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Abstract—This paper considers the stabilization of a class of
uncertain upper-triangular systems. Reinforcement learning has
demonstrated the ability to handle complex control tasks for its
model-free property and adaptability. However, the stability
cannot be assured. To guarantee the stability of the uncertain
system, a reinforcement learning integrated nonlinear controller
is introduced. It shows that the proposed controllers provide the
adaptability of reinforcement learning and guaranteed stability
for the uncertain upper-triangular system.
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I. INTRODUCTION

In control theory, stabilizing systems with uncertain
parameters is a key challenge. This paper considers the problem
of local asymptotic stabilization for uncertain upper-triangular
systems (1).

x

=a X1+ fi (X1, 0 x0), i =1, .., =1,

o~

Xp = anl, (M

where x = (x4, ..., x,)T € R™ represents the system state
vector, u € R denotes the control input, a;, i = 1, ...,n — 1, are
unknown positive constants and f;, i=1,..,n—1, are
unknown functions.

This upper-triangular systems are used to model many
practical systems like cart-pendulum system [1] and the ball and
beam system [2]. The stabilization problem of upper-triangular
systems has been extensively studied in existing research. Most
results [3]-[8] are based on known a; or with known bounds and
known bounded high-order nonlinearities f;. Stabilizing these
systems can be challenging when parameters are unknown. For
example, it’s impossible to design a linear feedback controller
to achieve local asymptotic stability when a; are unknown. In
addition, linear controller is sensitive to the upper-triangular
system. By increasing the powers of the states, a nested
controllers is designed in [9] to overcome the limitations of
linear controllers. Although the proposed controller is not as
sensitive as linear controller and guarantees the local
asymptotic, global asymptotic stabilization is still a challenge.
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Reinforcement learning (RL) has been successfully applied
to control tasks in various domains, such as walkers[ 10], robotic
manipulators[11], and aerial robots[12]. The utilization of
Markov Decision Processes (MDPs) provides a structured
framework for RL, enabling the modeling of sequential
decision-making under uncertainty. MDPs are characterized by
four main components: states, actions, transitions and rewards.
During a series of time steps (t = 0,1,2,3,...), an agent
repeatedly interacts with the environment E. At each time step
t, the agent observes the state s, of the environment, denoted as
s which belongs to the set of possible states, and randomly
chooses a real-valued action, a, € RY, from the set of available
actions. After a time step, as a result of its action, the agent
receives a numerical reward, 1,1, which is a part of the set of
real numbers, and transitions into a new state, s;,,. The MDP
and agent together thereby create a sequence that begins as
follows:

S0, g, 11, S1, A1, 1, S, Ay, T3, e 2

Therefore, the decision rule is a state feedback control law,
known as the policy m in RL, which determines the action based
on the current state. This action may alter the state of the system,
often in unpredictable ways, and the outcome of this change is
measured by the reward function r(s;, a;). The goal is to
maximize the total expected reward over time from each starting
state, a concept referred to as the value. RL is particularly
appealing for solving control problems for system with
uncertainty and disturbances due to its adaptability. In addition,
RL is model-free and does not require a model of the system
dynamics. While reinforcement learning offers a powerful
framework for solving control problems in uncertain
environments, it does not ensure stability in learning processes.
Due to the dynamic nature of environments and the complexity
of learning algorithms, convergence to optimal policies may not
always be guaranteed.

In this paper, we propose a reinforcement learning integrated
nonlinear controller for the upper-triangular system to guarantee
local stability. The proposed controller combines the
adaptability of reinforcement learning with the robustness of
nonlinear control strategies to ensure local asymptotically
stability of the upper-triangular systems.
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II. RELATED WORK

A. Nonlinear Controller for Upper-triangular system

In [1], a nested nonlinear controller is proposed to overcome
the limitation of linear controller to stabilize the upper-triangular
system (1). For example, when n = 3, the nonlinear controller
is designed as

33
w==((Cex) s + ko) ' 4 k) 3)

where k;s are any positive numbers.

The nested controller is derived by changing the linear
structure of the controller and increasing the powers of the
states. A fundamental principle in effectively increasing the
powers of states of linear controllers is based on the theory of
homogeneous systems [13][14]. Nevertheless, conventional
homogeneity fails when addressing the unknown parameters a;
because of the similarity between linear systems and
homogeneous systems.

The concept of homogeneity with monotone degrees
(HMD) is proposed in [15] and [16] to address the shortcomings
of conventional homogeneity. In [17], a linear feedback
controller is studied to stabilize a power integrator system which
has a homogeneity with strictly decreasing degrees (HSDD)
with respect to the homogeneous weight vector (1, 1,..., 1) €
R™. Based on the notion of HSDD, we can increase the powers
of the states in a linear controller to locally asymptotically
stabilize the uncertain upper-triangular system.

B. Reinforcement Learning in Control

Control theory has traditionally relied on mathematical
models to predict system behavior and design controllers
accordingly. However, with advancements in computational
capabilities, researchers began to explore learning-based
approaches that do not require a complete understanding of
system dynamics. Early work in [18] established the foundation
for integrating RL with control theory, emphasizing its potential
to optimize control policies directly through system interaction
without detailed models. Model-free RL methods, particularly
Q-learning and policy gradient techniques, have been adapted
for various control applications, from robotics to autonomous
vehicles. These approaches allow systems to learn optimal
strategies through trial and error, improving their performance
in real-time as they interact with the environment [19]. Such
techniques are particularly valuable in environments where the
system dynamics are either too complex or costly to model
accurately.

There has been significant interest in hybrid approaches that
combine the robustness of traditional control methods with the
adaptability of RL. For example, the work of [20] introduced
Adaptive Dynamic Programming (ADP), a method that merges
concepts from dynamic programming with RL to create
controllers that can adapt to changes and uncertainties in the
system [20]. These hybrid techniques aim to provide more
reliable control in practical applications where safety and
efficiency are critical. The application of RL in real-world
control systems has been extensively documented across various
domains. In robotics, RL has been used to develop controllers

for complex tasks such as manipulation and locomotion, where
precise model-based controllers would require prohibitive
computational resources [21]. In the automotive industry, RL
has been explored for developing advanced driver-assistance
systems and fully autonomous driving technologies,
demonstrating significant potential for improving safety and
efficiency [22]. Despite its successes, the application of RL in
control theory faces several challenges, including the need for
improved sample efficiency, ensuring stability during the
learning process, and addressing safety concerns inherent in
deploying learning-based controllers in critical systems. Future
research directions include the development of safer learning
algorithms, methods to combine learning with robust control
techniques, and strategies to reduce the data requirements of RL
algorithms.

III. REINFORCEMENT LEARNING AND NONLINEAR INTEGRATED
CONTROLLER

The proposed methodology integrates RL controller with a
nonlinear controller to ensure both global and local stability in
dynamic systems. In reinforcement learning, the policy @
decides the behavior of an agent by mapping states to a
probability distribution over the actions m: S = P(A). Here, §
is the state space and A is the action space. The return from a
state is defined as the sum of discounted future reward R, =

I y% Y r(s;,a;) with a discounting factor y € [0,1]. The
goal is to learn a policy which maximizes the expected return
from the start distribution | = E,, s, g q;~n[R1]-

The action-value function is used in many reinforcement
learning algorithms. It describes the expected return after taking
an action a, in state s, and thereafter following policy m:

Q" (sp,ap) = Eriz:,5i>t~5.ai>t~n [Relse a;] 4)

Numerous methods in reinforcement learning utilize the
recursive formula referred to as the Bellman equation.

Q™ (sp,a) = IErt,st+1~E [r(se ap) + VEat+1~n [Q™(S¢41, Arr1)]]
(%)

When the target policy is deterministic, it can be represented as
a function u: S « A, thereby eliminating the need for the inner
expectation.

Q*(sp,ar) = IErt,st+1~E [r(se ap) +
yEat+1~n [Q¥(Sp+1s U(Se+1))] (6)

In this paper, we consider function approximators
parameterized by 8¢, which we optimize by minimizing the
loss:

L) = Es, 8 ai~pr~E [(Q(se aclQ™) — ¥)?] (7)
where
ye =71(sp,a.) + VQ”(5t+1'ﬂ(5t+1)|gQ) 3
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while v, is also dependent on 8°.

A. Controller Architecture

1) DDPG Reinforcement Learning Framework

The actor-critic structure in RL consists of two main
components: the actor and the critic. The actor u(s|6*) is
responsible for generating actions given the current state of the
environment. It deterministically maps states to actions, aiming
to maximize the expected reward. The critic Q(s, a) evaluates
these actions by computing the value function, which estimates
the expected return from the current state under the policy
dictated by the actor. The actor updates its policy using a policy
gradient method directed by the critic’s value function gradient.

Vou] = IESt~p[5’ [VG“Q(S'alGQ)lszst,a=u(5t|9‘u)] =
EstNPB [VaQ(S'alaQ)|s=st,a=u(st)v9#u(5|9#)|s=st] (9)

In this paper, we implemented the DDPG algorithm which

uses neural network to approximate the actor and critic function.

Reinforcement Learning Integrated with Nonlinear Controller
a) Nonlinear Controller Design

In this section, we introduce the concept of homogeneity
with strictly decreasing degrees (HSDD) and then show that the
nested nonlinear controller guarantees the local asymptotic
stability of the equilibrium x = 0 of system (1).
Assumption 1. There exists positive constants §; > 0 and ¢; >
0 such that the functions f; satisfy |f;(Xj1q1, ., x)| <
ci(lxcppo 100 + pN: _is2|¥j])1<i<n—1ina nelghborhood
of the origin, where C;i and 6; do not need to be known.

Definition 2. A continuous vector field v: R* —» R™ with
v = [vy,...,0,]7 is said to satisfy homogeneity with strictly
decreasing degrees (HSDD), if we can find positive real
numbers (14, ..., 7;,) and real numbers y, > y, > -+ > u,, such
that v;(e™xy, ..., €™x,) = €"itHiy,(x) for all x € R*, e >0
and i =1,2,...,n. The constants r; are the homogeneous
weights and y; are homogeneous degrees.

Homogeneity with Strictly Decreasing Degrees (HSDD)
is a subset of the broader concept of homogeneity, which
includes systems with monotonically decreasing degrees
(HMD). For HMD, the condition is that the sequence of degrees
must satisfy u; = u, = - = p,, [25]. When all the values are
identical, it becomes the classical notion of homogeneity. It's
noted that linear controllers don’t guarantee local asymptotic
stability at the equilibrium x = 0 for the entire range of
unknown parameters a;. To address this, we selectr; = 1as a
ratio of two positive odd integers, and p;,i =1,..,n—1
values are chosen as ratios of an even integer over an odd
integer such that yy > pu, > -+ > p, 4 >0 =:u,, we define
the powers 1; as 1, =1;+py;, i=1,..,n. The linear
controller u = —(kyx; + k,x, + -+ ky,x,,) can be replaced
as

r2 r3 T4
= —r(( ((k1x1T1 + kzxz)Tz + k3x3)7"3 + ooy
iy Xy 08 + Iy = = (e ) (10)

The closed-loop system (1) with controller (10) can be written
as

X = aixioq + [, X), i =1,2,..,n—1,

) Xp)- (11)

Xn = —ApPn(xq, ...

Lete = [eg, €,, ..., €,]T = ¢p(x), we obtain

x; = kite,x; = ki'(e; —e‘/r‘ N,i=2,..,n (12)
Then:
kia 2 x kia TZ
é = ,1(21 (e; — eil) + kifi(e) = _f '+ g.(e) (13)
k a; Tit1
o Tri r
€ = k: (el+1 i ) + klfl(e)
i+1
r i i
i i— 191 Ti-
+T_lleir_11 (— fioati- eyt 1+ gica(e)
Tit1
= — e T+ gi(e)
i+1
i=23.,n—1, (14)
T, T a
én = —knane, + e (—$ - + gnoa(€))
Th-1 ky
= —kya,e, + gn(e) (15)
Where f;=fio¢p 1i=12,..,n—1, and g; are
recursively defined by
klal
gi(e) = e + k1f1(e) (16)
kia; %_ ki1ai_q 7’?1
gz(x)_ Kirs l+1+kfl(e)+ — 11 (_k—ill+
gi-1(e)), (17)
r;nl_l kn—1an—1 Trrznl
gn(e) = _1 n—1 (- P + gn-1(€)). (18)

Theorem 3. Given that all functions f; satisfy Assumption 1,
the gains k; are nonzero, and the ratios 7; are positive odd
integers defined by 1;,, =1 + ;i =1,..,n, where r; >0
and py > py > > Up_q > U, = 0. Under these conditions,
the uncertain system is locally asymptotically stable for all a; >
0 and ﬁ- satisfying Assumption 1 if and only if k; > 0 for all
i=1,.

Proof. Construct the Lyapunov function as V(e) = Y- 17 l— e; %

where

li = —kigkitaiti=1,2,...,n— 1,1, = —k;'azt, (19)
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and ; =2n,r71>2,i=1,2,..
can be calculated as

,n. The derivative of V(e)

Tit+1

Vie) =" e% e i + 30, et gi(e), (20)

where 1,,,; = 1;, and a,, = 2. From (21), it follows that

Vie) 2 X e — XiLllille] ™ |gi(e)l, 21

l‘i+27"n

wherem; = a; — 1 + - Tivr — i=1,2,...,n are ratios of

Ti
an even integer and an odd one. Applylng (18) to (21), we can
find constants p;, p; and p; such that

pit2r;

a;i—1+ (1+3i)

V(e) =X, e T pilel

,uj+ri
X Biled T el T = XE Y Py e T el
(22)
Let {; = |e;|™i fori = 1, ..., n, rewrite the (22) as
-1 TL+1( 51)
V(e)>2 1(1 Zz 1,01(1 m‘ T
zZi—l 1
Z?:lzj 11l31|fl| ml Kl 7" _Zn ! 7L+1pl(l .{lm =
: _1 (1 H(O
(23)
where { = [{, (5, .., -

In the following analysis, we demonstrate that H({)
consists of higher-order terms with respect to {. By the
expression of m; below, it becomes evident that

a;—-1 n A T; T3 A
LI (148) =1 - T (1 4 §)
m; m;r; m;r;  M;T;
=148 > 1, (24)
m;ri
@1 KT it BT (25)
m; m]-r] Ui+2ry p.j+2rn

Because u; > y; for j < iand 27, > r;, we obtain

Gl BT g Tk g Mg (26)
m; m;r; uit+2ry ﬂj+21‘n
Sincer; 21 and yu; > pjforj=i+1,

Gl g Imy o Tm T 5q (27)

m; mj m;r; mj Ui+2ry uj+2rn

So, we can conclude that H({) has an order greater than 1.
Therefore, there exists a sufficiently small neighborhood
around the origin such that

Vie)>eYr, {j=eY", e™, Ve €D (28)

for a constant € > 0. From (19), we obtain

[[<0i=12..,nNeak>00=12..,n). (29)
If k;>0(0(=1,2,..,n), V(e) is negative definite. This
implies that the zero solution of (11) is asymptotically stable
according to Lyapunov Stability Theorem. Therefore, the
positivity of k; is sufficient to guarantee the local asymptotic
stability of (11).

b) Integration Mechanism

The objective of integrating a RL method with a
nonlinear controller is to leverage the adaptive learning
capability of RL for global system behaviors while utilizing the
precision and stability of nonlinear control techniques for local
scenarios. The integrated controller consists of a global RL
controller and a local nonlinear controller. The global controller
operates across the entire state space, adapting to complex, non-
linear dynamics and learning optimal control strategies through
interaction with the environment. The local controller provides
precise control in critical regions, such as near setpoints or
within stability boundaries, where traditional control methods
are effective and reliable. When the tracking error or the
system’s response reach to a pre-set threshold, control switches
from the RL controller to the nonlinear controller.

B. Training Process

The parameters of the actor and critic networks are
initialized with random weights. The target networks are
initialized to the weights of their corresponding original
networks. An experienced replay buffer D is introduced to store
transition tuples (s;, a;, 13, S¢+1), Where s; is the current state,
a; is the action taken, r; is the reward received, and s, ; is the
next state. During training, the actor’s deterministic policy is
supplemented with noise for exploration purposes. At each
training step, a mini batch of N transitions are sampled from D.
The sampled batch is used to compute the loss for the critic
network, using the Bellman equation as the target for the
temporal difference (TD) error. The policy is updated using the
sampled policy gradient, estimated from the critic’s Q-values
with respect to the actions. After each learning step, the target
networks’ weights are updated to slowly track the learned
networks’ weights, employing a soft update strategy controlled
by. The process repeats with the agent interacting with the
environment according to the current policy and exploration
noise, storing the experiences, and periodically updating the
actor and critic networks using mini batches from the replay
buffer.
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Algorithm 1 DDPG algorithm

Initialize critic network Q(s, a|89) and actor u(s|@#) with weights 89, and
6* respectively
Tnitialize target network Q' and i’ with weights 62’ « 69,04 « g#
Initialize replay buffer R
for each episode
Initialize a random process NV for action exploration
Receive initial observation state s;
for each step t
Select action a; = u(s.|60*) + N, according to the current policy and
exploration noise
Execute action a, in the environment
Observe reward 7, and observe new state s,
Store transition (S, a;, 13, Sg41) I R
Sample a random minibatch of N transitions (s;, a;, 13, S;41) from R
Sety; =17 + Q' (Si41 1t (Si41|0#)|09") for updating the critic
Update critic by minimizing the loss: L = %Zi(yi - Q(s;,a;]609))?
Update the actor policy using the sampled policy gradient:
1
Vou] =5 D V4005, 210 smsqampis Vork (5169,
L
Update the target networks:

09 « 169 + (1 - 1)<
04 16k + (1 —1)6*

IV. EXAMPLE

In this section, we compare the proposed controllers to
standard trained DDPG controllers. Here, we implement the two
controllers to the dynamics of orientation of a car [25]

6= %tangb + unknown dynamics, ¢ = w,®» = }u (30)

0 represents the car's angular deviation from the x-axis, ¢
denotes the angle of the steering wheel relative to the car's
longitudinal axis, w signifies the angular velocity of the steering
wheels, v indicates the linear velocity of the rear axle's center
during the cruising phase, [ stands for the distance between the
steering wheels and the rear wheels, ] denotes the moment of
inertia, and u represents the external torque. Assuming v, [, and
J are unknown constants, system (30) can be expressed in the
format of (1) while satisfying Assumption 1. We choose r; =
3,1, = 5, andr; = 33. From (3), we derive the following
nonlinear controller as a local controller:

33
u= —(((k1x1)5/3 + kzxz) fos + k3x3). (31)

In this example, we implemented controllers to systems with
initial values (0.3,0.2,0.1) and (27,1, 1), and the objective is
to direct the initial value to =zero. We choose
v,l,j as 2,3,4 separately, and kq, k,, k; as 1,2,1. The
unknown dynamics is set as ¢2.

As shown in the Fig. 3 and Fig. 4, the blue line represents
the system dynamic with reinforcement learning controller, and
the green line represents system dynamic with integrated
controller. Both the RL controller and integrated controller
stabilize the uncertain upper-triangular  system. The RL
controller converges faster than the integrated controller.
However, the integrated controller stabilizes the system with
smaller error.

l'_'<_____________________________________l
! 1
! 1
! 1
. 1
1 . ->—--)
1 N
1 // .

g Switch
: ~
: (Local Controller (- = >= =~
1 1
1 1
1 1
1 1
S 4

Fig. 1. Integration mechanism

Yi

Fig. 2. Dynamic of orientation of a car.

Fig. 3. Integrated Controller vs. RL Controller with initial value
(0.3,0.2,0.1).
s =

Fig. 4. Integrated Controller vs. RL Controller with initial value (2m, 1, 1).
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V. CONCLUSION

In this paper, we proposed a reinforcement learning

integrated nonlinear controller for stabilizing a class of uncertain

upper-triangular

system. A Lyapunov-based actor-critic

reinforcement learning framework is introduced for guaranteed
stability. We compared the RL controller and integrated
controller in simulation. It shows that both controllers stabilize
the uncertain upper-triangular system. The proposed integrated
nonlinear controller demonstrates improved precision.

(7]

(8]

(9]

[10]

REFERENCES

Mazenc, F., & Bowong, S. (2003). Tracking trajectories of the cart-
pendulum system. Automatica, 39(4), 677-684.

Barbu, C., Sepulchre, R., Lin, W., & Kokotovic, P. V. (1997). Global
asymptotic stabilization of the ball-and-beam system. In Proceedings of
the 36th IEEE conference on decision & control (pp. 2351-2355).

Arcak, M., Teel, A. R., & Kokotovic, P. V. (2001). Robust nonlinear
control of feedforward systems with unmodeled dynamics. Automatica,
37(2), 265-272.

Ding, S., Qian, C., & Li, S. (2010). Global stabilization of a class of
feedforward systems with lower-order nonlinearities. IEEE Transactions
on Automatic Control, 55(3), 691-696.

Krishnamurthy, P., & Khorrami, F. (2004). A high-gain scaling technique
for adaptive output feedback control of feedforward systems. IEEE
Transactions on Automatic Control, 49(12), 2286-2292.

Qian, C., & Lin, W. (2012). Homogeneity with incremental degrees and
global stabilisation of a class of high-order upper-triangular systems.
International Journal of Control, 85(12), 1851-1864.

Teel, A. R. (1992). Feedback Stabilization: Nonlinear Solution to
Inherently Nonlinear Problems (Ph.D. thesis), Berkeley: University of
California.

Ye, X., & Jiang, J. (1998). Adaptive nonlinear design without a priori
knowledge of control directions. IEEE Transactions on Automatic
Control, 43(11), 1617-1621.

Jiandong Zhu, Chunjiang Qian, Local asymptotic stabilization for a class
of uncertain upper-triangular systems, Automatica, Volume 118, 2020,
108954, ISSN 0005-1098.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin
Riedmiller, et al. 2017. Emergence of Locomotion Behaviours in Rich
Environments. arXiv preprint arXiv:1707.02286 (2017).

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to
Train Your Dragon: Example-guided Control of Flapping Flight. ACM
Trans. Graph. 36, 6, Article 198 (Nov. 2017), 13 pages.

Jungdam Won, Jungnam Park, and Jehee Lee. 2018. Aerobatics Control
of Flying Creatures via Self-regulated Learning. ACM Trans. Graph. 37,
6, Article 181 (Dec. 2018), 10 pages.

Hermes, H. (1995). Homogeneous feedback controls for homogeneous
systems. Systems & Control Letters, 24(1), 7-11.

Rosier, L. (1992). Homogeneous Lyapunov function for homogeneous
continuous vector field. Systems & Control Letters, 19(6), 467-473.

Polendo, J., & Qian, C. (2007). A generalized homogeneous domination
approach for global stabilization of inherently nonlinear systems via
output feedback. International Journal of Robust and Nonlinear
Control, 17(7), 605-629.

Zhang, C., Qian, C., & Li, S. (2013). Global smooth stabilization of a
class of feedforward systems under the framework of generalized
homogeneity with monotone degrees. Journal of the Franklin Institute,
350(10), 3149-3167.

Zhu, J., & Qian, C. (2018). A necessary and sufficient condition for local
asymptotic stability of a class of nonlinear systems in the critical case.
Automatica, 96, 234-239.

Sutton, R. S., Barto, A. G., 2018. Reinforcement Learning: An
Introduction, 2nd Edition. MIT Press

Kober, J., Bagnell, J. A., Peters, J., 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32
(11), 1238-1274.

Lewis, F., Liu, D. (Eds.), 2012. Reinforcement Learning and Adaptive
Dynamic Programming for Feedback Control. Wiley.

Deisenroth, M., Neumann, G., Peters, J., 2011. A survey on policy search
for robotics. Foundations and Trends in Robotics 2 (1-2), 1-141.
Borrelli, F., Bemporad, A., Morari, M., 2017. Predictive Control for
Linear and Hybrid Systems. Cambridge University Press, Cambridge,
UK.

Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, A
Lyapunov-based approach to safe reinforcement learning, arXiv preprint
arXiv: 1805.07708, 2018

Y. Chow, O. Nachum, A. Faust, M. Chavamzaded, and E. Duenez-
Guzman, Lyapunov-based safe policy optimization for continuous
control, arXiv preprint arXiv:1901.10031, 2019

Polendo, J., & Qian, C. (2008). An expanded method to robustly stabilize
uncertain nonlinear systems. Communications in Information and
Systems, 8(1), 55-70.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2025 at 19:10:37 UTC from IEEE Xplore. Restrictions apply.

177



