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COLENGTH ONE DEFORMATION RINGS

DANIEL LE, BAO V. LE HUNG, STEFANO MORRA, CHOL PARK, AND ZICHENG QIAN

Abstract. Let K/Qp be a finite unramified extension, ρ : Gal(Qp/K) →
GLn(Fp) a continuous representation, and τ a tame inertial type of dimen-
sion n. We explicitly determine, under mild regularity conditions on τ , the
potentially crystalline deformation ring Rη,τ

ρ in parallel Hodge–Tate weights

η = (n − 1, · · · , 1, 0) and inertial type τ when the shape of ρ with respect to
τ has colength at most one. This has application to the modularity of a class
of shadow weights in the weight part of Serre’s conjecture. Along the way
we make unconditional the local-global compatibility results of Park and Qian
[Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].

1. Introduction

In recent years, calculations of various potentially crystalline deformation spaces
have seen a number of applications to questions of local-global compatibility in the
mod p and p-adic Langlands program. This includes the weight part of Serre’s
conjecture, the determination of mod p multiplicities, conjectures of Breuil on inte-
gral structures inK-types, and generalizations of Colmez’s functor (see e.g. [EGS15,
LLHLM18, LLHLM20, DL21, LLHLMb, LLHM+, LLHLMc, LLHLMa, HW22],
[BHH+b, BHH+a]). Under a somewhat exotic genericity condition, [LLHLMb]
shows that tamely potentially crystalline deformation spaces are equisingular to
certain closed subvarieties of Pappas–Zhu local models. Not much is known about
the geometry of these local models for Galois deformation spaces in general. More-
over, it is difficult in practice to make the genericity condition explicit or to work
with their natural presentations.

1.1. The main result. The local model has a stratification indexed by admissible
elements of the extended affine Weyl group called shapes and the complexity of
the geometry increases as the length of the shape decreases. [LLHLMa] shows that
when the shape is extremal i.e. has maximal length (

(
n+1
3

)
for n-dimensional rep-

resentations of Gal(Qp/Qp)), then the corresponding tamely potentially crystalline
deformation ring is formally smooth. The main result of this paper, which we state
only for representations of Gal(Qp/Qp) in the introduction, is the following:
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Theorem 1.1.1 (Theorem 5.2.3). Let E be a finite extension of Qp, with ring of

integers O and residue field F. Let ρ : Gal(Qp/Qp) → GLn(F) a continuous Galois
representation, τ a 3n − 7-generic tame inertial type, η = (n − 1, · · · , 1, 0) ∈ Zn,
and Rη,τ

ρ the lifting ring for potentially crystalline representations of type (η, τ ). If

Rη,τ
ρ is nonzero and the length of the shape w̃(ρ, τ ) is at least

(
n+1
3

)
− 1 (i.e. the

colength of the shape is at most one), then Rη,τ
ρ is formally smooth over O or

O�X,Y �/(XY − p).

Remark 1.1.2.

(1) Replacing Qp by a finite unramified extension K and requiring that the

shape have colength one at each embedding K ↪→ Qp, we show that the
deformation ring is formally smooth over a completed tensor product of
rings of the form O�X,Y �/(XY − p). The number of such factors in the
tensor product can furthermore be explicitly computed.

(2) The colength one deformation spaces that have a parabolic structure were
computed in [LLHLMa]. In general, colength one deformation spaces do
not have a parabolic structure, making their computation far more difficult.

(3) When n = 3, the tame inertial types with colength one shape are suffi-
cient to prove the Serre weight conjecture for GL3 [LLHLM18,LLHLM20,
LLHLMc]. We generalize these ideas to prove the modularity of Serre
weights of defect at most one under the assumptions of [LLHLMa], in par-
ticular under an explicit combinatorial genericity condition.

(4) Using standard Taylor–Wiles techniques, Theorem 1.1.1 gives modularity
lifting results similar to [LLHLMb, Theorem 9.2.1] (improving the polyno-
mial genericity and the tameness condition at p in loc. cit., but imposing
specific conditions on the shape with respect to the tame inertial types).

While Theorem 1.1.1 generalizes some previous results, its proof is perhaps sur-
prisingly subtle despite the shape having close to maximal length. We do not expect
our methods to extend to shapes of smaller length. This suggests that local models
for Galois deformation spaces are genuinely complicated geometric objects and that
simple explicit descriptions are hard to come by.

Our principal motivation in writing this paper was to apply Theorem 1.1.1
to prove the weight elimination and mod p multiplicity one results necessary to
make unconditional the local-global compatibility result of [PQ22] which states
roughly that the local mod p Galois representation at p can be recovered from the
GLn(Qp)-action on the Hecke isotypic part of the mod p completed cohomology of
a definite unitary group. While the results of [PQ22] were superseded by those of
[LLHM+], the method of [LLHM+] using only extremal shapes does not work for
GSp4(Qp) while it should be possible to adapt the methods of [PQ22] (which builds
on [BD14,HLM17,LMP18,MP17] in small rank) to many p-adic reductive groups
over Qp. Indeed, this has been carried out for GSp4(Qp) [EL]. For generalizations
of [LLHM+], an analogue of Theorem 1.1.1 should prove useful. We hope to return
to this in future work.

1.2. Global applications. As mentioned in Remark 1.1.2(3), as a more immediate
global application of Theorem 1.1.1 we obtain the modularity of weights of defect at
most one. The notion of defect of a Serre weight σ for a tame Galois representation
ρ was first introduced in [LLHLMb, §8.6]. This notion is purely combinatorial, and
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encodes the maximal length for the shapes w̃(ρ, τ ) such that σ ∈ W ?(ρ)∩JH(σ(τ )).
In this paper we generalize the notion of defect for any ρ in terms of specializations
(as done in [LLHLMa] for extremal weights), and prove their modularity when the
defect is at most one, conditional to the existence of a modular extremal weight.
The result is the following, and we refer to the bulk of the paper for any undefined
notion:

Theorem 1.2.1 (Theorem 6.3.1). Let F/F+ be a CM field. Assume that F+ �=
Q, that all places of F+ above p are unramified over Qp and totally split in F .
Let r : GF+ → G(F) be a continuous representation which is automorphic in the
sense of [LLHLMa, Definition 5.5.1], with set of modular weights W (r). Let rp be
the L-homomorphism attached to the collection {r|G

F
+
v

}v|p and write W g
≤0(rp) and

W g
≤1(rp) for the set of extremal weights and for the set of weights of defect at most

one, respectively, for rp. Asssume further that:

• r(GF (ζp)) ⊆ GLn(F) is adequate; and
• rp is 6(n− 1)-generic.

Then the following are equivalent:

(1) W g
≤0(rp) ∩W (r) �= ∅; and

(2) W g
≤1(rp) ⊂ W (r).

Compared to [LLHLMa, Theorem 5.5.5], Theorem 1.2.1 assumes that F+ is
unramified above p, but it gives the modularity of weights of defect at most one.
(For GL3, this is sufficient to prove the generic Serre weight conjecture.)

1.3. Notation. For a field K, we denote by K a fixed separable closure of K and

let GK
def
= Gal(K/K). If K is defined as a subfield of an algebraically closed field,

then we set K to be this field.
IfK is a nonarchimedean local field, we let IK ⊂ GK denote the inertial subgroup

and WK ⊂ GK denote the Weil group. We fix a prime p ∈ Z>0. Let E ⊂ Qp be
a subfield which is finite-dimensional over Qp. We write O to denote its ring of
integers, fix an uniformizer � ∈ O and let F denote the residue field of E. We will
assume throughout that E is sufficiently large.

1.3.1. Reductive groups. Let G denote a split connected reductive group (over some
ring) together with a Borel B, a maximal split torus T ⊂ B, and Z ⊂ T the center
of G. Let d = dimG − dimB. When G is a product of copies of GLn, we will
take B to be upper triangular Borel and T the diagonal torus. Let Φ+ ⊂ Φ (resp.
Φ∨,+ ⊂ Φ∨) denote the subset of positive roots (resp. positive coroots) in the set
of roots (resp. coroots) for (G,B, T ). We use the notation α > 0 (resp. α < 0) for
a positive (resp. negative) root α ∈ Φ. Let Δ (resp. Δ∨) be the set of simple roots
(resp. coroots). Let X∗(T ) be the group of characters of T , and set X0(T ) to be the
subgroup consisting of characters λ ∈ X∗(T ) such that 〈λ, α∨〉 = 0 for all α∨ ∈ Δ∨.
Let W (G) denote the Weyl group of (G, T ). Let w0 denote the longest element of
W (G). We sometimes write W for W (G) when there is no chance for confusion.

Let Wa (resp. W̃ ) denote the affine Weyl group and extended affine Weyl group

Wa = ΛR �W (G) and W̃ = X∗(T )�W (G)

for G, respectively. We use tν ∈ W̃ to denote the image of ν ∈ X∗(T ).
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The Weyl groups W (G), W̃ , and Wa act naturally on X∗(T ). If A is any ring,
then the above Weyl groups act naturally on X∗(T )⊗Z A by extension of scalars.
Let M be a free Z-module of finite rank (e.g. M = X∗(T )). The duality pairing
between M and its Z-linear dual M∗ will be denoted by 〈 , 〉. If A is any ring, the
pairing 〈 , 〉 extends by A-linearity to a pairing between M ⊗ZA and M∗⊗ZA, and
by an abuse of notation it will be denoted with the same symbol 〈 , 〉.

We write G∨ = G∨
/Z for the split connected reductive group over Z determined by

the root datum (X∗(T ), X
∗(T ),Φ∨,Φ). This defines a maximal split torus T∨ ⊆ G∨

such that we have canonical identificationsX∗(T∨) ∼= X∗(T ) andX∗(T
∨) ∼= X∗(T ).

Let V
def
= X∗(T )⊗Z R. For (α, k) ∈ Φ× Z, we have the root hyperplane Hα,k

def
=

{x ∈ V | 〈λ, α∨〉 = k}. An alcove is a connected component of V \
(⋃

(α,n) Hα,n

)
,

and we denote by A the set of alcoves. We say that an alcove A is restricted if
0 < 〈λ, α∨〉 < 1 for all α ∈ Δ and λ ∈ A. We let A0 denote the (dominant) base
alcove, i.e. the set of λ ∈ X∗(T ) ⊗Z R such that 0 < 〈λ, α∨〉 < 1 for all α ∈ Φ+.

Recall that W̃ acts transitively on the set of alcoves, and W̃ ∼= W̃a �Ω where Ω is
the stabilizer of A0. We define

W̃+ def
= {w̃ ∈ W̃ | w̃(A0) is dominant}

and W̃+
1

def
= {w̃ ∈ W̃+ | w̃(A0) is restricted}.

We fix an element η ∈ X∗(T ) such that 〈η, α∨〉 = 1 for all positive simple roots α

and let w̃h be w0t−η ∈ W̃+
1 .

When G = GLn, we fix an isomorphism X∗(T ) ∼= Zn in the standard way,

where the standard i-th basis element εi
def
= (0, . . . , 1, . . . , 0) (with the 1 in the i-th

position) of the right-hand side corresponds to extracting the i-th diagonal entry
of a diagonal matrix. In particular, we can write any root β ∈ Φ as β = εi − εj for
uniquely chosen 1 ≤ i, j ≤ n, i �= j.

Given a finite set J and an isomorphism G
∼→ GLJ

n we use superscripts in the
notations above, e.g. Φ+,J ⊂ ΦJ , ΔJ , X∗(T )J , WJ , etc., where now Φ+,Φ, Δ,
X∗(T ), W , etc. are relative to GLn. In order not to overload notations, we do
not use underlined notations for the elements of ΦJ , X∗(T )J , WJ , etc., so that
for instance a root α ∈ ΦJ is in fact a collection of roots (α(j))j∈J where each

α(j) is a root of GLn. Finally, we take η ∈ X∗(T )J to correspond to the element
(n − 1, n − 2, . . . , 0)j∈J ∈ (Zn)J in the identification above. When an element
j ∈ J is fixed, we will abuse notation and will use the same symbol η to denote
the element which corresponds to the tuple (n− 1, . . . , 1, 0) at j.

We let F+
p be a finite unramified étale Qp-algebra so that F+

p is isomorphic to a

product
∏

Sp
F+
v over a finite set Sp where, for each v ∈ Sp, F

+
v is a finite unramified

extension of Qp. For each v ∈ Sp let OF+
v

be the ring of integers of F+
v , kv the

residue field and let Op (resp. kp) be the product
∏

v∈Sp
OF+

v
(resp.

∏
v∈Sp

kv).

(This will be used in global applications, where Sp will be a finite set of places
dividing p of a number field F+.)

If G is a split connected reductive group over Fp, with Borel B and maximal torus

T , we let G0
def
= Reskp/Fp

G/kp
, and similarly define B0, T0. We will always assume

that F contains the image of any ring homomorphism kp → Fp so that we can

and do fix an isomorphism
(
G0×Spec Fp

Spec F
) ∼→ (G×Spec Fp

Spec F)Jp where Jp

denotes the set of ring homomorphisms kp → F. For notational convenience, we will
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write G
def
= G0 ×Spec Fp

Spec F, and similarly for B, T . The notations W , W̃ , W̃
+
,

W̃
+

1 , etc. as well as the identifications W
∼→ WJp , W̃

∼→ W̃Jp , W̃
+ ∼→ (W̃+)Jp ,

W̃
+

1
∼→ (W̃+

1 )Jp , etc. should be clear.

1.3.2. Galois theory. Let K be a finite extension of Qp, with residue field k of
degree f over Fp. We assume that K/Qp is unramified and write W (k) for the ring
of Witt vectors, which is also the ring of integers of K. The arithmetic Frobenius
automorphism on W (k), acting as raising to p-th power on the residue field will be
denoted by ϕ. We fix an embedding σ0 of K into E (equivalently an embedding
k into F) and define σj = σ0 ◦ ϕ−j . This gives an identification between J =
Hom(k,F) and Z/fZ.

We normalize Artin’s reciprocity map ArtK : K× → W ab
K so that uniformizers

are sent to geometric Frobenius elements. We fix once and for all a sequence

(pm)m∈N ∈ K
N
satisfying ppm+1 = pm, p0

def
= −p ∈ K and let K∞ be

⋃
m∈N

K(pm).

Given an element π1
def
= (−p)

1

pf−1 ∈ K we have a character ωK : IK → W (k)×

defined by the condition g(π1) = ωK(g)π1. Using our choice of embedding σ0 this
gives a fundamental character of niveau f

ωf := σ0 ◦ ωK : IK → O×.

Let ρ : GK → GLn(E) be a p-adic, de Rham Galois representation. For σ :
K ↪→ E, we define HTσ(ρ) to be the multiset of σ-labeled Hodge-Tate weights of

ρ, i.e. the set of integers i such that dimE

(
ρ⊗σ,K Cp(−i)

)GK �= 0 (with the usual
notation for Tate twists). In particular, the cyclotomic character ε has Hodge–Tate
weights 1 for all embedding σ : K ↪→ E. For μ = (μ(j))j ∈ X∗(T ) we say that ρ
has Hodge–Tate weighs μ if for all j ∈ J

HTσj
(ρ) = {μ(j)

1 , μ
(j)
2 , . . . , μ(j)

n }.
The inertial type of ρ is the isomorphism class of WD(ρ)|IK , where WD(ρ) is the
Weil–Deligne representation attached to ρ as in [CDT99], Appendix B.1 (in partic-
ular, ρ �→ WD(ρ) is covariant). An inertial type is a morphism τ : IK → GLn(E)
with open kernel and which extends to the Weil group WK of GK . We say that
ρ has type (μ, τ ) if ρ has Hodge–Tate weights μ and inertial type given by (the
isomorphism class of) τ .

1.3.3. Miscellaneous. Finally, δP denotes the Kronecker delta function on the con-
dition P . We also use δ for the defect function in §6.2. This shall cause no confusion.

2. Preliminaries

2.1. Affine Weyl groups, tame inertial types, Serre weights.

2.1.1. Affine Weyl group. We collect here the necessary background to give a clas-
sification of colength one elements in the admissible set (Proposition 2.1.2).

Recall from §1.3.1 that G is a split reductive group with split maximal torus

T . We write W for the Weyl group associated to (G, T ) and V
def
= X∗(T ) ⊗ R ∼=

X∗(T
∨)⊗R for the apartment of (G, T ) on which W̃

def
= X∗(T )�W acts. We write

C0 for the dominant Weyl chamber in V .
Recall that A denotes the set of alcoves of X∗(T )⊗R and that A0 ∈ A denotes

the dominant base alcove. We let ↑ denote the upper arrow ordering on alcoves
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as defined in [Jan03, §II.6.5] which induces the ordering ↑ on Wa via the bijection

Wa
∼→ A given by w̃ �→ w̃(A0). The dominant base alcove A0 defines a set of

simple reflections in Wa and thus a Coxeter length function on Wa denoted �(−)
and a Bruhat order on Wa denoted by ≤. Given λ ∈ X∗(T ) we consider the set of

λ-admissible elements of W̃ :

(1) Adm(λ)
def
=
{
w̃ ∈ W̃ | w̃ ≤ tw(λ) for some w ∈ W

}
.

If Ω ⊂ W̃ is the stabilizer of the base alcove, then W̃ = Wa�Ω and so W̃ inherits
a Bruhat order in the standard way: For w̃1, w̃2 ∈ Wa and δ ∈ Ω, w̃1δ ≤ w̃2δ if and
only if w̃1 ≤ w̃2, and elements in different right Wa-cosets are incomparable. We

extend �(−) to W̃ by letting �(w̃δ)
def
= �(w̃) for any w̃ ∈ Wa, δ ∈ Ω.

Let (W̃∨,≤) be the following partially ordered group: W̃∨ is identified with W̃
as a group, and �(−) and ≤ are defined with respect to the antidominant base

alcove. If w̃ = tνw ∈ W̃ with w ∈ W and ν ∈ X∗(T ) we define w̃∗ def
= w−1tν ∈ W̃∨.

(The assignement w̃ �→ w̃∗ defines an involution which preserves length and Bruhat
order, see [LLHL19, Lemma 2.1.3].) Given λ ∈ X∗(T ) we define the set Adm∨(λ)

by replacing W̃ by W̃∨ in the right hand side of (1).
We also recall that, given m ∈ Z and α ∈ Φ, the m-th α-strip is the subset of V

defined by
{x ∈ V | m < 〈x, α∨〉 < m+ 1}.

Finally, we say that w̃ ∈ W̃ is regular if it is in the sense of [LLHLMb, Defini-
tion 2.1.3].

Proposition 2.1.2. Suppose w̃ ∈ Adm(η) such that �(w̃) = �(tη) − 1. Then one
of the following holds:

(1) w̃ = wtηsαw
−1 where w ∈ W and α > 0 a positive root such that w(α) > 0,

and there are no decompositions α = β1+β2 with βi > 0 such that w(βi) >
0;

(2) w̃ = wtη−αsαw
−1 where w ∈ W , α ∈ Φ+ \Δ such that w(α) < 0, and for

any decomposition α = β1 + β2 with βi > 0, we have w(βi) < 0.

We say that a colength one element w̃ ∈ Adm(η) is of the first form (resp. of
the second form) is it is as in item (1) (resp. as in item (2)) of Proposition 2.1.2.
Recalling [LLHLMb, Definition 2.1.3] we note that a colength one element w̃ ∈
Adm(η) is irregular exactly when it is of the first form and moreover the root α
appearing in (1) is a simple root.

Remark 2.1.3. If G = GLn and α = εi − εj ∈ Φ+ \Δ then

(1) the condition in item (1) means that w preserves the order of i and j, and
w maps no element k ∈ (i, j) into an element in (w(i), w(j));

(2) the condition in item (2) means that w reverses the order of i and j, and
maps any k ∈ (i, j) to an element in (w(j), w(i)).

Proof. We assume w̃(A0) is in chamber w(C0). Then there is a gallery from A0

to w̃(A0) in the w-positive direction (cf. [HC02, §2, Definition 5.2]), hence [HH17,

Corollary 4.4] shows that w̃ < wtηw
−1. Thus ũ

def
= w−1w̃ is dominant so that wũ

is a reduced expression for w̃ by [LLHLMa, Lemma 2.2.1] (cf. Definition 2.1.2 in
loc. cit. for the notion of reduced expression). We conclude that ũ ≤ tηw

−1 and
�(ũ) = �(tηw

−1)− 1. Since ũ and tηw
−1 are both dominant and their lengths differ
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by 1 they must differ by an affine reflection in direction α for some positive root
α > 0 by [GHS18, Corollary A.1.2]. We claim that the α-strip containing ũ is the
lower neighbor of the α-strip containing tηw

−1.
Suppose the contrary. Then for each vertex v of A0, the line segment joining ũ(v)

and tηw
−1(v) lies in the dominant Weyl chamber and contains tαũ(v). This shows

that tαũ(A0) is dominant and ũ ↑ tαũ ↑ tηw
−1. [Wan87, Theorem 4.3] implies that

ũ < tαũ < tηw
−1 which contradicts �(ũ) = �(tηw

−1)− 1.
There are two cases:

• ũ(A0) and tηw
−1(A0) share the vertex η. In this case ũ = tηsαw

−1. The
conditions ũ ≤ tηw

−1 and �(ũ) = �(tηw
−1)−1 are equivalent to �(sαw

−1) =
�(w−1) + 1, equivalently �(wsα) = �(w) + 1. But this condition translates
exactly to the condition in item (1).

• ũ(A0) has η−α as a vertex. In this case we must have ũ = tη−αsαw
−1. To

see the condition on w, we note that for each positive root β we have

〈η, β∨〉+δw(β)>0−1−(〈η, β∨〉−〈α, β∨〉+δwsα(β)>0−1) = 〈α, β∨〉+δw(β)>0−δwsα(β)>0

and hence by the explicit formula for the length function (e.g. [He16, §1.7.1])
the colength 1 condition becomes∑

β �=α,β>0

−δw(β)>0 + δwsα(β)>0 = 2〈η, α∨〉 − 2.

This gives the condition in item (2).

This completes the proof. �

Lemma 2.1.4. Let w̃ ∈ Admreg(η) satisfy �(w̃) ≥ �(tη) − 1, and let w̃−1
2 w0tνw̃1

be the unique up to X0(T ) factorization of w̃ with w̃1, w̃2 ∈ W̃+
1 and ν ∈ X+(T )

(see [LLHLMb, Proposition 2.1.5]). Suppose that w̃ = x̃−1
2 sx̃1 with x̃1, x̃2 ∈ W̃+,

s ∈ W , and that x̃1 ↑ x̃ ↑ w̃−1
h x̃2 with x̃ ∈ W̃+

1 . Then s = w0 and either x̃ = x̃1 ∈
w̃1X

0(T ) or x̃ = w̃−1
h x̃2 ∈ w̃−1

h w̃2X
0(T ). If moreover �(w̃) = �(tη) we further have

x̃ = x̃1 = w̃−1
h x̃2 and ν ∈ X0(T ).

Proof. Let w̃, x̃1, x̃2, s, and x̃ be as above. Since x̃1 ↑ x̃ ↑ w̃−1
h x̃2, we have that

x̃1 ≤ x̃ and x̃2 ≤ w̃hx̃ by [LLHL19, Theorem 4.1.1, Proposition 4.1.2] as w̃hx̃ ∈ W̃+.
Then we have

1 ≥ �(tη)− �(w̃)

≥ �((w̃hx̃)
−1w0x̃)− [�(x̃−1

2 ) + �(s) + �(x̃1)]

= [�(w̃hx̃)− �(x̃2)] + [�(w0)− �(s)] + [�(x̃)− �(x̃1)],

where the last equality follows from [LLHL19, Lemma 4.1.9]. Since each term in
the last expression is nonnegative, we immediately see that x̃ = x̃1 or w̃−1

h x̃2. (If

moreover �(w̃) = �(tη) we further have s = w0 and x̃1 = x̃ = w̃−1
h x̃2.) It suffices to

show that x̃1 ∈ w̃1X
0(T ) in the former case and x̃2 ∈ w̃2X

0(T ) in the latter case.

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5756 DANIEL LE, BAO V. LE HUNG, ET AL.

We next show that s = w0. Supposing otherwise, x̃1 = x̃ = w̃−1
h x̃2 and s = w0sα

with α ∈ Δ+. By Proposition 2.1.2 and the paragraph following it, we conclude
that w̃ is not regular which is a contradiction.

Now suppose that x̃ = x̃1 so that we have x̃−1
2 w0x̃1 = w̃−1

2 w0tνw̃1. The unique-
ness in [LLHLMb, Proposition 2.1.5] guarantees that x̃1 ∈ w̃1X

0(T ) (and, if more-

over �(tη) = �(w̃), that ν ∈ X0(T )). Similarly, if x̃ = w̃−1
h x̃2, then x̃2 ∈ W̃+

1 and
uniqueness again guarantees that x̃2 ∈ w̃2X

0(T ). �

For Lemma 2.1.5, which explicitly describes the unique up to X0(T )-decomposi-
tion of colength one regular admissible elements mentioned in Lemma 2.1.4, we
specialize to the case G = GLn. Recall that in this case we have the elements

εi ∈ X∗(T ) for i = 1, . . . , n and the fundamental weights ω′
εi−εi+1

def
=

∑i
k=1 εi for

1 ≤ i ≤ n− 1. We have the inclusion

(2) W ↪→ W̃+
1 , w �−→ tηw

w,

where tηw
is the dominant weight defined by

(3) tηw

def
=

∑
β∈Δ, w−1(β)<0

ω′
β

(see [Her09, equation (5.1)]). Given w ∈ W we write w̃ for the image of w via the
inclusion (2).

Lemma 2.1.5. Let w̃ ∈ Admreg(η) satisfy �(w̃) = �(tη) − 1. Then in the decom-

position w̃ = w̃−1
2 w0tνw̃1 of Lemma 2.1.4, we can take w̃1 = s̃αw−1, w̃2 = w̃hw̃−1

and ν = ηw−1 − ηsαw−1 − εα, where ε equals 1 (resp. 0) if we are in case (2) (resp.
case (1)) of Proposition 2.1.2.

Proof. Letting w̃ = wtη−εαsαw
−1, where ε ∈ {0, 1} equals 1 (resp. 0) if we are in

case (2) (resp. (1)) of Proposition 2.1.2, we have

w̃ = (w̃hw̃−1)−1w0tν s̃αw−1

by (2) and the definition of w̃h. It thus suffices to prove that ν is dominant, i.e. using
equation (3), that

δw(β)>0 − δwsα(β)>0 − ε〈α, β∨〉 ≥ 0

for all β ∈ Δ. This is an elementary casewise check, based on the value of 〈α, β∨〉 ∈
{−1, 0, 1} and Remark 2.1.3, and which we leave to the reader. �

2.2. Local models, affine charts and monodromy conditions. For any Noe-
therian O-algebra R define

LG(R)
def
= {A ∈ GLn(R((v + p))) | A is upper triangular modulo v};

L+M(R)
def
= {A ∈ Matn(R�v + p�) | A is upper triangular modulo v}.

2.2.1. Affine charts. Let z̃ = ztν ∈ W̃∨. Given an integer h ≥ 0 define the subfunc-
tor U(z̃)det,≤h ⊆ LG defined on Noetherian O-algebras R as follows: U(z̃)det,≤h(R)
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is the set of matrices A ∈ LG(R) such that for all 1 ≤ i, k ≤ n the following holds:

• (v + p)hAik ∈ vδi>kR[v];
• deg

(
(v + p)hAik

)
≤ h+ νk − δi<z(k);

• (v + p)hAz(k)k is a monic polynomial; and

• det(A) = det(z)(v + p)||ν||,

where we have written ν = (ν
)1≤
≤n ∈ X∗(T ) and ||ν|| def
=
∑n


=1 ν
.
We now introduce the subfunctors and T∨-torsors which are relevant for our

analysis of deformation rings. In the above setting, define the following subfunctors
of U(z̃)det,≤0:

• U [0,n−1](z̃) ⊆ U(z̃)det,≤0 as the subfunctor whose R-valued points are those
A ∈ U(z̃)det,≤0 such that both A and (v+ p)n−1A−1 are in L+M(R); note
that U [0,n−1](z̃) is representable by an affine scheme over O;

• U(z̃,≤ η) ⊆ U [0,n−1](z̃) as the closed, O-flat and reduced subscheme of
U [0,n−1](z̃) whose points on a reduced O-flat algebra R consist of A ∈
U [0,n−1](z̃)(R) with elementary divisors bounded by (v+p)η (i.e. each k by

k minor of A is divisible by (v + p)
(k−1)k

2 ); and

• Ũ(z̃,≤η) def
= T∨U(z̃,≤η) as the subscheme of LG whose R-valued points are

of the formDA where D ∈ T∨(R) and A ∈ U(z̃,≤η)(R); note that Ũ(z̃,≤η)
is endowed with a T∨

O-action induced by left multiplication of matrices, and

we have
[
T∨,J \Ũ(z̃,≤η)

] ∼= U(z̃,≤η).
The entries of A ∈ U [0,n−1](z̃)(R) will typically be written in the form

Aik = vδi>k

( νk−δi>k−δi<z(k)∑

=0

aik,
(v + p)


)

so that U [0,n−1](z̃) is an affine O-scheme whose global functions is the quotient
of the polynomial O-algebra in the variables aik,
 (for the appropriate range of �
determined by z̃ and (i, k)) by the ideal determined by the condition det(A) =
det(z)(v + p)||ν||. Then U(z̃,≤η) is a closed subscheme of U [0,n−1](z̃), given by the

p-saturation of the condition that each k by k minor is divisible by (v + p)
(k−1)k

2 .
In general, these schemes can be somewhat hard to describe; however in Propo-
sition 3.1.2 and Proposition 3.2.2, we will give an explicit presentations for them
when z̃ has colength one.

2.2.2. Algebraic monodromy condition. Let a ∈ On. We define an operator ∇a on

LG by ∇a(A)
def
=
(
v d
dv (A)− [Diag(a), A]

)
, and a closed subfunctor LG∇a ⊆ LG by

LG∇a(R)
def
=

{
A ∈ LG(R) | ∇a(A)A−1 ∈ 1

(v + p)
L+M(R)

}
.

(We write [M,N ] for the usual Lie bracket on LG, defined by [M,N ]
def
= MN−NM .)

We define the following closed subschemes of U(z̃,≤η):

• Unv(z̃,≤η,∇a)
def
= U(z̃,≤η) ∩ LG∇a ; and

• U(z̃,≤η,∇a) ⊆ Unv(z̃,≤η,∇a) as the p-flat closure of Unv(z̃,≤η,∇a)E
inside U(z̃,≤η).
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Thus U(z̃,≤η,∇a) is the closed subscheme U(z̃,≤η) whose ring of global functions
is the quotient of O(U(z̃,≤η)) by the p-saturation of the ideal I∇a

obtained by
imposing that the universal matrix

Auniv ∈ U(z̃,≤η)
(
O(U(z̃,≤η)

)
satisfies (

∇a(A
univ)

)(
Auniv

)−1 ∈ 1

(v + p)
L+M(O(U(z̃,≤η)),

cf. [LLHLMb, Definition 7.1.8] for a list of generators of this ideal. Proposition 4.3.2
and Proposition 4.3.1 give results towards an explicit presentation for the affine
scheme U(z̃,≤η,∇a) when z̃ has colength at most one.

We define analogously the closed subschemes Ũ(z̃,≤η,∇a) ⊆ Ũnv(z̃,≤η,∇a) ⊆
Ũ(z̃,≤η), replacing U(z̃,≤η) by Ũ(z̃,≤η) in the above items. Note that we also
have

(4) Ũ(z̃,≤η,∇a) = T∨U(z̃,≤η,∇a),

compatible with Ũ(z̃,≤η) def
= T∨U(z̃,≤η).

2.2.3. Monodromy condition and Galois representations. We follow the notation
and terminology on tame inertial types and their lowest alcove presentations of
[LLHLMb, §2.4]. In particular given (s, μ) = (s(j), μ(j))j∈J ∈ WJ ×(X∗(T )∩C0)

J ,
[LLHLMb, Example 2.4.1, equations (5.2), (5.1)] produces a tame inertial type

τ (s, μ+ η) and n-tuples a′(j
′) ∈ Zn for 0 ≤ j′ ≤ fr− 1 (where r is the order of the

element s(0)s(1) · · · s(f−2)s(f−1) ∈ W ). If μ is 1-deep in C0, for each 0 ≤ j′ ≤ fr−1

we define s′or,j′ to be the element of W such that (s′or,j′)
−1(a′ (j

′)) ∈ Zn is dominant,
and let

(5) a(j)
def
= (s′ (j)or )−1(a′ (j))/(1− pfr)

for 0 ≤ j ≤ f .
Recall from [LLHLMb, §7.2] the p-adic formal algebraic stack X≤η,τ over SpfO.

It is p-flat, equidimensional of dimension (1 + [K : Qp]
(
n
2

)
) and moreover if ρ :

GK → GLn(F) is a continuous Galois representation, then R≤η,τ
ρ is a versal ring for

X≤η,τ at its point corresponding to ρ (see [EG, §4.8]). Let z̃ = (z̃(j))j∈J ∈ W̃∨,J .
Let N ≥ n + 1 and assume that μ is N -deep in alcove C0. From [LLHLMb,

Theorem 7.2.3, Theorem 7.3.2] we have an open substack X≤η,τ (z̃) ↪→ X≤η,τ , an

O-flat closed p-adic formal subscheme Ũ(z̃,≤η,∇τ,∞) of Ũ(z̃,≤η)∧p (where Ũ(z̃,≤
η)

def
=
∏

j∈J Ũ(z̃(j),≤η) and the superscript ∧p denotes the p-adic completion) and
a formally smooth morphism

(6) Ũ(z̃,≤η,∇τ,∞) → X≤η,τ (z̃)

of relative dimension n#J .
Assume further that N ≥ 2n−5 and μ is N -deep in alcove C0. Then [LLHLMb,

Proposition 7.1.10] shows that the formal scheme Ũ(z̃,≤η,∇τ,∞) is the p-flat closure

of a natural deformation of
∏

j∈J Ũ(z̃(j),≤η,∇a(j)) in the following sense: Letting

I
(j)
∇

a(j)
be the ideal cutting out Ũ(z̃(j),≤η,∇a(j)) in Ũ(z̃(j),≤η), Ũ(z̃,≤η,∇τ,∞) is

cut out by the p-saturation of an ideal I∇τ,∞ which is obtained from
∑

j∈J I
(j)
∇

a(j)
by

adding a (specific but inexplicit) element divisible by pN−2n+5 to each element of its
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natural set of generators (in particular, (I∇τ,∞ , pN−2n+5) =
∑

j(I
(j)
∇

a(j)
, pN−2n+5) by

definition). This property can be expressed in the following way: Given a p-adically

complete Noetherian O-algebra R, if Ã ∈ Ũ(z̃,≤η)∧p(R) satisfies the equations in
I∇τ,∞ then

(7)
(
∇a(j)(Ã(j))

)(
(v + p)n−1Ã(j)

)−1 ∈ (v + p)n−2Mn(R[v]) + pN−2n+5Mn(R�v�)

see [LLHLMb, Proposition 7.1.10 and its proof]. (We caution the reader that I∇τ,∞

is different than the ideal IM,∇∞ appearing in [LLHLMb, §7.1], but the p-saturation
of I∇τ,∞ equals IM,∇∞ when M is taken to be the universal Breuil–Kisin module

over Ũ(z̃,≤ η).)
Finally let us recall the characterization of the Galois representations that con-

tribute to X≤η,τ (z̃): given ρ ∈ X≤η,τ (F), then ρ ∈ X≤η,τ (z̃)(F) if and only if its
étale ϕ-module Mρ = V∗

K(ρ|GK∞ ), cf. [LLHLMb, §5.5], admits a basis with respect

to which the matrix of Frobenius belongs to Ũ(z̃,≤η)(F)
∏

j∈J s−1
j vμj+ηj . We say

that ρ has shape z̃ with respect to τ if additionally the matrix of Frobenius belongs
to

∏
j∈J I z̃(j)Is−1

j vμj+ηj . (Here I denotes the Iwahori subgroup of GLn(F((v)))
corresponding to the Borel of upper triangular matrices.)

It follows from [LLHLMb, Proposition 5.4.7] that any ρ ∈ X≤η,τ (F) has a unique
shape in Adm(η), which we denote by w̃(ρ, τ )∗.

3. Finite height conditions

In this section, we describe U(w̃,≤ η) when w̃∗ ∈ Adm(η) has colength one.
Throughout this subsection R denotes a Noetherian O-flat O-algebra, and we use
the notation uβ : Ga ↪→ w0Uw0 for the embedding to the β-entry for each β ∈ Φ−,
where U is the subgroup of upper triangular unipotent matrices in GLn. Moreover,
given A ∈ Matn(R) and β = εi − εj ∈ Φ, we write Aβ and Aβ,
 for Aij and aik,

respectively.

3.1. Finite height conditions: the first form. Let w̃∗ ∈ Adm(η) be a colength
one shape of the first form. Thus, by Proposition 2.1.2 and the definition of w̃ �→ w̃∗,
we have w̃ = wsαtηw

−1, where w ∈ W satisfies w(α) > 0 and w(k) do not belong
to the interval (w(i0), w(j0)) for all i0 < k < j0 if we set α = αi0j0 ∈ Φ+ \Δ. For

notational convenience we set s
def
= sα and w′ def

= ws.
With an eye towards the monodromy conditions, we introduce the following:

Definition 3.1.1. We say that a negative root β ∈ Φ− is bad (with respect to w̃)
if

• β shares either the row or the column of α;
• δw(β)<0 �= δw′(β)<0.

Proposition 3.1.2. Let A ∈ U(w̃,≤η)(R).
Then Aw(j0)w(j0) = (w−1Aw)j0j0 = c(v + p)n−j0 for some c ∈ R and

(8) s · u−α(−c) · (w−1Aw) = (v + p)η · V,
where V is a lower triangular unipotent matrix whose entries are in R[v].

Moreover, for each β ∈ Φ− the entry Vβ can be written as vκβ · fβ(v) for a
polynomial fβ(v) ∈ R[v] of the form

∑
k cβ,k(v + p)k where

(1) if β is bad then κβ = δw(β)<0 = 0 and deg(fβ) < |〈η, β∨〉|+ 1;

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5760 DANIEL LE, BAO V. LE HUNG, ET AL.

(2) if β shares the row or the column of α but is not bad then κβ = δw(β)<0

and deg(fβ) < |〈η, β∨〉|;
(3) if β shares the row of −α then κβ = δw′(β)<0 and deg(fβ) < |〈η, β∨〉|;
(4) if β shares the column of −α with β �= −α then κβ = δw(β)<0 and deg(fβ) <

|〈η, β∨〉| − δw(−α)<w(β)<0;
(5) for all other roots β ∈ Φ−, κβ = δw(β)<0 and deg(fβ) < |〈η, β∨〉|.

Proof. It is easy to see that (w−1Aw)j0j0 is a polynomial of degree less than

n − j0 + 1. Let c ∈ R be the coefficient of vn−j0 in (w−1Aw)j0j0 , and set C
def
=

su−α(−c)(w−1Aw) as in (8). One can readily observe the following degree bounds:

• deg(Cll) ≤ n− l for all 1 ≤ l ≤ n;
• for β = αlm ∈ Φ with l,m �∈ {i0, j0}, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤

n−m− 1;
• for β = αi0m ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n − m − 1 +
δw′(β)<0<w(β);

• for β = αj0m ∈ Φ, Cβ = vδw′(β)<0fβ(v) with deg(fβ) ≤ n−m− 1;
• for β = αli0 ∈ Φ with l �= j0, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n − i0 −
δw(β)<0 − δw(β)>w(−α);

• for β = αlj0 ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n− j0 − δw(β)>w(α) −
δw(β)<0.

From the bullet points above it is now immediate to deduce the degree bounds
(1)–(5).

We now prove the claim on the lower triangularity of V , and the divisibility by
(v + p)η. We will repeatedly use following inductive procedure (modeled on the
height condition): Given an O-flat algebra R and B ∈ Matn(R[v]) such that

(1) the right-bottom block of B of size k×k is lower triangular of the following
form ⎛⎜⎝B(n+1−k)(n+1−k) · · · 0

...
. . .

...
Bn(n+1−k) · · · Bnn

⎞⎟⎠,

and (v + p)n−l | Blm if Blm is in the (k × k)-block above;
(2) for l and m with 1 ≤ l,m ≤ n−k, the (k+1)×(k+1)-submatrix determined

by Blm and the k × k-block above is also lower-triangular;

(3) (v+ p)
k(k+1)

2 | ((k+1)× (k+1)-minors) for the (k+1)× (k+1)-submatrix
above,

then we have (v + p)k | Blm. We apply the above procedure to B = w−1Aw and
B = C.

First, imposing the finite height condition and inductively using items (1), (2),
(3) above to w−1Aw, we can assume without loss of generality that (w−1Aw)β = 0
for β = αlm if j0 < m ≤ n and l < m, and that (v+ p)n−l | (w−1Aw)β for β = αlm

if j0 < l ≤ n and m ≤ l (note that (w−1Aw)β = 0 for β = αln if l < n, by the
degree bounds). Therefore, it is immediate that Cβ = 0 for β = αlm if j0 < m ≤ n
and l < m, and that (v+p)n−l | Cβ for β = αlm if j0 < l ≤ n and m ≤ l. Moreover,
by a further application of items (1), (2), (3) above to C, we also conclude that the
right-bottom (n− i0+1)× (n− i0+1)-block of C is as described in the statements,
and that (v + p)n−l | Clm if i0 ≤ l ≤ n and m ≤ l.
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We now check that Cβ = 0 if β = αlm with 1 ≤ l < i0 and l < m ≤ j0.
Note that we cannot, in general, conclude Clj0 = 0 from the fact (v + p)n−j0 |Clj0

induced from items (1), (2), (3) above for 1 ≤ l < i0, since the degree bound of the
polynomial Clj0 is one higher than usual if w(i0) < w(l) < w(j0). Let β = αlj0 be
such a root, and assume that the right-bottom (n − l) × (n − l)-block of C is as
described in the statements. By items (1), (2), (3) and the degree bound, we may

let Cβ = x(v + p)n−j0 for x ∈ R. Consider C ′ def
= uβ(−x)C. Then we have C ′

β = 0,
and, moreover, the finite height condition together with the degree bounds implies
that C ′

lm = 0 for all i0 ≤ m < j0. In particular, we have

C ′
li0 = Cli0 − xC−α = 0.

By looking at the constant part of C ′
li0
, which is the same as the constant part of

−xC−α as v | Cli0 , we have p
|〈η,−α∨〉|−1xc−α = 0 in R where we let p|〈η,−α∨〉|−1c−α

be the constant part of C−α. On the other hand, by Lemma 3.1.6 c−α is a unit in
R[ 1p ], so that we conclude that x = 0. (Note that to prove Lemma 3.1.6 we only

used the fact that the right-bottom (n − i0 + 1) × (n − i0 + 1)-block of C is as
described in the statements, which is already proved in the previous paragraph.)
Now by repeatedly using items (1), (2), (3) above together with the degree bounds,
we conclude that Clm = 0 if l < m ≤ j0. Repeating this argument, we conclude
that Cβ = 0 if β = αlm with 1 ≤ l < i0 and l < m ≤ j0 and that (v + p)n−l | Clm

if 1 ≤ m ≤ l ≤ n.
Finally, we point out that we have (w−1Aw)j0j0 = c(v + p)n−j0 , which can be

readily seen during the induction steps due to the degree bound. This completes
the proof. �

For the rest of this subsection, we observe some necessary properties of κβ ∈
{0, 1}, defined in Proposition 3.1.2, as well as some identities of the coefficients of
V from the finite height conditions. We first fix some notation:

• For β ∈ Φ−, we write Dβ for the set of the decompositions (β1, β2) of β
into two negative roots with β1 sharing the column of β (and β2 sharing
the row of β).

• For a bad root β ∈ Φ−, we write Aβ for the set {(β1, β2) ∈ Dβ | κβ =
κβ1

+ κβ2
}.

The following are immediate consequences of Proposition 3.1.2, which will be
frequently used:

• if β shares the row of α then we have κβ = κs(β);

• if β is a bad root sharing the column of α then deg(v−κs(β)Vs(β))< |〈η, s(β)∨〉|
− 1 and κs(β) = 1 + κβ ;

• if (β1, β2) ∈ D−α then κβ1
+ κβ2

= 1;
• κ−α = 0.

Lemma 3.1.3. Let β = αlm ∈ Φ−. Then if l ≤ j0 or m > i0 then κβ is subadditive,
i.e., κβ ≤ κβ1

+ κβ2
for all (β1, β2) ∈ Dβ.

Moreover, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1
+ κβ2

then

• l > j0 and m ≤ i0;
• κβ = 1 and κβ1

= κβ2
= 0;

• β1 shares the row of −α such that β2 is bad and either s(β1) is bad or
β1 = −α.
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Proof. One can readily observe that

• if β = αlm with l �∈ {i0, j0} then κβ = δw(β)<0;
• if β = αi0m then κβ = δw(β)<0;
• if β = αj0m then κβ = δw′(β)<0.

The first part follows from combining these three observations together with the
fact δw(β)<0 ≤ δw(β1)<0 + δw(β2)<0 if (β1, β2) ∈ Dβ , case by case.

For the second part, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1
+κβ2

then it is easy to see that β1 shares the row of −α, and so if β1 �= −α then we have
w′(β1) > 0 and w(β1) < 0 and so s(β1) is bad. β2 is also bad, as w′(β2) < 0. �

Lemma 3.1.4. Let β ∈ Φ− be a bad root sharing the row of α. Then the map
(β1, β2) �→ (β1, s(β2)) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) with β2 �= −α.

Moreover, β2 ∈ Φ− is bad if (β1, β2) ∈ Aβ.

Proof. For (β1, β2) ∈ Dβ it is easy to see that κβ = κβ1
+ κβ2

, if and only if
κβ1

= 0 = κβ2
, if and only if w(β1) > 0, w(β2) > 0, and w′(β2) < 0, if and only

if κβ1
= 0 = κs(β2), if and only if κs(β) = κβ1

+ κs(β2). Moreover, if (β1, β2) ∈ Aβ

then w(β2) > 0 and w′(β2) < 0, and so β2 is bad. This completes the proof. �

Lemma 3.1.5. Let β ∈ Φ− be a root sharing the column of α. If β is bad then the
map (β1, β2) �→ (s(β1), β2) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) such that s(β1) is bad.

Moreover, if β is not bad and (β1, β2) ∈ As(β) then s(β1) is not bad.

Proof. Assume β is bad. Then we have κβ = 0 and κs(β) = 1. Also, for (β1, β2) ∈
Dβ it is easy to see that κs(β) = κβ1

+ κβ2
and s(β1) is bad, if and only if κβ1

= 1,
κs(β1) = 0, and κβ2

= 0, if and only if κβ = κs(β1) + κβ2
. This completes the proof

of the first part.
For the second part, it is clear if κβ = 0. If κβ = 1 then κs(β) = 1 as β is not

bad, and so we have either κβ2
= 1 or κβ1

= 1. If κβ2
= 1 then κβ1

= 0 and so
s(β1) is not bad. If κβ2

= 0 then κβ1
= 1 and κs(β1) = 1, and so s(β1) is not bad.

This completes the proof. �

For each β ∈ Φ−, let cβ be the coefficient of vκβ in Vβ. For each β = αlm ∈ Φ−

with either l ≤ j0 or i0 ≤ m, let cıβ be the coefficient of vκβ−1 (resp. vκβ ) in V ı
β if

l > j0 and m = i0 (resp. otherwise), where V ı def
= V −1.

Lemma 3.1.6. If β is a bad root sharing the row of α then

cβ · p|〈η,α∨〉| = −c · cs(β).

Moreover, we have −c · c−α = p|〈η,α
∨〉|.

Proof. This is immediate from the elementary operations in (8) together with the
finite height conditions. For instance, we have Ci0,i0 = v(v + p)n−i0−1 − cC−α =
(v + p)n−i0 where C is defined in the proof of Proposition 3.1.2. Now, extracting

the constant term of the identity we get −c · c−α = p|〈η,α
∨〉|. �
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Lemma 3.1.7. Let β ∈ Φ− be a bad root.

(1) If β ∈ Φ− is sharing the row of α then we have

cs(β) +
∑

(β1,β2)∈Aβ

cs(β2)c
ı
β1

+ c−αc
ı
β + cıs(β) = 0.

(2) If β ∈ Φ− is sharing the column of α then we have

cβc
ı
−α +

∑
(β1,β2)∈Aβ

cβ2
cıs(β1)

+ cıs(β) = 0.

Proof. (1) follows immediately from Lemma 3.1.4 and Lemma 3.1.3, by extracting
the constant term in the equation (V · V ı)s(β) = 0.

It is immediate that if β′ ∈ Φ− with β′ �= −α shares the column of −α and s(β′)
is not bad, then the coefficient of vκβ′−1 in V ı

β′ vanishes, as κβ′ is subadditive if

s(β′) is not bad. This result together with Lemma 3.1.5 and Lemma 3.1.3 implies
(2), by extracting the constant term in the equation (V · V ı)s(β) = 0. �
3.2. Finite height conditions: the second form. Let w̃∗ ∈ Adm(η) be a
colength one shape of the second form. Write w̃ = wsαtη−αw

−1 where w ∈ W
satisfies w(α) < 0 and w(j0) < w(k) < w(i0) for all i0 < k < j0 if we set

α = αi0j0 ∈ Φ+ \Δ. For notational convenience we set w′ def
= wsα and s

def
= sα, so

that we may write w̃ = w′tη−αsw
′−1.

With an eye towards applying the monodromy conditions, we introduce the
following:

Definition 3.2.1. We say that a negative root β ∈ Φ− is bad (with respect to w̃)
if

• β shares either the row or the column of α;
• β satisfies δw(β)<0 = δw′(β)<0.

Proposition 3.2.2. Let A ∈ U(w̃,≤η)(R).
Then Aw′(i0)w′(i0) = (w′−1Aw′)i0i0 = c(v + p)n−j0 for some c ∈ R and

(9) uα(−c) · vεi0 · (w′−1Aw′) · s = (v + p)η · V ′,

where V ′ is a lower triangular matrix whose entries are in R[v].

Moreover, V
def
= v−εj0 · V ′ is unipotent, and for each β ∈ Φ− the entry V ′

β can

be written as vκ
′
β · fβ(v) for a polynomial fβ(v) ∈ R[v] of the form

∑
k cβ,k(v+ p)k

where

(1) if β is bad then κ′
β = δw′(β)<0 and deg(fβ) < |〈η, β∨〉|+ 1;

(2) if β shares the row or the column of α but is not bad then κ′
β = 1+δw′(β)<0 =

δw(β)<0 = 1 and deg(fβ) < |〈η, β∨〉|;
(3) if β shares the column of −α then κ′

β = δw(β)<0 and deg(fβ) < |〈η, β∨〉| −
δw(β)>w′(α) − δw(β)<0;

(4) for all other roots β ∈ Φ−, κ′
β = δw′(β)<0 and deg(fβ) < |〈η, β∨〉|.

Proof. It is easy to see that (w′−1Aw′)i0i0 is a polynomial of degree less than

n − j0 + 1. Let c ∈ R be the coefficient of vn−j0 in (w′−1Aw′)i0i0 , and set C
def
=

uα(−c)vεi0 (w′−1Aw′)s as in (9). One can readily observe the following degree
bound:

• deg(Cll) ≤ n− l if l �= j0, and deg(Cj0j0) ≤ n− l + 1 and Cj0j0 ∈ vR[v];
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• for β = αlm ∈ Φ with l �= i0 and m �∈ {i0, j0}, Cβ = vδw′(β)<0fβ(v) with
deg(fβ) ≤ n−m− 1;

• for β = αli0 ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n − i0 − 1 −
δw(β)>w′(α) − δw(β)<0;

• for β = αlj0 ∈ Φ with β �= α, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n − j0 +
1− δw(β)>w′(−α) − δw(β)<0;

• for β = αi0m ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n−m if β �= α, and
Cα = vfβ(v) with deg(fβ) ≤ n− j0.

Now, the rest of the proof is similar to Proposition 3.1.2, and we leave the details
for the reader. �

For the rest of this subsection, we observe some necessary properties of κ′
β ∈

{0, 1}, defined in Proposition 3.2.2, as well as some identities of the coefficients
of V ′ (and so of V as well) from the finite height conditions. We first fix some
notation:

• For β ∈ Φ−, we write Dβ for the set of the decompositions (β1, β2) of β
into two negative roots with β1 sharing the column of β (and β2 sharing
the row of β).

• For a bad root β ∈ Φ−, we write Aβ for the set {(β1, β2) ∈ Dβ | κ′
β =

κ′
β1

+ κ′
β2
}.

• To describe the bottom degrees of each entry of V , we set κβ
def
= κ′

β − 1 if

β ∈ Φ− shares the row of −α, and κβ
def
= κ′

β otherwise.

The following are immediate consequences of Proposition 3.2.2, which will be
frequently used:

• if β is bad then we have κ′
β = κ′

s(β);

• if β is a bad root sharing the column of α then deg(v−κ′
s(β)V ′

s(β))< |〈η, s(β)∨〉|
− 1;

• if β = αj0m with i0 < m ≤ j0 then κ′
β = 1;

• if β = αli0 with i0 < l ≤ j0 then κ′
β = 0, and, in particular, κ−α = −1.

Lemma 3.2.3. Let β = αlm ∈ Φ−. Then κ′
β is subadditive, i.e. κ′

β ≤ κ′
β1

+ κ′
β2

for all (β1, β2) ∈ Dβ.
Moreover, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1

+ κβ2
then

• l > j0 and m ≤ i0;
• β1 shares the row of −α such that β2 is bad and either s(β1) is bad or
β1 = −α.

Proof. The proof is very similar to Lemma 3.1.3. Observe that

• if β = αlm with l �= i0 and m �∈ {i0, j0} then κ′
β = δw′(β)<0;

• if β = αlm with m ∈ {i0, j0} then κ′
β = δw(β)<0;

• if β = αi0m then κ′
β = δw(β)<0.

The subadditivity of κ′
β follows from combining the three observations above to-

gether with the fact δw′(β)<0 ≤ δw′(β1)<0 + δw′(β2)<0 if (β1, β2) ∈ Dβ . The subad-
ditivity of κβ when l ≤ j0 or i0 < m also easily follows from the subadditivity of
κ′
β together with the colength one property of w.

Assume that β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1
+ κβ2

. Then
as κ′

β is subadditive and κβ is subadditive if m > i0, we see that β1 shares the row
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of −α and so β2 shares the column of α. It is also easy to see that β2 is bad, and
s(β1) is bad if β1 �= −α. �

Lemma 3.2.4. Let β ∈ Φ− be a bad root sharing the row of α. Then the map
(β1, β2) �→ (β1, s(β2)) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) with β2 �= −α.

Moreover, β2 ∈ Φ− is bad if (β1, β2) ∈ Aβ.

Proof. The argument is very similar to Lemma 3.1.4. We leave the details for the
reader. �

Lemma 3.2.5. Let β ∈ Φ− be a root sharing the column of α. If β is bad then the
map (β1, β2) �→ (s(β1), β2) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) such that s(β1) is bad.

Moreover, if β is not bad and (β1, β2) ∈ As(β) then s(β1) is not bad.

Proof. The argument is very similar to Lemma 3.1.5. We leave the details for the
reader. �

For each β ∈ Φ−, let cβ be the coefficient of vκ
′
β in V ′

β. For each β = αlm ∈ Φ−

with either l ≤ j0 or i0 ≤ m, let cıβ be the coefficient of vκ
′
β−1 (resp. vκ

′
β ) in V ı

β if

either l = j0 or l > j0 and m = i0 (resp. otherwise), where V ı def
= V −1.

Lemma 3.2.6. If β is a bad root sharing the row of α then

cβ · p|〈η,α∨〉| = −c · cs(β).

Moreover, we have −c · c−α = p|〈η,α
∨〉|.

Proof. The same argument as in Lemma 3.1.6 also works, using the elementary
operations in (9) together with the finite height conditions. �

Lemma 3.2.7. Let β ∈ Φ− be a bad root

(1) If β ∈ Φ− is sharing the row of α then we have

cs(β) +
∑

(β1,β2)∈Aβ

cs(β2)c
ı
β1

+ c−αc
ı
β + cıs(β) = 0.

(2) If β ∈ Φ− is sharing the column of α then we have

cβc
ı
−α +

∑
(β1,β2)∈Aβ

cβ2
cıs(β1)

+ cıs(β) = 0.

Proof. The proof is similar to that of Lemma 3.1.7. The only difference is that
we use Lemma 3.2.4, Lemma 3.2.3, and Lemma 3.2.5 instead of Lemma 3.1.4,
Lemma 3.1.3, and Lemma 3.1.5, respectively. �
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3.3. Description of U(w̃,≤η) in colength one. Let V be the matrix introduced

at Proposition 3.1.2 or at Proposition 3.2.2. For each β ∈ Φ−, we let mβ
def
=

|〈η, β∨〉| − 1, and recall that the entry Vβ is of the form

vκβ

m′
β∑

k=0

cβ,k(v + p)k,

where

(10) m′
β =

⎧⎪⎨⎪⎩
mβ + 1 if β is bad;

mβ − 1 if β shares the column of −α such that s(β) ∈ Φ− is bad;

mβ otherwise.

Proposition 3.3.1. Let w̃∗ ∈ Adm(η) be a colength one shape. Then there is a
closed immersion

U(w̃,≤η) ↪→ SpecO[{cβ,k | β ∈ Φ− and 0 ≤ k ≤ m′
β} ∪ {c}].

Proof. This is immediate from Propositions 3.1.2 and 3.2.2. �

4. Monodromy conditions

In this section, we induce certain identities and properties, that will be necessary
to describe U(w̃,≤ η,∇a) for a ∈ On when w̃∗ ∈ Adm(η) is of colength one.
Throughout this section, by R we mean a Noetherian O-flat O-algebra. We keep
the notation of §3.

We fix some notation. Set γβ
def
= κβ + m′

β, where m′
β is defined in (10). For

each β ∈ Φ−, we write F≥β (resp. F>β) for the free Z-module generated by the
monomials cβ1,k1

· · · cβs,ks
for all non-negative integers k1, · · · , ks with

∑s
i=1 ki ≤

γβ + 1 and for all negative roots β1, · · · , βs with β = β1 + · · · + βs (resp. with

β = β1 + · · · + βs and s > 1). For β′ ∈ Φ− with β′ > β we write Fβ′

>β for

the submodule of F>β generated by the monomials cβ1,k1
· · · cβs,ks

with βi �= β′

for all i. By abuse of notation, we will use the same notation for the images of
all of these free Z-modules in the ring O(U(w̃,≤η)) via the closed immersion of
Proposition 3.3.1. Finally, if A ∈ U(w̃,≤η)(R), we abuse notation again and write

F≥β, F>β, F
β′

>β for the image in R[v] (via the map O(U(w̃,≤η)) → R corresponding

to A) of the Z-modules above.
Let A ∈ U(w̃,≤ η)(R), and let V be the corresponding matrix obtained by

Proposition 3.1.2 (resp. by Proposition 3.2.2) if w̃ is of the first form (resp. if w̃ is
of the second form). Then an elementary computation shows that A ∈ Unv(w̃,≤
η,∇a)(R) if and only if for each β ∈ Φ−

(11) V �
β

def
= (∇aw

V )β +
∑

(β1,β2)∈Dβ

(∇aw
V )β2

V ı
β1

∈ (v + p)mβR[v],

where aw ∈ On satisfies w(aw) = a. Throughout this subsection, we assume (11)
holds for all β ∈ Φ−, and write ∇ for ∇aw

to lighten the notation.
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4.1. Monodromy conditions: the first form. Let w̃∗ ∈ Adm(η) be a colength
one shape of the first form (described in Proposition 2.1.2), and keep the notation
of §3.1. In particular, we keep the notation of Proposition 3.1.2.

Lemma 4.1.1. Let β = αlm ∈ Φ− with l ≤ j0 or i0 ≤ m. Then we have

(1) if β is not bad then

V �
β ∈ vκ̃β (v + p)mβ

(
Xβ + F>β

)
,

where Xβ = (mβ + κβ − 〈aw, β∨〉)cβ,m′
β
and

κ̃β
def
=

{
κβ if either l ≤ j0, i0 < m, or i0 = m and s(β) ∈ Φ− is not bad;

κβ − 1 if i0 = m and s(β) ∈ Φ− is bad,

(2) if β is bad then

V �
β ∈ vκβ (v + p)mβ

(
Yβ + vXβ + F>β

)
,

where{
Xβ = (m′

β + κβ − 〈aw, β∨〉)cβ,m′
β
;

Yβ = (mβ + κβ − 〈aw, β∨〉+mβ + κβ)cβ,mβ
+ p(κβ − 〈aw, β∨〉)cβ,m′

β
.

Proof. Assume that β = αlm ∈ Φ− is not bad. If either l ≤ j0, i0 < m, or
i0 = m and s(β) is not bad then by Proposition 3.1.2 together with Lemma 3.1.3
it is routine to check the equation in (1). If l > j0, i0 = m, and s(β) ∈ Φ− is
bad then κβ is not subadditive and deg(Vβ/v

κβ ) < |〈η, β∨〉| − 1 by part (3) of
Proposition 3.1.2, and so vκβ �

∑
(β1,β2)∈Dβ

(∇V )β2
V ı
β1

while vκβ | (∇V )β . Hence,

in this case we get the equation in (1) with κ̃β = κβ − 1 in the equation.
Assume that β is bad. By part (1) of Proposition 3.1.2, deg Vβ < |〈η, β∨〉| + 1

(as κβ = 0) and κβ is subadditive, and so we get the equation in (2). �

For β ∈ Φ− and for each integer s ≥ 1, we set Iβ,s to be the set of the tuples of
negative roots (β1, β2, · · · , βs) such that

• β = β1 + β2 + · · ·+ βs and β1 shares the column of β;
• βi + βi+1 ∈ Φ− for i ∈ {1, · · · , s− 1};
•
∑s

i=1 δw(βi)<0 = s− δw(β)>0.

Moreover, we set

Iβ
def
=

⋃
s≥1

Iβ,s.

Lemma 4.1.2. Let β ∈ Φ− with β ≥ −α.

(1) If (β1, β2) ∈ Dβ then γβ ≥ γβ1
+ γβ2

;
(2) (β1, β2) ∈ Dβ satisfies γβ = γβ1

+ γβ2
if and only if κβ < κβ1

+ κβ2
.

In particular, if (β1, β2) ∈ D−α then γβ1
+ γβ2

= γ−α, deg V
ı
β1

= γβ1
= mβ1

+ κβ1
,

and

1

(γβ1
)!

dγβ1V ı
β1

dvγβ1
=

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)
+j0−scβ′
1,mβ′

1

cβ′
2,mβ′

2

· · · cβ′
s,mβ′

s
,

where β1 = α
i0 .
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Proof. Recall that γβ indicates the degree of Vβ . By definition of w, κβ = κs(β) if
either β = αli0 with i0 < l < j0 or β = αi0m with i0 < m < j0. Now it is easy to
check (1) and (2) case by case.

For the second part, let (β1, β2) ∈ D−α. Then it is clear that γβ1
+ γβ2

= γ−α

by (2), and it is also clear that deg V ı
β1

= γβ1
by (1). Finally, the elements of

Iβ correspond to the monomials in V ı
β1

which has the highest degree γβ1
. This

completes the proof. �

Lemma 4.1.3. We have

pm−α+1 · 〈aw,−α∨〉 = pm−α · c · Z−α,

where

Z−α
def
= (m−α − 〈aw,−α∨〉) c−α,m−α

+
∑

(β1,β2)∈D−α

(mβ2
+ κβ2

− 〈aw, β∨
2 〉) cβ2,mβ2

·
∑

(β′
1,··· ,β′

s)∈Iβ1

(−1)
+j0−scβ′
1,mβ′

1

· · · cβ′
s,mβ′

s

if we write β1 = α
i0 .

Proof. By Lemma 4.1.2, we see that deg((∇V )β2
V ı
β1
) = γβ2

+ γβ1
= γ−α = m−α

for all (β1, β2) ∈ D−α. Hence, if we apply the monodromy condition (11) to V−α

then we have

V �
−α = (m−α − 〈aw,−α∨〉)c−α,m−α

(v + p)m−α

+
∑

(β1,β2)∈D−α

(mβ2
+ κβ2

− 〈aw, β∨
2 〉)cβ2,mβ2

·
∑

(β′
1,··· ,β′

s)∈Iβ1

(−1)
+j0−scβ′
1,mβ′

1

· · · cβ′
s,mβ′

s
(v + p)m−α

by applying the second part of Lemma 4.1.2. Since the constant term of V �
−α

appears only at (∇V )−α by Lemma 3.1.3, by extracting the constant term we have

−〈aw,−α∨〉c−α = pm−αZ−α.

By the second part of Lemma 3.1.6, we get the desired identity. �

We further eliminate the variables Yβ for bad roots β ∈ Φ−.

Lemma 4.1.4. Let β ∈ Φ− be a bad root.

(1) If β shares the row of α then we have

pms(β) · (Yβ + c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

(2) If β shares the column of α then we have

pms(β) · (Yβ − c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.
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Proof. We first treat the case (1). By Lemma 3.1.4, extracting the constant term
in the monodromy equation in part (1) of Lemma 4.1.1 for s(β) gives rise to
(12)
〈aw, s(β)∨〉cs(β)

+
∑

(β1,β2)∈Aβ

〈aw, s(β2)
∨〉cs(β2)c

ı
β1

+ 〈aw,−α∨〉c−αc
ı
β ∈ −pms(β)(Xs(β) + F>s(β)).

As deg(VβV
ı
−α) = m′

β+m−α = mβ+1+m−α = ms(β) = κ̃s(β)+ms(β), the quantity

in (12), in fact, belongs to

−pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

By multiplying −c and then applying Lemma 3.1.6 together with Lemma 3.1.4, we
have

p|〈η,α
∨〉|〈aw, s(β)∨〉cβ
+

∑
(β1,β2)∈Aβ

p|〈η,α
∨〉|〈aw, s(β2)

∨〉cβ2
cıβ1

+ p|〈η,α
∨〉|〈aw,−α∨〉cıβ

∈ c · pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

Applying the identity cβ +
∑

(β1,β2)∈Aβ
cβ2

cıβ1
+cıβ = 0, induced from (V ·V ı)β = 0,

together with s(β) = β − α and s(β2) = β2 − α, we have

(13) p|〈η,α
∨〉|〈aw, β∨〉cβ +

∑
(β1,β2)∈Aβ

p|〈η,α
∨〉|〈aw, β∨

2 〉cβ2
cıβ1

∈ c · pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

But by extracting the constant term in the monodromy equation in part (2) of
Lemma 4.1.1 for β, the quantity in (13) also belongs to

−p|〈η,−α∨〉|+|〈η,β∨〉|−1(Yβ + F>β)

and so we have the desired result.
We now treat the case (2). By extracting the coefficient of vκβ in the equation

(V · V ı)β = 0, we have cβ +
∑

(β1,β2)∈Aβ
cβ2

cıβ1
+ cıβ = 0, which together with the

equation in part (2) of Lemma 3.2.7 induces∑
(β1,β2)∈Aβ

cβ2
(cıs(β1)

− cı−αc
ı
β1
) + (cıs(β) − cı−αc

ı
β) = 0.

This equation together with Lemma 3.2.5 inductively induces that

(14) cıs(β) − cı−αc
ı
β = 0

for any bad root β sharing the column of α.
By extracting the coefficient of vκβ in the monodromy equation in part (2) of

Lemma 4.1.1 for β, we have

(κβ − 〈aw, β∨〉)cβ +
∑

(β1,β2)∈Aβ

(κβ2
− 〈aw, β∨

2 〉)cβ2
cıβ1

∈ pmβ (Yβ + F>β).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5770 DANIEL LE, BAO V. LE HUNG, ET AL.

Similarly, by extracting the coefficient of vκs(β)−1 in the monodromy equation in
part (1) of Lemma 4.1.1 for s(β), we have
(15)

(κβ−〈aw, β∨〉)cβcı−α+
∑

(β1,β2)∈Aβ

(κβ2
−〈aw, β∨

2 〉)cβ2
cıs(β1)

∈ pms(β)(Xs(β)+F>s(β)).

As deg(VβV
ı
−α) = γβ +γ−α = m′

β +m−α = mβ +1+m−α = ms(β) = κ̃s(β)+ms(β),

the quantity in (15), in fact, belongs to

pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

Comparing these two equations via the identity (14), we have

pms(β)Xs(β) − cı−αp
mβYβ ∈ pms(β)(cβ,m′

β
· F≥−α + Fβ

>s(β)) + pmβ · cı−α · F>β.

As c−α = −cı−α, by applying the second part of Lemma 3.1.6 we have

−cpms(β)Xs(β)+pmβ+m−αYβ ∈ c ·pms(β)(cβ,m′
β
·F≥−α+Fβ

>s(β))+pmβ+m−α+1 ·F>β.

As s(β) = β − α, we get the desired result. �

We finally treat the case β = αlm ∈ Φ− with l > j0 and m < i0. In this case, κβ

is not subadditive in general, so that Lemma 4.1.5 is not trivial.

Lemma 4.1.5. For β = αlm ∈ Φ− with l > j0 and m < i0,

V �
β ∈ vκβ (v + p)|〈η,β

∨〉|−1(Xβ + F>β),

where Xβ = (mβ + κβ − 〈aw, β∨〉)cβ,m′
β
.

Proof. We first claim that V ı
s(β0)

∈ vR[v] for a bad root β0 ∈ Φ− sharing the row

of α. From part (1) of Lemma 3.1.7 together with Lemma 3.1.4 and Lemma 3.1.6,
we have

p|〈η,α
∨〉|

⎛⎝cβ0
+

∑
(β1,β2)∈Aβ0

cβ2
cıβ1

+ cıβ0

⎞⎠− ccıs(β0)
= 0.

As cβ0
+
∑

(β1,β2)∈Aβ0
cβ2

cıβ1
+ cıβ0

= 0 induced from extracting the constant term

of (V · V ı)β0
= 0, we have ccıs(β0)

= 0. Hence, we conclude that cıs(β0)
= 0, as c is a

unit in R[ 1p ] by Lemma 3.1.6 and R is O-flat.

Let β′ = αl′m′ ∈ Φ− with m′ < i0. We claim that V ı
β′ ∈ vκβ′R[v] if l′ �= j0. It is

clear that V ı
β′ ∈ vκβ′R[v] if l′ < j0, by Lemma 3.1.3. Assume j0 < l′. Consider the

following identity

0 = (V · V ı)β′ = Vβ′ +
∑

(β1,β2)∈Dβ′

Vβ2
· V ı

β1
+ V ı

β′ ,

and write β1 := αkm′ . It is obvious that Vβ′ ∈ vκβ′R[v], and that Vβ2
· V ı

β1
∈

vκβ′R[v] for m′ < k < j0 by Lemma 3.1.3, so that it is enough to check that
Vβ2

· V ı
β1

∈ vκβ′R[v] for j0 ≤ k < l′.

Assume that k = j0. If s(β1) is bad then V ı
β1

∈ vR[v] by the first claim, and

so we conclude in this case that Vβ2
· V ı

β1
∈ vκβ′R[v]. If s(β1) is not bad then it is

clear that V ı
β1

∈ vκβ1R[v], and so we also have Vβ2
·V ı

β1
∈ vκβ′R[v] by Lemma 3.1.3.

Note that this also implies

(16) (∇V )β2
V ı
β1

∈ vκβ′R[v]
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in this case. Assume now that j0 < k < l′. By induction hypothesis, we have
V ı
β1

∈ vκβ1R[v] and so we conclude that Vβ2
·V ı

β1
∈ vκβ′R[v] by Lemma 3.1.3, which

completes the proof of the second claim.
Now, let β = αlm ∈ Φ− with l > j0 and m < i0. For (β1, β2) ∈ Dβ, if we write

β1 = αkm then it is clear that (∇V )β2
V ı
β1

∈ vκβR[v] for k �= j0, by the claim above

together with Lemma 3.1.3. If k = j0, then we also have (∇V )β2
V ı
β1

∈ vκβR[v] by

(16), which completes the proof. �

4.2. Monodromy conditions: the second form. Let w̃∗∈Adm(η) be a colength
one shape of the second form (cf. Proposition 2.1.2), and keep the notation of §3.2.
In particular, we keep the notation of Proposition 3.2.2.

Lemma 4.2.1. Let β = αlm ∈ Φ− with l ≤ j0 or i0 ≤ m. Then we have

(1) if β is not bad then

V �
β ∈ vκ̃β (v + p)mβ

(
Xβ + F>β

)
,

where Xβ = (mβ + κβ − 〈aw, β∨〉)cβ,m′
β
and

κ̃β
def
=

{
κβ if either l < j0, i0 < m, or i0 = m and s(β) ∈ Φ− is not bad;

κ′
β − 1 if either i0 = m and s(β) ∈ Φ− is bad or l = j0,

(2) if β is bad then

V �
β ∈ vκβ (v + p)mβ

(
Yβ + vXβ + F>β

)
,

where{
Xβ = (m′

β + κβ − 〈aw, β∨〉)cβ,m′
β
;

Yβ = (mβ + κβ − 〈aw, β∨〉)cβ,mβ
+ p(κβ − 〈aw, β∨〉)cβ,m′

β
.

Proof. The proof is similar to that of Lemma 4.1.1 using Proposition 3.2.2 and
Lemma 3.2.3 instead of Proposition 3.1.2 and Lemma 3.1.3, respectively. We leave
the details for the reader. �

For β ∈ Φ− and for each integer s ≥ 1, we set Iβ,s to be the set of the tuples of
negative roots (β1, β2, · · · , βs) such that

• β = β1 + β2 + · · ·+ βs and β1 shares the column of β;
• βi + βi+1 ∈ Φ− for i ∈ {1, · · · , s− 1};
• w′(βi) < 0 for all i ∈ {1, · · · , s}.

Moreover, we set

Iβ
def
=

⋃
s≥1

Iβ,s.

Lemma 4.2.2. Let β ∈ Φ− with β ≥ −α.

(1) If (β1, β2) ∈ Dβ then γβ ≥ γβ1
+ γβ2

;
(2) (β1, β2) ∈ Dβ satisfies γβ = γβ1

+ γβ2
if and only if κβ < κβ1

+ κβ2
.

In particular, if (β1, β2) ∈ D−α then γβ1
+ γβ2

= γ−α, deg V
ı
β1

= γβ1
= mβ1

, and

1

(γβ1
)!

dγβ1V ı
β1

dvγβ1
=

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)
+j0−scβ′
1,mβ′

1

cβ′
2,mβ′

2

· · · cβ′
s,mβ′

s
,

where β1 = α
i0 .
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Proof. The proof is similar to that of Lemma 4.1.2. We leave the details for the
reader. �

Lemma 4.2.3. We have

pm−α+1 · (〈aw,−α∨〉+ 1) = pm−α · c · Z−α,

where

Z−α
def
= (m−α − 1− 〈aw,−α∨〉) c−α,m−α

+
∑

(β1,β2)∈D−α

(mβ2
− 〈aw, β∨

2 〉) cβ2,mβ2

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)
+j0−scβ′
1,mβ′

1

· · · cβ′
s,mβ′

s

if we write β1 = α
i0 .

Proof. By Lemma 4.2.2, we see that deg((∇V )β2
V ı
β1
) = γβ2

+ γβ1
= mβ2

+mβ1
=

m−α−1 for all (β1, β2) ∈ D−α. By the same argument as in Lemma 4.1.3, extracting

the constant term of v · V �
−α gives rise to the result. We leave the details for the

reader. �

We further eliminate the variables Yβ for bad roots β ∈ Φ−.

Lemma 4.2.4. Let β ∈ Φ− be a bad root.

(1) If β shares the row of α then we have

pms(β) · (Yβ + c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

(2) If β shares the column of α then

pms(β) · (Yβ − c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

Proof. The proof is similar to that of Lemma 4.1.4. The only difference is that we
use Lemmas 3.2.6, 3.2.4, 4.2.1, 3.2.7, 3.2.5, and 3.2.6 instead of Lemmas 3.1.6, 3.1.4,
4.1.1, 3.1.7, 3.1.5, and 3.1.6, respectively. We leave the details for the reader. �

Finally, we treat the case β = αlm ∈ Φ− with l > j0 and m < i0. In this case,
κβ is not subadditive in general, so that Lemma 4.2.5 is not trivial.

Lemma 4.2.5. Assume that V ı
s(β) ∈ vκβR[v] for a bad root β ∈ Φ− sharing the

row of α. For β = αlm ∈ Φ− with l > j0 and m < i0, we have

V �
β ∈ vκβ (v + p)mβ

(
Xβ + F>β

)
,

where Xβ = (〈aw, β∨〉+mβ + κβ)cβ,m′
β
.

Proof. We first claim that V ı
s(β0)

∈ vκβ0R[v] for each bad root β0 ∈ Φ− sharing

the row of α, whose proof is almost identical to the first claim in the proof of
Lemma 4.1.5. The rest of the proof also is similar to that of Lemma 4.1.5. The
only difference is that we use Lemma 3.2.3 instead of Lemma 3.1.3. We leave the
details for the reader. �
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4.3. Description of U(w̃,≤η,∇a) in colength ≤ 1. In this subsection we de-

scribe U(w̃,≤η,∇a) when w̃∗ ∈ W̃ has colength ≤ 1.
We first give an upper bound of U(w̃,≤η,∇a) for w̃

∗ of colength zero.

Proposition 4.3.1. Let w̃∗ ∈ Adm(η) be a colength zero shape, and let a ∈ On.
Assume that a is n-generic ([LLHLMb, Definition 4.2.2]). Then there is a closed
immersion

U(w̃,≤η,∇a) ↪→ SpecO[{Xβ | β ∈ Φ−}].
Proof. This follows from the arguments in [LLHL19, §3.4], specifically the proof of
[LLHL19, Proposition 3.4.12]. (Note that the argument in loc. cit. is written for
complete local NoetherianO-algebras but is valid in our setting ofO-flat Noetherian
O-algebras.) �

We now give an upper bound of U(w̃,≤η,∇a) for w̃∗ of colength one. Recall
that Z−α is constructed in Lemma 4.1.3 (resp. in Lemma 4.2.3) if w̃∗ is of colength
one of the first form (resp. of the second form).

Proposition 4.3.2. Let w̃∗ ∈ Adm(η) be a colength one shape, and let a ∈ On.
Assume that a is n-generic (as defined in [LLHLMb, §4.2]). Then there is a closed
immersion

U(w̃,≤η,∇a) ↪→ Spec
O[{Xβ | β ∈ Φ−} ∪ {c}]

(c · Z−α − p)
.

Proof. By Proposition 3.3.1, O(U(w̃,≤η,∇a)) is generated by cβ,k (with β ∈ Φ−

and 0 ≤ k ≤ m′
β) and c. But Lemmas 4.1.1, 4.1.5, 4.2.1 and 4.2.5 show that for

k < m′
β and β not bad (resp. k < m′

β − 1 and β bad) the element cβ,k is a Z-linear
combination of Xβ (resp. Yβ) and elements of F>β. We conclude, by induction on
the poset Φ− and change of variables, that we can also generate O(U(w̃,≤η,∇a))
using c, Xβ (β ∈ Φ−) and Yβ (β bad). In turn, Lemmas 4.1.4 and 4.2.4 show
that we can generate using just c and Xβ. Finally Lemmas 4.1.3 and 4.2.3 (and
p-flatness) give the relation c · Z−α − p. �

5. Colength one deformation rings

In this section we apply the results of §3 and §4 to compute potentially crystalline
deformation rings with Hodge–tate weights η, for sufficiently generic ρ and tame
inertial types τ such that w̃(ρ, τ ) has colength at most one in each embedding.

5.1. Product structures and error terms. We first extend the technical re-
sults of §4.1 and §4.2 in a way which can be used to describe the closed immersion

Ũ(z̃,≤ η,∇τ,∞) ↪→ Ũ(z̃,≤ η)∧p , when z̃ = (z̃(j))j∈J has colength at most one.
This requires the modification of some of the previous formulas by allowing prod-
uct structures, non-trivial diagonal entries, and an “error term” which takes into
account the monodromy condition defined in §2.2.3.

Keep the notation of §3, and let R be a p-adically complete, topologically finite
type, Noetherian O-algebra. Let w̃∗ ∈ Adm(η) be a colength one shape of the first

form (resp. of the second form), and Ã ∈ Ũ(w̃,≤η)(R) with its image A ∈ U(w̃,≤
η)(R) under the natural morphism Ũ(w̃,≤η) → U(w̃,≤η). We may write w−1Ãw =

sD0s · w−1Aw (resp. w′−1Ãw′ = D0 · w′−1Aw′) for some D0 = Diag(a1, · · · , an) ∈
T∨(R). Let V ∈ 1

v Matn(R[v]) be the matrix obtained from Proposition 3.1.2 (resp.

from Proposition 3.2.2) applied to A ∈ U(w̃,≤η)(R), and set Ṽ
def
= D0 · V . Then
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by the same argument as in Proposition 3.1.2 (resp. in Proposition 3.2.2) we may

write (w−1Ãw)j0j0 = aj0j0(v + p)n−j0 (resp. (w′−1Ãw′)i0i0 = ai0i0(v + p)n−j0) for
some aj0j0 ∈ R (resp. for some ai0i0 ∈ R), and we have the following identity:

(17) s · u−α(−
aj0j0
aj0

) · (w−1Ãw) = (v + p)η · Ṽ(
resp. uα(−

ai0i0
aj0

) · vεi0 · (w′−1Ãw′) · s = (v + p)η · vεj0 · Ṽ
)
.

Note that we may identify c, defined in Proposition 3.1.2 (resp. in Proposi-
tion 3.2.2), with aj0j0/ai0 (resp. with ai0i0/ai0). We also note that the degree

description of each entry of Ṽ is exactly the same as that of V , as Ṽ = D0 · V .
We fix a tame inertial type τ with a N -generic lowest alcove presentation (s, μ),

together with an element z̃ ∈ Adm(η)∨ which we write as z̃ = (z̃(j))j∈J .

Until the end of this subsection, assume that j ∈ J is such that �(z̃(j)) =

�(tη) − 1, and let A(j) ∈ U(z̃(j),≤η)(R) be the image of Ã(j) ∈ Ũ(z̃(j),≤η)(R).

Let Ṽ (j) ∈ 1
v Matn(R[v]) be the matrix obtained from (17) (according to the two

possible forms of z̃(j)) applied to Ã(j) ∈ Ũ(z̃(j),≤η)(R). (We adapt the notation
of Propositions 3.1.2 and 3.2.2 as well as condition (17) in our context by adding
a superscript (j), so that for instance a colength one shape of the second form has

decomposition w(j)sα(j)tη−α(j)w(j)−1
.) It is easy to see that condition (11) shows

that condition (7) has the form

(18) Ṽ
(j),�

β(j)

def
=
(
(∇aw

Ṽ (j)) · Ṽ (j) ı
)
β(j)

∈ (v + p)
m

β(j)R[v] + pN−2n+5R�v�

for all β(j) ∈ Φ−, where aw ∈ Zn is defined by w(j)(aw) = a(j).

As Ṽ (j) = D0 · V (j) for some D0
def
= Diag(a1, · · · , an) ∈ T∨(R), if we let β(j) =

αlm ∈ Φ− then it is easy to see that

am · Ṽ (j),�

β(j) = al · V (j),�

β(j) .

Hence, condition (18) applied to Ṽ (j) induces all the relevant lemmas from §4.1 and
§4.2 keeping track of the “error term” pN−2n+5, as the diagonal entries ak of D0

are units in R. More precisely,

(i) in Lemma 4.1.1 (resp. in Lemma 4.2.1), we have

(1) V �
β(j) ∈ v

κ̃
β(j) (v + p)

m
β(j)

(
Xβ(j) + F>β(j)

)
+ pN−2n+5R�v�;

(2) V �
β(j) ∈ v

κ
β(j) (v + p)

m
β(j)

(
Yβ(j) + vXβ(j) + F>β(j)

)
+ pN−2n+5R�v�,

(ii) in Lemma 4.1.3 (resp. in Lemma 4.2.3), we have

pm−α(j)+1 · (〈aw,−α(j)∨〉+ κ−α(j)) ∈ pm−α(j) · c · Z−α(j) + pN−2n+5R,

(iii) in Lemma 4.1.4 (resp. in Lemma 4.2.4), we have

p
m

s(β(j)) · (Yβ(j) ± c ·Xs(β(j)))

∈ p
m

s(β(j)) ·
(
c · cβ(j),m′

β(j)
· F≥−α(j) + F>β(j) + c · Fβ(j)

>s(β(j))

)
+ pN−2n+5R,

(iv) in Lemma 4.1.5 (resp. in Lemma 4.2.5), we have

V �
β(j) ∈ v

κ
β(j) (v + p)

m
β(j)

(
Xβ(j) + F>β(j)

)
+ pN−2n+5R�v�.
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5.2. Potentially crystalline deformation rings. Fix ρ : GK → GLn(F), and
let τ be a tame inertial type. We assume that τ has an N -generic lowest alcove
presentation ([LLHLMb, Definition 2.4.3]) with N > 3n−6. Assume that Rη,τ

ρ �= 0

so that in particular w̃(ρ, τ ) is defined. Recall that when �(w̃(ρ, τ )(j)) = �(tη) − 1

for some j ∈ J , then by Proposition 2.1.2 we have a positive root α(j) and a
corresponding element Z−α(j) constructed in Lemma 4.1.3 (resp. in Lemma 4.2.3).

Lemma 5.2.1. Let τ be a tame inertial type with an N-generic lowest alcove
presentation, where N > 3n − 6. Assume that w̃(ρ, τ ) satisfies �(w̃(ρ, τ )(j)) ≥
�(tη)− 1 for each j ∈ J . Then there is a closed immersion

Ũ((w̃(ρ, τ )(j))∗,≤η,∇a(j)) ↪→ SpecR(j),

where a(j) ∈ Zp are the constants defined in (5) and

R(j) def
=

⎧⎨⎩
O[{Xβ|β∈Φ−}∪{c}]

(c·Z−α(j)−p) ⊗O
(⊗n

O, i=1
O[ai,Yi]
(ai·Yi−1)

)
if �(w̃(ρ, τ )(j)) = �(tη)− 1;

O[{Xβ | β ∈ Φ−}]⊗O
(⊗n

O, i=1
O[ai,Yi]
(ai·Yi−1)

)
otherwise.

Proof. The results follow immediately from Proposition 4.3.1 and Proposition 4.3.2
together with equation (4). �

Proposition 5.2.2. Let τ be a tame inertial type with an N-generic lowest alcove
presentation, where N > 3n− 6. Assume that w̃(ρ, τ ) satisfies that �(w̃(ρ, τ )(j)) ≥
�(tη)− 1 for each j ∈ J . Then there is a closed immersion

Ũ(w̃(ρ, τ )∗,≤η,∇τ,∞) ↪→ Spf

( ⊗
O, j∈J

R(j)

)∧p

,

where the rings R(j) have been defined in Lemma 5.2.1.

Proof. The proof goes very similar to the ones of Proposition 4.3.2 and Proposi-
tion 4.3.1 together with Lemma 5.2.1. The only difference is that we need to take
care of the error terms. For instance, if (w̃(ρ, τ )(j))∗ is of colength one of the first
form, and if β is a bad root sharing the row of α, then there exist Fβ ∈ F≥−α,

Gβ ∈ F>β, and Hs(β) ∈ Fβ
>s(β) such that

Yβ = −c ·Xs(β) +
(
c · cβ,m′

β
· Fβ +Gβ + c ·Hs(β)

)
+O

(
pN−2n+5−ms(β)

)
,

by Lemma 4.1.4. The coefficient cβ,m′
β
corresponds to Xβ, and so due to our generic

assumption, by scaling Yβ we can further eliminate the variable Yβ . (Note that since
N − 2n+ 5 > mβ + 1 for all negative roots β we can indeed eliminate Yβ .)

Repeating the same arguments, we conclude that there is a surjection( ⊗
O, j∈J

R(j)

)∧p

� O(Ũ(w̃(ρ, τ )∗,≤η,∇τ,∞)),

which completes the proof. �

Let Ã ∈ Ũ(w̃(ρ, τ )∗,≤η)(F) correspond to ρ|GK∞ as explained at the end of §2.2.3
and let A be the image of Ã under the map Ũ(w̃(ρ, τ )∗,≤η)(F) → U(w̃(ρ, τ )∗,≤
η)(F). Set

J0,A
def
= {j ∈ J | �(w̃(ρ, τ )(j)) = �(tη)− 1 and Z−α(j) ≡ 0 (mod �)}

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5776 DANIEL LE, BAO V. LE HUNG, ET AL.

(where we consider the image of Z−α(j) in F via the map induced by A). Note that

for all j ∈ J such that �(w̃(ρ, τ )(j)) = �(tη)− 1 the corresponding element c ∈ R(j)

is sent to 0 via the map R(j) → F induced by Ã.

Theorem 5.2.3. Let τ be a tame inertial type with an N-generic lowest alcove
presentation, where N > 3n − 6. Assume that Rη,τ

ρ �= 0, and the shape w̃(ρ, τ )

satisfies �(w̃(ρ, τ )(j)) ≥ �(tη) − 1 for each j ∈ J . Then Rη,τ
ρ is formally smooth

over

(19)
⊗̂

O, j∈J0,A

O[[X,Y ]]

(XY − p)
.

Proof. First, notice that we may replace Z−α withX−α, due to the equations of Z−α

in Lemma 4.1.3 and Lemma 4.2.3. Noting that the completion of ⊗O,j∈JR(j) at Ã

is an integral domain, we see that the completion of O
(
Ũ(w̃(ρ, τ )∗,≤η,∇τ,∞)

)
at

Ã is formally smooth over the ring in (19), by dimension counting and Proposition

5.2.2. Moreover the deformation ring R≤η, τ
ρ is also formally smooth over the ring

in (19) by equation (6) and [Ham75, Theorem 5]. As the latter is irreducible, so is

R≤η, τ
ρ , in particular R≤η, τ

ρ = Rη, τ
ρ which completes the proof. �

Remark 5.2.4. Under stronger genericity assumptions on τ we have Ũ(z̃,≤η,∇τ,∞)
�= ∅ whenever z̃ ∈ Adm(η)∨ ([LLHLMb, Lemma 7.3.5]).

6. Applications

In this section we elaborate on how the explicit description of the potentially
crystalline deformation rings from Theorem 5.2.3 can provide information on rep-
resentation theory and automorphic forms through following the philosophy of the
mod p local Langlands correspondence.

6.1. Subextremal weights. In this section we refine, in Definition 6.1.2, the no-
tion of defect for Serre weights of ρ : GK → GLn(F) introduced in [LLHLMb, §8.6.1]
and [LLHLMa, §3.7].

We fix once and for all a lowest alcove presentation w̃(ρss) for ρ. All tame inertial
types will be endowed with the unique lowest alcove presentation compatible with
w̃(ρss). Throughout this subsection, we assume Sp = {v} so that F+

p = K.

Recall from [CEG+16, Theorem 3.7] that given a tame inertial type τ for K
there exists an irreducible smooth representation σ(τ ) of GLn(OK) which satisfies
properties towards the inertial local Langlands correspondence. By [LLHLMb,
Theorem 2.5.3], if τ has a 1-generic lowest alcove presentation (s, μ− η) then σ(τ )
can be taken to be Rs(μ).

Let ρsp : IK → GLn(F) be a 2n-generic tame inertial F-type. The choice of a
lowest alcove presentation w̃(ρsp) = tμ+ηs for it gives a map

τρsp : Admreg(η) −→ {τ : IK → GLn(E)}
tνw �→ τ (sw, μ+ η + s(ν)).

(Note that given w̃ ∈ Admreg(η) we have w̃(ρsp, τρsp(w̃)) = w̃ by construction.)
Recall from [LLHLMb, §2.3.1] the background on Deligne–Lusztig representa-

tions and their lowest alcove presentations. In particular given a Deligne–Lusztig
representation R with a 2(n−1)-generic lowest alcove presentation w̃(R) we have a
set JHout(R) of outer weights for R, which is a subset of JH(R), the latter being the
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set of the Jordan–Hölder factors of the mod �-reduction of an arbitrary O-lattice
in R. We also recall that we have a bijection{

(w̃1, w̃2) ∈
(
W̃

+
× W̃

+

1

)
/X0(T ) | w̃1 ↑ w̃−1

h w̃2

}
−→ Admreg(η)(20)

(w̃1, w̃2) �−→ w̃−1
2 w0w̃1

from [LLHLMb, Remark 2.1.8], and a bijection{
(w̃1, w̃2) ∈

(
W̃

+
× W̃

+

1

)
/X0(T ) | w̃1 ↑ w̃2

}
−→ W ?(ρsp)

(w̃1, w̃2) �−→ F(w̃2,w̃(ρsp)(w̃1)−1(0))

from [LLHLMb, Proposition 2.6.2]. As multiplication by w̃h gives a self bijection

on W̃
+

1 , we finally obtain a bijection

σρsp : Admreg(η) −→ W ?(ρsp).

w̃−1
2 w0w̃1 �−→ F(w̃−1

h w̃2,w̃(ρsp)(w̃1)−1(0)).

We write w̃ρsp for the inverse of σρsp .

Lemma 6.1.1. Assume that w̃(ρsp) is a 2n-generic lowest alcove presentation for

ρsp, and let w̃ ∈ Admreg(η). Then σρsp(w̃) ∈ W ?(ρsp) ∩ JHout(σ(τρsp(w̃))) and it

satisfies the following property: for any σ′ ∈ W ?(ρsp) ∩ JH(σ(τρsp(w̃))) we have

(21) w̃ρsp(σ′)(j) ≥ w̃(j)

for all j ∈ J with equality for all j ∈ J if and only if σ′ = σ.

Proof. This is an immediate consequence the proof of [LLHLMb, Proposition 8.6.3]

of which we employ here the notation and convention. In particular we let τ
def
=

τρsp(w̃) so that w̃ = w̃(ρ, τ ) ∈ Admreg(η). Using the bijection (20) we decompose

w̃ as w̃−1
2 w0w̃1 where (w̃1, w̃2) ∈ W̃

+
× W̃

+

1 satisfies w̃1 ↑ w̃−1
h w̃2.

We have σρsp(w̃) = F(w̃−1
h w̃2,w̃(ρsp)w̃−1

1 (0)) by definition, and the latter Serre

weight is the element κ ∈ W ?(ρsp) ∩ JH(σ(τ )) defined in [LLHLMb, Proposition
8.6.3]. As w̃(ρsp)w̃−1

1 (0) = w̃(τ )w̃−1
2 (0) by [LLHLMb, Proposition 2.6.4], the weight

κ is in JHout(σ(τ )), by definition of JHout(σ(τ )) (see [LLHLMb, Proposition 2.3.7]
and the beginning of [LLHLMb, §2.3.1]).

The fact that for any σ′ ∈ W ?(ρsp) ∩ JH(σ(τ )) the inequality (21) holds is
immediate from the proof of [LLHLMb, Proposition 8.6.3]. We provide the details:

by [LLHLMb, Proposition 2.6.4] any σ′ ∈ W ?(ρsp) ∩ JH(σ(τ )) is of the form σ′ =

F(w̃′,w̃(τ)s̃−1
2 (0)) for some w̃′ ∈ W̃

+

1 and some pair (s̃1, s̃2) ∈ W̃
+
× W̃

+
satisfying

s̃1 ↑ w̃′ ↑ w̃−1
h s̃2 and s̃−1

2 ws̃1 = w̃(ρsp, τ ) for some w ∈ W . By Wang’s Theorem (see
[LLHL19, Theorem 4.1.1]) the condition s̃2 ↑ w̃hw̃

′, which is defined embeddingwise,

gives s̃
(j)
2 ≤ w̃

(j)
h w̃′ (j) for all j ∈ J and by [LLHL19, Lemma 4.1.9] we conclude

that

(w̃
(j)
h w̃′ (j))−1w0s̃

(j)
1 ≥ (s̃

(j)
2 )−1w0s̃

(j)
1 ≥ (s̃

(j)
2 )−1ws̃

(j)
1 = w̃(j)

since (s̃
(j)
2 )−1w0s̃

(j)
1 , (w̃

(j)
h w̃′ (j))−1w0s̃

(j)
1 are reduced expressions for all j ∈ J and

w0 ≥ w. As s̃1 ↑ w̃′ ∈ W̃
+

1 we see that (w̃hw̃
′, s̃1) defines an element in the left

hand side of (20) and hence w̃ρsp(σ′) = (w̃hw̃
′)−1w0s̃1, proving (21). The fact that
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the equality holds for all j ∈ J if and only if σ′ = σρsp(w̃) is immediate since σρsp

is a bijection. �
The usual order on the set of non-negative integers Z≥0 induces the product

partial order on ZJ
≥0, and for h = (h(j))j∈J ∈ ZJ

≥0 we define

W ?
≤h(ρ

sp)
def
=
{
σ ∈ W ?(ρsp) | �

(
w̃ρsp(σ)(j)

)
≥ �(tη)− h(j) for all j ∈ J

}
.

Let ρ : GK → GLn(F) be a continuous Galois representation such that ρss is

0-generic (so that w̃(ρss) ∈ W̃ is defined). We say that a tame inertial F-parameter
ρsp : IK → GLn(F) is a specialization of ρ, and write ρ � ρsp, if there exists an
n-generic tame inertial type τ such that ρ is τ -admissible and w̃(ρ, τ ) = w̃(ρsp, τ ).
(In this definition, the lowest alcove presentations of τ and ρsp are always assumed
to be compatible with a fixed lowest alcove presentation of ρss.)

Let Xn,K be the Noetherian formal algebraic stack over SpfO defined in [EG,
Definition 3.2.1]. It has the property that Xn,K(F) is isomorphic to the groupoid
of continuous representations of GK over rank n vector spaces over F. Moreover

there is a bijection σ �→ Cσ between Serre weights of G(
def
= GLn(k)) and irreducible

components of the reduced special fiber of Xn,K , described in [LLHLMb, §7.4]. (We
refer the reader to [LLHLMb, §2.2] concerning Serre weights and their lowest alcove
presentations.) This bijection is a renormalization of the bijection σ �→ X σ

n,red of

[EG, Theorem 6.5.1].
In particular, if ρ ∈ Xn,K(F) we define the set of geometric weights of ρ as

W g(ρ)
def
= {σ | ρ ∈ Cσ(F)} .

Definition 6.1.2. Let ρ : GK → GLn(F) be a continuous Galois representation
such that ρss is 0-generic. For h = (h(j))j∈J ∈ ZJ

≥0 define W g
≤h(ρ) to be

W g(ρ) ∩
( ⋃

ρ�ρsp

W ?
≤h(ρ

sp)

)
.

We call the elements of W g
≤h(ρ) the Serre weights of ρ of defect at most h.

In what follows we write 1 for the tuple of h ∈ ZJ
≥0 satisfying h(j) = 1 for all

j ∈ J , and similarly for 0. Note that W g
≤0(ρ) = Wextr(ρ) is the set of extremal

weights in [LLHLMa, Definition 3.7.1].

6.2. Application to patching functors. We introduce the formalism of patch-
ing functors following [LLHLMa, §5.2], giving applications to the results on the
deformation rings in §5.

6.2.1. L-parameters. Recall that F+
p is a finite unramified étale Qp-algebra, which

we write as
∏

v∈Sp
F+
v for a finite set Sp and finite unramified extensions F+

v /Qp.

We assume throughout that for any v ∈ Sp the coefficient field E (resp. F) contains
the image of any homomorphism F+

v ↪→ Qp (resp. kv ↪→ Fp, where kv denotes

the residue field of F+
v ). We let G∨ denote the product

∏
F+

p →E GLn
∨
/O (the dual

group of ResF+
p /Qp

GLn/Op
) and LG(F) def

= G∨ � Gal(E/Qp), where Gal(E/Qp)

acts on the set {ι : F+
p → E} by post-composition. An L-homomorphism over

A ∈ {E,F} is a continuous homomorphism rp : GQp
→ LG(A). An L-parameter

is a G∨(E)-conjugacy class of an L-homomorphism. An tame inertial L-parameter
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is a G∨(E)-conjugacy class of an homomorphism τ : IQp
→ G∨(E) which has

open kernel and factors through the tame quotient of IQp
, and which admits an

extension to an L-homomorphism. By [GHS18, Lemma 9.4.1, Lemma 9.4.5], the
datum of an L-parameters rp (resp. a tame inertial L-parameter τ ) is equivalent to
the datum of a collection of continuous homomorphisms {ρv : GF+

v
→ GLn(A)}v∈Sp

(resp. tame inertial types {τv : IF+
v

→ GLn(A)}v∈Sp
). Via this bijection, we

can therefore give the notion of lowest alcove presentations and genericity for L-
parameters. Given a tame inertial L-parameter τ with corresponding collection
{τv : IF+

v
→ GLn(A)}v∈Sp

of tame inertial types, we let σ(τ ) be the tame smooth

irreducible representation of GLn(Op) over E given by ⊗v∈Sp,Eσ(τv), where for each
v ∈ Sp we let σ(τv) be the tame smooth irreducible representation of GLn(OF+

v
)

over E attached to τv via the inertial local Langlands correspondence of [LLHLMb,
Proposition 2.5.5].

6.2.2. Patching functors and Serre weights. Let now rp : GQp
→ LG(F) be an

L-homomorphism, with corresponding collection {ρv : GF+
v
→ GLn(F)}v∈Sp

.
We let Rp be a nonzero complete local Noetherian equidimensional flat O-algebra

with residue field F such that each irreducible component of Spec Rp and of Spec R
p

is geometrically irreducible, and define

Rrp
def
=
⊗̂

v∈Sp,O
R�

ρv
, R∞

def
= Rp⊗̂ORrp

(we suppress the dependence on Rp in the notation of R∞).
Given a tame inertial L-homomorphism τ : IQp

→ G∨(E), with corresponding
collection {τv}v∈Sp

, we define

Rη,τ
rp

def
=
⊗̂

v∈Sp

Rηv ,τv
ρv

and R∞(τ )
def
= R∞ ⊗R

rp
Rη,τ

rp
, and write X∞, X∞(τ ), X∞(τ ) for Spec R∞,

Spec R∞(τ ), and Spec R∞(τ ) respectively.
We write Mod(X∞) be the category of coherent sheaves over X∞ and

RepO(GLn(Op)) be the category of topological O[GLn(Op)]-modules which are
finitely generated over O.

Definition 6.2.3. A weak patching functor for an L-homomorphism rp : GQp
→

LG(F) is a nonzero covariant exact functor M∞ : RepO(GLn(Op)) → Mod(X∞)
such that for any tame inertial L-homomorphism τ and any O-lattice σ(τ )◦ in σ(τ )
one has:

(1) M∞(σ(τ )◦) is a maximal Cohen–Macaulay sheaf on X∞(τ ); and

(2) for all σ ∈ JH(σ(τ )), M∞(σ) is either zero or a maximal Cohen–Macaulay
sheaf on X∞(τ ).

Given a weak patching functor for an L-homomorphism rp we thus define

(22) WM∞(rp)
def
= {σ | σ is a 3(n− 1)-deep Serre weight of G and M∞(σ) �= 0} .

By [LLHLMb, Proposition 2.4.5] and [LLHLMa, Theorem 5.1.1, Proposition
5.4.1] we see that if rp is 6(n− 1)-generic then condition that σ is 3(n− 1)-deep in
the right hand side of (22) is automatically satisfied.
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6.2.4. Modularity of weights of defect at most one. We now assume Sp = {v} and
F+
v = K. In particular a continuous homomorphism ρ : GK → GLn(F) can be seen

as an L-parameter, and have weak patching functors associated to it.

Proposition 6.2.5. Let ρ : GK → GLn(F) be 6(n − 1)-generic and let M∞ be a
weak patching functor for ρ. Then the following are equivalent:

(1) W g
≤0(ρ) ∩WM∞(ρ) �= ∅; and

(2) W g
≤1(ρ) ⊆ WM∞(ρ).

Before the proof, we record Lemma 6.2.6, which will be also used in the proof of
[PQ22, Conjecture 5.3.1] in §6.3.

Lemma 6.2.6. Let ρsp : GK → GLn(F) be 6(n−1)-generic and let w̃ ∈ Admreg(η)

satisfy �(tη)−�(w̃(j)) ≤ 1 for all j ∈ J . Let τ
def
= τρsp(w̃) and write w̃ = w̃−1

2 w0tνw̃1

where w̃1, w̃2 ∈ W̃
+

1 and ν ∈ X+(T ) are uniquely determined up to X0(T ). Then:

W ?(ρsp) ∩ JH(σ(τ )) =
{
σρsp(w̃′) | w̃′ (j) ∈ S(j) for all j ∈ J

}
,

where S(j) def
=

{
(w̃

(j)
2 )−1w0tν(j)w̃

(j)
1 , (w̃

(j)
h w̃

(j)
1 )−1w0w̃

(j)
1

}
. Moreover, #S(j) = 1 if

and only if w̃
(j)
1 = w̃−1

h w̃
(j)
2 and ν(j) ∈ X0(T ), if and only if �(w̃(j)) = �(tη).

Note that the existence and uniqueness of the decomposition of w̃ in the lemma
is guaranteed by [LLHLMb, Proposition 2.1.5].

Proof. The relation F(x̃,ω) ∈ W ?(ρsp)∩JH(σ(τ )) is equivalent, by [LLHLMb, Propo-

sition 2.6.4], to the existence of a factorization w̃ = (x̃2)
−1sx̃1 with s ∈ W ,

x̃1, x̃2 ∈ W̃
+
, x̃1 ↑ x̃ ↑ w̃−1

h x̃2 and ω = w̃(ρsp)(x̃1)
−1(0). By Lemma 2.1.4 applied to

each w̃(j) we have s = w0 and for all j ∈ J either x̃(j) = x̃
(j)
1 ∈ w̃

(j)
1 X0(T ) (in which

case, by the uniqueness of the factorization in [LLHLMb, Proposition 2.1.5] we fur-

ther have x̃
(j)
2 = t−w0(ν(j))w̃

(j)
2 ) or x̃(j) = (w̃

(j)
h )−1x̃

(j)
2 ∈ (w̃

(j)
h )−1w̃

(j)
2 X0(T ) (in

which case, by the uniqueness of the factorization in [LLHLMb, Proposition 2.1.5]

we further have x̃
(j)
1 = tν(j)w̃

(j)
1 ). The conclusion follows now from the definition of

the map σρsp . �

Proof of Proposition 6.2.5. The proof is by induction on the following quantity
δρ(σ) attached to a Serre weight σ ∈ W g

≤1(ρ):

(23) δρ(σ)
def
= min

{∑
j∈J

�(tη)− �(w̃ρsp(σ)(j)) | ρ � ρsp
}
.

We fix throughout the proof a choice of an algebraic central character ζ; all lowest
alcove presentations below will be chosen to be compatible with ζ.

By definition of W g
≤1(ρ) and Lemma 6.1.1, for each σ ∈ W g

≤1(ρ) there exist

ρ � ρsp and a tame inertial type τ (depending on ρsp) such that

(1) σ ∈ W g(ρ) ∩W ?
≤1(ρ

sp) ∩ JHout(σ(τ ));

(2) w̃ρsp(σ) = w̃(ρsp, τ ) ∈ Admreg(η); and

(3) w̃ρsp(σ′)(j) ≥ w̃ρsp(σ)(j) for all j ∈ J and all σ′ ∈ W ?(ρsp) ∩ JH(σ(τ )).

(Note that condition (2) determines τ uniquely, and we thus let τ = τρsp(w̃ρsp(σ))
in the notation of Lemma 6.1.1.)
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For each σ ∈ W g
≤1(ρ) with corresponding ρ � ρsp and τ as above, we now claim

that

(24) W g(ρ) ∩ JH(σ(τ )) = W ?(ρsp) ∩ JH(σ(τ ))

or, equivalently by [LLHLMa, Theorem 5.1.1], that any σ′ ∈ W ?(ρsp)∩ JH(σ(τ )) is

in W g(ρ). Indeed by Lemma 6.2.6 there exists σ0 ∈ W ?(ρsp) ∩ JH(σ(τ )) such that

(1) δρ(σ0) = 0; and

(2) for all σ′∈W ?(ρsp)∩JH(σ(τ )) we have w̃ρsp(σ′)(j)∈{w̃ρsp(σ0)
(j), w̃ρsp(σ)(j)}.

By item (1) and [LLHLMb, Theorem 7.4.2] (see also [LLHLMa, Remark 3.9.1]) we
have σ0 ∈ W g(ρ) and thus ρ ∈ Cσ∩Cσ0

. Recall from [LLHLMb, equation (4.11) and

Definition 4.6.1] the variety C̃ζ
σ′ with its decomposition

∏
j∈J C̃

ζ,(j)
σ′ . Each C̃

ζ,(j)
σ′

is determined explicitly by w̃(ρsp)(j) and w̃ρsp(σ′)(j) (see loc. cit. Definition 4.3.2,

Theorem 4.3.9) so that C̃
ζ,(j)
σ′ = C̃

ζ,(j)
σ if w̃ρsp(σ′)(j) = w̃ρsp(σ)(j), and C̃

ζ,(j)
σ′ =

C̃
ζ,(j)
σ0 if w̃ρsp(σ′)(j) = w̃ρsp(σ0)

(j). Thus, by item (2), for all σ′ ∈ W ?(ρsp)∩JH(σ(τ ))
we have

C̃ζ
σ ∩ C̃ζ

σ0
=

∏
j∈J

C̃ζ,(j)
σ ∩ C̃ζ,(j)

σ0
⊆

∏
j∈J

C̃
ζ,(j)
σ′ = C̃ζ

σ′

which together with [LLHLMb, Theorem 7.4.2] implies Cσ ∩Cσ0
⊆ Cσ′ . This proves

(24).
We now proceed to the inductive argument. We freely use the notation for cycles

from patching functors introduced in [LLHLMa, §5.3], in particular we write pr to
indicate the projection map from cycles over the reduced union ∪τ∈T X∞(τ ) (for
a set of generic tame inertial L-parameters T ) to cycles over the special fiber of
the multi-type deformation ring associated to the set T . The set T can be fixed to
satisfy condition (ii) in [LLHLMa, §5.3] since all the tame inertial types τ involved
in this proof satisfy �(w̃(ρ, τ )(j)) ≥ �(tη) − 1 for all j ∈ J , hence Theorem 5.2.3
applies. Furthermore, given σ ∈ W g(ρ) we will write Cσ(ρ) to denote the pullback
of the component Cσ to the versal ring of Xn,K at ρ ∈ Xn,K(F).

For σ ∈ W g
≤1(ρ), we prove by induction on δρ(σ) that the support of pr ◦

Z(M∞(σ)) contains Cσ(ρ), and that any other component in the support of pr ◦
Z(M∞(σ)) is of the form Cκ(ρ) with κ ∈ W g(ρ), δρ(κ) < δρ(σ).

If δρ(σ) = 0 then σ ∈ W g
≤0(ρ), and W g

≤0(ρ) ∩ WM∞(ρ) �= ∅ implies W g
≤0(ρ) ⊆

WM∞(ρ) by the main result of [LLHLMa]. As W g(ρ) ∩ JH(σ(τ )) = W ?(ρsp) ∩
JH(σ(τ )) = {σ} by Lemma 6.2.6 and M∞(σ(τ )◦) has full support over (a formally

smooth modification of) R
η,τ

ρ , we conclude that the cycle pr ◦ Z(M∞(σ(τ )◦)) is
supported on Cσ(ρ). (Here and below we write σ(τ )◦ to denote the mod�-reduction
of any O-lattice σ(τ )◦ in σ(τ ).)

Assume now that δρ(σ) > 0 and that for any σ′ ∈ W g
≤1(ρ) with δρ(σ

′) < δρ(σ)

the cycle pr ◦Z(M∞(σ′)) is supported on Cσ′(ρ) and possibly other components of
the form Cκ(ρ) where κ ∈ W g(ρ) and δρ(κ) < δρ(σ

′). We have

Supp
(
Z(R

η,τ

ρ )
)
= Supp

(
red(Z(Rη,τ

ρ )[1/p])
)

(25)

= Supp
(
red ◦ pr

(
Z(M∞(σ(τ )◦)[1/p])

))
= Supp

(
pr ◦ red

(
Z(M∞(σ(τ )◦)[1/p])

))
= Supp

(
pr ◦ Z(M∞(σ(τ )◦))

)
,
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where the first and last equality follow from [LLHLMa, Proposition 5.3.1], the
second from the fact that Rη,τ

ρ is geometrically integral (Theorem 5.2.3), the third

from red ◦ pr = pr◦red (see [LLHLMa, §5.3]). Since Rη,τ
ρ is geometrically integral by

Theorem 5.2.3, by exactness of M∞ and [LLHLMa, Theorem 5.1.1 and Proposition
5.4.1] we have

pr ◦ Z(M∞(σ(τ )◦)) =
∑

σ′∈W ?(ρsp)∩JH(σ(τ))

pr ◦ Z(M∞(σ′))

= pr ◦ Z(M∞(σ)) +
∑

σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

pr ◦ Z(M∞(σ′)).

From the definition of δρ together with Lemma 6.1.1, we easily check that δρ(σ
′) <

δρ(σ) for all σ′ ∈ W ?(ρsp) ∩ JH(σ(τ )) \ {σ}. We thus deduce, using the inductive
hypothesis and (24), that⋃

σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

Supp
(
pr ◦ Z(M∞(σ′))

)
=

⋃
σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

Cσ′(ρ).

On the other hand, we have

Supp
(
Z(R

η,τ

ρ )
)
=

⋃
σ′∈W g(ρ)∩JH(σ(τ))

Cσ′(ρ)

by [LLHLMb, Theorem 7.4.2] (and [Sta19, Lemma 0DRB, Lemma 0DRD and
Definition 0DRA]) and hence pr ◦ Z(M∞(σ)) is necessarily supported on Cσ(ρ),
and possibly on other components Cσ′(ρ) with σ′ ∈ W g(ρ) and δρ(σ

′) < δρ(σ). �

Remark 6.2.7. If, in the statement of Proposition 6.2.5, we furthermore assume that
weak patching functor M∞ is minimal ([LLHLMa, Definition 5.2.1]), then equation
(25) can be replaced with the stronger statement

e(Rη,τ
ρ ) = e(M∞(σ(τ )◦))

(where e(·) denotes the Hilbert–Samuel multiplicity), which forces e(M∞(σ)) = 1

for all σ ∈ W ?(ρsp) ∩ JH(σ(τ )).

Remark 6.2.8. Let rp : GQp
→ LG(F) be an L-parameter, with corresponding

collection {ρv : GF+
v

→ GLn(F)}v∈Sp
. For each v ∈ Sp let Jv denote the set of

ring homomorphisms {kv ↪→ F}, so that Jp =
∏

v∈Sp
Jv. Given hv ∈ ZJv

≥0 for

each v ∈ Sp we then have a collection {W g
≤hv

(ρv)}v∈Sp
whose elements are Serre

weights for G by taking tensor products over v ∈ Sp. In particular, given h ∈ ZJp

≥0

we can define the set W g
≤h(rp) for an L-parameter rp : GQp

→ LG(F). The proofs

of Proposition 6.2.5 and Lemma 6.2.6 go through, mutatis mutandis, replacing
ρ : GK → GLn(F) with an L-homomorphism rp : GQp

→ LG(F) (for these kind of
passages from #Sp = 1 to #Sp > 1 see also [LLHLMb, Remark 7.3.4]).

6.3. Global applications and the conjecture of [PQ22]. We apply the results
above to obtain our main global applications. We follow the setup and notation of
[LLHLMa, §5.5.1, 5.5.2, 5.5.3]. In particular, we have a totally real field F+/Q not
equal to Q, and F/F+ a CM extension. We assume from now on that all places
of F+ above p are unramified over Qp, and that they are further totally split in
F . Given a reductive group G/F+ which is an outer form for GLn, split over F ,
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and such that G(F+ ⊗Q R) = Un(F
+ ⊗Q R), we define for a continuous Galois

representation r : GF+ → Gn(F) the notion of being automorphic (relatively to
G/F+) as in [LLHLMa, Definition 5.5.1], as well as the set W (r) of modular Serre
weights of r (loc. cit. Definition 5.5.2). Here, Gn is the group scheme defined in
[CHT08, §2]. Finally, let rp be the L-homomorhism induced from the collection
of continuous representations r|G

F
+
v

: GF+
v

→ GLn(F) for v|p. In particular, we

denote by Sp the set of the finite places of F+ above p.
Let r : GF+ → Gn(F) be automorphic and such that r(GF (ζp)) ⊆ GLn(F) is

adequate. Then by [LLHLMa, Lemma 5.5.4] we can and do fix a weak patching
functor M∞ for the L-homomorphism rp such that for any Serre weight σ of G =∏

v∈Sp
GLn(kv) we have

(26) M∞(σ) �= 0 ⇐⇒ σ ∈ W (r).

Theorem 6.3.1 (Modularity of weights of defect at most one). Let r : GF+ → G(F)
be an automorphic representation such that

• r(GF (ζp)) ⊆ GLn(F) is adequate; and
• rp is 6(n− 1)-generic.

Then the following are equivalent:

(1) W g
≤0(rp) ∩W (r) �= ∅; and

(2) W g
≤1(rp) ⊂ W (r).

Proof. This follows from Proposition 6.2.5 and Remark 6.2.8 using (26). �

Remark 6.3.2. Keep the setup and notation of Theorem 6.3.1 and Remark 6.2.8.
If σ ∈ W ?

≤1(r
sp
p ) for some rp � rspp , then σ ∈ WM∞(r) if and only if σ ∈ W g(rp) if

and only if σ ∈ W g
≤1(rp). For each such σ, there exists τ such that

(27) w̃(rp, τ ) = w̃(rspp , τ ) and �(w̃(rspp , τ )(j)) ≥ �(tη)− 1

for each j ∈ Jp and σ ∈ W ?(rspp ) ∩ JH(σ(τ )), with σ ∈ W g(rp) if and only if rp
satisfies Z−α(j) = 0 for each j ∈ Jp for which the inequality in (27) is an equality.

We now recall the setup of the local–global compatibility result of [PQ22]. As-

sume that p is totally split in F and fix a place w|p of F . Assume that rw
def
= r|GFw

is Fontaine–Laffaille of niveau one, and that satisfies a geometric genericity con-
dition dictated by its position in the moduli of Fontaine–Laffaille modules (see
[PQ22, Definition 3.2.5]). In particular we have a lowest alcove presentation (1, μ)
for rssw (with μ = (cn−1, cn−2, . . . , c1, c0) in the notation of §1 in loc. cit.) and a
niveau one tame inertial type τ with lowest alcove presentation (1, sα

(
(μ�,i1,j1)∨

)
)

(with μ�,i1,j1 def
= μ∨ + (〈η, α∨〉 + 1)α) where 0 ≤ i1, j1 ≤ n − 1 corresponds to a

positive root α = αi1+1,j1+1. Then by the proof of [PQ22, Lemma 3.4.1] (namely,
from the expression of Mate′′(φ) in loc. cit.) we see that w̃(rw, τ ) = tη−αsα, which
is a regular colength one shape. In particular rw � ρsp with w̃(ρsp, τ ) = tη−αsα.
By Lemma 6.2.6 we obtain:

Theorem 6.3.3 (Conjecture 5.3.1 [PQ22]). Let w|p. Assume that rw is Fontaine–
Laffaille of niveau one, that (rw)n−i0,n−j0 is Fontaine–Laffaille generic in the sense
of [PQ22, Definition 3.2.5], and moreover that rssw is 3(n− 1)-generic. Then

Ww(r) ∩ JH(σ(τ )) ⊆ {F (μ)∨, F (μ�,i1,j1)∨},
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where Ww(r) denotes the set of modular weights for r at w (as defined in the
paragraph just below [PQ22, Definition 5.2.2]).

Proof. By [LLHLMa, Theorem 5.1.1], Ww(r) ∩ JH(σ(τ )) ⊆ W ?(ρsp) ∩ JH(σ(τ )).
Now, it follows immediately from Lemma 6.2.6, as w̃(ρsp, τ ) = sαtη−α. �

The above result removes the weight elimination condition of [PQ22, Theorem
5.6.2]. However the fact that the deformation ring Rη,τ

ρ is formally smooth over

O when Z−α �≡ 0 modulo � makes the argument of [PQ22, Theorem 5.6.2] more
direct, since the modules of algebraic automorphic forms are in this case free over
the Hecke algebra by patching arguments (cf. [PQ22, Remark 5.4.6]).
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versité Sorbonne Paris Nord, CNRS, UMR 7539, F-93430, Villetaneuse, France

Email address: morra@math.univ-paris13.fr

Department of Mathematical Sciences, Ulsan National Institute of Science and

Technology, UNIST-gil 50, Ulsan 44919, South Korea

Email address: cholpark@unist.ac.kr

Morningside Center of Mathematics, No.55, Zhongguancun East Road, Beijing

100190, People’s Republic of China

Email address: qianzicheng@amss.ac.cn

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	1. Introduction
	1.1. The main result
	1.2. Global applications
	1.3. Notation

	2. Preliminaries
	2.1. Affine Weyl groups, tame inertial types, Serre weights
	2.2. Local models, affine charts and monodromy conditions

	3. Finite height conditions
	3.1. Finite height conditions: the first form
	3.2. Finite height conditions: the second form
	3.3. Description of 𝑈(\tld{𝑤},≤𝜂) in colength one

	4. Monodromy conditions
	4.1. Monodromy conditions: the first form
	4.2. Monodromy conditions: the second form
	4.3. Description of 𝑈(\tld{𝑤},≤𝜂,∇_{𝐚}) in colength ≤1

	5. Colength one deformation rings
	5.1. Product structures and error terms
	5.2. Potentially crystalline deformation rings

	6. Applications
	6.1. Subextremal weights
	6.2. Application to patching functors
	6.3. Global applications and the conjecture of [PQ22]

	Acknowledgment
	References

