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COLENGTH ONE DEFORMATION RINGS

DANIEL LE, BAO V. LE HUNG, STEFANO MORRA, CHOL PARK, AND ZICHENG QIAN

ABSTRACT. Let K/Qp be a finite unramified extension, 5 : Gal(Q,/K) —
GL,, (]I_TP) a continuous representation, and 7 a tame inertial type of dimen-
sion n. We explicitly determine, under mild regularity conditions on 7, the
potentially crystalline deformation ring RE’T in parallel Hodge-Tate weights
n=(n-—1,---,1,0) and inertial type 7 when the shape of p with respect to
7 has colength at most one. This has application to the modularity of a class
of shadow weights in the weight part of Serre’s conjecture. Along the way
we make unconditional the local-global compatibility results of Park and Qian
[Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].

1. INTRODUCTION

In recent years, calculations of various potentially crystalline deformation spaces
have seen a number of applications to questions of local-global compatibility in the
mod p and p-adic Langlands program. This includes the weight part of Serre’s
conjecture, the determination of mod p multiplicities, conjectures of Breuil on inte-
gral structures in K-types, and generalizations of Colmez’s functor (see e.g. [EGS15]
LLHLMIS| [LLHLM?20, [DT.2T] [LLHLMY, [LLHM™, [LLHLMc, [LLHLMal [HW22],
[BHH" b, BHH"a]). Under a somewhat exotic genericity condition, [LLHLMDb]
shows that tamely potentially crystalline deformation spaces are equisingular to
certain closed subvarieties of Pappas—Zhu local models. Not much is known about
the geometry of these local models for Galois deformation spaces in general. More-
over, it is difficult in practice to make the genericity condition explicit or to work
with their natural presentations.

1.1. The main result. The local model has a stratification indexed by admissible
elements of the extended affine Weyl group called shapes and the complexity of
the geometry increases as the length of the shape decreases. [LLHLMa] shows that
when the shape is extremal i.e. has maximal length ((";1) for n-dimensional rep-

resentations of Gal(@p /Q,)), then the corresponding tamely potentially crystalline
deformation ring is formally smooth. The main result of this paper, which we state
only for representations of Gal(Q,/Q,) in the introduction, is the following:
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Theorem 1.1.1 (Theorem £.2.3). Let E be a finite extension of Q,, with ring of
integers O and residue field F. Let p: Gal(Q,/Q,) — GL,(F) a continuous Galois
representation, T a 3n — T-generic tame inertial type, n = (n —1,--- ,1,0) € Z",
and R%’T the lifting ring for potentially crystalline representations of type (n,7). If
RY™ is nonzero and the length of the shape w(p, ) is at least (”;rl) —1 (i.e. the
colength of the shape is at most one), then R%’T s formally smooth over O or
O[X. YT/(XY —p).

Remark 1.1.2.

(1) Replacing Q, by a finite unramified extension K and requiring that the
shape have colength one at each embedding K — @p, we show that the
deformation ring is formally smooth over a completed tensor product of
rings of the form O[X,Y]/(XY — p). The number of such factors in the
tensor product can furthermore be explicitly computed.

(2) The colength one deformation spaces that have a parabolic structure were
computed in [LLHLMa]. In general, colength one deformation spaces do
not have a parabolic structure, making their computation far more difficult.

(3) When n = 3, the tame inertial types with colength one shape are suffi-
cient to prove the Serre weight conjecture for GL3 [LLHLMI1S|[LLHLM20,
LLHLMc]. We generalize these ideas to prove the modularity of Serre
weights of defect at most one under the assumptions of [LLHLMa], in par-
ticular under an explicit combinatorial genericity condition.

(4) Using standard Taylor-Wiles techniques, Theorem [[.T] gives modularity
lifting results similar to [LLHLMD, Theorem 9.2.1] (improving the polyno-
mial genericity and the tameness condition at p in loc. cit., but imposing
specific conditions on the shape with respect to the tame inertial types).

While Theorem [[.T.T] generalizes some previous results, its proof is perhaps sur-
prisingly subtle despite the shape having close to maximal length. We do not expect
our methods to extend to shapes of smaller length. This suggests that local models
for Galois deformation spaces are genuinely complicated geometric objects and that
simple explicit descriptions are hard to come by.

Our principal motivation in writing this paper was to apply Theorem [[I1.1]
to prove the weight elimination and mod p multiplicity one results necessary to
make unconditional the local-global compatibility result of [PQ22] which states
roughly that the local mod p Galois representation at p can be recovered from the
GL, (Qp)-action on the Hecke isotypic part of the mod p completed cohomology of
a definite unitary group. While the results of [PQ22] were superseded by those of
ILLHM ™|, the method of [LLHM™"| using only extremal shapes does not work for
GSp,(Q,) while it should be possible to adapt the methods of [PQ22] (which builds
on [BDI4HLMI7LMPI8IMPIT] in small rank) to many p-adic reductive groups
over Q,. Indeed, this has been carried out for GSp,(Q,) [EL]. For generalizations
of [LLHM™]|, an analogue of Theorem [LT.J] should prove useful. We hope to return
to this in future work.

1.2. Global applications. As mentioned in Remark as a more immediate
global application of Theorem [[.T.Tlwe obtain the modularity of weights of defect at
most one. The notion of defect of a Serre weight o for a tame Galois representation
p was first introduced in [LLHLMD| §8.6]. This notion is purely combinatorial, and
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encodes the maximal length for the shapes @ (7, 7) such that o € W’ (5)NJH(o(7)).
In this paper we generalize the notion of defect for any p in terms of specializations
(as done in [LLHLMal for extremal weights), and prove their modularity when the
defect is at most one, conditional to the existence of a modular extremal weight.
The result is the following, and we refer to the bulk of the paper for any undefined
notion:

Theorem 1.2.1 (Theorem 631)). Let F/FT be a CM field. Assume that FT #
Q, that all places of F* above p are unramified over Q, and totally split in F.
Let 7 : Gp+ — G(F) be a continuous representation which is automorphic in the
sense of [LLHLMal, Definition 5.5.1], with set of modular weights W (). Let ), be
the L-homomorphism attached to the collection {T|c . }vp and write We,(7p) and

WZ,(Fp) for the set of extremal weights and for the set of weights of defect at most
one, respectively, for ¥p. Asssume further that:

e 7(Gp(,)) € GL,(F) is adequate; and
o 7, is 6(n — 1)-generic.
Then the following are equivalent:
(1) Wy(rp) "W () # 0; and
(2) WZ,(rp) C W(T).

Compared to [LLHLMa, Theorem 5.5.5], Theorem [[2.]] assumes that Ft is
unramified above p, but it gives the modularity of weights of defect at most one.
(For GLs3, this is sufficient to prove the generic Serre weight conjecture.)

1.3. Notation. For a field K, we denote by K a fixed separable closure of K and
def

let Gx = Gal(K/K). If K is defined as a subfield of an algebraically closed field,
then we set K to be this field.

If K is a nonarchimedean local field, we let I C G i denote the inertial subgroup
and Wx C Gk denote the Weil group. We fix a prime p € Z~g. Let £ C @p be
a subfield which is finite-dimensional over Q,. We write O to denote its ring of
integers, fix an uniformizer w € O and let F denote the residue field of . We will
assume throughout that F is sufficiently large.

1.3.1. Reductive groups. Let G denote a split connected reductive group (over some
ring) together with a Borel B, a maximal split torus T' C B, and Z C T the center
of G. Let d = dimG — dim B. When G is a product of copies of GL,,, we will
take B to be upper triangular Borel and T the diagonal torus. Let ®+ C ® (resp.
®V: T C ®V) denote the subset of positive roots (resp. positive coroots) in the set
of roots (resp. coroots) for (G, B,T). We use the notation a > 0 (resp. o < 0) for
a positive (resp. negative) root o € ®. Let A (resp. AV) be the set of simple roots
(resp. coroots). Let X*(T) be the group of characters of T', and set X°(T') to be the
subgroup consisting of characters A € X*(T') such that (A, ") =0 for all &V € AV.
Let W(G) denote the Weyl group of (G,T). Let wgy denote the longest element of
W(G). We sometimes write W for W(G) when there is no chance for confusion.

Let W, (resp. W) denote the affine Weyl group and extended affine Weyl group
W,=Agrx W(G) and W = X*(T)x W(G)

for G, respectively. We use t,, € W to denote the image of v € X*(T).
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The Weyl groups W (G), W, and W, act naturally on X*(7T). If A is any ring,
then the above Weyl groups act naturally on X*(T") ®7z A by extension of scalars.
Let M be a free Z-module of finite rank (e.g. M = X*(T)). The duality pairing
between M and its Z-linear dual M* will be denoted by ( , ). If A is any ring, the
pairing (, ) extends by A-linearity to a pairing between M ®z A and M™* ®z A, and
by an abuse of notation it will be denoted with the same symbol ( , ).

We write G¥ = G, for the split connected reductive group over Z determined by
the root datum (X.(7T'), X*(T), ®", ®). This defines a maximal split torus 7V C GV
such that we have canonical identifications X*(TV) & X, (T) and X, (TV) = X*(T).

Let V & X*(T) ®z R. For (o, k) € ® x Z, we have the root hyperplane Hok &
{x € V| (\,a¥) =k}. An alcove is a connected component of V' \ (U(a,n) Han),
and we denote by A the set of alcoves. We say that an alcove A is restricted if
0<(NaYy<1lforal « € Aand A € A. We let Ay denote the (dominant) base
alcove, i.e. the set of A € X*(T') ®z R such that 0 < (A\,a¥) < 1 for all « € OT.
Recall that W acts transitively on the set of alcoves, and W = ﬁ//a x € where € is
the stabilizer of Ay. We define

W+ < (@ e W | @(A) is dominant}
and Wfr L@ e W | @(Ay) is restricted}.

We fix an element n € X*(T') such that (n,a") =1 for all positive simple roots «
and let wy, be wot_, € W, .

When G = GL,, we fix an isomorphism X*(T) = Z" in the standard way,

where the standard i-th basis element &; = (0,...,1,...,0) (with the 1 in the é-th

position) of the right-hand side corresponds to extracting the i-th diagonal entry
of a diagonal matrix. In particular, we can write any root 8 € ® as § =¢; —¢; for
uniquely chosen 1 <i,j <mn, i #j.

Given a finite set J and an isomorphism G — GL;L7 we use superscripts in the
notations above, e.g. @7 C &7, AT X*(T)7, W7 etc., where now &+ &, A,
X*(T), W, etc. are relative to GL,. In order not to overload notations, we do
not use underlined notations for the elements of ®7, X*(T)7, W7, etc., so that
for instance a root a@ € ®7 is in fact a collection of roots (a(?));cs where each
a) is a root of GL,,. Finally, we take n € X *(T)7 to correspond to the element
(n—1,n—2,...,0)jes € (Z")7 in the identification above. When an element
J € J is fixed, we will abuse notation and will use the same symbol 1 to denote
the element which corresponds to the tuple (n — 1,...,1,0) at j.

We let F; be a finite unramified étale Q,-algebra so that F;r is isomorphic to a
product HSP F;} over a finite set S}, where, for each v € S, F,l is a finite unramified

extension of Q. For each v € S}, let Op+ be the ring of integers of Ff, k, the
residue field and let O, (resp. kp) be the product [[,cq Ops (resp. [[,eg, kv)-
(This will be used in global applications, where S, will be a finite set of places
dividing p of a number field F'*.)

If G is a split connected reductive group over IF,,, with Borel B and maximal torus
T, we let Gy & Resy, /v, Gk, and similarly define By, Tp. We will always assume
that F contains the image of any ring homomorphism &, — Fp so that we can
and do fix an isomorphism (Go XSpec F, SPEC ]F) 5 (G XSpec F, SPec F)7» where Tp
denotes the set of ring homomorphisms k&, — F. For notational convenience, we will
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e . . = —+
write G Lof Go Xspec 7, Spec IF, and similarly for B, T'. The notations W, W, W,
~+ ~ = ~ T =5 ~
W, , etc. as well as the identifications W = WJ» W = WJ», EJF =5 (WH)Te,
~+ ~ —~
W, = (W;")7, etc. should be clear.

1.3.2. Galois theory. Let K be a finite extension of Q,, with residue field & of
degree f over F),. We assume that K/Q, is unramified and write W (k) for the ring
of Witt vectors, which is also the ring of integers of K. The arithmetic Frobenius
automorphism on W (k), acting as raising to p-th power on the residue field will be
denoted by ¢. We fix an embedding o¢ of K into E (equivalently an embedding
k into F) and define o; = 09 o ¢ 7. This gives an identification between J =
Hom(k,F) and Z/ fZ.

We normalize Artin’s reciprocity map Artx : K* — W2P so that uniformizers
are sent to geometric Frobenius elements. We fix once and for all a sequence
(Pm)men € K satisfying p | = Pm, Do = —p € K and let Ko, be |J K(pm).

meN

Given an element m; & (—p)ﬁ € K we have a character wg : I — W (k)
defined by the condition g(m1) = wk (g)m1. Using our choice of embedding o this
gives a fundamental character of niveau f

wyi=ogowk : [x — OF.

Let p : Gk — GL,(E) be a p-adic, de Rham Galois representation. For o :
K — FE, we define HT,(p) to be the multiset of o-labeled Hodge-Tate weights of

p, i.e. the set of integers i such that dimg (p @, x (Cp(—i))GK # 0 (with the usual
notation for Tate twists). In particular, the cyclotomic character e has Hodge-Tate
weights 1 for all embedding o : K — E. For pu = (u9)); € X*(T) we say that p
has Hodge—Tate weighs p if for all j € J

HTo, (p) = {n” s, ).
The inertial type of p is the isomorphism class of WD(p)|s,, where WD(p) is the
Weil-Deligne representation attached to p as in [CDT99], Appendix B.1 (in partic-
ular, p — WD(p) is covariant). An inertial type is a morphism 7 : Ix — GL,(E)
with open kernel and which extends to the Weil group Wy of Gx. We say that
p has type (u,7) if p has Hodge-Tate weights p and inertial type given by (the
isomorphism class of) 7.

1.3.3. Miscellaneous. Finally, §p denotes the Kronecker delta function on the con-
dition P. We also use 0 for the defect function in §6.21 This shall cause no confusion.

2. PRELIMINARIES
2.1. Affine Weyl groups, tame inertial types, Serre weights.

2.1.1. Affine Weyl group. We collect here the necessary background to give a clas-
sification of colength one elements in the admissible set (Proposition 21.2)).

Recall from .31 that G is a split reductive group with split maximal torus
def

T. We write W for the Weyl group associated to (G,T) and V = X*(T) @ R &

Tx, def

X.(TV) @R for the apartment of (G,T) on which W = X*(T') x W acts. We write
Co for the dominant Weyl chamber in V.

Recall that A denotes the set of alcoves of X*(T') ® R and that Ay € A denotes
the dominant base alcove. We let 1 denote the upper arrow ordering on alcoves
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as defined in [Jan03], §11.6.5] which induces the ordering 1 on W, via the bijection
W, = A given by @ — w(Ap). The dominant base alcove Ay defines a set of
simple reflections in W, and thus a Coxeter length function on W, denoted ¢(—)
and a Bruhat order on W, denoted by <. Given A € X*(T') we consider the set of
A-admissible elements of W

1 Adm\) E G ew w <ty for some w e W ;.
oY)

If Q C W is the stabilizer of the base alcove, then W = W, xQ and so W inherits
a Bruhat order in the standard way: For wi,ws € W, and 6 € Q, w16 < wyd if and
only if w; < ws, and elements in different right W,-cosets are incomparable. We
extend £(—) to W by letting L(wo) &of L(w) for any w € W, § € .

Let (WV, <) be the following partially ordered group: WYV is identified with W
as a group, and ¢(—) and < are defined with respect to the antidominant base

alcove. If @ = t,w € W with w € W and v € X*(T) we define o* < w~'t, € wVv.
(The assignement @ +— w* defines an involution which preserves length and Bruhat
order, see [LLHLI9, Lemma 2.1.3].) Given A\ € X*(T) we define the set Adm" ()\)
by replacing 1% by WV in the right hand side of ().

We also recall that, given m € Z and a € @, the m-th a-strip is the subset of V'
defined by

{x eV |m<(z,a") <m+1}.

Finally, we say that w € W is regular if it is in the sense of [LLHLMD| Defini-
tion 2.1.3].

Proposition 2.1.2. Suppose w € Adm(n) such that {(w) = £(t,) — 1. Then one
of the following holds:

(1) w = wtysqw™! wherew € W and a > 0 a positive root such that w(a) > 0,
and there are no decompositions o = B1 + B with B; > 0 such that w(B;) >
0;

(2) W= wt,y—aSaw™t where w € W, a € @7\ A such that w(a) < 0, and for
any decomposition o = 1 + P2 with B; > 0, we have w(p;) < 0.

We say that a colength one element w € Adm(n) is of the first form (resp. of
the second form) is it is as in item (resp. as in item of Proposition
Recalling [LLHLMD, Definition 2.1.3] we note that a colength one element w €
Adm(n) is irregular exactly when it is of the first form and moreover the root «
appearing in is a simple root.

Remark 2.1.3. If G =GL,, and a = ¢; —¢; € & \ A then

(1) the condition in item means that w preserves the order of ¢ and j, and
w maps no element k € (4,7) into an element in (w(i), w(5));

(2) the condition in item [(2)| means that w reverses the order of ¢ and j, and
maps any k € (4,J) to an element in (w(j),w(i)).

Proof. We assume w(Ap) is in chamber w(Cy). Then there is a gallery from Ag
to w(Ap) in the w-positive direction (cf. [HC02] §2, Definition 5.2]), hence [HHIT,
Corollary 4.4] shows that w < wt,w™!'. Thus @ ' w4 is dominant so that wi
is a reduced expression for w by [LLHLMal Lemma 2.2.1] (cf. Definition 2.1.2 in
loc. cit. for the notion of reduced expression). We conclude that u < tnw*I and
{(u) = {(tyw™') — 1. Since u and ¢, w~" are both dominant and their lengths differ
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by 1 they must differ by an affine reflection in direction « for some positive root
a > 0 by |[GHSIS|, Corollary A.1.2]. We claim that the a-strip containing u is the
lower neighbor of the a-strip containing tnw_l.

Suppose the contrary. Then for each vertex v of Ay, the line segment joining @ (v)
and t,w™!(v) lies in the dominant Weyl chamber and contains ¢,u(v). This shows
that t,u(Ap) is dominant and u 1 t,u 1 t,w™'. [Wan87, Theorem 4.3] implies that
U < tot < tyw~t which contradicts £(@) = £(t,w™1) — 1.

There are two cases:

e u(Ap) and t,w~'(Ap) share the vertex n. In this case & = t,;s,w™'. The
conditions u < t,w* and £(u) = £(t,w™')—1 are equivalent to {(sqw™!) =
f(w™t) + 1, equivalently £(ws,) = £(w) + 1. But this condition translates
exactly to the condition in item

e u(Ap) has n—« as a vertex. In this case we must have u = t,,_,s,w ™. To
see the condition on w, we note that for each positive root 5 we have

<77a ﬂv>+6w([3)>0_1_(<na 5V>_<av BV>+5wsa(B)>0_1) = <aa BV>+5w(ﬁ)>O_6wsa(ﬁ)>O

and hence by the explicit formula for the length function (e.g. [Hel6, §1.7.1])
the colength 1 condition becomes

Z _5w(5)>0 + 5wsa(ﬁ)>0 = 2<77) a\/) - 2.
B#a,3>0

This gives the condition in item
This completes the proof. O

Lemma 2.1.4. Let w € Adm*8(n) satisfy (@) > €(t,) — 1, and let Wy "wot, W
be the unique up to X°(T) factorization of w with w1, W, € Wf and v € X+(T)
(see [LLHLMD, Proposition 2.1.5]). Suppose that @ = Ty s, with T1,T2 € wt,
s €W, and that 1 T T 1 @;1352 with T € Wf Then s = wo and either T = T1 €
1 XO(T) or 7 = w;, T2 € W}, "W XO(T). If moreover £(w) = £(t,) we further have
T=7=w, T2 and v € X°(T).

Proof. Let w,T1,%2,s, and & be as above. Since z; T = T @;1%, we have that
71 < 7 and T2 < w7 by [LLHLI9, Theorem 4.1.1, Proposition 4.1.2] as w,x € WT.
Then we have

1> ((t,) - (@)
> 0(@1F) " wod) - [U(@F7") + Us) + L&)
— [6(@n@) — £(F2)] + [(wo) — €(s)] + [£3) — £(31)]

where the last equality follows from [LLHLI9l Lemma 4.1.9]. Since each term in
the last expression is nonnegative, we immediately see that £ = Z; or @;1%. (It
moreover £(w) = {(t,) we further have s = wy and T = 7 = W, '72.) It suffices to
show that Z; € w; X(T) in the former case and Zo € W2 X(T) in the latter case.
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We next show that s = wy. Supposing otherwise, 1 == = @;152 and s = wySq
with o € AT. By Proposition and the paragraph following it, we conclude
that w is not regular which is a contradiction.

Now suppose that ¥ = 71 so that we have f;lwofl = @Q_Iwotuzﬂl. The unique-
ness in [LLHLMb| Proposition 2.1.5] guarantees that 7; € w; X°(T) (and, if more-
over £(t,) = L(w), that v € X°(T)). Similarly, if T = @, ‘T2, then 7, € Wi and
uniqueness again guarantees that To € wo X (7). O

For Lemma 2.T.5] which explicitly describes the unique up to X°(7T')-decomposi-
tion of colength one regular admissible elements mentioned in Lemma ZT4 we
specialize to the case G = GL,. Recall that in this case we have the elements

g; € X*(T) for i = 1,...,n and the fundamental weights w _. & 22:1 g; for
1 <i<mn—1. We have the inclusion

(2) W — ,V[v/f', w — by, W,
where t, is the dominant weight defined by
def
(3) by, = Z W%
BEA, wT(B)<0

(see [Her(09, equation (5.1)]). Given w € W we write w for the image of w via the
inclusion (2.

Lemma 2.1.5. Let w € Adm™®(n) satisfy {(w) = £(t,) — 1. Then in the decom-

position w = @Q_Iwotyiuvl of Lemma 214, we can take wy = sqw™1, W = @m;\;l
and v = -1 — Ny -1 — €, where € equals 1 (resp. 0) if we are in case (resp.
case |(1)) of Proposition 2121

Proof. Letting @ = wt,_cqsqw ™', where ¢ € {0,1} equals 1 (resp. 0) if we are in
case (resp. of Proposition 2.1.2] we have
W = ({Em;jl)*lwotl,sawfl

by (@) and the definition of wp,. It thus suffices to prove that v is dominant, i.e. using
equation (3]), that

6w(ﬂ)>0 - 5wsa(ﬁ)>0 - €<Oé, 6\/> >0
for all 3 € A. This is an elementary casewise check, based on the value of (o, 8Y) €
{-1,0,1} and Remark 2T3] and which we leave to the reader. O

2.2. Local models, affine charts and monodromy conditions. For any Noe-
therian O-algebra R define

LG(R) © {A € GL,(R((v+p))) | A is upper triangular modulo v};
LTM(R) & {A € Mat,(R[v+p]) | A is upper triangular modulo v}.

2.2.1. Affine charts. Let z = zt,, € WV. Given an integer h > 0 define the subfunc-
tor U(2)3»<" C LG defined on Noetherian O-algebras R as follows: U (Z)4t<"(R)
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is the set of matrices A € LG(R) such that for all 1 < i,k < n the following holds:
(v +p)t Ay, € V>*Rv];

deg ((U +P)hAik) Sh+vg = ica(r);

(v —|—p)hAz(k)k is a monic polynomial; and

det(A) = det(z)(v + p)IVl,

where we have written v = (v)1<¢<n, € X*(T) and |v| & vy Ve
We now introduce the subfunctors and TV-torsors which are relevant for our
analysis of deformation rings. In the above setting, define the following subfunctors

of U(Z)detH=0;

o U0n=1(Z) C U(Z)4=0 as the subfunctor whose R-valued points are those
A € U(2)4°4=0 guch that both A and (v +p)"~*A~! are in LT M(R); note
that U0"=1(2) is representable by an affine scheme over O;

e U(Z,<n) C UL 1(2) as the closed, O-flat and reduced subscheme of
Ul0n=11(Z) whose points on a reduced O-flat algebra R consist of A €
Ul0n=11(Z)(R) with elementary divisors bounded by (v+p)” (i.e. each k by

(k—1)k

k minor of A is divisible by (v +p)T)); and

e U(%,<n) vy (%, <n) as the subscheme of LG whose R-valued points are
of the form DA where D € TV(R) and A € U(Z, <n)(R); note that U(Z, <n)
is endowed with a Tj-action induced by left multiplication of matrices, and
we have [TV’J\ﬁ(E, <n)] = U(z,<n).

The entries of A € UL»=1(Z)(R) will typically be written in the form

Vik—0i>k—0i<z(k)
d; 4
Ajp = 07" < > ke (v + p) )

£=0

so that U%"~1(Z) is an affine O-scheme whose global functions is the quotient
of the polynomial O-algebra in the variables a;, ¢ (for the appropriate range of ¢
determined by Zz and (i,k)) by the ideal determined by the condition det(A) =
det(2)(v + p)I. Then U(Z, <n) is a closed subscheme of U%"~1(Z), given by the

(k—Dk

p-saturation of the condition that each k by k minor is divisible by (v + p)~ 2

In general, these schemes can be somewhat hard to describe; however in Propo-
sition and Proposition [3.22.2] we will give an explicit presentations for them
when z has colength one.

2.2.2. Algebraic monodromy condition. Let a € O™. We define an operator V, on
LG by Va(A) &of (vl (A) — [Diag(a), 4]), and a closed subfunctor LGYV> C LG by
1

(v+p)

LGYV=(R) & {A € LG(R) | Va(4)A™ ' € L*M(R)} .

def

(We write [M, N] for the usual Lie bracket on LG, defined by [M, N] = MN—-NM.)
We define the following closed subschemes of U(z, <n):

ef ~

o U™ (Z,<n,Va) o U(zZ,<n) N LGV=; and
e U(Z,<n,Va) C U™(2,<n,Va) as the p-flat closure of U™ (Z,<n,Va)g
inside U(Z, <n).
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Thus U(Z, <n, Va) is the closed subscheme U (Z, <n) whose ring of global functions
is the quotient of O(U(Z,<n)) by the p-saturation of the ideal Iy, obtained by
imposing that the universal matrix

AW € U(Z, <) (O(U(Z, <n))

satisfies )
univ univ) —1
(Va(A™™Y)) (A™Y) " € (v+p)

cf. [LLHLMBD) Definition 7.1.8] for a list of generators of this ideal. Proposition 3.2
and Proposition [£3.1] give results towards an explicit presentation for the affine
scheme U(Z, <n,V,) when Z has colength at most one.

We define analogously the closed subschemes [7(3, <n,Va) C o (z,<n,Va) C
T}(Z <n), replacing U(z,<n) by [7(3, <n) in the above items. Note that we also
have

LT M(OU(Z, <)),

(4) U(ga <n, Va) = TVU(za <n, va),
compatible with U (%, <n) < TVU(Z, <n).

2.2.3. Monodromy condition and Galois representations. We follow the notation
and terminology on tame inertial types and their lowest alcove presentations of
[LLHLMBb), §2.4]. In particular given (s, u) = (s, u());c7 € W7 x (X*(T)NCy)7,
[LLHLMb, Example 2.4.1, equations (5.2), (5.1)] produces a tame inertial type
(s, +n) and n-tuples a’i") € Z" for 0 < j' < fr —1 (where  is the order of the
element s(9s() ... s(F=2)5(F/=1) ¢ W), If  is 1-deep in C,,, for each 0 < j' < fr—1
we define s, , to be the element of W such that (s, ;) ~'(a’ @) € Z™ is dominant,

and let

y def Ny ; oy
) a) % (51071 @ D) /(1 — pf")
for0<j < f.

Recall from [LLHLMD, §7.2] the p-adic formal algebraic stack X<"" over SpfO.
It is p-flat, equidimensional of dimension (1 + [K : Qp](5)) and moreover if 7 :
Gx — GL,(FF) is a continuous Galois representation, then R%"’T is a versal ring for
XS™7 at its point corresponding to 5 (see [EGL §4.8]). Let 7 = (1)) ez € WV,

Let N > n + 1 and assume that g is N-deep in alcove C,. From [LLHLMD
Theorem 7.2.3, Theorem 7.3.2] we have an open substack X<"7(Z) — X<"7 an
O-flat closed p-adic formal subscheme U (Z, <n, V, o) of U(Z, <n)"* (where U(Z, <
) def 11 jeg U (209), <n) and the superscript A, denotes the p-adic completion) and
a formally smooth morphism

(6) U(Z, <0, Viso) = X517 (3)

of relative dimension n#.7.
Assume further that N > 2n—5 and p is N-deep in alcove C,. Then [LLHLMD,

Proposition 7.1.10] shows that the formal scheme U (Z,<n, V;.0) is the p-flat closure
of a natural deformation of [, ; U((ZY), <n, V) in the following sense: Letting

I(Vj)(j) be the ideal cutting out U (2%, <n, V,») in UED, <n), U(Z, <n, Vy.o0) is
cut out by the p-saturation of an ideal Iy, which is obtained from 3, I(Vj)(j) by

N—2n+5

adding a (specific but inexplicit) element divisible by p to each element of its
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natural set of generators (in particular, (Iy_ _,p™N —2"*5) = > (I(Vj)m ,plV 725 by
definition). This property can be expressed in the following way: Given a p-adically

complete Noetherian O-algebra R, if A € U(Z, <n)»(R) satisfies the equations in
Iy then

T,00

(1) (Vaw (A9) (0 + p)" T AD) ™ € (04 p)" M, (R[]) + pN~2"+5M, (R[v])
see [LLHLMBD], Proposition 7.1.10 and its proof]. (We caution the reader that I'v__
is different than the ideal Iy v_ appearing in [LLHLMD| §7.1], but the p-saturation
of Iv_ . equals Ipn,v. when 90 is taken to be the universal Breuil-Kisin module
over U(Z,<n).)

Finally let us recall the characterization of the Galois representations that con-
tribute to XS77(2): given p € XS"7(F), then p € X="7(2)(F) if and only if its
étale p-module My = Vi (pla,_ ), cf. [LLHLMDI §5.5], admits a basis with respect
to which the matrix of Frobenius belongs to U(Z, <n)(F) [Les ijlvuj i, We say
that p has shape z with respect to 7 if additionally the matrix of Frobenius belongs
to HjGJIZ(j)Isglv”j“‘”j. (Here Z denotes the Iwahori subgroup of GL, (F((v)))
corresponding to the Borel of upper triangular matrices.)

It follows from [LLHLMBD] Proposition 5.4.7] that any p € X<""(F) has a unique
shape in Adm(n), which we denote by w(p, 7)*.

3. FINITE HEIGHT CONDITIONS

In this section, we describe U(w,<n) when w* € Adm(n) has colength one.
Throughout this subsection R denotes a Noetherian O-flat O-algebra, and we use
the notation ug : G4 — woUwq for the embedding to the S-entry for each 5 € &7,
where U is the subgroup of upper triangular unipotent matrices in GL,,. Moreover,
given A € Mat,(R) and 8 =¢; —¢; € @, we write Ag and Ag, for A;; and ak e
respectively.

3.1. Finite height conditions: the first form. Let w* € Adm(n) be a colength
one shape of the first form. Thus, by Proposition2.I.2]and the definition of w — w*,
we have W = wsyt,w !, where w € W satisfies w(a) > 0 and w(k) do not belong
to the interval (w(ip), w(jo)) for all ig < k < jo if we set & = a5, € @7\ A. For

. . def s def
notational convenience we set s = s, and w' = ws.
With an eye towards the monodromy conditions, we introduce the following:

Definition 3.1.1. We say that a negative root 8 € &~ is bad (with respect to w)
if
e [3 shares either the row or the column of «;
® Ju(8)<0 7 duw'(8)<0-
Proposition 3.1.2. Let A € U(w, <n)(R).
Then Aw(joyw(jo) = (w™tAw) o5, = (v +p)"7° for some c € R and
(8) s u_a(—c) (W Aw) = (v+p)" -V,

where V' is a lower triangular unipotent matriz whose entries are in Rv].
Moreover, for each f € O~ the entry Vi can be written as v®# - fg(v) for a
polynomial f5(v) € R[v] of the form Y, ca (v + p)* where
(1) if B is bad then kg = dy(gy<o = 0 and deg(fs) < |(n, ") +1;
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(2) if B shares the row or the column of a but is not bad then kg = 6,(5)<0
and deg(fg) < [(n, 8Y)!;

(3) if B shares the row of —cv then kg = 8y (gy<o and deg(fz) < |(n, BY)|;

(4) if B shares the column of —c with 8 # —a then kg = 0,y(5)<o and deg(fg) <
|<77a BV>| - 6w(—a)<w(5)<0;

(5) for all other roots B € ®~, kg = dy(gy<o and deg(fz) < [(n, 8Y)|.

Proof. 1t is easy to see that (w™'Aw);,;, is a polynomial of degree less than

n —jo+ 1. Let ¢ € R be the coefficient of v~ in (w='Aw);,j;,, and set C o

su_q(—c)(w™tAw) as in ([§). One can readily observe the following degree bounds:
e deg(Cy) <mn—lforalll<i<mn;
e for B = aj, € ® with I,m ¢ {ig,jo}, Cs = vo®=<0 fz(v) with deg(fs) <
n—m—1;
o for B = ajym € ®, Cp = v2w@<0fz(v) with deg(fs) < n—m — 1+
Ouw (8)<0<w(B)}
o for = ajjm € ®, Cg = v’ <0 fg(v) with deg(fs) <n—m —1;
e for B = ay;, € ® with [ # jy, Cp = V2@ <0 f5(v) with deg(fz) < n —ig —
Ou(8)<0 = Ow(B)>w(—a);
o for f=oy, € P, Cp = ’U‘SW(BKOfﬁ(’U) with deg(fs) <n—jo— 5w(,6‘)>w(oz) -
Ou(8)<0-
From the bullet points above it is now immediate to deduce the degree bounds
We now prove the claim on the lower triangularity of V', and the divisibility by
(v+ p)". We will repeatedly use following inductive procedure (modeled on the
height condition): Given an O-flat algebra R and B € Mat,, (R[v]) such that

(1) the right-bottom block of B of size k x k is lower triangular of the following
form

Bnti-k)nt1-k) -+ 0

Bn(nJrlfk) -+ DBnn

and (v + p)"~! | By if By, is in the (k x k)-block above;

(2) forland m with 1 <I,m < n—k, the (k+1)x (k+1)-submatrix determined
by B, and the k x k-block above is also lower-triangular;

(3) (v+p) s | (k+1) % (k+ 1)-minors) for the (k+ 1) x (k+ 1)-submatrix
above,

then we have (v + p)* | Bp,,. We apply the above procedure to B = w™'Aw and
B=C.

First, imposing the finite height condition and inductively using items
(3)] above to w™! Aw, we can assume without loss of generality that (w™!Aw)z =0
for B = aym if jo < m <n and | < m, and that (v+p)" ! | (w™tAw)s for B = aim
if jo <1 < nand m < (note that (w™tAw)g = 0 for B = ay,, if | < n, by the
degree bounds). Therefore, it is immediate that Cg = 0 for 8 = ay, if jo <m <n
and [ < m, and that (v+p)"~! | Cs for B = ayp, if jo <1 < n and m < I. Moreover,
by a further application of items , above to C, we also conclude that the
right-bottom (n —ig+1) X (n —ip+ 1)-block of C'is as described in the statements,
and that (v+p)"~! | Cpp if ip <1 <nand m < [.
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We now check that Cg = 0if 8 = aj, with 1 < [ < 4y and [ < m < jo.
Note that we cannot, in general, conclude Cyj, = 0 from the fact (v + p)"~%°|Cy;,
induced from items above for 1 <1 < 4, since the degree bound of the
polynomial Cjj, is one higher than usual if w(ip) < w(l) < w(jo). Let S = ayj, be
such a root, and assume that the right-bottom (n — 1) x (n — I)-block of C is as
described in the statements. By items and the degree bound, we may

let Cs = x(v + p)"~J° for x € R. Consider C’ o ug(—2)C. Then we have Cj; = 0,
and, moreover, the finite height condition together with the degree bounds implies
that C},, = 0 for all igp <m < jo. In particular, we have
Cllio = Clig — LL‘C,a =0.

By looking at the constant part of Cj; ,
—xC_4 as v | Cy,, we have p|("’_“v>‘_1xc_a = 0 in R where we let p|<”’_av>|_1c_a
be the constant part of C_,. On the other hand, by Lemma C_q 1s a unit in
R[%], so that we conclude that z = 0. (Note that to prove Lemma we only
used the fact that the right-bottom (n — ip + 1) x (n — g + 1)-block of C is as
described in the statements, which is already proved in the previous paragraph.)
Now by repeatedly using items above together with the degree bounds,
we conclude that Cp,, = 0 if | < m < jg. Repeating this argument, we conclude
that Cg = 0 if 8 = quy, with 1 <1 <ip and I < m < jo and that (v +p)" ' | O
fl1<m<i<n.

Finally, we point out that we have (w™'Aw),,;, = c(v + p)"~7°, which can be
readily seen during the induction steps due to the degree bound. This completes
the proof. O

which is the same as the constant part of

For the rest of this subsection, we observe some necessary properties of kg €
{0,1}, defined in Proposition BI.2] as well as some identities of the coefficients of
V from the finite height conditions. We first fix some notation:

e For g € &, we write Dg for the set of the decompositions (51, B2) of 8
into two negative roots with 1 sharing the column of 5 (and S35 sharing
the row of f3).

e For a bad root § € &, we write g for the set {(51,02) € Ds | kg =
kg, + ’%52}'

The following are immediate consequences of Proposition which will be
frequently used:

e if 3 shares the row of a then we have kg = Ky(g);

e if §is a bad root sharing the column of v then deg(v ="+ Vy3)) < [(n, s(8)")]
— 1 and K48y = 1 + Kig;

o if (B1,52) € D_, then kg, + K, = 1;

o k_,=0.

Lemma 3.1.3. Let 8 = ayy, € 7. Then if 1 < jo orm > ig then kg is subadditive,
i.e., kg < Kg, + kg, for all (B1,B2) € Dg.
Moreover, if B has a decomposition (81, B2) € D with kg > kg, + kg, then
e [ > jo and m < ig;
o kg =1 and kg, = kg, =0;
e (31 shares the row of —« such that By is bad and either s(f1) is bad or
ﬁl = —Q.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5762 DANIEL LE, BAO V. LE HUNG, ET AL.

Proof. One can readily observe that

o if 3= ayy, with I & {io,jo} then kg = 0y(g)<0;

o if 8= aj,m then kg = dy(5)<0;

o if ﬂ = Qjom then Rpg = 5w'(3)<0'
The first part follows from combining these three observations together with the
fact du(g)<0 < dw(pr)<o + Ow(gs)<o if (B1, B2) € D, case by case.

For the second part, if 3 has a decomposition (51, B2) € D with kg > kg, + kg,

then it is easy to see that 1 shares the row of —«, and so if 81 # —«a then we have
w'(B1) > 0 and w(B1) < 0 and so s(B1) is bad. B is also bad, as w'(B2) < 0. O

Lemma 3.1.4. Let B € &= be a bad root sharing the row of o. Then the map
(81, B2) = (B1,5(B2)) gives rise to a bijection between the following sets:

o the set Ag;
e the set of elements (B1, B2) of Ugpy with By # —a.

Moreover, By € ®~ is bad if (1, 02) € Ug.

Proof. For (B1,82) € D it is easy to see that kg = kg, + Kg,, if and only if
kg, = 0 = Kg,, if and only if w(B1) > 0, w(B2) > 0, and w'(B2) < 0, if and only
if kg, = 0 = Ky(g,), if and only if k) = kg, + Ky(p,). Moreover, if (81, 52) € Ap
then w(f2) > 0 and w'(B2) < 0, and so B3 is bad. This completes the proof. O

Lemma 3.1.5. Let f € ®~ be a root sharing the column of a.. If B is bad then the
map (B1, B2) — (s(B1), B2) gives rise to a bijection between the following sets:

o the set Ag;
e the set of elements (B1, B2) of Uypy such that s(B1) is bad.

Moreover, if 3 is not bad and (B, B2) € Ug(py then s(B1) is not bad.

Proof. Assume $ is bad. Then we have g = 0 and r,(g) = 1. Also, for (81, 52) €
D it is easy to see that kyg) = kg, + Kp, and s(B1) is bad, if and only if kg, =1,
Ks(p) = 0, and kg, = 0, if and only if kg = ky(g,) + kp,. This completes the proof
of the first part.

For the second part, it is clear if kg = 0. If kg = 1 then r,g) = 1 as § is not
bad, and so we have either kg, = 1 or kg, = 1. If kg, = 1 then k5, = 0 and so
5(81) is not bad. If kg, = 0 then kg, = 1 and kyp,) = 1, and so s(f;) is not bad.
This completes the proof. (Il

For each B € ®7, let cg be the coefficient of v in V. For each 3 = ay,, € ®~
with either [ < jg or ig < m, let ch be the coefficient of v®#~! (resp. v"#) in Vi if

I > jo and m = iq (resp. otherwise), where V* < V1,
Lemma 3.1.6. If 8 is a bad root sharing the row of o then

s .p|<n7av>| = —CCy(p)-
Moreover, we have —c - c_, = p|<n,av>|.

Proof. This is immediate from the elementary operations in () together with the
finite height conditions. For instance, we have C;, ;, = v(v + p)"~ =t —cC_, =
(v +p)"~% where C is defined in the proof of Proposition Now, extracting
the constant term of the identity we get —c - c_q = pl(ma”)l, O
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Lemma 3.1.7. Let 5 € &~ be a bad root.
(1) If B € &~ is sharing the row of o then we have

Cay D Ca(a)Clh T CaCh+ Chg = 0.
(B1,B2)eAs

(2) If B € ®~ is sharing the column of a then we have

cpgct o, + Z CB2Co(py) T Cop) = 0-
(B1,82)€As
Proof. (1) follows immediately from Lemma BTl and Lemma B3] by extracting
the constant term in the equation (V- V")) = 0.

It is immediate that if 8’ € ®~ with 8’ # —« shares the column of —a and s(8’)
is not bad, then the coefficient of v*#’~! in Vg, vanishes, as kg is subadditive if
s(3') is not bad. This result together with Lemma and Lemma B3] implies
(2), by extracting the constant term in the equation (V' - V) g = 0. O

3.2. Finite height conditions: the second form. Let w* € Adm(n) be a
colength one shape of the second form. Write w = wsqt,_qw™' where w € W
satisfies w(a) < 0 and w(jo) < w(k) < w(ip) for all ip < k < jo if we set
= Q. € ®* \ A. For notational convenience we set w’ def ws, and s dof Se, SO
that we may write w = w't,_,sw'~!.

With an eye towards applying the monodromy conditions, we introduce the
following:

Definition 3.2.1. We say that a negative root 8 € &~ is bad (with respect to w)
if
e [3 shares either the row or the column of «;
o [3 satisfies d,(8)<0 = Guwr(8)<0-
Proposition 3.2.2. Let A € U(w, <n)(R). _
Then Ay (io)w (o) = (W' ™AW )i05, = c(v 4+ p)" 9 for some c € R and
(9) Ug(—c) - v - (W't AW') - s = (v +p)" -V,
where V' is a lower triangular matriz whose entries are in R[v].
Moreover, V Y y=sio . V' is unipotent, and for each 5 € &~ the entry VB/ can
be written as v - f3(v) for a polynomial f3(v) € R[v] of the form S pcap(v+p)k
where

(1) if B is bad then Ky = 8y (gy<o and deg(fp) < [(n, V)| +1;

(2) if B shares the row or the column of o but is not bad then m/’B = 14+0u (gy<0 =
dw(gy<o =1 and deg(fz) < [(n, BY)|;

(3) if B shares the column of —a then Kz = du(g)<o and deg(fg) < |(n, BY)] —
Ow(g)>w(a) = Ouw(8)<0;

(4) for all other roots 5 € &, /{’ﬁ = 0y (8)<0 ond deg(fg) < |(n,BY)|.

Proof. Tt is easy to see that (w'~!Aw’);,;, is a polynomial of degree less than
n —jo+ 1. Let ¢ € R be the coefficient of v~ in (w'~tAw'); ;,, and set C Lef
Ug(—c)vio (w' "t Aw')s as in ([@). One can readily observe the following degree
bound:

o deg(Cy) <n—1ifl # jo, and deg(Cj,;,) <n—1+1 and Cj,j, € vR[v];
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o for f = oy € © with | # ip and m & {io,j0}, Cs = v51‘7’<ff><0fﬁ(v) with
deg(fs) <n—-m—1,
o for B = au, € @, Cg = vo®=<0fz(v) with deg(fs) < n —ig — 1 —
O (B)>w'(a) — Ow(8)<0;
e for 8 = ay;, € ® with 8 # a, Cg = v2w® =<0 fg(v) with deg(fs) < n — jo +
1= du(g)y>w(~a) = duw(p)<o}
e for B = ajym € ®, C = vow®<0 f5(v) with deg(fz) < n —m if 3 # a, and
Co = vfg(v) with deg(fz) < n — jo.
Now, the rest of the proof is similar to Proposition B.1.2] and we leave the details
for the reader. O

For the rest of this subsection, we observe some necessary properties of I{% €
{0,1}, defined in Proposition B:2.2] as well as some identities of the coefficients
of V' (and so of V as well) from the finite height conditions. We first fix some
notation:

e For § € &7, we write Dg for the set of the decompositions (51, f2) of 3
into two negative roots with 3 sharing the column of 8 (and 35 sharing
the row of ).

e For a bad root 8 € &7, we write s for the set {(81,82) € Dp | K}y =
H/ﬁl + Hlﬁ2}'

e To describe the bottom degrees of each entry of V, we set xg Lo n’ﬁ —1if
B € ®~ shares the row of —a, and xg Lot /@% otherwise.

The following are immediate consequences of Proposition 3.2.2] which will be
frequently used:

e if 3 is bad then we have rj; = n;(ﬁ);

e if Bis a bad root sharing the column of ov then deg(v ™" Vi) <ln, s(B))]
1

o if 8 = ajym with ig < m < jo then n’ﬁ =1;

o if 8 = qay;, with ip <1 < jo then xj; = 0, and, in particular, £, = —1.

Lemma 3.2.3. Let = oy, € ©. Then n% 18 subadditive, i.e. n% < /<;,’81 + /%Q
for all (B1,82) € Dg.
Moreover, if B has a decomposition (B1, B2) € D with kg > kg, + kg, then
o [ > jg and m <ig;
e (31 shares the row of —« such that Bo is bad and either s(f1) is bad or
,81 = —Q.
Proof. The proof is very similar to Lemma B.1.3] Observe that
o if 8=y, with | # ig and m & {ig, jo} then Iilﬁ = Ouw(8)<0;
e if 8 = ay,, with m € {io, jo} then iy = 0y(s)<0;
o if 8 = aj,m then rj = d,(s)<0-
The subadditivity of I{IB follows from combining the three observations above to-
gether with the fact 0, (5)<0 < dwr(81)<0 + Owr(B2)<0 if (B1,B2) € Dp. The subad-
ditivity of kg when I < jg or iy < m also easily follows from the subadditivity of
m’ﬁ together with the colength one property of w.
Assume that 8 has a decomposition (51, 82) € D with kg > kg, + K£g,. Then
as /<;,’8 is subadditive and kg is subadditive if m > iy, we see that /5 shares the row
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of —a and so (2 shares the column of «. It is also easy to see that [ is bad, and
s(B) is bad if 81 # —a. O

Lemma 3.2.4. Let 8 € @~ be a bad root sharing the row of . Then the map
(B1,B2) = (B1,8(B2)) gives rise to a bijection between the following sets:

o the set Ug;
o the set of elements (B1, B2) of Uggy with By # —a.

Moreover, By € @ is bad if (01, P2) € Ag.

Proof. The argument is very similar to Lemma B.T.4l We leave the details for the
reader. |

Lemma 3.2.5. Let f € ®~ be a root sharing the column of a.. If B is bad then the
map (B1, B2) — (s(B1), B2) gives rise to a bijection between the following sets:

o the set Ug;
e the set of elements (B1, B2) of Ugpy such that s(B1) is bad.

Moreover, if 3 is not bad and (B, B2) € Ugy(py then s(B1) is not bad.

Proof. The argument is very similar to Lemma [3.1.51 We leave the details for the
reader. ]

For each 8 € ®7, let cg be the coefficient of V"5 in Vﬁ'. For each 8 = ayy,, € ©~

with either I < jo or ig < m, let cj; be the coefficient of 0"~ (resp. v"%) in Vi if

either [ = jg or I > jo and m = iy (resp. otherwise), where V* Lfy-1,

Lemma 3.2.6. If § is a bad root sharing the row of o then
A\
C/B .pl(ﬂsa >| = —C- Cs(ﬁ)'
Moreover, we have —c - c_, = pl(%avﬂ.

Proof. The same argument as in Lemma [3.1.6] also works, using the elementary
operations in (@) together with the finite height conditions. O

Lemma 3.2.7. Let § € &~ be a bad root
(1) If B € ®~ is sharing the row of o then we have

Cap)F D, Ca(pa)Ch + Calh + g = 0.
(B1,B2)e/As

(2) If B € ® is sharing the column of a then we have
coclat D CaCige) T i =0
(B1,B2)€Ap

Proof. The proof is similar to that of Lemma BI7l The only difference is that
we use Lemma [3.2.4] Lemma B.2.3] and Lemma B.2.5] instead of Lemma [B.1.4]
Lemma [3.1.3] and Lemma [3.1.5] respectively. O
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3.3. Description of U(w,<n) in colength one. Let V' be the matrix introduced
at Proposition B.1.2] or at Proposition 3.2.2l For each 8 € ®~, we let mg &of

|(n, 8Y)| — 1, and recall that the entry Vj is of the form

mp

V™E Zcﬁ,k(v —|—p)k,

k=0
where

mg+1 if §is bad;
(10) mjp = mg—1 if B shares the column of —« such that s(3) € ®~ is bad;

mg otherwise.

Proposition 3.3.1. Let w* € Adm(n) be a colength one shape. Then there is a
closed immersion

U(w, <n) = SpecO[{cp i | B € @~ and 0 < k <mj} U {c}].

Proof. This is immediate from Propositions B.1.2] and 3.2.2] |

4. MONODROMY CONDITIONS

In this section, we induce certain identities and properties, that will be necessary
to describe U(w,<m,V,) for a € O™ when w* € Adm(n) is of colength one.
Throughout this section, by R we mean a Noetherian O-flat O-algebra. We keep
the notation of §3

We fix some notation. Set ~yg & kg + mj, where mj is defined in (I0). For
each f € ®~, we write F>g (resp. Fs3) for the free Z-module generated by the
monomials ¢g, k, - - - ca, , for all non-negative integers ky,--- , ks with 7 k; <
v + 1 and for all negative roots Sy, --,8s with § = 1 + -+ + 85 (resp. with
B =8+ -+ and s > 1). For f/ € &~ with f/ > 8 we write Fgﬁ for
the submodule of F 3 generated by the monomials cg, k, - - ca, k, with 8; # 5’
for all v. By abuse of notation, we will use the same notation for the images of
all of these free Z-modules in the ring O(U(w, <n)) via the closed immersion of
Proposition B3]l Finally, if A € U(w, <n)(R), we abuse notation again and write
F>3,Fyg, Fgﬁ for the image in R[v] (via the map O(U(w, <n)) — R corresponding
to A) of the Z-modules above.

Let A € U(w,<n)(R), and let V be the corresponding matrix obtained by
Proposition (resp. by Proposition B22)) if @ is of the first form (resp. if @ is
of the second form). Then an elementary computation shows that A € U™ (w, <
1, Va)(R) if and only if for each § € &~

(11) Vi N (Va, V)5 + > (Va,V)s.Vi, € (v+p) ™ R[v,
(B1,82)€Dp3

where a,, € O™ satisfies w(a,,) = a. Throughout this subsection, we assume (1))
holds for all 5 € &, and write V for V,, to lighten the notation.
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4.1. Monodromy conditions: the first form. Let w* € Adm(n) be a colength
one shape of the first form (described in Proposition 2T.2]), and keep the notation
of §311 In particular, we keep the notation of Proposition
Lemma 4.1.1. Let 8 = oy € &7 with | < jo or ig < m. Then we have

(1) 4f B is not bad then

Vi€ v (v+p)™ (Xg+ Fsp),

where X = (mg + kg — <aw,5V>)cﬁ,m;g and

~ def | KB if either 1 < jo, io < m, orig=m and s(B8) € ®~ is not bad;
K =
? kg —1 ifig=m and s(B) € ®~ is bad,

(2) if B is bad then
Vg € v (v+p)™* (Ys +vXs + Fsp),
where

Xg = (mj+rs = (aw, BY))cgm,;

Yg = (mpg+rg—(aw,BY) +mpg+ r5)cam, + 0k — (@w, B))cg,m, -
Proof. Assume that § = «p,, € &~ is not bad. If either I < jg, ig < m, or
iop = m and s(8) is not bad then by Proposition B.I.2] together with Lemma B1.3]
it is routine to check the equation in (1). If I > jo, ig = m, and s(8) € ¢~ is

bad then kg is not subadditive and deg(Vz/v"#) < |(n,5Y)| — 1 by part (3) of
Proposition B.1.2 and so v"7 1 325 51e5,(VV)g, V3, while 0™ | (VV)g. Hence,
in this case we get the equation in (1) with kg = kg — 1 in the equation.

Assume that 8 is bad. By part (1) of Proposition B2 deg Vs < [(n,8Y)] + 1
(as kg = 0) and kg is subadditive, and so we get the equation in (2). O

For 8 € @~ and for each integer s > 1, we set Ig , to be the set of the tuples of
negative roots (31,82, -, fs) such that

o B=p1+4+ B2+ -+ s and B; shares the column of f3;
e Bi+Piy1 €D forie{l,---,s—1};
® i1 0uw(p)<0 = 5 — Ou(g)>0-

Moreover, we set
def
Is = | In.s.
s>1
Lemma 4.1.2. Let § € &~ with 8 > —«.

(1) If (B1,B2) € D then vg > Vg, + Vg,
(2) (B1,P2) € Dg satisfies g = vp, + V8, of and only if kg < K, + Kg,.

In particular, if (B1,82) € Do then vp, + V8, = Y-a, deg V§, = v5, = mg, + kg,
and

1 d751 Vél _
(v8,)! dve

_1\¢+jo—s ..
> CBY gy CBymy " Bl s
(B BL)ED s,

where B1 = oy, -
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Proof. Recall that 5 indicates the degree of V. By definition of w, kg = Ky if
either 8 = ay;, with ig <1 < jo or f = a;ym With igp < m < jo. Now it is easy to
check (1) and (2) case by case.

For the second part, let (81, 52) € ®_,. Then it is clear that v5, + V8, = 7-a
by (2), and it is also clear that degVj = v, by (1). Finally, the elements of
I correspond to the monomials in Vi which has the highest degree ~s,. This
completes the proof. |

Lemma 4.1.3. We have

et oy, —aY) = p e e 2,

p
where
def Vi
Zfa - (mfa - <awa - >)Cfo¢,m_a
+ (mp, + Kpy — (Aw, B5)) Coymy,
(B1,02)ED _o
Etjo—
(_1) +Jo scﬂi»mﬂi .. .C:Béfmﬁg

(B BL)€ELg,
if we write B1 = oy, -

Proof. By Lemma BL.T.2] we see that deg((VV)g,Vj ) = 75, + 78, = V—a = M-q
for all (01, B2) € ©_,. Hence, if we apply the monodromy condition (Il to V_,
then we have

V_ua = (m_q — (aw, —a"))c_am_, (v+p)™°

+ > (me, + ks, — (w, B5))Chams,
(B1,82)€D_a

l+jo— —a
Z (—1) +Jo Scﬁivm/all e Cﬁ_’g,mﬁg (U + p)m
(B1++,BL)EIp,

by applying the second part of Lemma .12l Since the constant term of Vfa
appears only at (VV)_, by Lemma[3T.3] by extracting the constant term we have

—(ay, —aY)e_o =p" 7.
By the second part of Lemma [3.1.6] we get the desired identity. |

We further eliminate the variables Y3 for bad roots 5 € ®~.

Lemma 4.1.4. Let 5 € &~ be a bad root.
(1) If B shares the row of o then we have

P - (Y + - Xogy) € P - (c gy, Fs o+ Fsp+te Fis(ﬁ)) )
(2) If B shares the column of o then we have

pree - (Yp — e Xy) € P - (C cgmy, Fra+Foptc: Fis(ﬂ)) :
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Proof. We first treat the case (1). By Lemma BTl extracting the constant term
in the monodromy equation in part (1) of Lemma BTl for s(/3) gives rise to
(12)
<awa S(ﬁ)v>cs(ﬁ)
Y (@uws(8) s, + (@u —a¥)each € <P (Xogs) + Faua):
(51 >ﬁ2)€9l/3

Asdeg(VaV2,) = mi+m_q =mg+1+m_o = myp) = Ks(p)+Ms(s), the quantity
in ([I2), in fact, belongs to

—p™® (Xy(5) + CBm, - Fs o+ Fis(ﬁ))'

By multiplying —c and then applying Lemma [B.1.6] together with Lemma B.1.4] we
have

Pl Ny, s(8))es
+ > P ey, s(82)Y)es,ch, + 01 Ay, —a¥)dh
(B1,82)€g
cc- pmS(ﬁ) (XS(B) —+ Cﬁ,m’ﬁ . Fz_a + Fis(ﬁ))

Applying the identity cg + 2(51762)6% cp,Ch, +¢j = 0, induced from (V-V*)g =0,
together with s(8) = f — a and s(f2) = B2 — «, we have

(13) p|<""‘v>|(aw,ﬁv>cﬁ+ Z p\<n,av>\<aw’@/>cﬁzczﬁl
(BhﬂQ)GQlﬁ

Ec-pms® (Xs(B) + Ca,mY, Fs_,+ Fis(ﬁ))'

But by extracting the constant term in the monodromy equation in part (2) of
Lemma [ TT] for 8, the quantity in ([I3)) also belongs to
_pl<nﬁav>|+\<nvﬁv>lfl(yﬁ +Fsp)

and so we have the desired result.

We now treat the case (2). By extracting the coefficient of v*# in the equation
(V-V")g =0, we have cg + Z(ﬁl,ﬁz)e% cp,Ch, + cj = 0, which together with the
equation in part (2) of Lemma B277 induces

Z ¢85 (Chay) — €LaCl,) T (Chep) — cLach) = 0.
(51 >ﬁ2)€915
This equation together with Lemma [3.2.5] inductively induces that
(14) Cog) — CLaCp =0

for any bad root § sharing the column of «.
By extracting the coefficient of v*# in the monodromy equation in part (2) of
Lemma [£1.T] for S, we have

(ks — (@, B Nes + > (kg — (aw, BY))ep,ch, € P (Vs + Fp).
(B1,82)€p
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Similarly, by extracting the coefficient of v**»~1 in the monodromy equation in

part (1) of Lemma Tl for s(3), we have

(15)

(ks —(@w, B))eac 0t D (Hg, — (aw, B5))epychisy) € D™ (Xo(s)+Fy(s)):
(B1,B2)€Ap

Asdeg(VaV2,) =15 +7-a = mz+m_q =mpg+1+m_n = mypg) = Kep) +Ms(p),

the quantity in (3]), in fact, belongs to

PO (X +camy - Fooa + Fis([-}))‘
Comparing these two equations via the identity (I4]), we have

PO X y(g) — ¢ oD Y € P (Cﬁ,m’B Fs_o+ F[is(ﬁ)) +p™ ., - Fug.

by applying the second part of Lemma [B.1.6] we have

2

Asc_o=—-Cc",

_Cpms(ﬁ)Xs(6)+pmﬁ+m7L¥Y6 c C‘pms(ﬁ) (Cﬁ,mb.F27Q+F§S(ﬁ))+pmﬁ+mia+1'F>5'

As s(B) = B — «, we get the desired result. O

We finally treat the case 8 = ayy, € @~ with [ > jo and m < 4. In this case, kg
is not subadditive in general, so that Lemma [£.1.5] is not trivial.

Lemma 4.1.5. For 8 = apy € = with I > jo and m < iy,
VE € v (v 4 p)l8 11 (X + Flp),
where X = (mg + kg — (@w, B))Cs,m, -

Proof. We first claim that V) € vR[v] for a bad root fy € ®~ sharing the row

of a. From part (1) of Lemma BT together with Lemma B.T:4 and Lemma B0
we have

"
P00 (et 3 e+, | —eciny =0
(51 >ﬁ2)€ﬂ50

As cg, + Z(ﬁl,ﬁz)e%o cp,Cp, + ¢, = 0 induced from extracting the constant term
of (V-V*)g, =0, we have cCy g,y = 0. Hence, we conclude that ¢ ;) =0,ascis a
unit in R[%] by Lemma B.T.6l and R is O-flat.

Let 8’ = ayrpy € @~ with m’ < 5. We claim that Vi € v’ Rv] if I/ # jo. Tt is
clear that Vi, € v"¢' R[v] if I' < jo, by Lemma B.1.3l Assume jo <!’. Consider the
following identity

0=(V-V)e =Va+ Y. Vi Vi +Vi,
(B1,82)€D g5/
and write 1 := agp. It is obvious that Vg € v R[], and that Vs, - V3 €
v R[v] for m’ < k < jo by Lemma B.I.3] so that it is enough to check that
Vi, - V4 € v R[u] for jo <k <1’

Assume that k = jo. If s(61) is bad then V3 € vR[v] by the first claim, and
so we conclude in this case that Vg, - Vj§ € v™ R[v]. If s(81) is not bad then it is
clear that Vj§ € v"#1 R[], and so we also have Vs, - Vjj € v"#’ R[v] by Lemma B.1.3]
Note that this also implies

(16) (VV)p, V5, € 0™ R[v]
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in this case. Assume now that jo < k < I’. By induction hypothesis, we have
Vi, € v™1 R[v] and so we conclude that Vj, -V € v R[v] by Lemma[3.1.3, which
completes the proof of the second claim.

Now, let 8 = ay, € ©~ with [ > jp and m < ig. For (01, f2) € Dg, if we write
B1 = aum then it is clear that (VV)g, V5 € v R[v] for k # jo, by the claim above
together with Lemma B.T.3l If £ = jo, then we also have (VV)g,Vj € v"# R[v] by
([@6)), which completes the proof. |

4.2. Monodromy conditions: the second form. Let w* € Adm(n) be a colength
one shape of the second form (cf. Proposition ZT.2]), and keep the notation of §3.2
In particular, we keep the notation of Proposition B.2.2]

Lemma 4.2.1. Let = oy, € &~ with | < jo or ig < m. Then we have
(1) if B is not bad then
Vg € v (v+p)™ (X5 + Fp),
where Xg = (mp + kg — <aw,ﬁv>)cﬁ’m;3 and

= dy | g if either 1 < jo, i < m, orig =m and s(8) € ®~ is not bad;
g /{’ﬁ —1 if either ig = m and s(B) € ®~ is bad or I = jy,

(2) if B is bad then
Vg € v (v+p)™? (Vs + vXp + Fsp),
where
{Xﬁ = (mly + 5 = (@w, BY))Cpm
Yg = (mp+rp—(aw, BY))cgms +p(hs — (@w, BY))cs,m, -
Proof. The proof is similar to that of Lemma [I.]] using Proposition and

Lemma [3.2.3] instead of Proposition B.1.2l and Lemma [B.1.3] respectively. We leave
the details for the reader. |

For B € &~ and for each integer s > 1, we set I3 5 to be the set of the tuples of
negative roots (81, fBa,- - , Bs) such that

e =014 P2+ -+ Bs and 7 shares the column of 3;
® Bi+Biy1 €@ forie{l, -, s—1};
o w'(B;) <0foralliec{l, -, s}

Moreover, we set
def
Is = | In.s.
s>1

Lemma 4.2.2. Let § € &= with § > —a.

(1) If (B1, B2) € Dp then 75 > v, + 7,5
(2) (B1,P2) € D satisfies yg = vp, + V8, if and only if kg < kg, + Kg,.
In particular, if (B1,B2) € D—q then vp, + V8, = V—a, deg V5, =5, = mg,, and
1 dnvs
(v8,)! dve

where B1 = oy, -

—1)¢tdo—s .
> (=1) CBymyy CBmpgy " CBLmgy
(B BLETs,
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Proof. The proof is similar to that of Lemma We leave the details for the
reader. ]

Lemma 4.2.3. We have

pm—u"l‘l . ((aw’ —Ocv> + 1) _ pm—a .c- Z,a,

where
def \
Zo=(m-o—1—(ay,—a"))c_am_,
+ Z (mﬁz - <aUH B§/>) CBa,mp, (_1)Z+j0_scﬁi,mgi e Cﬁé’mﬁg
(B1,82)€ED _ o (B, B5) €Iy

if we write f1 = oy, .

Proof. By Lemma [£2.2] we see that deg((VV)g, V3 ) = 75, + 75, = mp, + mp, =
m_q—1forall (f1, 52) € D_,. By the same argument as in Lemma[LT3] extracting
the constant term of v - V_ﬁa gives rise to the result. We leave the details for the
reader. g

We further eliminate the variables Y3 for bad roots 5 € .
Lemma 4.2.4. Let § € &~ be a bad root.
(1) If B shares the row of a then we have
p"e@ - (Yg +c- Xgp)) €p™® - <c CBml, F>_o+Fsg+c- Fis(ﬁ)) .
(2) If B shares the column of o then
p"e® (Y —c- Xy)) € p™e® - (c “cgmy, F>_a +Fsptc- F§8(5)> .

Proof. The proof is similar to that of Lemma [£1.4l The only difference is that we
use Lemmas 3.2.6], 3.2.4] [£.2.7] B.2.7, [3.2.5] and instead of Lemmas[3.1.6] 3.1.4]
ETT BI7 BI5 and BI6 respectively. We leave the details for the reader. [

Finally, we treat the case 8 = ay,, € @~ with [ > jg and m < ig. In this case,
kg is not subadditive in general, so that Lemma [4.2.5]is not trivial.

Lemma 4.2.5. Assume that VSZ(B) € v"8 R[v] for a bad root § € ®~ sharing the
row of a. For B = oy, € ®~ with I > jo and m < iy, we have

Vg € v (v+p)™*(Xp + Fsp),
where Xg = ((ay, ") +ms + "Jﬁ)%,mg'

Proof. We first claim that Vi, € v"%o R[v] for each bad root Sy € ®~ sharing
the row of a, whose proof is almost identical to the first claim in the proof of
Lemma The rest of the proof also is similar to that of Lemma The
only difference is that we use Lemma B.2.3] instead of Lemma B.1.3]1 We leave the
details for the reader. O
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4.3. Description of U(w,<,V,) in colength < 1. In this subsection we de-

scribe U(w, <n, Va,) when w* € W has colength < 1.
We first give an upper bound of U(w, <n, V,) for w* of colength zero.

Proposition 4.3.1. Let w* € Adm(n) be a colength zero shape, and let a € O™.
Assume that @ is n-generic ([LLHLMD| Definition 4.2.2]). Then there is a closed
1mmersion

U(@, <n, Va) < SpecO[{ X3 | B € D7}

Proof. This follows from the arguments in [LLHLI9, §3.4], specifically the proof of
[LLHL19, Proposition 3.4.12]. (Note that the argument in loc. cit. is written for
complete local Noetherian O-algebras but is valid in our setting of O-flat Noetherian
O-algebras.) O

We now give an upper bound of U(w,<n,V,) for w* of colength one. Recall
that Z_,, is constructed in Lemma T3] (resp. in Lemma[23) if w* is of colength
one of the first form (resp. of the second form).

Proposition 4.3.2. Let w* € Adm(n) be a colength one shape, and let a € O™.
Assume that @ is n-generic (as defined in [LLHLMD| §4.2]). Then there is a closed

1MMersion

O[{Xs [ Be @ FuU{c)]
(c-Z_o—p)
Proof. By Proposition B3Il O(U(w, <1, Va)) is generated by cg;, (with § € &~
and 0 < k < m%) and c¢. But Lemmas 1.1l . T.5 @21 and show that for
k < mj and B not bad (resp. k < mj — 1 and 8 bad) the element cg  is a Z-linear
combination of Xg (resp. Y3) and elements of Fs 3. We conclude, by induction on
the poset ®~ and change of variables, that we can also generate O(U(w, <n, V,))
using ¢, Xg (8 € @) and Yz (8 bad). In turn, Lemmas B T4 and 24 show
that we can generate using just ¢ and Xg. Finally Lemmas 1.3 and 23] (and
p-flatness) give the relation ¢- Z_,, — p. |

U (@, <n, Va) < Spec

5. COLENGTH ONE DEFORMATION RINGS

In this section we apply the results of §3land §4lto compute potentially crystalline
deformation rings with Hodge-tate weights 7, for sufficiently generic p and tame
inertial types 7 such that @w(p, 7) has colength at most one in each embedding.

5.1. Product structures and error terms. We first extend the technical re-
sults of §4.11 and §4.2/in a way which can be used to describe the closed immersion
U(Z,<1,Vrno) = U(Z,<n)", when Z = (3¥),cs has colength at most one.
This requires the modification of some of the previous formulas by allowing prod-
uct structures, non-trivial diagonal entries, and an “error term” which takes into
account the monodromy condition defined in §2.2.3]

Keep the notation of §3 and let R be a p-adically complete, topologically finite
type, Noetherian O-algebra. Let w* € Adm(n) be a colength one shape of the first
form (resp. of the second form), and A € U(w, <n)(R) with its image A € U(w, <
n)(R) under the natural morphism U (@, <) — U(@, <n). We may write w™' Aw =
sDgs - w™t Aw (resp. w1 Aw' = Dy - w'~t Aw') for some Dy = Diag(as, -+ ,a,) €
TV(R). Let V € L Mat, (R[v]) be the matrix obtained from Proposition B2 (resp.

77 def

from Proposition B.2.2)) applied to A € U(w,<n)(R), and set V= Dy - V. Then
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by the same argument as in Proposition [3 (resp in Proposition B.2.2]) we may
write (w™ Aw)JOJO = ajyj, (v +p)" I (resp. (w'~ 1 Aw! Vigio = @igio (v + p)"770) for
some aj,j, € R (resp. for some a;,;, € R), and we have the following identity:

17) s- u_a(—ﬁﬂ) S(w Aw) = (v+p)" -V
Jo
(resp. ua(—aéﬂ) v - (w' T AW') - s = (v 4 p)T - vio - ‘7)
Jo
Note that we may identify ¢, defined in Proposition (resp. in Proposi-
tion B22)), with aj,;,/ai, (resp with a;y,/0i,). We also note that the degree
description of each entry of Vis exactly the same as that of V', as V=D V.

We fix a tame inertial type T with a N-generic lowest alcove presentation (s, 1),
together with an element Z € Adm(n)" which we write as Z = (1)) c 7.

Until the end of this subsection, assume that j € J is such that ¢(20)) =
{(t,) — 1, and let AV € Uz, <n)(R) be the image of AU) € UED, <n)(R).
Let V@) € 1 Mat, (R[v]) be the matrix obtained from (I7) (according to the two
possible forms of ‘)) applied to AW € U(Z9, <n)(R). (We adapt the notation
of Propositions B.1.2] and B.2.2] as well as condition (IT) in our context by adding
a superscript (j), so that for instance a colength one shape of the second form has
decomposition w(j)sa(j)tn,a<j>w(j)71.) It is easy to see that condition () shows
that condition (7)) has the form
(18) VT (Ta VD) VO) € (0 p) 0 R+ p¥ PR
for all 3Y) € &=, where a,, € Z" is defined by w)(a,,) = all).

As VO = Dy - V) for some Dy < Diag(ay, - ,an) € TV(R), if we let g0) =
apm € @7 then it is easy to see that

i) 4
Vﬁ((JJ)) =ap- Vﬁ((JJ)) .

Hence, condition ([I8) applied to V) induces all the relevant lemmas from g4Il and
§4.2) keeping track of the “error term” p™V~=2"+5_ as the diagonal entries a; of Dy
are units in R. More precisely,
(i) in Lemma LTIl (resp. in Lemma FL2.T]), we have
(1) ng c v"sW) (v —|—p)mﬂm (Xﬁ(j) + F>ﬁ(j)) +pN_2"+5R[[vﬂ;

(2) Vﬁﬁu) € v (v+p)"sD (Yai) +vXp00 + Fupw) + oV 2" R[],

(ii) in Lemma T3] (resp. in Lemma [£.2.3]), we have
PO (lay,, —aDYY ki) € pTeD) v e- Z_ iy + pNTOR,
(iii) in Lemma T (resp. in Lemma 24, we have
P (Yo £ Xy500))

j B _
€p e (C'Cm),m' ‘Fo_o0 +Fopo +c- F>S(5m)) +pN TR,

(iv) in Lemma LT3l (resp. in Lemma [L.25]), we have

v

o €V (04 )" (X gy + Fupw ) +pV 2 R[],
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5.2. Potentially crystalline deformation rings. Fix p : Gk — GL,(F), and
let 7 be a tame inertial type. We assume that 7 has an N-generic lowest alcove
presentation ([LLHLMD} Definition 2.4.3]) with N > 3n —6. Assume that " # 0

so that in particular @(p,7) is defined. Recall that when £(@w(p, 7)) = £(t,) — 1
for some j € J, then by Proposition L2 we have a positive root a'?) and a
corresponding element Z_ ;) constructed in Lemma [ T3] (resp. in Lemma [£2.3)).

Lemma 5.2.1. Let 7 be a tame inertial type with an N-generic lowest alcove
presentation, where N > 3n — 6. Assume that @(p,T) satisfies £(wW(p, 7)) >
U(ty) — 1 for each j € J. Then there is a closed immersion

U((@(3,7)9)*, <0, Vaw) < SpecRY),
where al¥) € Z, are the constants defined in ([Bl) and
i i | TRFS 0 (@6, ) HUTENY) = )~ 1;
O{Xp | Be @} ®o (®Z,i:1 %) otherwise.
Proof. The results follow immediately from Proposition 3T and Proposition
together with equation (). |

Proposition 5.2.2. Let 7 be a tame inertial type with an N -generic lowest alcove
presentation, where N > 3n — 6. Assume that w(p, ) satisfies that £(w(p, 7)) >
U(ty) — 1 for each j € J. Then there is a closed immersion

_ o
U(@(ﬁyT)*,Sflva,o@)f—)Spf< ® Rm) |
O,jed

where the rings RY) have been defined in Lemma .21

Proof. The proof goes very similar to the ones of Proposition and Proposi-
tion E.3.1] together with Lemma [5.2.11 The only difference is that we need to take
care of the error terms. For instance, if (w(p, 7)U))* is of colength one of the first
form, and if 8 is a bad root sharing the row of «, then there exist Fz € F>_,,

Gp € Fup, and Hyp € F’is(ﬁ) such that

Vg =—c- Xy + (C “cpmy,  Fp+ Gt Hs(/a)) +0 (pN T

by Lemma[ZT.4l The coefficient g,m, corresponds to Xg, and so due to our generic

assumption, by scaling Y3 we can further eliminate the variable Y. (Note that since

N —2n+5 > mg+ 1 for all negative roots  we can indeed eliminate Yj.)
Repeating the same arguments, we conclude that there is a surjection

Ap B
( ® R”)) —~ O(U(@(, )", <1, Vo),
0,jeg
which completes the proof. ([l
Let A € U(w(p, 7)*, <n)(F) correspond to Pla ., asexplained at the end of §2.2.3]

and let A be the image of A under the map U(@(p,7)*, <n)(F) — U(@(p,7)*, <
n)(F). Set

Joa & {jed | twpr)9)=tt,)—1and Z_,;, =0 (mod =)}
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(where we consider the image of Z_ ;) in F via the map induced by A). Note that
for all j € J such that £(w(p,7)7)) = £(t,) — 1 the corresponding element ¢ € R\
is sent to 0 via the map RY) — T induced by A.

Theorem 5.2.3. Let 7 be a tame inertial type with an N-generic lowest alcove
presentation, where N > 3n — 6. Assume that Rg’T % 0, and the shape w(p,T)
satisfies £(w(p, 7)9)) > L(t,) — 1 for each j € J. Then RY7 is formally smooth
over

o OX,Y
(19) ®o,jeJ0,A (XHY - ;r])}) '
Proof. First, notice that we may replace Z_, with X_,, due to the equations of Z_,
in Lemma and Lemma Noting that the completion of ®¢ jesRY) at A
is an integral domain, we see that the completion of O(ﬁ({b(ﬁ, )%, <1, Vi) at
Ais formally smooth over the ring in (I), by dimension counting and Proposition
Moreover the deformation ring R%"’T is also formally smooth over the ring

in (I9) by equation (@) and [Ham75, Theorem 5]. As the latter is irreducible, so is
Rﬁgn’ T, in particular RES"’T = R’" which completes the proof. O

Remark 5.2.4. Under stronger genericity assumptions on 7 we have U (Z,<n, Vro0)
# () whenever zZ € Adm(n)Y ([JLLHLMD, Lemma 7.3.5]).

6. APPLICATIONS

In this section we elaborate on how the explicit description of the potentially
crystalline deformation rings from Theorem [B.2.3] can provide information on rep-
resentation theory and automorphic forms through following the philosophy of the
mod p local Langlands correspondence.

6.1. Subextremal weights. In this section we refine, in Definition [6.1.2] the no-
tion of defect for Serre weights of 5 : G — GL,,(FF) introduced in [LLHLMDb), §8.6.1]
and [LLHLMal §3.7].

We fix once and for all a lowest alcove presentation w(p*) for p. All tame inertial
types will be endowed with the unique lowest alcove presentation compatible with
w(p*). Throughout this subsection, we assume S, = {v} so that F,\ = K.

Recall from |[CEG™16, Theorem 3.7] that given a tame inertial type 7 for K
there exists an irreducible smooth representation o(7) of GL,(Ok) which satisfies
properties towards the inertial local Langlands correspondence. By [LLHLMD
Theorem 2.5.3], if 7 has a 1-generic lowest alcove presentation (s, — 1) then o(7)
can be taken to be Ry(u).

Let p°P : Ix — GL,(IF) be a 2n-generic tame inertial F-type. The choice of a
lowest alcove presentation w(p°P) = t,,4,s for it gives a map

Tzer 1 Adm™®(n) — {7 : Ix — GL,(E)}
tyw — T(sw, p+ 1+ s(v)).
(Note that given w € Adm™#(n) we have w(p*®, 75+» (w)) = @ by construction.)
Recall from [LLHLMD, §2.3.1] the background on Deligne-Lusztig representa-
tions and their lowest alcove presentations. In particular given a Deligne—Lusztig

representation R with a 2(n — 1)-generic lowest alcove presentation w(R) we have a
set JHout (R) of outer weights for R, which is a subset of JH(R), the latter being the
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set of the Jordan—Holder factors of the mod w-reduction of an arbitrary O-lattice
in R. We also recall that we have a bijection

o ~+ o+ o .
(20 {(@,@2) € (W x W, ) /XOT) | 1@ '@ p — Adm™(n)
(’[171,’[172) — @glewl
from [LLHLMbD| Remark 2.1.8], and a bijection
I ~—+ . .
{@,@) € (W x W,) /XD) | @1 1@} — W (5)
(W1, W2) — Fiay aee) @) -10))

from [LLHLMDb| Proposition 2.6.2]. As multiplication by wy, gives a self bijection

on Ej, we finally obtain a bijection
opr : Adm™E () — W' (5P).
@y woBt — Figo g, am)@)-10)
We write wgsr for the inverse of ops».

Lemma 6.1.1. Assume that W(p™) is a 2n-generic lowest alcove presentation for
PP, and let w € Adm™®(n). Then oz (W) € W' (p?) N JHout (0 (50 (w))) and it
satisfies the following property: for any o’ € W' (p°®) N JH(o (50 (w))) we have

(21) Wpev (o)) > @)
for all j € J with equality for all j € J if and only if o' = 0.

Proof. This is an immediate consequence the proof of [LLHLMDb| Proposition 8.6.3]

of which we employ here the notation and convention. In particular we let 7 &f

Tz (W) so that w = w(p, 7) € Adm™®(n). Using the bijection (20) we decompose
W as @Q_Iwoﬁl where (w1, wWs) € ,VIV/JF X W? satisfies wy 1 @;1@2.

We have op» (W) = Fla1,,@)w (o)) Py definition, and the latter Serre
weight is the element x € W7 (_Sp) N JH(o (7)) defined in [LLHLMDB, Proposition
8.6.3]. As w(p*P)w; *(0) = w(7)wy ' (0) by [LLHLMD] Proposition 2.6.4], the weight
k is in JHout (0 (7)), by definition Of JHeut (0(7)) (see [LLHLMD, Proposition 2.3.7]
and the beginning of [LLHLMD! §2.3.1]).

The fact that for any ¢’ € W’ (p*®) N JH(o(7)) the inequality (ZI) holds is
immediate from the proof of [LLHLMDb| Proposition 8.6. 3] We provide the details:
by [LLHLMDb| Proposition 2.6. 4] any o' € W' (5®) N JH(o(T) )) 1s of the form o’ =

Fla ,w(‘r)§2_1(0 for some w’ € W1 and some pair (51, 52) € W X W satisfying

s rw fEh 52 and 3, 'ws; = w(p*P, 7) for some w € W. By Wang’s Theorem (see
[LLHL19. Theorem 4.1.1]) the condition S 1 w,w’, which is defined embeddingwise,
gives fséj) < 15,(1])@’ @) for all j € J and by [LLHLI9, Lemma 4.1.9] we conclude

that
(~(J) /(])) ng{J) > (%J)) 'é(lj) > (géj))flwg{lj) — oW
since (E{zj)) wOE{J) (w ;L])w @)—1 wog{f) are reduced expressions for all j € J and

—~+
wo > w. As §1 T w' € W, we see that (w,w',51) defines an element in the left
hand side of (20) and hence Wz (0”) = (w,w') " twosy, proving ). The fact that
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the equality holds for all j € J if and only if 0/ = oz (w) is immediate since ozsp
is a bijection. (|

The usual order on the set of non-negative integers Z>( induces the product
partial order on ZZ,, and for h = (h));c 7 € ZJ, we define

W2, (p) & {a € W @) | £(y0(0)D) > £(ty) — b for all j € j} .

Let p : Gk — GL,(F) be a continuous Galois representation such that p* is
0-generic (so that w(p™) € W is defined). We say that a tame inertial F-parameter
PP Ix — GL,(F) is a specialization of p, and write p ~» p°P, if there exists an
n-generic tame inertial type 7 such that p is 7-admissible and w(p, 7) = w(p°P, 7).
(In this definition, the lowest alcove presentations of 7 and p°P are always assumed
to be compatible with a fixed lowest alcove presentation of p*.)

Let X, x be the Noetherian formal algebraic stack over SpfO defined in [EG|
Definition 3.2.1]. It has the property that X, x(IF) is isomorphic to the groupoid
of continuous representations of G over rank n vector spaces over F. Moreover
there is a bijection o — C, between Serre weights of G(& GL, (k)) and irreducible
components of the reduced special fiber of X, , described in [LLHLMDb) §7.4]. (We
refer the reader to [LLHLMD| §2.2] concerning Serre weights and their lowest alcove
presentations.) This bijection is a renormalization of the bijection o — X vea Of
[EGlL Theorem 6.5.1].

In particular, if 5 € X, x(F) we define the set of geometric weights of p as

W(p) = o |5 e Co(F)}.
Definition 6.1.2. Let 5 : Gx — GL,(F) be a continuous Galois representation
such that p* is O-generic. For h = (h\9));c7 € ZZ, define W2, (p) to be

wign (U whe)
P
We call the elements of Wéﬁ(ﬁ) the Serre weights of p of defect at most h.

In what follows we write 1 for the tuple of h € Zgo satisfying h() = 1 for all
j € J, and similarly for 0. Note that ng(ﬁ) = Wextr(p) is the set of extremal
weights in [LLHLMal Definition 3.7.1].

6.2. Application to patching functors. We introduce the formalism of patch-
ing functors following [LLHLMal §5.2], giving applications to the results on the
deformation rings in g5l

6.2.1. L-parameters. Recall that F;r is a finite unramified étale Qp-algebra, which
we write as [, s, F.f for a finite set S, and finite unramified extensions F,"/Q,,.
We assume throughout that for any v € S, the coefficient field E (resp. F) contains
the image of any homomorphism F, < @p (resp. k, < F,, where k, denotes
the residue field of ). We let G¥ denote the product HFJ—>E GLnyo (the dual

def

group of ResF;/QpGLn/OP) and LG(F) = GY x Gal(E/Q,), where Gal(E/Q,)
acts on the set {¢ : FJ — FE} by post-composition. An L-homomorphism over
A € {E,F} is a continuous homomorphism 7, : Gg, — “G(A). An L-parameter
is a GV (F)-conjugacy class of an L-homomorphism. An tame inertial L-parameter

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COLENGTH ONE DEFORMATION RINGS 5779

is a GY(E)-conjugacy class of an homomorphism 7 : Iy, — GY(E) which has
open kernel and factors through the tame quotient of Ig,, and which admits an
extension to an L-homomorphism. By [GHSIS, Lemma 9.4.1, Lemma 9.4.5], the
datum of an L-parameters 7, (resp. a tame inertial L-parameter 7) is equivalent to
the datum of a collection of continuous homomorphisms {p, : G+ — GLy(A)}ves,
(resp. tame inertial types {7, : Ips — GL,(A)}ves,). Via this bijection, we
can therefore give the notion of lowest alcove presentations and genericity for L-
parameters. Given a tame inertial L-parameter 7 with corresponding collection
{mv : Ip+ = GLp(A)}yes, of tame inertial types, we let o(7) be the tame smooth
irreducible representation of GL,,(O,) over E given by ®,es,, 50 (Ty), where for each
v € Sp we let o(7,) be the tame smooth irreducible representation of GL;,(Op+)
over E attached to 7, via the inertial local Langlands correspondence of [LLHLMD]
Proposition 2.5.5].

6.2.2. Patching functors and Serre weights. Let now 7, : Gg, — LG(F) be an
L-homomorphism, with corresponding collection {p, : G+ — GL(F)}ves,

We let RP be a nonzero complete local Noetherian equidimensional flat O-algebra
with residue field F such that each irreducible component of Spec RP and of Spec R’
is geometrically irreducible, and define

_ def ) O dof pps
QL RS wEon,
(we suppress the dependence on RP in the notation of R).
Given a tame inertial L-homomorphism 7 : Ig, — G (E), with corresponding
collection {7, }ves,, we define

—

R d:ef ® R T
Tp UGSp Py
def

and Ro(7) = R QR RQ;T, and write Xoo, Xoo(T), Xoo(7) for Spec R,

Spec R (7), and Spec R (T) respectively.

We write Mod(X.) be the category of coherent sheaves over X, and
Repp (GL,,(O,)) be the category of topological O[GL,(O,)]-modules which are
finitely generated over O.

Definition 6.2.3. A weak patching functor for an L-homomorphism 7, : Gg, —
LG(F) is a nonzero covariant exact functor Mo, : Repp(GLy,(0,)) — Mod(X)
such that for any tame inertial L-homomorphism 7 and any O-lattice o(7)° in o(7)
one has:

(1) Moo(o(7)°) is a maximal Cohen-Macaulay sheaf on X (7); and

(2) for all 0 € JH(o(7)), Mo (o) is either zero or a maximal Cohen-Macaulay
sheaf on X (7).

Given a weak patching functor for an L-homomorphism 7, we thus define
(22) Wy (7p) {6 | o is a 3(n — 1)-deep Serre weight of G and M (o) # 0}.

By [LLHLMD, Proposition 2.4.5] and [LLHLMal Theorem 5.1.1, Proposition
5.4.1] we see that if 7, is 6(n — 1)-generic then condition that o is 3(n — 1)-deep in
the right hand side of ([22) is automatically satisfied.
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6.2.4. Modularity of weights of defect at most one. We now assume S, = {v} and
FF = K. In particular a continuous homomorphism p : Gx — GL,,(F) can be seen
as an L-parameter, and have weak patching functors associated to it.

Proposition 6.2.5. Let p : Gx — GL,(F) be 6(n — 1)-generic and let M, be a
weak patching functor for p. Then the following are equivalent:

(1) W2y(P) N War. (p) # 0; and

(2) WE,(p) € War. (7)-

Before the proof, we record Lemma [6.2.6] which will be also used in the proof of
[PQ22, Conjecture 5.3.1] in §6.3

Lemma 6.2.6. Let p°° : Gg — GL,(F) be 6(n—1)-generic and let w € Adm"™®(n)
satisfy £(t,) — (@) <1 forallj € J. Let T o 50 (W) and write © = W, "wot, Wy
where wy, Wy € ﬁj and v € XT(T) are uniquely determined up to X°(T). Then:

W (5°) N JH(o (1)) = {a—qp( N @D e 89 for all j € j}

where SO %4 {(~(j)) wot ()ng),( ;L) (J)) w wgJ)}. Moreover, #5W = 1 if
and only if@g = w, 1w and v € XO(T), if and only if (@) = £(t,).

Note that the existence and uniqueness of the decomposition of w in the lemma
is guaranteed by [LLHLMDbD], Proposition 2.1.5].

Proof. The relation F(z ) € W’ (p*)NJH (o (7)) is equivalent, by [ILLHLMD!, Propo-
sition 2.6.4], to the existence of a factorization w = (Z2) ls¥; with s € W,
T1,To € EJF, T tT 7t zﬂ;l%g and w = w(p*?)(z1)~1(0). By LemmaR T4 applied to
each W) we have s = wg and for all j € J either () = %(13‘) € @ﬁj)XO(T) (in which
case, by the uniqueness of the factorization in [LLHLMD| Proposition 2.1.5] we fur-
ther have 75 = t_, 0@y ) or #0) = (@) '7 € (@) @ XO(T) (in
which case, by the uniqueness of the factorization in [LLHLMbl Proposition 2.1.5]
we further have x(j ) = =10 )w(j )) The conclusion follows now from the definition of
the map ogr. ]

Proof of Proposition [6.2.5. The proof is by induction on the following quantity
d5(0) attached to a Serre weight o € W2, (p):

(23) 5 d—efmln{Z€ ) = Ui (0) D) |pwpsp}.
JjeJ
We fix throughout the proof a choice of an algebraic central character (; all lowest
alcove presentations below will be chosen to be compatible with (.
By definition of WZ,(p) and Lemma GBIl for each o € WZ,(p) there exist

p ~» p*P and a tame inertial type 7 (depending on p°P) such that

(1) 0 € W9(p) NWZ,(7°) N JHou(o(7));

(2) Ty (0) = B(FP, 7) € Adm™(); and

(3) Wy (o)D) > Wy (0)9) for all j € J and all o/ € W*(5*P) N JH(o(7)).
(Note that condition determines T uniquely, and we thus let 7 = 7 (W5 (0))
in the notation of Lemma [G.1.1])
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For each o € ng( ) with corresponding 5 ~» p°P and 7 as above, we now claim
that

(24) W(p) N JH(o (7)) = W (%) N TH(o (7))
or, equivalently by [LLHLMal Theorem 5.1.1], that any o' € W (B®)NJH(o(7)) is
in W9(p). Indeed by Lemma [6.2.6 there exists oo € W7 (p°?) N JH(o (7)) such that
(1) 65(c0) =0; and
(2) for all o' € W’ (5*®)NJH(0 (7)) we have Wyse (07) ) € {tWpe0 (00) D), Wpew (o)D)}
By item [(T)] and [LLHLMD| Theorem 7.4.2] (see also [LLHLMa Remark 3.9.1]) we
have o € Wg (p) and thus p € C,NC,,. Recall from [LLHLMD equation (4.11) and
Definition 4.6.1] the variety 6§, with its decomposition ;¢ ; égi(j). Each égi(j)
is determined explicitly by @w(7°P)) and @ (o)) (see loc. cit. Definition 4.3.2,
Theorem 4.3.9) so that 6’“” = Cc$Y) it Wyn (0')) = Wy (0)9), and éc’(j)
ég(’)(j) if Waer (0/) 1) = W (00)). Thus, by item[(2)] for all o’ € W (pP)NJH(o (7))

we have

osncs, = [ s nesw c [T eV = ¢,
JjeT JjeT
which together with [LLHLMbD| Theorem 7.4.2] implies C, NCy, C C,s. This proves
@4).

We now proceed to the inductive argument. We freely use the notation for cycles
from patching functors introduced in [LLHLMal §5.3], in particular we write pPT to
indicate the projection map from cycles over the reduced union U,c7X o (7) (for
a set of generic tame inertial L-parameters T) to cycles over the special fiber of
the multi-type deformation ring associated to the set 7. The set 7 can be fixed to
satisfy condition (ii) in [LLHLMal §5.3] since all the tame inertial types 7 involved
in this proof satisfy £(w(p, 7)) > £(t,) — 1 for all j € J, hence Theorem .23
applies. Furthermore, given o € W9(p) we will write C,(p) to denote the pullback
of the component C, to the versal ring of X, x at p € &, x(F).

For 0 € W%,(p), we prove by induction on d5(c) that the support of pr o
Z(Mu (o)) contains C,(p), and that any other component in the support of Pr o
Z(Muo(0)) is of the form C,.(p) with k € W9(p), d5(k) < 05(0).

If 55(c) = 0 then o € WZ(p), and WZ,(p) N WM (p) # 0 implies W2,(p) C
W (P) by the main result of [LLHLMa]. As W9(p) N JH(o(7)) = W’ (5P) N
JH(o(7)) = {0} by Lemma 626l and M, (7(7)°) has full support over (a formally
smooth modification of) Rg’T, we conclude that the cycle Pr o Z(My(a(7)°)) is
supported on C,(p). (Here and below we write (7)° to denote the mod w-reduction
of any O-lattice o(7)° in o(7).)

Assume now that d5(0) > 0 and that for any o’ € WZ,(p) with d5(0") < d5(0)
the cycle pro Z(My (o)) is supported on Cy (p) and possibly other components of
the form C,(p) where k € W9(p) and d5(k) < 05(c”). We have

(25) Supp (Z(R3")) = Supp (red(Z(R27)[1/p]))
= Supp (redopr( (Moo (o(7)°)[1/p])))
= Supp (P o I"601( Moo(a(7)°)[1/p])))
= Supp (Pro Z(Mu(5(7)°%))),
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where the first and last equality follow from [LLHLMal, Proposition 5.3.1], the
second from the fact that RE’T is geometrically integral (Theorem [E23)), the third
from red o pr = prored (see [LLHLMal §5.3]). Since R%’T is geometrically integral by
Theorem [5.2.3] by exactness of M, and [LLHLMal Theorem 5.1.1 and Proposition

5.4.1] we have
pro Z(Muo(a(7)%)) = > pr 0 Z(Moo(0"))
o' €W’ (p°P)NJH(o (7))
= pro Z(Mu(0)) + > P 0 Z (Moo ().

o' €W (p°P)NIH(o (7))\{o}
From the definition of §5 together with Lemma [6.1.T] we easily check that d5(c’) <

§5(o) for all o’ € W*(p?) N JH(o(7)) \ {o}. We thus deduce, using the inductive
hypothesis and (24]), that

U Supp (PF o Z(Mao(0"))) = U Cor (7).

o' eW? (p°°)NJH (o (7))\{o} o’eW? (p*P)NJH (o (7))\{o}
On the other hand, we have
Supp (Z(ﬁg’T)) = U Co (P)

o’eW9(p)NJH(o (1))

by [LLHLMb, Theorem 7.4.2] (and [Stal9l Lemma ODRB| Lemma 0DRD/ and
Definition 0DRA]) and hence Pr o Z(My (o)) is necessarily supported on C,(p),
and possibly on other components C,/(p) with o’ € W9(p) and d5(0’) < d5(c). O

Remark 6.2.7. If, in the statement of Proposition [6.2.5] we furthermore assume that
weak patching functor M, is minimal ([LLHLMal Definition 5.2.1]), then equation
[@8) can be replaced with the stronger statement

e(R5") = e(Moo(3(7)°))
(where e(-) denotes the Hilbert—Samuel multiplicity), which forces e(My(0)) = 1

for all o € W7 (5°P) N JH(o(7)).
Remark 6.2.8. Let 7, : Gg, — LG(F) be an L-parameter, with corresponding
collection {p, : Gp+ — GL,(F)}yes,. For each v € S, let J, denote the set of

ring homomorphisms {k, < F}, so that J, = [[,cs, Jo- Given h, € 7y for
each v € S, we then have a collection {W2, (p,)}ves, whose elements are Serre

weights for G by taking tensor products over v € S,. In particular, given h € Z‘Z%
we can define the set W2, (7)) for an L-parameter 7, : Gg, — “G(F). The proofs
of Proposition and Lemma go through, mutatis mutandis, replacing
p: Gk — GL,(F) with an L-homomorphism 7, : Gg, — “G(F) (for these kind of
passages from #5S, =1 to #5, > 1 see also [LLHLMD, Remark 7.3.4]).

6.3. Global applications and the conjecture of [PQ22]. We apply the results
above to obtain our main global applications. We follow the setup and notation of
[LLHLMal §5.5.1, 5.5.2, 5.5.3]. In particular, we have a totally real field F*/Q not
equal to Q, and F/F* a CM extension. We assume from now on that all places
of F'* above p are unramified over Q,, and that they are further totally split in
F. Given a reductive group G,p+ which is an outer form for GLy, split over F,
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and such that G(F' ®g R) = U,(FT ®g R), we define for a continuous Galois
representation 7 : Gp+ — G,(F) the notion of being automorphic (relatively to
G p+) as in [LLHLMa), Definition 5.5.1], as well as the set W (7) of modular Serre
weights of 7 (loc. cit. Definition 5.5.2). Here, G,, is the group scheme defined in
[CHTOS, §2]. Finally, let 7, be the L-homomorhism induced from the collection
of continuous representations 7|¢_, : Gpr — GLy(F) for v[p. In particular, we

denote by S, the set of the finite places of F* above p.

Let 7 : Gp+ — Gn(F) be automorphic and such that 7(Gp(,)) € GL,(F) is
adequate. Then by [LLHLMal Lemma 5.5.4] we can and do fix a weak patching
functor M, for the L-homomorphism 7, such that for any Serre weight o of G =
[I,es, GLn(ky) we have

(26) Moo (o) £ 0 < o € W (7).

Theorem 6.3.1 (Modularity of weights of defect at most one). Let7 : Gp+ — G(F)
be an automorphic representation such that
e 7(Gr(,)) € GL,(F) is adequate; and
o 7, is 6(n — 1)-generic.
Then the following are equivalent:
(1) Wy(rp) "W () # 0; and
(2) Wél(Fp) C W (7).

Proof. This follows from Proposition 6.2.5] and Remark [6.2.8] using (20). (]

Remark 6.3.2. Keep the setup and notation of Theorem [6.3.1] and Remark [6.2.8
Ifoe W;l(F;p) for some 7, ~ 7P, then o € Wiy (7) if and only if 0 € W9(7,) if
and only if o € WZ,(7,). For each such o, there exists 7 such that

(27) W(Tp,7) = W(FP,7) and L@(FP, 7)) > ((t,) — 1

for each j € J, and o € W' (7P) N JH( (7)), with o € W4(7,,) if and only if 7,
satisfies Z_, ) = 0 for each j € J, for which the inequality in ([27)) is an equality.

We now recall the setup of the local-global compatibility result of [PQ22]. As-

sume that p is totally split in F and fix a place w|p of F. Assume that 7, S Tlap,
is Fontaine—Laffaille of niveau one, and that satisfies a geometric genericity con-
dition dictated by its position in the moduli of Fontaine-Laffaille modules (see
[PQ22| Definition 3.2.5]). In particular we have a lowest alcove presentation (1, )
for 75 (with 4 = (¢p—1,¢n—2,...,¢1,¢0) in the notation of §1 in loc. cit.) and a
niveau one tame inertial type 7 with lowest alcove presentation (1, s ((MD’il’jl )V))

(with pDi91 €0V 4 ((n,aV) 4+ 1)a) where 0 < i1,j; < n — 1 corresponds to a

positive root & = v, +1,j,+1. Then by the proof of [PQ22, Lemma 3.4.1] (namely,
from the expression of Mat.(¢) in loc. cit.) we see that W(T., T) = t;—aSq, Which
is a regular colength one shape. In particular 7, ~» p*® with w(p*?,7) = t,_a5a.
By Lemma we obtain:

Theorem 6.3.3 (Conjecture 5.3.1 [PQ22]). Let w|p. Assume that T, is Fontaine—
Laffaille of niveau one, that (Fuy)n—iz,n—j, s Fontaine-Laffaille generic in the sense
of [PQ22| Definition 3.2.5], and moreover that 75, is 3(n — 1)-generic. Then

Wa(F) N JH(a (7)) © {F ()", F(u>m71)"),
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where W,,(T) denotes the set of modular weights for ¥ at w (as defined in the
paragraph just below [PQ22] Definition 5.2.2]).

Proof. By [LLHLMal Theorem 5.1.1], W,,(7) N JH(@(7)) € W*(p®) N JH(F(7)).
Now, it follows immediately from Lemma [6.2.6] as w(p°P, 7) = saty—a- O

The above result removes the weight elimination condition of [PQ22] Theorem
5.6.2]. However the fact that the deformation ring Rg’T is formally smooth over
O when Z_, # 0 modulo w makes the argument of [PQ22, Theorem 5.6.2] more
direct, since the modules of algebraic automorphic forms are in this case free over
the Hecke algebra by patching arguments (cf. [PQ22, Remark 5.4.6]).
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