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Abstract—This paper considers the stabilization of a class of 

uncertain upper-triangular systems. Reinforcement learning has 
demonstrated the ability to handle complex control tasks for its 
model-free property and adaptability. However, the stability 
cannot be assured. To guarantee the stability of the uncertain 
system, a reinforcement learning integrated nonlinear controller 
is introduced. It shows that the proposed controllers provide the 
adaptability of reinforcement learning and guaranteed stability 
for the uncertain upper-triangular system. 

Keywords—reinforcement learning, nonlinear control, stability, 
upper-triangular systems 

I. INTRODUCTION 
In control theory, stabilizing systems with uncertain 

parameters is a key challenge. This paper considers the problem 
of local asymptotic stabilization for uncertain upper-triangular 
systems (1).  

𝑥̇! = 𝑎!𝑥!"# + 𝑓!(𝑥!"#, … , 𝑥$), 𝑖 = 1,… , 𝑛 − 1,   

𝑥̇$ = 𝑎$𝑢,  (1) 

where 𝑥 = (𝑥#, … , 𝑥$)% ∈ ℜ$  represents the system state 
vector, 𝑢 ∈ ℜ denotes the control input, 𝑎!, 𝑖 = 1,… , 𝑛 − 1, are 
unknown positive constants and 𝑓! , 𝑖 = 1,… , 𝑛 − 1 , are 
unknown functions.  

This upper-triangular systems are used to model many 
practical systems like cart-pendulum system [1] and the ball and 
beam system [2]. The stabilization problem of upper-triangular 
systems has been extensively studied in existing research. Most 
results [3]-[8] are based on known 𝑎! or with known bounds and 
known bounded high-order nonlinearities 𝑓! . Stabilizing these 
systems can be challenging when parameters are unknown. For 
example, it’s impossible to design a linear feedback controller 
to achieve local asymptotic stability when 𝑎! are unknown. In 
addition, linear controller is sensitive to the upper-triangular 
system. By increasing the powers of the states, a nested 
controllers is designed in [9] to overcome the limitations of 
linear controllers. Although the proposed controller is not as 
sensitive as linear controller and guarantees the local 
asymptotic, global asymptotic stabilization is still a challenge. 

Reinforcement learning (RL) has been successfully applied 
to control tasks in various domains, such as walkers[10], robotic 
manipulators[11], and aerial robots[12]. The utilization of 
Markov Decision Processes (MDPs) provides a structured 
framework for RL, enabling the modeling of sequential 
decision-making under uncertainty. MDPs are characterized by 
four main components: states, actions, transitions and rewards. 
During a series of time steps (𝑡	 = 	0, 1, 2, 3, . . . ) , an agent 
repeatedly interacts with the environment 𝐸. At each time step 
𝑡, the agent observes the state 𝑠& of the environment, denoted as 
𝑠&  which belongs to the set of possible states, and randomly 
chooses a real-valued action, 𝑎& ∈ ℝ', from the set of available 
actions. After a time step, as a result of its action, the agent 
receives a numerical reward, 𝑟&"#, which is a part of the set of 
real numbers, and transitions into a new state, 𝑠&"#. The MDP 
and agent together thereby create a sequence that begins as 
follows: 

𝑠(, 𝑎(, 𝑟#, 𝑠#, 𝑎#, 𝑟), 𝑠), 𝑎), 𝑟*, …  (2) 

Therefore, the decision rule is a state feedback control law, 
known as the policy 𝜋 in RL, which determines the action based 
on the current state. This action may alter the state of the system, 
often in unpredictable ways, and the outcome of this change is 
measured by the reward function 𝑟(𝑠& , 𝑎&) . The goal is to 
maximize the total expected reward over time from each starting 
state, a concept referred to as the value. RL is particularly 
appealing for solving control problems for system with 
uncertainty and disturbances due to its adaptability. In addition,  
RL is model-free and does not require a model of the system 
dynamics. While reinforcement learning offers a powerful 
framework for solving control problems in uncertain 
environments, it does not ensure stability in learning processes. 
Due to the dynamic nature of environments and the complexity 
of learning algorithms, convergence to optimal policies may not 
always be guaranteed.  

In this paper, we propose a reinforcement learning integrated 
nonlinear controller for the upper-triangular system to guarantee 
local stability. The proposed controller combines the 
adaptability of reinforcement learning with the robustness of 
nonlinear control strategies to ensure local asymptotically 
stability of the upper-triangular systems. 

This work was supported in part by the National Science Foundation 
under grant No. 2134237. 
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II. RELATED WORK 

A. Nonlinear Controller for Upper-triangular system 
In [1], a nested nonlinear controller is proposed to overcome 

the limitation of linear controller to stabilize the upper-triangular 
system (1). For example, when 𝑛 = 3, the nonlinear controller 
is designed as  

𝑢 = −(=(𝑘#𝑥#)
+
*, + 𝑘)𝑥)?

**
)+,
+ 𝑘*𝑥*)          (3) 

where 𝑘!s are any positive numbers.  
The nested controller is derived by changing the linear 

structure of the controller and increasing the powers of the 
states. A fundamental principle in effectively increasing the 
powers of states of linear controllers is based on the theory of 
homogeneous systems [13][14]. Nevertheless, conventional 
homogeneity fails when addressing the unknown parameters 𝑎! 
because of the similarity between linear systems and 
homogeneous systems. 

The concept of  homogeneity with monotone degrees 
(HMD) is proposed in [15] and [16] to address the shortcomings 
of conventional homogeneity. In [17], a linear feedback 
controller is studied to stabilize a power integrator system which 
has a homogeneity with strictly decreasing degrees (HSDD) 
with respect to the homogeneous weight vector (1, 1, … , 1) ∈
ℜ$. Based on the notion of HSDD, we can increase the powers 
of the states in a linear controller to locally asymptotically 
stabilize the uncertain upper-triangular system. 

B. Reinforcement Learning in Control 
Control theory has traditionally relied on mathematical 

models to predict system behavior and design controllers 
accordingly. However, with advancements in computational 
capabilities, researchers began to explore learning-based 
approaches that do not require a complete understanding of 
system dynamics. Early work in [18] established the foundation 
for integrating RL with control theory, emphasizing its potential 
to optimize control policies directly through system interaction 
without detailed models. Model-free RL methods, particularly 
Q-learning and policy gradient techniques, have been adapted 
for various control applications, from robotics to autonomous 
vehicles. These approaches allow systems to learn optimal 
strategies through trial and error, improving their performance 
in real-time as they interact with the environment [19]. Such 
techniques are particularly valuable in environments where the 
system dynamics are either too complex or costly to model 
accurately.  

There has been significant interest in hybrid approaches that 
combine the robustness of traditional control methods with the 
adaptability of RL. For example, the work of [20] introduced 
Adaptive Dynamic Programming (ADP), a method that merges 
concepts from dynamic programming with RL to create 
controllers that can adapt to changes and uncertainties in the 
system [20]. These hybrid techniques aim to provide more 
reliable control in practical applications where safety and 
efficiency are critical. The application of RL in real-world 
control systems has been extensively documented across various 
domains. In robotics, RL has been used to develop controllers 

for complex tasks such as manipulation and locomotion, where 
precise model-based controllers would require prohibitive 
computational resources [21]. In the automotive industry, RL 
has been explored for developing advanced driver-assistance 
systems and fully autonomous driving technologies, 
demonstrating significant potential for improving safety and 
efficiency [22]. Despite its successes, the application of RL in 
control theory faces several challenges, including the need for 
improved sample efficiency, ensuring stability during the 
learning process, and addressing safety concerns inherent in 
deploying learning-based controllers in critical systems. Future 
research directions include the development of safer learning 
algorithms, methods to combine learning with robust control 
techniques, and strategies to reduce the data requirements of RL 
algorithms. 

III. REINFORCEMENT LEARNING AND NONLINEAR INTEGRATED 
CONTROLLER 

The proposed methodology integrates RL controller with a 
nonlinear controller to ensure both global and local stability in 
dynamic systems. In reinforcement learning, the policy 𝜋 
decides the behavior of an agent by mapping states to a 
probability distribution over the actions 𝜋: 𝒮 → 𝒫(𝒜). Here, 𝒮 
is the state space and 𝒜 is the action space. The return from a 
state is defined as the sum of discounted future reward 𝑅& =
∑ 𝛾(!.&)%
!0& 𝑟(𝑠! , 𝑎!)  with a discounting factor 𝛾 ∈ [0,1] . The 
goal is to learn a policy which maximizes the expected return 
from the start distribution 𝐽 = 	𝔼1!,3!~5,6!~7[𝑅#].  
The action-value function is used in many reinforcement 

learning algorithms. It describes the expected return after taking 
an action 𝑎& in state 𝑠& and thereafter following policy 𝜋: 

𝑄7(𝑠& , 𝑎&) = 𝔼1!"#,3!%#~5,6!%#~'[𝑅&|𝑠& , 𝑎&] (4) 

Numerous methods in reinforcement learning utilize the 
recursive formula referred to as the Bellman equation. 

𝑄7(𝑠& , 𝑎&) = 𝔼1#,3#()~5[𝑟(𝑠& , 𝑎&) + 𝛾𝔼6#()~7[𝑄
7(𝑠&"#, 𝑎&"#)]]

  (5) 

When the target policy is deterministic, it can be represented as 
a function 𝜇: 𝑆 ← 𝐴, thereby eliminating the need for the inner 
expectation. 

𝑄8(𝑠& , 𝑎&) = 𝔼1#,3#()~5[𝑟(𝑠& , 𝑎&) +
																															𝛾𝔼6#()~7[𝑄

8(𝑠&"#, 𝜇(𝑠&"#))] (6) 

In this paper, we consider function approximators 
parameterized by 𝜃9 , which we optimize by minimizing the 
loss: 

							𝐿(𝜃9) = 𝔼3#~:*,6#~;,1#~5[(𝑄(𝑠& , 𝑎&|𝑄
7) − 𝑦&))] (7) 

where 

							𝑦& = 𝑟(𝑠& , 𝑎&) + 𝛾𝑄7(𝑠&"#, 𝜇(𝑠&"#)|𝜃9) (8) 
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while 𝑦& is also dependent on 𝜃9. 

A. Controller Architecture 
1) DDPG Reinforcement Learning Framework 
The actor-critic structure in RL consists of two main 

components: the actor and the critic. The actor 𝜇(𝑠|𝜃8)  is 
responsible for generating actions given the current state of the 
environment. It deterministically maps states to actions, aiming 
to maximize the expected reward. The critic Q(𝑠, 𝑎) evaluates 
these actions by computing the value function, which estimates 
the expected return from the current state under the policy 
dictated by the actor. The actor updates its policy using a policy 
gradient method directed by the critic’s value function gradient.  

∇<+𝐽 ≈ 𝔼3#~:* W∇<+𝑄(𝑠, 𝑎|𝜃
9)|303#,608=𝑠&>𝜃8?X =

	𝔼3#~:* W∇6𝑄(𝑠, 𝑎|𝜃
9)|303#,608(3#)∇<+8(𝑠|𝜃

8)|303#X (9) 

In this paper, we implemented the DDPG algorithm which 
uses neural network to approximate the actor and critic function. 
Reinforcement Learning Integrated with Nonlinear Controller 

a) Nonlinear Controller Design  
In this section, we introduce the concept of homogeneity 

with strictly decreasing degrees (HSDD) and then show that the 
nested nonlinear controller guarantees the local asymptotic 
stability of the equilibrium 𝑥 = 0 of system (1). 
Assumption 1. There exists positive constants 𝛿! > 0 and 𝑐! ≥
0  such that the functions 𝑓!  satisfy |𝑓!(𝑥!"#, … , 𝑥$)| ≤
𝑐!^|𝑥!")|#"@! + ∑ _𝑥A_$

A0!") `, 1 ≤ 𝑖 ≤ 𝑛 − 1,	in a neighborhood 
of the origin, where 𝑐! and 𝛿! do not need to be known. 

Definition 2. A continuous vector field 𝑣:	ℜ$ → ℜ$  with 
𝑣 = [𝑣#, … , 𝑣$]%  is said to satisfy homogeneity with strictly 
decreasing degrees (HSDD), if we can find positive real 
numbers (𝑟#, … , 𝑟$) and real numbers 𝜇# > 𝜇) > ⋯ > 𝜇$ such 
that 𝑣!(𝜖1)𝑥#, … , 𝜖1,𝑥$) = 𝜖1!"8!𝑣!(𝑥)  for all 𝑥 ∈ ℜ$, 𝜖 > 0 
and 𝑖 = 1, 2, … , 𝑛 . The constants 𝑟!  are the homogeneous 
weights and 𝜇! are homogeneous degrees. 

Homogeneity with Strictly Decreasing Degrees (HSDD) 
is a subset of the broader concept of homogeneity, which 
includes systems with monotonically decreasing degrees 
(HMD). For HMD, the condition is that the sequence of degrees 
must satisfy 𝜇# ≥ 𝜇) ≥ ⋯ ≥ 𝜇$ [25]. When all the values are 
identical, it becomes the classical notion of homogeneity. It's 
noted that linear controllers don’t guarantee local asymptotic 
stability at the equilibrium 𝑥 = 0  for the entire range of 
unknown parameters 𝑎!. To address this, we select 𝑟# ≥ 1 as a 
ratio of two positive odd integers, and 𝜇! , 𝑖 = 1,… , 𝑛 − 1 
values are chosen as ratios of an even integer over an odd 
integer such that 𝜇# > 𝜇) > ⋯ > 𝜇$.# > 0 =: 𝜇$ , we define 
the powers 𝑟!  as 𝑟!"# = 𝑟! + 𝜇! , 𝑖 = 1,… , 𝑛 . The linear 
controller 𝑢 = −(𝑘#𝑥# + 𝑘)𝑥) +⋯+ 𝑘$𝑥$)  can be replaced 
as  

𝑢 = −((… ((𝑘#𝑥#
-.
-) + 𝑘)𝑥))

-/
-. + 𝑘*𝑥*)

-0
-/ +⋯, 

+𝑘$.#𝑥$.#)
-,

-,1) + 𝑘$𝑥$) =:−𝜙$(𝑥#, … , 𝑥$).  (10) 

The closed-loop system (1) with controller (10) can be written 
as 

𝑥̇! = 𝑎!𝑥!"# + 𝑓!(𝑥!"#, … , 𝑥$), 𝑖 = 1, 2, … , 𝑛 − 1, 

 𝑥̇$ = −𝑎$𝜙$(𝑥#, … , 𝑥$).  (11) 

Let 𝑒 = [𝑒#, 𝑒), … , 𝑒$]% = 𝜙(𝑥), we obtain 

𝑥# = 𝑘#.#𝑒#, 𝑥! = 𝑘!.#(𝑒! − 𝑒!.#
1!/1!1)), 𝑖 = 2,… , 𝑛 (12) 

Then: 

𝑒̇# =
C)6)
C.

(𝑒) − 𝑒#
-.
-)) + 𝑘#𝑓f#(𝑒) = − C)6)

C.
𝑒#
-.
-) + 𝑔#(𝑒) (13) 

𝑒̇! =
𝑘!𝑎!
𝑘!"#

(𝑒!"# − 𝑒!

1!()
1! ) + 𝑘!𝑓f!(𝑒) 

	+
𝑟!
𝑟!.#

𝑒!.#

1!
1!1)

.#
(−

𝑘!.#𝑎!.#
𝑘!

𝑒!.#

1!
1!1) + 𝑔!.#(𝑒) 

= − C!6!
C!()

𝑒!
-!()
-! + 𝑔!(𝑒), 	 

𝑖 = 2, 3, … , 𝑛 − 1,                                            (14) 

𝑒̇$ = −𝑘$𝑎$𝑒$ +
𝑟$
𝑟$.#

𝑒$.#
1,
1,1)

.#
(−

𝑘$.#𝑎$.#
𝑘$

𝑒$.#
1,
1,1) + 𝑔$.#(𝑒)) 

						= −𝑘$𝑎$𝑒$ + 𝑔$(𝑒)  (15) 

Where 𝑓f! = 𝑓! ∘ 𝜙.#, 𝑖 = 1, 2, … , 𝑛 − 1,  and 𝑔!  are 
recursively defined by 

𝑔#(𝑒) =
C)6)
C.

𝑒) + 𝑘#𝑓f#(𝑒),  (16) 

𝑔!(𝑥) =
C!6!
C!()

𝑒!"# + 𝑘!𝑓f!(𝑒) +
1!
1!1)

𝑒!.#

-!
-!1)

.#
(− C!1)6!1)

C!
𝑒!.#

-!
-!1) +

𝑔!.#(𝑒)),   (17) 

𝑔$(𝑒) =
1,
1,1)

𝑒$.#
-,

-,1)
.#
(− C,1)6,1)

C,
𝑒$.#

-,
-,1) + 𝑔$.#(𝑒)). (18) 

Theorem 3. Given that all functions 𝑓! satisfy Assumption 1, 
the gains 𝑘!  are nonzero, and the ratios 𝑟!  are positive odd 
integers defined by 𝑟!"# = 𝑟! + 𝜇! , 𝑖 = 1,… , 𝑛 , where 𝑟# > 0 
and 𝜇# > 𝜇) > ⋯ > 𝜇$.# > 𝜇$ = 0. Under these conditions, 
the uncertain system is locally asymptotically stable for all 𝑎! >
0 and 𝑓! satisfying Assumption 1 if and only if 𝑘! > 0 for all 
𝑖 = 1,… , 𝑛. 
Proof. Construct the Lyapunov function as 𝑉(𝑒) = ∑ D!

E!
𝑒!E!$

!0# , 
where 

𝑙! = −𝑘!"#𝑘!.#𝑎!.#, 𝑖 = 1, 2, … , 𝑛 − 1, 𝑙$ = −𝑘$.#𝑎$.#, (19) 
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and  𝛼! = 2𝑟$𝑟!.# ≥ 2, 𝑖 = 1, 2, … , 𝑛 . The derivative of 𝑉(𝑒) 
can be calculated as 

𝑉̇(𝑒) = ∑ 𝑒!E!.#$
!0# 𝑒!

-!()
-! + ∑ 𝑙!𝑒!

6!.#𝑔!(𝑒)$
!0# , (20) 

where  𝑟$"# = 𝑟$ and 𝛼$ = 2. From (21), it follows that 

𝑉̇(𝑒) ≥ ∑ 𝑒!
F!$

!0# −∑ |𝑙!||𝑒!|E!.#$
!0# |𝑔!(𝑒)|, (21) 

where 𝑚! = 𝛼! − 1 +
1!()
1!
= 8!")1,

1!
, 𝑖 = 1, 2, … , 𝑛 are ratios of 

an even integer and an odd one. Applying (18) to (21), we can 
find constants 𝜌!, 𝜌n! and 𝜌o! such that 

𝑉̇(𝑒) ≥ ∑ 𝑒!
F! −∑ 𝜌!|𝑒!|

E!.#"
+!(.-!
-!

=#"@G!?$
!0# −$

!0#

∑ ∑ 𝜌o!|𝑒!|E!.#!.#
A0# |𝑒A|

+2(-!
-2 −∑ ∑ 𝜌n!$

A0!"# |𝑒!|E!.#|𝑒A|$.#
!0#

$
!0# .

  (22) 

Let 𝜁! = |𝑒!|F! for 𝑖 = 1,… , 𝑛, rewrite the (22) as 

𝑉̇(𝑒) ≥ ∑ 𝜁! − ∑ 𝜌!𝜁!
3!1)
4!

"
-!()
4!-!

=#"@G!?$
!0# −$

!0#

∑ ∑ 𝜌o!|𝜁!|
3!1)
4!!.#

A0# |𝜁A|
+2(-!
42-2 − ∑ ∑ 𝜌n!$

A0!"# 𝜁!
3!1)
4! 𝜁!

)
42$.#

!0#
$
!0# =
:∑ 𝜁! −𝐻(𝜁)$

!0# ,     
             (23) 

where 𝜁 = [𝜁#, 𝜁), … , 𝜁$]. 
In the following analysis, we demonstrate that 𝐻(𝜁) 

consists of higher-order terms with respect to 𝜁 . By the 
expression of 𝑚! below, it becomes evident that  

 

𝛼! − 1
𝑚!

+
𝑟!"#
𝑚!𝑟!

^1 + 𝛿r!` = 1 −
𝑟!"#
𝑚!𝑟!

+
𝑟!"#
𝑚!𝑟!

^1 + 𝛿r!` 

																																										= 1 + 1!()
F!1!

𝛿r! > 1. (24)                                            

E!.#
F!

+ 82"1!
F212

= 1 − 1!()
8!")1,

+ 8!"1!
82")1,

. (25) 

Because 𝜇A > 𝜇! for 𝑗 < 𝑖 and 2𝑟$ > 𝑟!, we obtain 

E!.#
F!

+ 82"1!
F212

> 1 − 1!()
8!")1,

+ 8!"1!
82")1,

= 1. (26)  

Since 𝑟A ≥ 𝑟!"# and 𝜇! > 𝜇A for 𝑗 ≥ 𝑖 + 1,  

E!.#
F!

+ #
F2
= 1 − 1!()

F!1!
+ #

F2
= 1 − 1!()

8!")1,
+ 12

82")1,
> 1.       (27) 

So, we can conclude that 𝐻(𝜁) has an order greater than 1. 
Therefore, there exists a sufficiently small neighborhood 
around the origin such that 

𝑉̇(𝑒) > 𝜀 ∑ 𝜁! = 𝜀 ∑ 𝑒!F! ,$
!0# ∀𝑒 ∈ 𝐷$

!0#  (28) 

for a constant 𝜀 > 0. From (19), we obtain 

𝑙! < 0(𝑖 = 1, 2, … , 𝑛) ⟺ 𝑘! > 0(𝑖 = 1, 2, … , 𝑛). (29) 

If 𝑘! > 0(𝑖 = 1, 2, … , 𝑛) , 𝑉(𝑒)  is negative definite. This 
implies that the zero solution of (11) is asymptotically stable 
according to Lyapunov Stability Theorem. Therefore, the 
positivity of 𝑘! is sufficient to guarantee the local asymptotic 
stability of (11). 

b) Integration Mechanism 
The objective of integrating a RL method with a 

nonlinear controller is to leverage the adaptive learning 
capability of RL for global system behaviors while utilizing the 
precision and stability of nonlinear control techniques for local 
scenarios. The integrated controller consists of a global RL 
controller and a local nonlinear controller. The global controller 
operates across the entire state space, adapting to complex, non-
linear dynamics and learning optimal control strategies through 
interaction with the environment. The local controller provides 
precise control in critical regions, such as near setpoints or 
within stability boundaries, where traditional control methods 
are effective and reliable. When the tracking error or the 
system’s response reach to a pre-set threshold, control switches 
from the RL controller to the nonlinear controller.  

B. Training Process 
The parameters of the actor and critic networks are 

initialized with random weights. The target networks are 
initialized to the weights of their corresponding original 
networks. An experienced replay buffer 𝒟 is introduced to store 
transition tuples (𝑠& , 𝑎& , 𝑟& , 𝑠&"#), where 𝑠& is the current state, 
𝑎& is the action taken, 𝑟& is the reward received, and 𝑠&"# is the 
next state. During training, the actor’s deterministic policy is 
supplemented with noise for exploration purposes. At each 
training step, a mini batch of 𝑁	transitions are sampled from  𝒟. 
The sampled batch is used to compute the loss for the critic 
network, using the Bellman equation as the target for the 
temporal difference (TD) error. The policy is updated using the 
sampled policy gradient, estimated from the critic’s Q-values 
with respect to the actions. After each learning step, the target 
networks’ weights are updated to slowly track the learned 
networks’ weights, employing a soft update strategy controlled 
by. The process repeats with the agent interacting with the 
environment according to the current policy and exploration 
noise, storing the experiences, and periodically updating the 
actor and critic networks using mini batches from the replay 
buffer.  
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Algorithm 1 DDPG algorithm 

Initialize critic network 𝑄(𝑠, 𝑎|𝜃!) and actor 𝜇(s|𝜃") with weights 𝜃!,	 and 
𝜃" respectively 
Initialize target network 𝑄# and 𝜇#	with weights 𝜃!! ←	𝜃!, 𝜃"! ← 𝜃" 
Initialize replay buffer 𝑅 
for each episode 
Initialize a random process 𝒩for action exploration 
Receive initial observation state 𝑠$ 
for each step 𝑡 
    Select action 𝑎% = 𝜇(𝑠%|𝜃") +𝒩% according to the current policy and 

exploration noise 
    Execute action 𝑎% in the environment  
    Observe reward 𝑟% and observe new state 𝑠%&$ 
    Store transition (𝑠%, 𝑎%, 𝑟%, 𝑠%&$) in 𝑅 
    Sample a random minibatch of N transitions (𝑠' , 𝑎' , 𝑟' , 𝑠'&$) from 𝑅 
    Set 𝑦' = 𝑟' + 𝛾𝑄#(𝑠'&$, 𝜇#(𝑠'&$|𝜃"

!)|𝜃!!) for updating the critic 
    Update critic by minimizing the loss: 𝐿 = $

(
∑ (𝑦' − 𝑄(𝑠' , 𝑎'|𝜃!)))'  

    Update the actor policy using the sampled policy gradient: 

∇*"𝐽 ≈
1
𝑁<∇+𝑄(𝑠, 𝑎|𝜃!)|,-,#,+-"(,#)∇*"𝜇(𝑠|𝜃

")|,#
'

 

    Update the target networks: 
𝜃!! ← 𝜏𝜃! + (1 − 𝜏)𝜃!! 
𝜃"! ← 𝜏𝜃" + (1 − 𝜏)𝜃"! 

 

IV. EXAMPLE 
In this section, we compare the proposed controllers to 

standard trained DDPG controllers. Here, we implement the two 
controllers to the dynamics of orientation of a car [25] 

𝜃̇ = H
D
𝑡𝑎𝑛𝜙 + 𝑢𝑛𝑘𝑛𝑜𝑤𝑛	𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠, 𝜙̇ = 𝜔, 𝜔̇ = #

I
𝑢 (30) 

𝜃  represents the car's angular deviation from the x-axis, 𝜑 
denotes the angle of the steering wheel relative to the car's 
longitudinal axis, 𝜔 signifies the angular velocity of the steering 
wheels, 𝑣 indicates the linear velocity of the rear axle's center 
during the cruising phase, 𝑙 stands for the distance between the 
steering wheels and the rear wheels, 𝐽 denotes the moment of 
inertia, and u represents the external torque. Assuming 𝑣, 𝑙, and 
𝐽 are unknown constants, system (30) can be expressed in the 
format of (1) while satisfying Assumption 1. We choose 𝑟# 	=
	3, 𝑟) 	= 	5, and 𝑟* 	= 	33. From (3), we derive the following 
nonlinear controller as a local controller: 

𝑢 = −(=(𝑘#𝑥#)
+
*, + 𝑘)𝑥)?

**
)+,
+ 𝑘*𝑥*).                                (31) 

In this example, we implemented controllers to systems with 
initial values (0.3, 0.2, 0.1) and (2𝜋, 1, 1), and the objective is 
to direct the initial value to zero. We choose 	
𝑣, 𝑙, 𝑗   as 2, 3, 4  separately, and 𝑘#, 𝑘), 𝑘*  as 1, 2, 1 . The 
unknown dynamics is set as 𝜙). 
As shown in the Fig. 3 and Fig. 4, the blue line represents 

the system dynamic with reinforcement learning controller, and 
the green line represents system dynamic with integrated 
controller. Both the RL controller and integrated controller 
stabilize the uncertain upper-triangular  system. The RL 
controller converges faster than the integrated controller. 
However, the integrated controller stabilizes the system with 
smaller error. 

Fig. 1. Integration mechanism  

Fig. 2. Dynamic of orientation of a car. 

 

Fig. 3. Integrated Controller vs. RL Controller with initial value 
(0.3, 0.2, 0.1). 

Fig. 4. Integrated Controller vs. RL Controller with initial value (2𝜋, 1, 1). 
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V. CONCLUSION 
In this paper, we proposed a reinforcement learning 

integrated nonlinear controller for stabilizing a class of uncertain 
upper-triangular system. A Lyapunov-based actor-critic 
reinforcement learning framework is introduced for guaranteed 
stability. We compared the RL controller and integrated 
controller in simulation. It shows that both controllers stabilize 
the uncertain upper-triangular system. The proposed integrated 
nonlinear controller demonstrates improved precision. 
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