, which can strongly influence
the dynamics of capillary droplets as they flow through obstacle
arrays. When colliding with an obstacle, the highly deformable
droplet can wrap around the obstacle with both ends of the
droplet elongating in the flow direction until the energy penalty
from the droplet surface tension matches the work done by the
fluid driving force. At this point, both ends of the droplet
become stationary, and then one end of the droplet moves in
the opposite direction of the driving force, causing the particle
to unwrap. Particle wrapping can even lead to single-particle
clogging in obstacle arrays. In this case, the droplet is in force
balance after wrapping around an obstacle, where the fluid
forces on the droplet are supported by contact forces on the
droplet from neighboring obstacles. Thus, particle wrapping
can lead to much longer transit times through obstacle arrays
compared to those for hard particles with the same unde-
formed diameter. Despite its importance, the particle wrapping
mechanism has not been studied in detail in droplet flows
through obstacle arrays.

A key factor that contributes to the knowledge gap concern-
ing flows of highly deformable particles in confined geometries
is the lack of an accurate and efficient computational model for
these flows. At submicron length scales, e.g. within microfluidic
devices, inertial forces are typically much smaller than capillary
forces generated by particle surface tension, which strongly
influences the behavior of multi-phase fluid flows. Computa-
tional models for multi-phase fluid flows include grid-based
Eulerian techniques, such as the volume-of-fluid*® and Lattice
Boltzmann methods,*"*> and particle-based Lagrangian tech-
niques, such as the smoothed particle hydrodynamics
method.**™*® Grid-based methods determine the amount of
fluid and gas in each cell and calculate the surface energy by
reconstructing the fluid-gas interface. However, this method
does not strictly conserve mass, and the surface energy can
depend on the interface reconstruction algorithm.*® For
particle-based methods, the multi-phase system is discretized
into ““particles” with each particle assigned as gas or liquid with
a specified mass. Therefore, interface tracking is not needed,
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and the multi-phase fluid behavior is governed by particle-
particle interactions. However, it is challenging to determine
a priori the particle-particle interactions that yield the correct
contact angles at the multi-phase interfaces.***® Particle-based
methods are also computationally demanding since they simu-
late the droplet interiors in addition to the interfaces. As a
result, most particle-based simulations of multi-phase fluids
are limited to short time scales and small systems.

In this article, we describe combined experimental and
computational studies that enable the development of new
efficient computational methodologies and provide new
insights for flows of deformable particles through narrow
constrictions and obstacle arrays. In the experimental studies,
we measure the speed and shape of capillary droplets as they
flow through narrow openings as a function of the orifice width
and gravitational driving force. For the computational studies,
we develop a new deformable particle (DP) model*™*° with
surface tension (in two dimensions, 2D) that can be implemen-
ted to efficiently model thousands of capillary droplets flowing
through complex, confined geometries. Varying surface tension
in the experiments by more than a factor of 2 is challenging,
and thus we carry out simulations of extremely deformable
particles with surface tensions that vary by more than a factor
of 10%, which accentuates the particle wrapping mechanism.
We first validate the DP simulations by comparing the droplet
shape dynamics in experiments and simulations for a single
droplet flowing through narrow constrictions. We then investi-
gate the important physical parameters that control the flow
rate and clogging propensity of single deformable particles
moving through obstacle arrays using the experimentally vali-
dated DP simulations. Through this article, we seek to encou-
rage future experimental studies that will investigate droplet
squeezing and wrapping behavior of capillary droplets flowing
through obstacle arrays.

We find several important results. First, when a capillary
droplet is pushed by gravity (or buoyancy) through a narrow
constriction, its speed initially decreases as it enters the orifice
and deforms. After it reaches a minimum speed, the droplet
begins to speed up as it exits the orifice. However, as the speed
increases, it can overshoot the droplet’s terminal speed.
We find that the amplitude of the overshoot decreases with
increasing gravitational driving force (relative to the capillary
forces). Second, we show that highly deformable droplets flow
more slowly in obstacle arrays compared to droplets with larger
surface tension, due to the wrapping mechanism. Thus, for
capillary droplets flowing through obstacle arrays, the clogging
probability, as characterized by the average distance A traveled
by a droplet before it clogs, is non-monotonic as a function of
surface tension. For small values of surface tension, A first
increases with increasing surface tension, reaches a peak that
depends on the obstacle spacing, and then decreases with
continued increases in surface tension. In contrast, models of
soft particles that do not model explicit changes in particle
shape cannot capture particle wrapping,”®”" and thus cannot
accurately model flows of capillary droplets moving through
obstacle arrays in the low surface tension limit.
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The remainder of the article is organized as follows.
In Section 2, we describe the computational methods including
descriptions of the deformable particle model*”™*° for droplets
and the soft (semi-rigid) particle model*>*! and the equations
of motion and boundary conditions for discrete element
method (DEM) simulations of droplet flows through narrow
channels and obstacle arrays. In Section 3, we introduce the
experimental setup and method to generate capillary droplets
and flows. In Section 4, we describe the main results from the
combined experimental and simulation studies. We first char-
acterize the droplet speed and shape dynamics as a function of
the distance z from the orifice for both oil-in-water experiments
and DPM simulations of droplet flows through narrow chan-
nels. We calibrate the results for the droplet speed and shape
from the DP simulations to those from the experiments. Using
the experimentally validated DP simulations, we quantify the
nonmonotonic behavior in the droplet speed profile and the
clogging probability of single droplets flowing through obstacle
arrays as a function of the droplet surface tension. In Section 5,
we provide conclusions and propose future research directions,
including studies of multi-droplet flows through obstacle arrays
with droplet breakup and coalescence that can predict the
steady-state droplet size distribution. We also include five
Appendices to supplement the discussion in the main text. In
Appendix A, we present experimental data for the near-wall
droplet speed profile. In Appendix B, we investigate how the
results of the DP simulations depend on the number of vertices
N, in each deformable particle and the perimeter elasticity K.
In Appendix C, we provide additional details concerning the
definition of a clogging event and the clogging probability for
droplets flowing through obstacle arrays. In Appendix D, we
identify the surface tension regime for which the simulations
can achieve continuous flows in obstacle arrays. In Appendix E,
we quantify the dependence of the steady-state speed of the
droplets on the near-wall drag coefficient.

2 Simulation methods

In this section, we describe the methods for simulating 2D
gravity-driven flows of a single droplet through narrow chan-
nels and obstacle arrays. We first illustrate the geometry of the
narrow channels and obstacle arrays. We then introduce two
models for describing the droplet shape and interactions with
the walls: (1) the deformable particle (DP) model that treats
each droplet as a polygon with N, vertices, employs a shape-
energy function to penalize changes in droplet area and
changes in the separations between vertices, and enforces
excluded volume interactions using pairwise purely repulsive
forces between the droplet vertices and walls and (2) the soft
particle (SP) model, which tracks the centers of mass of the
droplets and enforces excluded volume interactions using
pairwise purely repulsive forces that increase with the overlap
between a droplet and the walls. For both models, we define the
forces on the droplets that arise from the shape-energy func-
tion, droplet-wall interactions, and dissipative forces from the
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background fluid, and provide the equations of motion for the
droplet trajectories. Finally, we describe the method for initi-
alizing the droplet positions and velocities in narrow channels
and obstacle arrays.

2.1 Geometry for flows through narrow channels and obstacle
arrays

The narrow channels in the 2D simulations are constructed
using two infinitely long wedges, one on the top and one on the
bottom that form an orifice between them with width w < o,
where ¢ is the diameter of the undeformed droplet [see
Fig. 1(a)]. The obstacle arrays are located within L x L simula-
tion boxes with periodic boundary conditions and L = 5000. The
circular obstacles with diameter o,, are placed inside the
simulation box using a Poisson sampling procedure with
separations w > w,y, [see Fig. 1(b)].

2.2 Deformable particle model

When droplets squeeze through narrow constrictions, they can
experience dramatic shape changes. To efficiently describe
large changes in shape that occur during gravity-driven droplet
flows, we employ the recently developed deformable particle
(DP) model.*”* In 2D, the droplets are modeled as deformable
polygons with N, vertices. The shape-energy function Us for
each deformable particle includes three terms:

TNy
2 4

i=1

U ="(a - ao)2 + (l; — lo)2 +U,. (1)

The first term imposes a harmonic energy penalty for changes
in the droplet area a from the preferred value a, and k, controls
the fluctuations in droplet area. The second term imposes a
harmonic energy penalty for deviations in the separations [;
between adjacent vertices i and i + 1 from the equilibrium
length [, and k; controls fluctuations in the separations between
adjacent vertices. This term ensures that vertices are distribu-
ted evenly on the droplet surface, preventing them from aggre-
gating in the direction of gravity. The factor of N, in the
numerator of the second term of eqn (1) makes U independent
of N,. We characterize the shape of the droplet using the

Ne \ 2
dimensionless shape parameter: .o/ = (Z l,-) /(4na), where
i=1

o/ =1 for a circle. The third term gives the energy arising from
line tension:

Uy = Vsolso + sz(L - lso) + yowlowy (2)

where yso, Ysw, and 7oy are the solid-oil, solid-water, and oil-
water line tension coefficients. (See Fig. 1(c) for a schematic of
the solid wall-oil droplet-water interface in 2D.) [, and [, are
the contact lengths at the oil-solid and oil-water interfaces,
respectively. L-lg, is the length of the solid wall that is not in
contact with the oil droplet. In the oil-in-water experiments
described here, thin layers of water exist between the oil
droplets and chamber walls, thus effectively setting y = y5, =

’yOW = 'ySW‘
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Fig.1 Schematic of the top view of (a) a droplet (shaded red) with
undeformed diameter ¢ flowing through a narrow orifice (shaded black)
with width w = 0.4¢ and (b) a droplet (shaded red) flowing through an
obstacle array (shaded blue) with random obstacle positions, obstacle
sizes oop = 0.30, and minimum separation wg, = . The open circles
represent the droplet’s trajectory. The rightward pointing arrow indicates
the direction of droplet flow. (c) Illustration of the top view of the DP
model in 2D with solid-oil ys,, oil-water yo,, and solid—water yq,, line
tensions. In the oil-in-water experiments, a thin layer of water exists
between the oil droplets and chamber walls as shown in the inset, and
thus 7so = Yow = Vsw- lso IS the contact length between the solid wall and oil
droplet, L is the length of the solid wall, (; is the separation between
adjacent droplet vertices, and a is the droplet area. (d) Schematic of the
side view of a quasi-2D capillary droplet placed between two parallel walls
with droplet thickness H, top-view 2D perimeter P, top-facing surface area
aop, bottom-facing surface area apotom. and out-of-plane surface area
doop- FOr the DP model in 2D, a = aiop = dpottom-

We assume that there are purely repulsive forces between
the droplets and hopper walls or obstacles, which are modeled
using the following pairwise interaction potential:

N, 2
N ey 2dl 2dz
Uv=2 7(1‘7) @(1‘7) (3)
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where ¢, sets the strength of the repulsive interactions, d; is the
minimum distance between the center of vertex i of the droplet
and the wall or obstacle surface, and 6 is the vertex diameter.
The Heaviside step function ©(:) ensures that the pair forces
are non-zero only between vertex i overlaps a chamber wall or
obstacle.

The total potential energy U for the droplet is the sum of the
shape-energy function U, gravitational potential energy Uy, and
particle-wall interactions Uy,

U= U+ Ug + Uy, (4)

where U, = —Mgh, h is the height of the center of mass of the
droplet, g is the gravitational acceleration, M = pa, is the mass
of the droplet with areal mass density p and area a, = no’/4.
We also consider dissipative forces from the background
fluid acting on each droplet vertex i:
v b

Fr=—17, 5
=T G)

where v; is the velocity of vertex i and {; is the viscous drag

coefficient:
_ b() g *
e (1 2(2)) ©

In eqn (6), b, is the drag coefficient when the droplet is far
from the walls, d; is the minimum distance between the center
of vertex i and the chamber wall (or obstacle), and b, is the near-
wall drag coefficient. The exponent o = 4/3 is calibrated to the
experiments on single droplet flows in narrow channels
described in Appendix A.

Thus, for the DP model, the equations of motion for the

position 7; of droplet vertex i is

D —
Mi% = -V,U+F, 7)
where M; = M/N, is the mass of vertex i.

From eqn (1)-(3), we introduce the dimensionless line
tension I' = y/(gps”) and three additional dimensionless energy
scales for the DP model in a gravitational field in 2D: the
dimensionless area compressibility K, = k,0/(gp), the dimen-
sionless perimeter elasticity K; = kj/(gpo), and the dimensionless
wall interaction energy E, = &,/(gpc”). In these studies, we vary
I' in the range 1072 < I' < 10. We set K, > 10" so that the
fluctuations in the droplet areas are small, K/I" < 10> so that
the line tension energy dominates the perimeter elasticity (see
Appendix B), and E, = 10" to minimize the vertex-wall (and
vertex-obstacle) overlaps. The time ¢ is measured in units of
ty = \/a/g and the equations of motion are integrated using a
modified velocity-Verlet algorithm with time step At = 10¢,.

2.3 Soft particle model

We will also describe gravity-driven single-droplet flows
through obstacle arrays using the soft particle (SP) model,
and compare the results from the SP model to those of the
DP model to better understand the influence of droplet shape
change on the flows. In general, there are three contributions to
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the total potential energy: (1) the shape-energy function U,
(2) the gravitational potential energy U, and (3) the droplet-
obstacle interaction energy U,. For the SP model, U; = 0 and
excluded volume interactions between the droplet and obsta-
cles are generated by allowing overlaps between them.3®37:3%:3
The pairwise droplet-obstacle interaction energy is

UW_%W<1—%)2@(1—%), (8)

where ¢ is the SP droplet diameter, d = r — o,/2 is the distance
between the center of the droplet and the obstacle surface, oy,
is the obstacle diameter, r is the separation between the center
of the droplet and the center of the closest obstacle, and &,, is
the characteristic energy of the repulsive interactions. The
Heaviside step function ©(:) ensures that the pair forces are
non-zero only when the droplet overlaps with an obstacle. Thus,
the total potential energy of an SP droplet in an obstacle array is

U= U+ U (9)

For the SP model, we consider following form for the viscous
drag forces on droplets moving in a background viscous fluid:

ﬁi = _Cspﬁ) (10)

where (), is the drag coefficient and v is the velocity of the SP
droplet. We note that, unlike eqn (6) for the DP model, we set
{sp = b In contrast to the DP model, the SP model considers
droplet deformation by allowing overlaps between the droplets
and obstacles, which makes it difficult to describe distance-
dependent viscous drag. For the SP model, the equations of
motion for the droplet position 7; are
o*F

M- U E.

P (11)

We integrate eqn (11) using a modified velocity-Verlet integration
scheme with time step At = 10 t,. For the SP model, an important
dimensionless energy scale is the ratio of the excluded volume
interactions to the gravitational potential energy, E,, = &y/(gpa”).
Here, we vary E,, over the range 10" < E, < 10

2.4 Simulation initialization

For the DP model, we initialize the droplets in narrow channels
and obstacle arrays in the shape of regular polygons with
edge lengths equal to their equilibrium values

\/4apNy tan(rn/Ny)/Ny. For droplet flows in narrow channels,

we initially place the droplet far from the orifice, typically at
h = — 100, so that the droplet reaches terminal speed before
touching the channel walls. For droplets in obstacle arrays, we
initially place the droplet in the center of the simulation box.
However, this placement typically causes overlaps between the
droplet and nearby obstacles. Therefore, after the initial place-
ment of the droplet, we carry out energy minimization (in the
absence of gravity) to eliminate overlaps between the droplet
and obstacles. We then integrate the equations of motion with
gravity and the droplet begins to flow through the obstacle
array until it reaches steady state or clogs (see Section 4.2).

Iy =
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3 Experimental methods

Below, we will compare the SP and DP simulation results for
gravity-driven droplet flows in narrow channels and obstacle
arrays to experimental studies of quasi-2D gravity-driven flows
of octane oil droplets in water. In this section, we describe the
details of our experimental studies. Note that quantitative
experimental studies were performed on flows of capillary
droplets through narrow orifices. In contrast, only qualitative
experimental studies of droplets flowing through obstacle
arrays were performed to illustrate the droplet squeezing and
wrapping mechanisms. The experimental studies of droplets in
obstacle arrays were only featured in the images in Fig. 5(a) and (c).

For the experiments studying droplet flows through narrow
constrictions, we construct the sample chambers using laser-
cut plastic film with thickness 400 pm, sandwiched between
two glass microscope slides. The film is attached to the slides
using Norland Optical Adhesive.** The film is cut into two
triangular shapes and placed such that they form a narrow
orifice, as shown in Fig. 1(a). The slope of the walls coming into
the orifice is 45°. The diameters of the droplets are tuned so
that they are larger than the chamber thickness to ensure that
each droplet is quasi-two-dimensional when confined by the
microscope slides.

We also conduct qualitative experiments of droplets flowing
through obstacle arrays to illustrate the physical mechanisms
of droplet squeezing and wrapping. For these qualitative
experiments, the obstacles are produced by placing small drops
of UV adhesive between the slides, which then cure into solid
cylinders spanning the sample chamber thickness. In addition,
we do not observe any influence of gravity in how the obstacles
cure. The chamber is sufficiently thin such that surface tension
determines the obstacle shapes. The maximum diameter at the
obstacle center is no more than 10% larger than the diameter at
the glass walls.

Our experiments focus on individual oil droplets passing
through the microfluidic chamber, and thus we do not need to
produce a large number of droplets. We form single oil droplets
by direct injection of the oil into the chamber via a hand-held
syringe. The droplet diameter is subsequently measured in situ.
Different experiments typically use different chambers with
their own oil droplet, allowing us to vary the orifice width
w and droplet diameter 6. We use octane with density
po = 0.703 g mL ' suspended in water with density
pw = 0.997 g mL ™", Despite the absence of other oil droplets,
we find that it is still necessary to use a 0.5% Tween 20
nonionic detergent solution to prevent sticking of the oil
droplets to the microscope slide surfaces.

We image the droplets using a 1.6 x lens (0.05 Numerical
Aperture) attached to a Leica DM4500 B inverted microscope.
Movies are acquired by attaching a 0.35 x C-mount to a
ThorLabs DCC1545M camera, and recording at a frame rate
commensurate with the droplet speed. The microscope is
tilted slightly from the horizontal to cause gravitationally
driven motion of the droplet. In particular, the tilt angle of
the microscope is changed by placing a spacer underneath the
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front edge of the microscope, and the angle is measured
relative to the ground via a Wixley digital angle gauge. As the
droplet density is less than water, the droplets rise in the
sample chamber due to the buoyant force. In all images
presented in this article, the direction of droplet motion is in
the direction of the arrow labeled by f.

The droplet motion is affected by viscous drag from the
water phase (viscosity 7, &~ 1 mPa s) and viscous drag between
the oil and glass plates (7, ~ 100 mPa s). The droplets try to
remain round due to surface tension (yow ~ 10 mJ m >, as
measured by the “Dropometer” from Droplet Labs). However,
under gravity, the droplets deform when pressed against the
sample chamber walls. We do not observe droplet break-up in
these experiments.

We incorporate quasi-2D effects in the simulations by defin-
ing an effective 2D surface tension based on the 3D surface
tension 7., from the experiments. The droplet surface energy
can be split into two parts, E = E' + Eqop, Where E' = yexp(@rop +
Gpottom) 1S the surface energy of the top and bottom surfaces of
the droplet, and Eqop = Yexploop iS the surface energy of the out-
of-plane surface of the droplet with area a,,, as shown in
Fig. 1(d). In the quasi-2D limit, the droplet thickness satisfies
H « P,where P is the perimeter of the droplet from the top view
and aqop & PH. Note that ap + apotcom 1S roughly constant due
to fluid incompressibility. Thus, when the droplet deforms, the
change in surface energy 0E = O0E + 0Egop R YexpOloop =
YexpHOP, and the effective 2D surface tension is y = yepH. We
nondimensionalize y by the buoyancy force such that the
dimensionless surface tension is defined as:

Vi _ Yexp
gexp,ﬂ,,fsz gexppoo-2

Fep = (12)
Here, yexp is the oil-water interfacial surface tension, gey =
sinfg(pw — po)/po is the acceleration imposed by oil-in-water
buoyancy, g ~ 9.8 m s~ is the gravitational constant, ¢ is the
average undeformed diameter of the droplets, and 0 is the
microscope tilt angle.

4 Results

In this section, we describe the results from the numerical
simulations of gravitationally-driven droplet flows through
narrow channels and obstacle arrays. We first present a method
to calibrate the DP simulations to experimental results for
droplet flows through narrow channels. We then show results
for the droplet speed in the direction of the driving v, as a
function of distance from the orifice. We find that the droplet
speed profile is nonmonotonic and can even possess an over-
shoot, such that the droplet speed exceeds the terminal speed v,
as it exits the orifice. Using the DP and SP models, we also
investigate gravity-driven droplet flows through obstacle arrays.
For the DP simulations, we find non-monotonic behavior for
the clogging probability as a function of the dimensionless line
tension I'. We show that droplets can clog at small I" when they
are highly deformable and can wrap around the obstacles.
We emphasize that the SP model does not include the wrapping
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mechanism since wrapping requires significant changes in the
droplet shape. As shown in many previous studies of flows of
nearly hard particles in confined geometries, the droplets can
also clog when they are nearly rigid at large I'. At intermediate
I', we find a regime of continuous droplet flows through the
obstacle arrays. We observe qualitatively similar results over a
wide range of obstacle densities.

4.1 Calibration of DP model using experiments of a single
droplet flowing through narrow channels

We first carried out both experiments and DP simulations of a
single droplet flowing through narrow channels under the
influence of gravity. To enable a comparison between the
experimental and simulation results, we define the root-
mean-square deviations in the droplet shape parameter A,
and speed A,

N,
Zf ((Mexp,i - %simj)/%sim,i)z
N

(13)

i=1

and

4, = 14
. fs e

i ((Vexp.,i - Vsin*l‘i)/Vsim,i)2
i=1

where .o/, ; is the droplet shape parameter in the ith frame in
the experimental video, and ./, ; is the droplet shape para-
meter in the DP simulations when the droplet center of mass is
at the same location as it is in the experiments at frame i.
Similarly, veyp,; and vgim,; are the droplet speed in the direction
of gravity at the ith frame in the experiments and simulations.
The summations in eqn (13) and (14) are over all N; frames in
the experimental videos. Despite using a small time step in the
DP simulations, we might not find a frame in the simulations
where the droplet has the same position as that in the experi-
ments. In this case, we use linear interpolation between frames
to generate .7 sim ; and Vgim ;.

We seek to minimize A, and A, by tuning the dimension-
less line tension I and near-wall drag coefficient by/b., in the
DP simulations. In practice, A, is more than an order of
magnitude smaller than A,, and thus we only minimize A,
over I and by/b,. b, is determined by matching the droplet’s
terminal speed far from wall in the DP simulations and experi-
ments. In particular, we equate the dimensionless terminal
speed,

I mg

V08oxp Do /g

in the experiments and DP simulations.

In Fig. 2(a) and (b), we show the droplet shapes as a function
of distance & from the orifice (with width w = 0.4¢) from
trajectories of gravity-driven droplet flows through narrow
channels in experiments and DP simulations using the values
I'*=0.16 £ 0.01 and by*/b., = 0.064 & 0.003 that minimize A,.
The error bars for I'* and b,* are the standard deviations in I'*
and by* from fitting the DP simulations to at least five

V=

(15)
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Fig. 2 Series of images of a single droplet flowing through a narrow orifice with width w = 0.4¢ from (a) oil-in-water experiments with undeformed
droplet diameter ¢ &~ 3.5 mm and tilt angle 0 ~ 28° and (b) a DP simulation in 2D at dimensionless line tension I' = I'* and near-wall drag coefficient bg =
bo*. The scale bar indicates 1 mm. The rightward pointing arrow indicates the direction of droplet flow. Below panel (a), we provide the distances of the
droplet center of mass to the orifice h at which the images are captured. We find that I'* ~ 0.16 and bo*/b,, ~ 0.064 minimize the deviation in the
droplet’'s center of mass speed A, between the DP simulations and experiments. These best-fit values give A, ~ 0.09 and A, ~ 0.01. In panel (a), we
overlay the shape of the droplet from the DP simulations at h = O (red dashed line) onto the corresponding droplet image for the experiments (black solid
line). Droplet (c) shape parameter «/ and (d) center of mass speed in the driving direction v4 plotted as a function of h/c for both experiments
(open circles) and DP simulations (solid lines). We estimate the dimensionless surface tension in the experiments to be I'e,, & 0.57. The error bars for the

experimental data are obtained using the standard deviation of the measured quantities from at least five different trials with one droplet.

independent experimental trials. For the experiments in
Fig. 2(a), the terminal velocity vy ~ 7 mm s~ ' far from the
wall, undeformed droplet diameter ¢ ~ 3.5 mm, and tilt angle
0 ~ 28°. Thus, for the data in Fig. 2(a), we estimate the
dimensionless surface tension for the droplets to be I'ey, =
0.57 and the dimensionless terminal velocity to be V, = 0.08.
In Fig. 2(c) and (d), we plot .«/ and v, as a function of A/c for
both the calibrated DP simulations and experiments for the
data presented in Fig. 2(a) and (b). We find that the droplet
shapes and speed profiles for the DP simulations and experi-
ments are similar over the full range of 4, with A, ~ 0.01 and
A, =~ 0.09. Note that despite the simplicity of the 2D DP
simulations, I'* is comparable to I'ex, (With I'*/I'ey, = 0.3),
emphasizing the predictive power of 2D DP simulations.

8042 | Soft Matter, 2024, 20, 8036-8051

We also note that, in general the shape parameter is not
symmetric about 2 = 0. For example, in Fig. 2(c) the shape
parameter at & ~ 0.50 is .o/ ~ 1.07, whereas at 7 ~ — 0.5¢, it is
o/ ~ 1.00.

In Fig. 3, we compare the results for the calibrated DP
simulations and experiments of gravity-driven droplet flows
in narrow channels for two additional experiments with differ-
ent droplet sizes, orifice widths and tilt angles. In Fig. 3(a) and
(b), we show .« and v, versus h/c for w/c = 0.90, 0 ~ 8.5°, ¢ ~
1.98 mm, », & 0.97 mm s ', V; ~ 0.028, and I'ey, ~ 5.80.
In Fig. 3(c) and (d), we show .« and v, versus h/c for w/a = 0.70,
0 ~ 5.0° ¢ ~ 3.30 mm, v, ~ 1.1 mm s %, V, ~ 0.032, and
I'exp = 3.47. In the DP simulations we can obtain the dimen-
sionless line tension I'™** for droplets in the two additional

This journal is © The Royal Society of Chemistry 2024
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experiments that minimizes A, for the experimental data in
Fig. 3 using I'**/T'* = (6*)’sin0*/((o**)’sin0**), where 0*, ¢* and
I'* are the tilt angle, undeformed droplet diameter and fitted
dimensionless line tension for the data in Fig. 2, and 6**, ¢**
are the tilt angle and undeformed droplet diameter for the two
additional experiments in Fig. 3. We find I'** = 1.7 £+ 0.1 for
0** = 8.5° and ¢** &~ 1.98 mm (with ey, ~ 5.8) and I'** =
1.08 £ 0.09 for 0** =5.0° and ¢** = 3.30 mm (with ey, & 3.47).
For all tilt angles and droplet diameters studied, we find
that the ratio of the dimensionless line tension that minimizes
A, to the dimensionless surface tension in experiments satis-
fies I'**/I'y, = 0.3, which likely stems from the fact that
we compare values of the dimensionless line tension in 2D
to values of the dimensionless surface tension in 3D. We find
that the near-wall drag coefficients that minimize A, do not
depend strongly on droplet diameter and tilt angle, by*/b., =
0.06-0.2.

~
~
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A key feature of the droplet speed profile v, is that it can
possess nonmonotonic behavior and v, can even exceed the
terminal speed v, as the droplet exits the orifice. For example,
in Fig. 3(d), v, overshoots v, near 4/c ~ 0.3. Similar phenomena
have been observed in pressure-driven droplet flows in obstacle
arrays, where the pressure drop across the orifice changes from
positive to negative, which indicates that the droplet speed
exceeds the background fluid velocity.*” To further investigate
the effects of the gravitational driving on the nonmonotonic
speed profile, we show v, versus h/c for fixed w/c = 0.7 for
several values of the tilt angle: 0 = 2.7°, 4.5°, and 6° in Fig. 4.
The nonmonotonic droplet speed profile can be understood by
analyzing energy transfer while the droplet moves through the
narrow channel. The droplet first impacts the chamber wall at
hlc < 0 and deforms while squeezing through narrow orifice.
During this process, the kinetic and gravitational energy of the
droplet transfers into surface energy of the deformed droplet,

O [

1 |——DP simulation
o Experiment

09+
0.8
307+
~
S
0.6+
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03+ i
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Fig. 3 Droplet (a) shape parameter .o/ and (b) center of mass speed 14 plotted as a function of distance from the orifice h/s for both experiments (open
circles) and DP simulations (solid lines) at w = 0.9¢. For (a) and (b), the dimensionless surface tension I'ex, & 5.80, tilt angle 0 ~ 8.5°, and undeformed
droplet diameter ¢ ~ 1.98 mm. After minimizing A, between the experiments and DP simulations, we obtain I'* ~ 1.7, bo*/b,, ~ 0.21, A, ~ 0.08, and
A, ~ 0.004. The inset to (a) shows the droplet shape from the DP simulations at maximum deformation with .o/ max & 1.014. (c) .«7 and (d) vy plotted as a
function of h/c for both experiments and DP simulations at w = 0.7¢. For (c) and (d), I'exp & 3.47, 0 = 5.0°, and ¢ = 3.30 mm. After minimizing A,, we
obtain I'* ~ 1.08, bo*/b.,, ~ 0.07, A, ~ 0.06, and A, ~ 0.005. The inset to (c) shows the droplet shape from the DP simulations at maximum
deformation with .«7,.x & 1.093. The error bars for the experimental data are obtained using the standard deviation of the measured quantities from at
least five different trials with one droplet.
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Fig. 4 Droplet center of mass speed in the direction of the gravitational
driving (normalized by the terminal speed) v4/1; plotted as a function of h/e
for droplet flows in narrow channels with orifice width w = 0.7¢ in the
experiments (open circles) for several values of the tilt angle, 2.7° (black),
4.5° (blue), and 6.0° (red), and calibrated DP simulations (solid lines) with
fitted line tensions I'** = 1.85 (black), 1.11 (blue), and 0.83 (red). The
downward arrow indicates increasing tilt angle 0. The error bars for the
experimental data are obtained using the standard deviation of the
measured quantities from at least five different trials with one droplet.

which corresponds to the first speed minimum near h/c =~
—0.25. The large surface energy is transferred into kinetic
energy as the droplet continues to move through the orifice,
which can give rise to speeds that exceed the terminal velocity
near h/c ~ 0.3. However, the excess kinetic energy is quickly
dissipated by viscous drag, and v, decreases again, reaching a
second local minimum near 4/c =~ 0.5. Finally, the speed
increases again, approaching v, as the droplet moves far from
the orifice since the drag coefficient { decreases toward b, for
hla > 1 (see eqn (6)).

As shown in Fig. 4, the amplitude of the overshoot in the
droplet speed increases with decreasing g and 6. The excess
shape energy AU; gained during droplet deformation is largely
determined by the width of the orifice, w/g. In contrast, the
droplet kinetic energy at the terminal speed E. decreases with
increasing g. Thus, for & > 0, the excess surface energy AUj
transferred into kinetic energy Ex, ~ AUs, generates enhanced
droplet speed overshoots v, ~ \/Ex/E; as g or 0 decreases.
These results are consistent with the intuition that, the dimen-
sionless surface tension I'ey, in eqn (12) is inversely propor-
tional to the gravitational acceleration g, which in turn is
proportional to the tilt angle. Thus, I'e,, is inversely propor-
tional to the tilt angle. As a result, increasing the tilt angle,
decreases I'cyp, Which in turn decreases the optimal fit I'** and
reduces the overshoot.

4.2 Clogging of single droplets in obstacle arrays

Droplet shape dynamics plays an important role in determining
the motion and clogging of droplets flowing through obstacle
arrays. For example, in Fig. 5(a) and (c), we show that droplets
can wrap around obstacles and squeeze through narrow
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Fig. 5 Oil-in-water droplets flowing through an obstacle array can wrap
around obstacles in (a) experiments with I'e,, & 0.88, tilt angle 0 ~ 90°,
undeformed droplet diameter ¢ ~ 2 mm, obstacle diameter gp/c ~ 0.3—
0.4, and minimum obstacle separation wp/c =~ 0.2 and (b) calibrated DP
simulations with I ~ 0.3 and a similar obstacle array to that used in (a). In
experiments, the driving force is directed from left to right and in the DP
simulations the flow direction is to the right. The droplets can also squeeze
through narrow constrictions formed by adjacent obstacles in a similar set
of (c) experiments and (d) DP simulations as those in (a) and (b).

1mm
Al
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constrictions formed by adjacent obstacles. These shape
change mechanisms do not occur for nearly rigid particles
and can be accurately modeled using the calibrated DP simula-
tions with surface tension described in Section 4.1, as shown in
Fig. 5(b) and (d).

For minimum obstacle separation w,,/c > 1, single droplets
flow continuously through obstacle arrays without clogging.
However, when wyp/0 < 1, single droplets can become perma-
nently clogged within the obstacle array. We assume that as the
droplet moves through the obstacle array, it successively inter-
acts with each obstacle, with each interaction contributing to
the probability of clogging. This scenario suggests that particle
clogging is a Poisson process, confirmed by numerous prior
studies.®** This means that the droplet can move a distance
r > 0 without clogging with cumulative probability distribution

function,
P(r=e"", (16)

where 1 is clogging decay length such that P(1) = e~ '. We define
clogging in the simulations to occur when the droplets dimen-
sionless kinetic energy falls below a small threshold. Additional
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details concerning clogging and the measurements of P(r) in
the DP simulations are included in Appendix C.

Several previous studies of clogging of soft particles in
hoppers have shown that softer particles (i.e. with smaller
elastic moduli) are less likely to form clogs,***® and thus would
possess larger values of the clogging decay length A. Does this
result also hold for the highly deformable droplets considered
in this study? To address this question, we carry out numerical
simulations of single droplets (using the SP and DP models)
moving through obstacle arrays in the clogging regime with
Wep/o < 0.5. We measure A as a function of I' (for the DP
model), K, (for the SP model), and the deformability d,/a, given
by the fraction of the droplet diameter that deforms under its
own weight. We find that the wrapping mechanism plays an
important role in determining the clogging statistics for single
droplets moving through obstacle arrays. In particular, clogs
can form when droplets wrap around an obstacle as shown in
Fig. 6(a). The droplet is mainly supported by the obstacle
around which the droplet has wrapped, with additional stabi-
lizing forces from adjacent obstacles. For less deformable
particles, clogs form when droplets cannot squeeze through
narrow channels between adjacent obstacles as shown in Fig. 6(b).

In Fig. 6(c), we plot /o as a function of the line tension I’
from DP model simulations of single droplets moving through
obstacle arrays for g,,/0 = 0.3 and w,p/0 = 0.2, 0.3, 0.4, and 0.5.
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e
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Wop/o = 0.5
IS 102}
~
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Fig. 6 Images of a single droplet (shaded red) from DP simulations

moving through arrays of obstacles (shaded blue) with random positions.
The rightward pointing arrow indicates the direction of droplet flow. Clogs
form via the (a) wrapping and (b) squeezing mechanisms. (c) Clogging
decay length /o plotted as a function of line tension I' for the obstacle
arrays in (a) and (b) with oop/c = 0.3 and wep/o = 0.2 (red), 0.3 (green),
0.4 (blue), and 0.5 (black).
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We find that A/¢ versus I" is non-monotonic. At large I', where
droplet shape deformation is small, decreasing I" increases £,
which implies that softer particles are less likely to clog.
However, at small I, where droplet shape deformation is large,
we find the opposite behavior. In this regime, decreasing I’
decreases 4, which implies that softer particles are more likely
to clog. The nonmonotonic behavior of A(I') is caused by the
two different mechanisms for clogging (wrapping versus
squeezing) as shown in Fig. 6(a) and (b). At large I', droplets
become clogged when squeezing between obstacles. It is easier
for nearly rigid droplets to squeeze through the gaps between
obstacles as I" decreases, which gives rise to decreased clogging
probability and increased A. In contrast, at small I', highly
deformable droplets can easily squeeze through narrow gaps
between obstacles, but they can wrap around an obstacle and
clog. Thus, increased deformability enhances the wrapping
mechanism, increasing the clogging probability, and decreas-
ing /. In Fig. 6(c), we also show that 1 increases with w,}, as
expected, since wider gaps between obstacles reduce clogging.
We also find that the transition from wrapping to squeezing
behavior shifts to larger values of I as w,p/0 increases. This
shift occurs because wrapping is primarily a single-obstacle
phenomenon. Larger separation between obstacles makes
wrapping more prevalent, while narrower gaps between obsta-
cles promotes squeezing behavior.

We also carry out SP simulations of single droplets moving
through the same obstacle arrays in Fig. 6 to understand the
effects of droplet stiffness versus deformability on clogging. In
Fig. 7(a), we plot A/o versus the dimensionless stiffness E,, for the
SP model; /o decreases monotonically with increasing E,, over the
full range of E, and as expected, 4/g increases with wyps/a. These
results emphasize that the SP model can only generate clogs via
the squeezing mechanism, not the wrapping mechanism.

To directly compare the results for single droplet motion
through obstacle arrays using the SP and DP models, we
consider the droplet deformation J¢ caused by its own weight®®
(see Fig. 7(b)). To calculate J;, we initially turn off gravity and place
an SP droplet or a DP droplet with diameter ¢ next to a wall. We then
turn on gravity and measure the distance J that the droplet sinks. In
Fig. 7(c), we plot //o versus dsc for both the SP and DP models of
single droplet motion through obstacle arrays. 1/a versus Js is similar
for the SP and DP models for ds/c < 0.25, but the results differ
significantly for dg/c > 0.25. At large d4/0, overlaps between the
obstacles and SP droplets are not strongly penalized, clogs are highly
unlikely, and /6 — oco. However, at large d¢/o, DP droplets are
extremely deformable, can wrap around obstacles, and thus 4/ — 0.
Comparing the results for the SP and DP models allows us to assess
the importance of shape deformability, particle softness, and volume
conservation in determining the clogging probability.

4.3 Continuous single-droplet flows in obstacle arrays

We now investigate continuous flows of single droplets through
obstacle arrays (using the SP and DP models). We calculate the
average droplet speed (1) (over each droplet trajectory and
multiple random obstacle arrays, see Appendix D) as a function
of the size and placement of the obstacles. For simplicity, we set

Soft Matter, 2024, 20, 8036-8051 | 8045



Soft Matter

(a) Wep/0 = 0.2
103+ i wop/o = 0.3
Web/o = 0.4

Web/0 = 0.5

© |
107 ¢ ]
21 J
Q 10
/<
10" ¢ ]
01 015 02 025 03 035 04
0s/o
Fig. 7 (a) Clogging decay length 1/¢ plotted as a function of normalized

stiffness E,, from SP model simulations of single droplets moving through
obstacle arrays with gop/0 = 0.3 and wep/o = 0.2 (red), 0.3 (green), 0.4
(blue), and 0.5 (black). The arrow indicates increasing wep/a. (b) Schematic
of the deformation J, that a droplet undergoes under its own weight for
the (left) SP and (right) DP models. The solid (dashed) outlines of the
droplet represent the droplet before (after) gravity is added. (c) /¢ plotted
as a function of ds/a for both SP (black) and DP (red) models for obstacle
arrays with wegp/a = 0.2.

V. = 0.03 and b, = 0, but the results also hold for non-zero b,.
(See Appendix E.) Intuitively, one might expect that increasing
the line tension I would lead to increased resistance to droplet
shape changes, and thus decreases in (v4). However, in Fig. 8(a),
we find that (1) increases with I' for wop/c > 1. The decrease in
(vg) with decreasing I' occurs because droplets with small surface

8046 | Soft Matter, 2024, 20, 8036-8051

) /vt

wob/a =1.0| A
——wep /0 = 1.1

wob/o =1.2

Wop/o = 1.3

(Vg

0.6

0.5

0.75
0.7 1

2065¢

061

0.55 ]

0.5 : : :

Fig. 8 (a) Average speed of the center mass of the droplet in the flow
direction (vg)/11 plotted as a function of the dimensionless line tension I’
for DP simulations of continuous single-droplet flows through obstacle
arrays with minimum gap sizes wop/a = 1.0 (red), 1.1 (green), 1.2 (blue), and
1.3 (black). The arrow indicates increasing wep/a. (b) (vg)/14 plotted versus I’
for DP simulations of continuous single-droplet flows through obstacle
arrays with wep/o = 1.0 and aop/0 = 0.3 (red), 0.6 (green), and 0.9 (blue).
The arrow indicates increasing oop.

tension can easily wrap around an obstacle. When droplets wrap
around an obstacle, the two ends of the droplet extend in the flow
direction until the droplet surface energy matches the work done
by the driving force. After the ends of droplet stop moving in the
flow direction, one end of the droplet moves in the opposite
direction of the driving force, which allows the droplet to unwrap.
This wrapping and unwrapping process significantly slows droplet
movement and decreases (vg).

Numerous studies have characterized droplet flows as a
function of the capillary number Ca, which can be expressed
in terms of the dimensionless line tension,

bocVg oot Vgmg Vg T

Ca= = = J—1 X
Y boevy y Ve Y v 4I'

(17)

Since I" and Ca are inversely related, v, versus Ca for wop/c > 1
can be inferred from Fig. 8(a): (v,) is nearly constant with Ca for
small Ca and then decreases with Ca at large Ca.
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In Fig. 8(b), we quantify continuous flows after fixing wop/
¢ =1.0 and varying o,p/c. We plot (vg)/v; versus I for oop/c = 0.3,
0.6, and 0.9. We find that increasing g,,/c increases () at
small I', indicating that it is more difficult for droplets to wrap
around larger obstacles. In the large-I" limit, the single-droplet
flows for all o,,s/0 approach the same w,s-dependent plateau
value in (vg). Droplet wrapping does not occur in this regime
since droplet deformation would require large surface energy.

In Fig. 9(a), we show (vg)/v; versus the droplet-obstacle
stiffness E,, using the same obstacle arrays in Fig. 8 for the
SP model. In contrast to the DP simulations, we find that (vy)/1;
decreases with increasing E, which indicates that softer par-
ticles flow more rapidly for the SP model. This result stems
from the fact that droplet softness in the SP model is repre-
sented by larger allowed overlaps between the droplet and
obstacles. Therefore, in the E,, — 0 limit, droplets would flow
through obstacles without slowing down, resulting in (vg)/v —
1. In contrast, in the I' — 0 limit in DP simulations, the
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Fig. 9 (a) Average speed of the center mass of the droplet in the flow

direction (vg)/v; plotted as a function of E,, for SP simulations of con-
tinuous single-droplet flows through obstacle arrays with minimum gap
sizes Wop/o = 1.0 (red), 1.1 (green), 1.2 (blue), and 1.3 (black). The arrow
indicates increasing wqp/a. (b) (vg)/1y plotted as a function of ds/a for
single-droplet flows through obstacle arrays with wg,/a = 1.1 for both SP
(black) and DP (red) models.

This journal is © The Royal Society of Chemistry 2024

Soft Matter

droplets wrap around each obstacle that they encounter. This
difference in the flow behavior of single SP and DP droplets
emphasizes the importance of modeling explicit deformability
in droplet flows through obstacle arrays. In Fig. 9(b), we plot
(vg) /v, versus droplet deformation ds/c at wo,/o = 1.1 for both
the DP and SP models. We find that (1)/v, for the SP and
DP models converge to same value in the rigid-droplet limit
(0s/c — 0), but they possess diverging behavior for large droplet
deformation, ds/c — 1.

5 Discussion and conclusions

In this article, we carried out coordinated experiments and
numerical simulations of gravity-driven flows of single droplets
in narrow channels and obstacle arrays. We first developed
deformable particle (DP) simulations with line tension in 2D
and calibrated them to the experiments. The DP simulations
recapitulate the experimental results for the droplet shape and
speed for flows within narrow channels with an error of less
than 10%. Using the calibrated DP simulations, we find several
important results concerning single-droplet flows in narrow
channels and obstacle arrays. First, the droplet speed possesses
nonmonotonic behavior as the droplet traverses the narrow
channels. The droplet speed can even overshoot the terminal
speed and the overshoot is enhanced as the gravitational
driving is decreased. Second, we showed that the clogging
probability is nonmonotonic with the line tension for droplets
flowing through obstacle arrays. The nonmonotonic behavior is
caused by two distinct clogging mechanisms (droplet wrapping
and squeezing) in obstacle arrays. Stiffer droplets become
trapped when they cannot squeeze in between obstacles, while
highly deformable droplets clog when they wrap around obsta-
cles, resulting in high clogging probabilities for droplets with
both large and small deformabilities. We also compared the DP
simulation results for flows in obstacle arrays to those for the
frequently used soft particle (SP) model, which does not include
explicit shape deformability. The DP and SP simulations of
single-droplet flows in obstacle arrays are similar in the rigid-
droplet limit, but diverge for deformable droplets since the SP
model can only model clogging via the squeezing mechanism
(and not the wrapping mechanism).

These results suggest several promising future research
directions. First, the current numerical simulations employ
the DP model with line tension in 2D. When calibrating the
2D DP model to the experimental results, we obtain values for
the dimensionless line tension I'* that are a factor of ~3
smaller than the dimensionless surface tension I, in experi-
ments. Thus, in future work we will develop the 3D DP model*’
with surface tension to describe quasi-2D flows of droplets in
narrow channels and obstacle arrays. Second, In the current
work, we do not quantitatively model the background fluid.
However, the hydrodynamics of the background fluid can
influence the droplet dynamics, such as causing the droplets
to follow stream lines, which can prevent droplet-obstacle
contact. Therefore, in the future, we can include the effects of
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Stokesian dynamics of the background fluid on the droplet
motion.

Third, we observe in experiments that droplets undergoing
sufficiently large deformations (larger than those considered in
the Results section) break up into smaller droplets. However,
our current numerical simulations do not account for this
phenomenon. In future studies, we will develop a quantitative
framework to predict the conditions under which droplet
breakup occurs and use it to determine the size distribution
of daughter droplets emerging from obstacle arrays. This
improved understanding of droplet breakup will be valuable
in microfluidic applications,’>”® where generating droplets of a
specific size is required.”” We also plan to investigate multi-
droplet flows through obstacle arrays. The efficiency of the DP
model will enable us to simulate systems consisting of thou-
sands of droplets, and explore under what conditions droplet
interactions give rise to coalescence, where two droplets in
contact merge to form a larger droplet.>® Droplet breakup and
coalescence play competing roles in determining the equili-
brium size distribution of droplets moving through obstacle
arrays.”®®° In future studies, we will investigate their combined
effects to quantitatively predict the droplet size distribution
exiting from the obstacle arrays.

Fourth, we observe cases where both wrapping and squeez-
ing mechanisms occur simultaneously during droplet flows.
These hybrid cases occur at intermediate values of the line
tension, i.e. where the wrapping and squeezing branches con-
nect in Fig. 6(c). The occurrence of hybrid behavior also
depends on the obstacle density. For example, at sufficiently
high density, a droplet could unwrap around one obstacle and
the side of the droplet that is unwrapping can become squeezed
between two obstacles that are further downstream. In the
future, we will investigate the conditions that cause these
hybrid cases and their effects on the flow and clogging of
capillary droplets.

Finally, the droplet squeezing and wrapping mechanisms
can be exploited in deterministic-lateral-displacement (DLD)
devices to separate droplets spatially and/or temporally based
on their surface tension. Currently, DLD devices separate
droplets based on their size and response to fluid streamlines.
Our results pave the way for separating droplets or cells in DLD
devices at fixed size but varying surface tension.
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drive.google.com/drive/folders/18Mx9t6MyRM45tAprRDykjGwZ
pQPCdnZs.
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Appendices

Appendix A

In this Appendix, we show experimental measurements of the
power-law exponent o that appears in eqn (6) for the distance-
dependent drag coefficient. In the low Reynolds number (over-
damped) regime, eqn (6) can be rewritten as:

by so\*
Vel = Vb (1 +b—0<g) ) ~ —Mg = bu. (18)
After rearranging eqn (18), we find
a\* (1
bo(5) ~ (V—g— 1>bw, (19)
d 1% boo
alog, <;) ~ logyg (Vt _gyg) + logyg (To) (20)

In Fig. 10, we plot /(v — 1) versus d/o on a logy,-log;, scale,
where d is the minimum distance between chamber wall and
the droplet. The droplet shown in the inset has diameter
¢ = 0.98 mm, tilt angle 6 = 5°, and terminal velocity far from
wall v, = 0.65 mm s~ '. We find that the experimental data in
Fig. 10 is well-fit by a power-law exponent o = 4/3.

Appendix B

In this Appendix, we investigate the effects of the number of
vertices N, and perimeter elasticity K; on the results for droplet
flows through narrow channels using the DP simulations. The
DP model with N, - oo and K; — 0 is the most accurate for
describing droplet flows. However, to limit computational time,

10°} ]
=

| 10°¢ ]
=2
~
Dm

1072} :

107 1072 107" 10°
d/o

Fig. 10 The ratio v4/(x — vg) plotted versus distance d/o from the
chamber wall for the experiments. The droplet has diameter ¢ =
0.98 mm, tilt angle 0 = 5°, and terminal velocity far away from the wall,
1 = 0.65 mm s~ An image from the experiment is shown in the inset. The
dashed line has slope 4/3.
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h/o

Fig. 11 Droplet center of mass speed vg/i; plotted as a function of
distance h/c from the orifice for DP simulations of a droplet flowing
through a narrow channel with w = 0.7¢, I' = 1.08, and N, = 32, 64, 128,
256, 512, and 1024. The inset is a close-up of vy/1; near the first minimum
in the speed at h/c ~ —0.25 to highlight the results for varying N,, from 32
(blue) to 1024 (red).

we choose N, such that it is sufficiently large that further
increases do not significantly change the results. In Fig. 11,
we show the droplet speed profile, vy/v, versus h/a, for N, = 32,
64, 128, 256, 512, and 1024. We find that for N, < 64, the
velocity profile is quite noisy. For N, > 128, the velocity profile
is smooth on a linear scale. For the DP simulations presented
here, we use N, = 256.

For the DP simulations to accurately model line tension, it is
important that Kj/I' — 0. However, the perimeter elasticity in
eqn (1) is important for ensuring the stability of the DP
simulations. If the DP model only includes line tension without
perimeter elasticity, the droplet vertices can aggregate in the
direction of gravity, which gives rise to an uneven distribution

0.25¢ 1

0.27 ]

>

<
0.15¢ 1

0.1+ 1

L

10’

0.05 : ]
107
KT
Fig. 12 Root-mean-square deviation in the droplet speed A, between the
DP simulations and experiments for a droplet flowing through a narrow

orifice with width w/e = 0.9 plotted as a function of K/I'. A, ~ 0.08
reaches a plateau for K/I' < 1072

107° 10
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of vertices around the droplet perimeter and can cause the
droplet to overlap the side walls. Thus, we need to select a non-
zero value of K to uniformly distribute vertices on the droplet
surface, but small enough such that the results for the DP
model are dominated by line tension and do not depend on K;.
In Fig. 12, we show the root-mean-square deviations in the
droplet speed A, between the DP simulations and experiments
of flow in narrow channels plotted as a function of Kj/I'". A, ~ 0.08
reaches a plateau for K/I' < 1072 In the present work, we set
K/I'=10"".

Appendix C

In this Appendix, we include additional details concerning the
definition of a permanent clog and the clogging decay length A
for droplets moving in obstacle arrays. In the simulations,
a clog occurs when the droplet kinetic energy Ej (normalized

105+
5
=
= 10710+
10-15 L
0 2 4 6 8
t/to x10*

0.2 ‘ ‘ ‘
10 15 20 25 30

r/o

Fig. 13 (a) Droplet kinetic energy E,, normalized by the kinetic energy at
the terminal speed E,, plotted as a function of time t/t, for droplets moving
in obstacle arrays with I' = 0.5, gop/0 = 0.3, and both wp/a = 1.1 (red solid
line) and 0.3 (black solid line). For wyp/a = 0.3, Ei/E; decays exponentially
toward the clogging threshold 107Y. For wyu/a = 1.1, the droplet flows
continuously without clogging. (b) Cumulative probability P(r) of the
droplet not forming a clog plotted as a function of the displacement in
the obstacle array r/o using DP simulations with I' ~ 1.09, go,/0 = 0.3, and
Wop/a = 0.2. The red solid curve represents P = exp(—r/1), where A/ =
24 + 1is the clogging decay length.
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by the kinetic energy at the terminal speed) decays below a
threshold Ei/E, < 10~ . In Fig. 13(a), we show examples of E/E;
versus time t/t, for cases when the droplet clogs (wop/c = 0.3) and
does not clog (Wop/o = 1.1).

To determine the clogging decay length A, we first measure
the cumulative probability P that the droplet does not clog as a
function of the droplet displacement r in the obstacle array.
We run N, = 50 simulations for a total time 7' = 2 x 10°t, with
different randomized initial droplet positions and randomized
obstacle arrays. P(r) = 1 — Neiog(r)/Ns, Where Njoq is the number
of times that the droplet clogs before it moves a distance r.
In Fig. 13(b), we plot P versus r/c for DP simulations with I" =&
1.09, oop/c = 0.3, and wy,/c = 0.2. At the beginning of each
simulation, r = 0 and P = 1. As each droplet traverses the
obstacle array, the cumulative probability P of not clogging
decreases exponentially with increasing r.

Appendix D

In this Appendix, we show that the DP simulations of single
droplet flows in obstacle arrays can reach a continuous flow
regime (with no permanent clogs) for minimum obstacle spa-
cing wep/o > 1. In Fig. 14, we plot the droplet displacement r
versus time ¢ for DP simulations with I" = 0.04-1. We determine
the steady state speed v, for a single-droplet trajectory in a
given obstacle array by measuring the slope of r/c versus t/t,.
(vg) is averaged over 10 random obstacle arrays.

Appendix E

In this Appendix, we show that the choice of the near-wall drag
coefficient b, does not qualitatively affect the results in Section
4.3. As discussed previously, the SP model does not include
distance-dependent drag forces (eqn (6)). In Fig. 9(c) and
Fig. 7(b), we set by = 0 in the DP simulations so that when we
compare the DP and SP simulations, both have the same form

1500 B

1000 B
S
~
~

500 r
0 F: ) ) ) 1
0 0.5 1 1.5 2
t/to x10°

Fig. 14 Droplet displacement r in the flow direction r/c plotted as a
function of time t/ty as the droplet traverses an obstacle array with we,/
¢ = 11and oop/o = 0.3. The arrow indicates increasing I" from 0.04 (blue)
to 1 (red).
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Fig. 15 Average speed of the center mass of the droplet in the flow
direction (v4) normalized by the terminal velocity v plotted as a function of
the dimensionless line tension I' for obstacle arrays with wgp/o = 1.0.
All other parameters are the same as those used in Fig. 8(a), except we vary
the near-wall drag coefficient: bo/b., = 0 (red), 0.2 (blue), and 0.4 (black).
The arrow indicates increasing bo/b .

for the drag force. In Fig. 15, we plot (vg)/v; versus I' for single
droplets flowing through obstacle arrays with wy,/oc = 1.0.
All other parameters are the same as those in Fig. 8(a), except
the near-wall drag coefficient varies: by/b., = 0, 0.2, and 0.4.
We find that increasing bo/b,, decreases (iy)/14, but it mono-
tonically increases with I' for all by/b .
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