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Abstract—This paper focuses on the design of linear integral
controllers for uncertain nonlinear systems subjected to various
types of time-varying perturbations. We propose a method
called the feedback domination method to address this problem.
The time-varying perturbations can include constant step dis-
turbances, exogenous time-varying disturbances with unknown
magnitudes, and modeling uncertainties with unknown system
parameters. The approach involves constructing a new linear
integral controller with integral dynamics to drive the states
of uncertain systems without nonlinear terms to the origin
asymptotically Additionally, a high-gain technique is introduced
to design a controller that can asymptotically drive the states
of uncertain nonlinear systems to the origin. Finally, the paper
introduces a new stability criterion and extends the results to
a class of uncertain nonlinear systems with more general time-
varying perturbations of unknown magnitudes.

Index Terms—nonlinear system, integral controller, time-
varying system, unknown magnitude

I. INTRODUCTION

This paper considers the following nonlinear system

{ L).S'Z‘:ilji+1+fi($1,...,il}i), z':l,.‘.,nfl,

Tn=u+ fn(z1,...,2,) +d(t,2), M

where z = (71,...,7,)7 € R" and u € R are the system
states and control input, respectively. In addition, f;(-), i =
1,...,n are system nonlinearities and d (¢, x) represents the
unknown perturbation. System (1) is widely used to describe
dynamics of numerous practical systems in practice [1], [2].
For example, a pendulum system is described by

51.71 = T2,
Go = %u — Aé—#sin(wl) +d(t, ),

where x; is the angle of oscillation, x5 is the angular velocity,
M,g,L and J are system parameters, and d(¢,z) represents
various uncertainties. In this paper, we are interested in solving
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the problem of global regulation control for system (1) in
the presence of uncertainties. More specifically, we aim to
design controllers under which the states of system (1) are
globally bounded and converge to the origin [3], [4]. When
d(t,z) = 0, many important results have been obtained
[1], [5], [6], [7], [8]. The nonlinear system (1) with known
differentiable non-linearity f;’s can be globally stabilized by
the backstepping approach [9]. In the case when f;’s are
unknown satisfying a linear growth condition, a domination
approach was proposed in [10] to obtain a linear controller.
In the case when f;’s only satisfy a Holder growth condition,
a design methodology called adding a power integrator was
proposed in work [11] to globally stabilize the nonlinear
system (1). In the presence of non-vanishing uncertainties, i.e.,
d(t,0) # 0, the aforementioned results cannot guarantee that
all states of the nonlinear system (1) converge to the origin.
When f; is linear ¢ = 1,...n, and d(t,z) = 6 for an unknown
constant #, system (1) can be regulated by the commonly-used
PID controller [12]

u(t) = —ko fy w1(s)ds — krzr(t) — - — knaa(t), ()

where positive gains kg, ..., k, are coefficients of Hurwitz
polynomial s"*1 4 k,s™ + k,_15" "' 4 - + ks + ko [13],
[14], [15], [16]. The corrective term fot x1(s)ds can counteract
the effect of a constant disturbance but also will cause a trade-
off between stability and convergence rate [12], i.e., a larger
ko desired for a faster convergence rate may cause instability.
Moreover, the controller (2) cannot handle exogenous time-
varying disturbances, e.g., d(t,z) = ¢(1 4 0.5sin(¢)) with an
unknown magnitude ¢, which drive the states z;, : = 1,...,n
away from origin. The performance of the PID controller will
be even worse when d(t, ) is an internal modeling uncertainty
such as d(t,z) = 6(1 + z3) with unknown parameter 6.
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In this paper, a novel integral controller consisting of
an integral dynamic is proposed to solve the global reg-
ulation problem of system (1) with various non-vanishing
uncertainties[17]. First, an extra integral state in the control
law is introduced to tackle d(¢, ). By revamping the technique
of adding a power integrator [11], a linear control law with
a linear corrective term is constructed to handle the various
forms of uncertainties. The proposed integral controller will
globally regulate the n-dimensional system in the presence of
not-precisely-known non-linearities and non-vanishing uncer-
tainties.

II. PRELIMINARIES

In order to get our main results, the following lemma is first
introduced.
Lemma 1: Consider the time-varying nonlinear system

&= f(t,x), 3)

where f(t,z) : R x D — R” is continuous with respect to
x in an open neighborhood D C R™ and piecewise continuous
with respect to ¢, f(¢,0) = 0, t € R>( and the initial state
is £(0) = zo € D. If there is a continuously differentiable,
positive definite function V(z) : D — Rxq for system (3)
such that

V(z) < —pt)V, (4)

where p(t) is piecewise continuous (containing removable
discontinuities and jump discontinuities) satisfying
t
li = .

dm ; p(s)ds = +o0 5)
Then, the trajectories of system (3) are locally convergent to
zero. Furthermore, if D = R”, the trajectories of system (3)
are also globally convergent to zero.
Proof. Firstly, integrating both sides of inequality (4) from 0
to t, we can easily have

V(t) <V(xg)e™ Jo nlo)ds

From the condition (5), we can get that system (3) is globally
convergent to zero.

Remark 1: Lemma 1 extends the existing Lyapunov
conditions of asymptotically stability since it will degenerate
to the results when wu(t), t € Rxo being a positive
constant, i.e., there exists a positive constant ¢ such that
u(t) > ¢, t € Rso. However, the criterion can allow
u(t), t € R>g to be equal to zero and even negative at some
time points, which makes the positive constant ¢ not exist. We
introduce the following example to further elaborate Lemma
1 and Remark 1.

Example 1: Consider a scalar time-varying nonlinear system

@(t) = —p(t)x(t), t € Rxo, (6)

where z(0) = =z > 0 and the following two cases are
analyzed based on system (6).

Case 1. When pu(t) = (1 + cost) is a continuous function
with respect to t. Firstly, from the definition of u(t), we get
that p(t) is equal to zero in 77 = {t|t = 7 + 2km, t €
R>o, k € Z>o} and positive in ¢ € R>(/T1. Then, we can
easily obtain that lim;_, | fot p(s)ds = 4o00. Thus, we can
get that the trajectories of system (6) are globally convergent
to zero.

Case 2. When p(t) = (% + sin t) is a continuous function
with respect to ¢. Firstly, we get that 11(t) is a negative function
in Ty = {t|t € (%W—i—?kﬂ', 16—17T+2k:ﬂ'), teR>g, k€ Zzo}-
Then, integrating both sides of system (6) from 0 to ¢, we
have f(f p(s)ds = (5t — cost + 1) is equal to zero at ¢ = 0,
positive when ¢ > 0 and converges to +oco as t — 400,
which indicates that the trajectories of system (6) are globally
convergent to zero.

III. MAIN RESULTS

In this paper, a new integral controller will be constructed
for system (1). Firstly, we will modify the technique of adding
an integrator to design a novel regulator for a class of chain
systems, and then apply the regulator to regulate system (1).

A. Global Regulation of Chain Systems
Theorem 1: For the following system

'éi:zi-i-h 7::1’"'7’”7 (7)
2n+1 = U,
there are positive constants k* and a;, i = 1,...,n such that

for any K(t, z) > k*, the linear controller
u=—K(t z)(a1z1+ -+ anzn + Zny1) (®)

can globally asymptotically stabilize system (7).

Proof. Based on adding a power integrator, we propose a
constructive method to design a controller (8) and Lyapunov
functions in a recursive manner.

Step 1: First, construct

1
V1 = 52%
The time derivative of V; along system (7) is
‘71\(7) =z2120 =&125 + &1 (22 — 23) 9

with & := z;. For (9), selecting the virtual controller 25 =
—51&1 = —(n+ 1)&; yields

V1|(7) = —(n+1)& + & (22 — 23).

Inductive Step: Suppose at step k— 1, there is a C! Lyapunov
function Vj,_; : RF~! — R, which is positive definite and
proper, and a set of C'! virtual controllers z7, ..., 2}, defined
by

(10)

ZTZO, glzzl_ziky
Z;:_ﬁlgla 52222_257

: : an

zp = —Pr—1&p—1, & =2 — 25
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with positive constants 1, ..., Bx—1 such that

Vicaly < —(n—k+3) (& +--- + &)
+ &1 (21 — 25) -
It is clear that (12) reduces to the inequality (10) when k& = 2

under the definitions of (11). Next, we will prove (12) also
holds at step k. To prove this, we choose

L,
Wi = i(zk — 252

Therefore, for Vi, = Vi_1 + Wy, the time derivative of the
Lyapunov function V}, along system (7) is

Vily < —(n—k+3) (& +---+&2))

12)

13)

(14)

k—1 .
& (2r — 20) + Gz + oy G4

+ &k (2h1 — 2541 -

Now we give the estimate of the terms &1 (2, — z,j) and

Sy DYz in (14).

Firstly, from (11) and by means of the Young inequality,
we have

1 1
Se—1(2k — 2) = Ep1& < 55;3;,1 + 552. (15)
Next, from (11), and by means of (13), we have
k—1
oWy, . 1., 9 9
; g 2S5 @) tag, 06

where ¢y, is a positive constant. Substituting (15) and (16) into
(14) yields

Vk|(7)S_(n_k+2)(§%+"'+§2—l)

+ &z +(ek +3) & amn
+ (2 — 25) (2k11 — Z41) -
Now construct the virtual controller
Zhy =B =—(ck+3+n—k+2)& (18)

and substituting (18) into (17), we have
Vil < —(n—k+2) (G4 +&_,+&)
+ (21 — 25) (Zk+1 — ZZ-&-I) .

This completes the inductive proof.

Last Step: The inductive argument shows that (12) holds for
k = n + 1 with a set of virtual controllers (11). Based on the
inductive argument, we can choose the (n + 1)th Lyapunov
function

2
Vn+1 = Vn + Wn+1 = Vn + % (ZnJrl - Z:LJrl) .

The time derivative of V,,;; along system (7) is
Vn+1|(7) <=2(8 4+ &)+ &pu

+ gngn-l-l + (Zn—i-l - Z:-&-l) (_Z;kz—i-l) .

19)

Similar to the estimate of the terms (15) and (16), we have

1 1
Enéntt < 560+ 56 (20)
and
(zn+1 = 2np1) (=2mp0) < 5 (G +--+62)

(21)

+ Cn+1£r2l+1-

Substituting (20) and (21) into (19), we have
Virilm S = (G + - +&) + (cnrr + 3) €14 22

+ §n+1u.

By the adding a power integrator technique, we can simply
choose the following controller

U= _K(tv Z)£n+1,

where K(t,z) > k* = ¢py1 + % Substituting (23) into (22),
we have

(23)

Viiily £ = (G +- + & +E44). (24)

Thus, we have achieved that system (7) is globally asymptot-
ically stable under controller (23), that is

U= 7K(t7 Z>§n+1

= —K(t,2)(zne1 + Bn(zn + -+ Ba(za + B121) -+ +)),

where a; = 3; -+ Bn, ¢ = 1,...,n. This completes our proof.

Now it is time to present our main results for global
regulating system (1). First, we utilize Theorem 1 to
solve the regulation problem of chain system (1) when
fi()=0,i=1,...,n,ie,

{ ii:$i+1; i:L...,n—l,

Tn=u+d(tx). 25)

To solve the problem, we assume that the time-varying
perturbations with unknown magnitudes d(¢,x) satisfies the
following assumption. The assumptions are based on most
common unknown disturbance in control system.

Assumption I: Assume there are an unknown constant 6 and
a known function «(t,x) > 1 such that

d(t,z) = 0alt, ).

Remark 2: It should be noted that Assumption 1 comes
from our previous work [18]. The uncertain function d(t, )
satisfying Assumption 1 encompasses several types of uncer-
tainties in system (25). First, it includes constant disturbances
as its special case when «(t,z) = 1. For exogenous time-
varying disturbance such as d(t,z) = ¢(1 + 0.5sint) with
unknown magnitude ¢, we can simply choose «(t,x) =
2(140.5sint) > 1 and @ = ¢/2. Moreover, d(t, =) can include
internal modeling uncertainties such as d(t,z) = 6(1 + 3)
with unknown 6.
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Theorem 2: Under Assumption 1, there are positive con-

stants £* and a;, ¢ = 1, ..., n, such that the following integral
controller
u=—k*a(t,z)(a1xo + agws + - - -
+ AnTn—1 + «In)a (26)
To =11

globally regulates system (25).

Proof. Define z; = x¢ — k%l, Zi =Ti—1,1=2,...,n+ 1.
Under the new coordinates, it is clear that the closed-loop
system (25) and (26) can be rewritten as

z2

.
Il

Zn+1
—k*a(t,x) (a121 4+ -+ anzn + 2n+1)
= F(tz2). 27)
By the proof of Theorem 1, we can find positive constants k*
and a;, i = 1,...,n such that for K(¢,2) = k*a(t,z) > k*,
system (27) is globally regulated. In the case when d(t, z) = 6
is an unknown constant, Theorem 2 holds for a controller with
constant gains.
Corollary 1: The system (25) with d(¢t,2) = 0 being an
unknown constant 6 can be globally regulated by the integral
controller

u=—k*(a120 + a2x1 + -+ - + anTp_1 + Tp),
Tg = X1

for appropriate positive constants £* and a;, 1 =1,...,n.

B. Global Regulation of Nonlinear Systems

This section considers the global regulation problem of
system (1) when system nonlinearities satisfy the following
assumption.

Assumption 2: For ¢ = 1,...,n, there is a known constant
c such that
|fi(@y, . @s)| < e(lw| + -+ i) -

Theorem 3: Under Assumptions 1 and 2, there are positive
constants k* and aj,...,a, such that for a large enough
constant L > 1, the following integral controller

u=—L"k*a(t,z) (a120 + asz1 + az %2
+ -t an BT+ B2, (28)

1.70 = L.Z‘l

with «a(¢,z) defined in Assumption 1 solves the global regu-
lation problem of system (1).

Proof. Define z; = xo—ﬁlm, =15, i=2,...,n+1.
By choosing the same constants k* and a;, i = 1,...,n as

in Theorem 2, the closed-loop system (1) and (28) under the
new coordinates can be rewritten as

2’1 ZLZQ7
Zo = Lzg + fl(ﬂ?l)7
i3 = L2y + M,

L fr—1(Z1,Tn—1)
Zn = Lapi1 + s,

Zny1 = —Lk*a(t,x) (@121 + -+ + anzn + 2n1)

T1,..,Tp
+ fn(Lln71 n))

which can be further rewritten as the following matrix form
2=0LF(t z)+ &, (29)

where F'(t,z) is the same as the one in (27) and ¢ =
fg(:l?l,mg) fn(Il ..... zn) T
(O,fl($1)7 i3 yee Ln—1 ) .
By using the same Lyapunov function V;,;; constructed in
Theorem 1, we can see that the time derivative of V,,; along
system (29) is

Vn+1|(29)
8 n
= Wois (LF (t,2) + ®) (30)
< LY+ T T G i),
By Assumption 2 and the fact L > 1, we have
I < cllmabbetlenl <ol |+ +l6l) - GD

for a positive constant ¢. In addition, from the definition of
system (15), we have

n+1 _ n+1
Py g‘z/f <eyly Gl
for a positive constant ¢. Then, by substituting (31) and (32)
into (30), we have

y n+1 2 A n+1 2
Vatilo) < —L3>320 & +eX2 &
for a positive constant ¢.
Selecting a large enough L > ¢ + 1, we can get a relation

same as (24). As a result, the integral controller (28) can
regulate system (1) under Assumptions 1 and 2.

(32)

C. Extension

We reconsider system (1) where system vanishing uncertain-
ties fi(x1,...,2;), i =1,2,...,n satisfy Assumption 2 and
the non-vanishing uncertainty d(t,x) satisfies the following
assumption.

Assumption 3: Assume the non-vanishing uncertainty d(¢, x)
satisfies

d(t,z) = 0alt, ),

where 6 is an unknown constant and «(t,z) is a known
continuous function. Moreover, «(t, ) also satisfies (¢, x) >
a(t) > 0 where the continuous function &(t) is a periodic
function with 7" > 0 being the period.

Remark 3: Assumption 3 is significantly different from
Assumption 1, and brings great difficulties to the stability
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analysis of system (1). Specifically speaking, due to the
condition «(t,z) > 1 in Assumption 1, there must be a
constant k* in Theorem 2 such that k*a(t,z) > cpy1 + 5
for all (t,x) € R>o x R™. However, since a(t,z) > a(t) >0
holds in Assumption 3 and for all (¢,2) € R>o x R", we
cannot choose the constant k*, such that k*«(t,x) > ¢pp1+ %,
which brings great challenges to the stability analysis of the
closed-loop system.

Based on Assumptions 2 and 3, we can have the following
result.

Theorem 4: Under Assumptions 2 and 3, there are positive
constants k£* and aj,...,a, such that for a large enough
constant L > 1, the following integral controller

u=—L"k*a(t,z)(ar1z0 + azzy + - -+ + a, 72=%
+ 1), (33)
lto = LfIEl

with «(t, ) defined in Assumption 3 solves the global regu-
lation problem of system (1).
Proof. Following the proof of Theorems 1, 2 and 3, we can
easily obtain

Varile) < =LY & +CE i+ Lnyau, (34)

=1

where C' is a positive constant independent of L. From (33),
we construct the controller

u=—L*k*a(t, 2)én i
and substituting (35) into (34), we have

(35)

n
Vigilae) < LY & +C& L, — Lk a(t,x)6),,, (36)

=1
and by means of Assumption 3 and L > 1, we further obtain
Vil < =LY & — (Lk*a(t) = )&y (37)

=1
Then, from Assumption 3, we have &(t) > 0. If &(t) > 0 for
t € [0, 77, and following the continuous of &(t) and the proof
of Theorem 3, we can easily prove Theorem 4.

If there exists a time t* € [0,7] such that &(t*) = 0 and
without loss of generality, we assume that only t* € [0,T]
exists making a&(¢*) = 0. Firstly, define 77 = {a(t) <e| t €
0,7}, T ={e < a(t) < L| t€[0,T]} and T3 = {a(t) >
L| t € [0,T]}, where ¢ is a small positive constant and T3 can
be an empty set. We can get that t* € 77 and from (37), we
have

] 027:11 127 telT,
Vgl <8 —(Lk*a@t) —C)S e te Ty,  (38)
—LY e, t € T

By means of ¢ < a(t) < L for t € T and from (11), (38)
can be further rewritten as

) 2CVn+1, te T17
Vn+1|(29) < —Q(Lk‘*é' — C)Vn+17 te Tg, (39)
—2LV;L+17 t e Ts.

k*=3, ag =1, as =2
2 T T
17(\([’)
iL'l(t)
150 — @ (t) |
\
— \
TN
= \
= o5t \
h \
> ) _—
5 or / N T e
~N_ o~
o5t/
/
/
1L L
o 2 4 6 8 10

Time(s)

Fig. 1. Trajectories of (25) and (41) with d(¢,z) = 2

Integrating both sides of inequality (39) from 0 to 7', we
have

[, Cds— [, (Lk"e=C)ds— [, Lds)

V(T) < V(o)eQ( (40)

From (40), we can get a large L > 1, such that Lk*s — C >
0 and [, Cds < [, (Lk*e — C)ds hold, which indicates
V(T) < V(0). On the other hand, since &(t) is a periodic
function with 7" > 0 being the period, we can eventually get
lim;—, 1o V() = 0. By Lemma 1, we can achieve the proof
of Theorem 4.

IV. EXAMPLES

Example 2: To show the feasibility of the proposed strategy,
we first consider the 2-dimension case when the disturbance is
a constant in system (25), i.e., d(t,xz) = 6 = 2. By Corollary
1, an integral controller is constructed as

{ u — —k*(al.’ljo + asx1 + £C2)7 (41)
To = X1,
where k* = 3, a1 = 1, as = 2 and the initial condition

is (20(0),21(0),22(0)) = (1,—1,1.5). From the simulation
result shown in Figure 1, we can see that the states x1 and 2
will converge to zero asymptotically and xy will converge to
the constant 4~ = 2.

When d(¢,x) is a time-varying function with an unknown
magnitude, for example d(¢t,x) = 6(1 + 0.5sin(¢)), the
controller (41) with constant gain will not be sufficient to
drive the output to zero. As a matter of fact, as shown in
the simulation in Figure 2 under § = —2 and the same initial
condition, there are oscillations even for a large £*.

By Theorem 2, we construct an integral controller

u = —k(t,z)(a1zo + asz1 + 2),
.’I'JQ =T

(42)

with a time-varying gain k(¢, z) = 6(1+0.5sin(¢)) > k* = 3.
Based on the same initial condition and § = —2 , the state
trajectories of closed-loop system (25) and (42) are shown
in Figure 3. Clearly the states x; and xo of the closed-loop
system converge to zero asymptotically.
Next, we consider a system with both a vanishing uncer-
tainty and a non-vanishing uncertainty.

569
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 28,2025 at 19:11:19 UTC from IEEE Xplore. Restrictions apply.



k*=8, a1 =1, as =2

1.5 T

xo(t)
1 (t)

- wm®)]

(0] 10 20 30 40 50
Time(s)

Fig. 2. Trajectories of (25) and (41) with time-varying d(¢, z)

k*=3, a1 =1, as =2

xo(t)
\ ——z1(t)
\ —— m) |

zo(t), z1(t), a(t)

o 2 4 6 8 10
Time(s)

Fig. 3. Trajectories of (25) and (42) with time varying d(t, x)

Example 3: Consider the following system inspired by the
pendulum dynamic

jjl - ‘T27 (43)
ig = u+ 0(1 + 22) + sin(x1)6(¢),
where 6 is an unknown constant and 4(¢) is an unknown
disturbance satisfying |6(¢)| < 1.
Firstly, we can verify that

Isin(z1)8(t)] < |,

which satisfies Assumption 2. By Theorem 3, we can construct
the following integral controller
{ u=—L?k*(1 4 23)(a120 + 2 + aga1),

o = L. @4

In the simulation shown in Figure 4, we chose §(t) =
sin(t), § =3, L=2, k* =3, ap = 1, ay = 2 and the
initial conditions (z((0), z1(0),22(0)) = (1, -1, 1.5). Clearly
the states x; and xo of the closed-loop system converge to

zero asymptotically.

V. CONCLUSION

This paper has presented a new method to design an
integral controller to regulate the states of a class of uncertain
nonlinear systems. Compared to the traditional PID controller,
our proposed controller can handle more general uncertainties

k*=3, a1 =1, as =2

17(\([’)
@1 (t)
EEon

ao(t), (1), za(t)

Time(s)

Fig. 4. Trajectories of (43) and (44) with time varying d(¢, z)

beyond constant step disturbance, such as external time-
varying disturbances with unknown magnitudes and internal
modeling uncertainties due to unknown parameters. Moreover,
the system states will converge to the origin and the unknown
magnitude/parameter can be recovered from the integral state.
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