
CloudCover: Enforcement of Multi-Hop Network Connections in Microservice
Deployments

Dalton A. Brucker-Hahn*

Sandia National Laboratories

Livermore, CA; USA

dabruck@sandia.gov

Wang Feng+

University of North Texas

Denton, TX; USA

wangfeng@my.unt.edu

Shanchao Li+
University of North Texas

Denton, TX; USA

shanchaoli@my.unt.edu

Matthew Petillo
University of Kansas

Lawrence, KS; USA

mpetillo@ku.edu

Alexandru G. Bardas
EECS and I2S

University of Kansas

Lawrence, KS; USA

alexbardas@ku.edu

Drew Davidson
EECS and I2S

University of Kansas

Lawrence, KS; USA

drewdavidson@ku.edu

Yuede Ji
University of Texas at Arlington

Arlington, TX; USA

yuede.ji@uta.edu

Abstract—Microservices have emerged as a strong architecture
for large-scale, distributed systems in the context of cloud
computing and containerization. However, the size and com-
plexity of microservice systems have strained current access
control mechanisms. Intricate dependency structures, such as
multi-hop dependency chains, go uncaptured by existing access
control mechanisms and leave microservice deployments open
to adversarial actions and influence.

This work introduces CloudCover, an access control mech-
anism and enforcement framework for microservices. Cloud-
Cover provides holistic, deployment-wide analysis of microser-
vice operations and behaviors. It implements a verification-
in-the-loop access control approach, mitigating multi-hop mi-
croservice threats through control-flow integrity checks. We
evaluate these domain-relevant multi-hop threats and Cloud-
Cover under existing, real-world scenarios such as Istio’s open-
source microservice example and under theoretic and synthetic
network loads of 10,000 requests per second. Our results show
that CloudCover is appropriate for use in real deployments,
requiring no microservice code changes by administrators.

Index Terms—Microservices, Access Control, Authorization,
Static Analysis, Service Mesh, Cloud Computing.

1. Introduction

The advent of microservice architectures for large-scale
distributed software systems has strained existing manage-
ment techniques [1]. Additionally, what were once intra-
system connections are now separated by network bound-
aries in microservice applications, becoming inter-system

*
Part of this work was completed while Dalton A. Brucker-Hahn was at

the University of Kansas, under the supervision of Dr. Alexandru Bardas.
+

This work was done while Wang Feng and Shanchao Li were working

in the Graph Lab, under the supervision of Dr. Yuede Ji.

connections. For example, in traditional, monolithic applica-
tions, function calls are made between software components,
whereas under microservice architectures, these calls now
cross network boundaries, requiring domain-specific secu-
rity solutions for defense-in-depth.

Transitioning to microservice software design has en-
abled more reliable, robust, and scalable systems. However,
this adoption has led to a significant increase in system size,
dependencies, and interservice connections referred to as mi-

croservice explosion [1], [2]. As part of this work, we high-
light two domain-enabled threats that abuse the complex,
interconnected nature of microservices and circumvent the
available, state-of-the-art protections. These threats, while
presented in past works, have gone unaddressed by state-of-
the-art technologies (e.g., [3]), due to a focus on traditional
point-to-point network connections, rather than “chains”
of network connections that are common in microservice
architectures. The densely connected nature of microservices
has revived the domain-critical threats of confused deputy
and path-suffix attacks that manifest even in simple systems,
such as [4], [5]. Through abuse of intricate trust relationships
between services and existing policy structures, attackers
may violate intended behavior of deployed systems.

Our work addresses this need by providing control-
flow integrity checks and security to microservice sys-
tems across the full lifespan of network connections. In
contrast, traditional static analysis approaches are unable
to provide comprehensive coverage, focusing instead upon
single-hop, or “point-to-point” relationships between mi-
croservices. This research effort expands the state-of-the-
art by considering relationships between services that ex-
tend beyond single-hop relationships by capturing multi-hop

dependencies present in the simplest microservice deploy-
ments [4]. To thwart the aforementioned threats, we design
and implement a system able to reason about such a complex
threat model. Through robust static analysis methods and

1186

2024 Annual Computer Security Applications Conference (ACSAC)

2576-9103/24/$31.00 ©2024 IEEE
DOI 10.1109/ACSAC63791.2024.00095

20
24

 A
nn

ua
l C

om
pu

te
r S

ec
ur

ity
 A

pp
lic

at
io

ns
 C

on
fe

re
nc

e
(A

C
SA

C
) |

 9
79

-8
-3

31
5-

20
88

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

C
SA

C
63

79
1.

20
24

.0
00

95

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

a holistic, system-wide view of access control, our system
CloudCover alleviates these issues. CloudCover requires no
microservice code changes and introduces a verification-in-

the-loop approach, addressing the potential for adversarial
influence within a microservice environment.

CloudCover’s verification-in-the-loop methodology is
enabled through a verification oracle deployed alongside
microservices. The core verification-in-the-loop technique
within CloudCover offloads access control requests to a
standalone service external to deployed microservices that
examines requests from a holistic, system-wide perspec-
tive. Leveraging the replication capabilities and default ac-
cess controls in service meshes, the verification oracle is
protected from network requests external to deployed mi-
croservices and gains load-balancing features for scalabil-
ity. Through a static-analysis-based method, microservice
source code is scanned for all outgoing network requests,
and a dependency graph of service-to-service requests is
created. Using graph traversal, CloudCover derives a verifi-
cation ruleset of network access policies, stored within the
verification oracle along with a mapping of access tokens
for authorization of requests. Verification-in-the-loop tracks
and maintains multi-hop access control for the lifespan of
service requests as they propagate through the environment.

We evaluate our static analysis source code scanning
through real-world microservice example systems (e.g. [4])
and manual, ground truth comparison. CloudCover suc-
cessfully uncovered all multi-hop dependencies identified
via manual effort in examples. Further, we evaluate the
theoretical and experimental costs that CloudCover’s im-
plementation imposes by leveraging a testbed environment.
Theoretically, CloudCover introduces an additional network
cost of 36.54 MB/s under 10,000 microservice requests per
second. However, when deployed with an example microser-
vice system implementation under load [4], CloudCover’s
protection introduced negligible overhead due to the vast
majority of processing occurring within the microservice ap-
plications rather than CloudCover’s components. Finally, we
utilize load-testing scenarios with synthetic microservices to
demonstrate a worst-case performance analysis of the feasi-
bility for CloudCover. Under such tests, the CloudCover-
augmented system was able to sustain a throughput of
more than 900 requests per second with network connec-
tions traversing five sequential microservices. These results
demonstrate CloudCover’s ability to be used in real-world
environments while maintaining performant response rates.

As part of this work, we make the following contributions:
• We analyze two domain-critical, previously discovered

threats to microservice environments that manifest in ex-
isting microservice deployments, such as Istio’s Bookinfo.

• We present an open-source, scalable code-scanning
methodology using static analysis to find multi-hop mi-
croservice dependencies.

• We present CloudCover, a solution for multi-hop access
control verification in microservices and evaluate its fea-
sibility in large-scale (real-world and synthetic) microser-
vice systems.

Figure 1: Sample Microservice System – Within the mi-
croservice eCommerce system, each microservice interacts
with one another through service proxies that handle net-
work communication and security logic.

2. Background

With cloud computing emerging as a dominant model of
deploying distributed software at global scale, DevOps tools
and methodologies have risen to handle new challenges. Due
to enterprise-scale environments, often exceeding hundreds
to thousands of deployed microservices [6]–[8], the need for
better management and control methods for these systems
are provided through DevOps innovations. With microser-
vice architectures gaining popularity, service meshes have
been embraced to provide networking and security logic
that manages microservice activities. CloudCover expands
upon these systems with improvements to access control
mechanisms in service meshes.
Service Mesh Overview: The primary goal of service
meshes is to provide network abstraction and security for
microservices [9]. To allow developers a simplified process
of developing and deploying their software, the responsi-
bilities of service discovery, connection, and management
have been delegated to service meshes. Leveraging service

proxies [10], service meshes implement a sidecar appli-
cation alongside microservice code that intercepts network
traffic and requests to and from microservices. This adjacent
positioning of service proxies allows them to provide traf-
fic introspection and overlay security mechanisms such as
access control and mutual-TLS (mTLS) authentication for
microservice applications.

Figure 1 illustrates this network architecture and the
implementation of service proxies that provide mTLS con-
nections and access control between elements of a microser-
vice deployment. Within Figure 1, each unique microservice
(frontend, checkout, and payment) operates as a container-
ized application. Within each of the microservice bound-
aries, a service mesh service proxy intercepts all network
communications, incoming and outgoing, and routes them to
the appropriate target microservice and applies security, such
as message encryption. In our example, a small eCommerce
site is constructed, able to service purchasing requests from
external users. Through the capabilities of the service mesh,
confidentiality, integrity, authentication, and authorization
are provided to microservice applications, but do not re-
quire source code changes to the microservices [11]. By
securing and verifying requests between services, service
meshes contribute towards “zero-trust networking” [12] for
microservice architectures.
Alternative Cloud Architectures: Serverless comput-
ing [13] has emerged as a competing architectural paradigm
to microservices and service mesh deployments, but has

1187

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

key differences and challenges relative to microservices
deployed via a service mesh. Namely, the serverless comput-
ing paradigm is a cutting-edge product that many software
deployments are not mature enough to adopt, leading many
to opt for Kubernetes- and service mesh-based deployments
as their needs and experience matures within the cloud-
computing domain. Additionally, of the available serverless
computing products major cloud service providers offer
unique implementations with few native runtime languages
supported [14], [15]. Due to this, vendor lock-in is a present
issue and restrictions of codebases may arise. In contrast,
Kubernetes may be run as a cloud-provided service, or
may be configured atop well-adopted operating systems
and deployed in on-premise environments. While there are
emerging, on-premise solutions for serverless computing,
such as Knative [16] and OpenFaaS [17], these solution
have yet to see major adoption in large-scale enterprises
and Knative is currently listed as “incubating” by the Cloud
Native Computing Foundation (CNCF) [18]. Additionally,
serverless computing architectures are not suitable for many
of the scenarios in which microservices are meaningful
architectural choices. Namely, microservices are the pre-
vailing, cloud-computing based, architecture for handling
high-volume requests, low-latency response times, and cost-
effectiveness for “permanent” processes. Due to microser-
vices having services deployed and configured at all times,
they are able to respond to requests at baseline time cost
whereas under the serverless computing model, resources
must be allocated and deployed before responding, creating
time cost and may also face similar issues when evaluating
application performance.
State-of-the-Art Shortcomings: In the current state-of-the-
art service meshes, access control authorization is conducted
through a series of policies and traffic rules present in
service proxies [19]. These network policies, often requir-
ing significant manual effort by system administrators, are
consulted for each network request made to microservices
within the service mesh. Based upon these policy evalu-
ations, the request is either denied entry to the microser-
vice, or is accepted and the request payload is ultimately
forwarded to the target microservice. However, under this
model, access control policies are checked in isolation at the
receiving service proxies and may leave the microservice de-
ployment open to adversarial actions because of this limited
visibility. As part of this work, we analyze two domain-
specific threats to microservice deployments: the confused
deputy and path-suffix attacks. These threats, identified in
prior work, are discussed further in Section 4. To enumerate
and properly enforce the complex graph of dependencies
within a microservice deployment, our design of Cloud-
Cover leverages static code analysis to reveal connections
in the source code of microservices.
Code Analysis for Microservices: Code analysis aims to
perform automatic inspection, understanding, and analysis
of code which can provide identification of potential defects
in code [20]. As developers create and improve microser-
vices, they work directly with source code. Therefore, source
code-based analysis can be applied to identify and profile

microservice behavior [3]. In this work, we focus upon the
behaviors of requests between microservices, referred to as
dependencies. Additional details of commonly used code
analysis techniques, such as control flow analysis, data flow
analysis, and taint analysis are provided in the Appendix.

3. Related Work

Primary concerns within the domain of microservices
include containerization and microservice security, access
control methods in microservice systems, and analysis of
microservice source code. Below, we highlight a number of
relevant works to this domain, noting how our work expands
upon these investigations.
Container and Microservice Security: In recent years, a
range of vulnerabilities and exploits have emerged within
microservice applications and the container ecosystem, such
as Log4j [21], [22], leading to significant damage [23],
[24]. From these events, work to understand the existing
vulnerabilities and security issues in containerized applica-
tions have materialized [25], [26]. To address these con-
cerns, various works have explored applying principle of
least privilege [27], or utilizing security monitoring for
containers [28]. Our development of CloudCover furthers
this research by highlighting the dangers of inherent trust
between microservices via an analysis of two previously
discovered threats.
Access Control Methods in DevOps: Work by Nam, et

al. [29] explores the security of container networks and
the vulnerabilities exposed by some container networking
systems. They provide a proof-of-concept framework to mit-
igate these threats and enforce proper container networking
policies. CloudCover provides access control a layer above
container networking, at the service mesh perspective, and
addresses domain-relevant threats within the microservices
domain. However, CloudCover may be combined with these
previous methods to provide a defense-in-depth approach.
Directly related to CloudCover, work by Li, et al. [3]
(AutoArmor) has explored inherent trust relationships within
microservice systems and how this practice may be exploited
by attackers residing within compromised services. Cloud-
Cover expands upon this work by extending the threat model
with new adversarial capabilities and an analysis of two
critical threats to the microservices domain.

Similar access control investigations have been con-
ducted in related domains, such as serverless comput-
ing [30]–[33]. Specifically, work by Datta, et al. [33] (Valve)
and Jegan, et al. [32] (Kalium) examined the enumeration
of serverless computing network calls via dynamic anal-
ysis techniques. In contrast to this approach, CloudCover
leverages static analysis of source code, enumerating all of
the possible network requests that a piece of code could

create, rather than collecting dynamically exercised requests
during a time period of testing. Further, as the authors note
within Kalium, their approach fails to address the need
for concurrent network requests, while CloudCover handles
concurrent requests by default through the use of a desig-
nated verification oracle that resides external to the deployed

1188

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

microservices. Work by Sankaran, et al. [30] examined an
access control approach within serverless computing archi-
tectures that describes a method for policy enforcement of a
“workflow” that may traverse many functions. CloudCover
extends upon the ideas presented in this work by first
providing the means for extracting the necessary policies
from microservice source code, but also implementing an
enforcement mechanism tailored to the service mesh do-
main upon which, large-scale microservice applications are
often deployed. Lastly, the requirements of third-party/cloud
provider cooperation for implementation, as found in [32],
or source code modification, as found in [31], are not
necessary in this work due to the core architecture and
design decisions present within the CloudCover verification-

in-the-loop approach.
Microservice Code Analysis: As previously mentioned,
AutoArmor [3] is a current state-of-the-art work that aims
to apply source code analysis techniques to microservice
policy generation. Through their methodology, they iden-
tify network request invocations and extract program slices
associated to requests. From these slices, they catalog re-
quests between services and generate access control policies.
Our work significantly expands upon these techniques by
performing similar initial request extraction, but consider-
ing larger, system-wide relationships that extend beyond
single-hop dependencies. Additionally, we create a domain-
aware, verification-in-the-loop approach to implementing
these multi-hop, system-wide policies for enforcement.

Other works have also studied the practice of applying
code analysis to generate access control policies, among
which, Access-Control Explorer (ACE) [34] combines static
and dynamic analysis for this purpose. Lachmund, et al. [35]
use a static code analysis approach to generate policies that
abide by the principle of least privilege with the differenti-
ation of resource accesses initiated by an application from
those initiated by a user. Our work similarly attempts to
apply principle of least privilege by identifying multi-hop
network requests from microservice source code to reduce
the system’s attack surface. Additionally, CloudCover en-
forces complex, multi-hop access control policies through
our verification-in-the-loop approach.

4. Threat Model

A range of concerns and known issues plague the emerg-
ing microservices domain. Among these are issues related
to the hosted services themselves and the security of the
containerized applications that perform the business logic
of software systems. For example, software supply-chain
issues [36], inherent trust among containers [37], and latent
misconfigurations within containers [25], [26] have been
previously found in research and reported to developers. Due
to these factors, deployed microservices should be untrusted
during operation and should have only the minimum neces-
sary permissions and access.

Confused Deputy Attack

Path-Suffix Attack

Proxy

Login
Service

Proxy

Helper
Service

Proxy

Database
Service

Legitimate
request origin Path-suffix of

legitimate path

Proxy

Helper
Service

Proxy

Compromised
Service

Proxy

Database
Service

Incorrectly
forwarded

request

Legitimate
policy path

Figure 2: Microservice Dependency Attacks – Overview
of confused deputy and path-suffix attacks.

4.1. Model Assumptions and Constraints

As part of this work, we make the assumption that the
previously discovered issues and vulnerabilities within the
microservice domain have the potential to manifest within
real-world deployments. Further, the vast size and complex-
ity of microservice systems necessitates domain-specific se-
curity and verification mechanisms to constrain microservice
activities. From the perspective of an adversary, we consider
threats against microservice code to be within scope and
possible for attackers to exploit. Whether these exploits
take the form of software supply-chain attacks, application-
level vulnerabilities, or container compromise, we assume
that microservices deployed within these environments are
vulnerable and that attackers may leverage these weaknesses
to gain full access over the containers in which microservice
source code operates. From this standpoint, the adversary
may modify application behavior within the compromised
container, generate arbitrary network requests, or attempt to
modify payloads leaving the application hosted within the
container. With these capabilities, the adversary may attempt
to create unauthorized requests to other microservices that
violate the intended policies constructed by system adminis-
trators. It is important to note that we do not consider attacks
against message integrity (leaving this as a task for checks
and safeguards within microservice application code) or
confidentiality to be within scope of this work. Further, we
posit that sidecars and architectural elements of the overlay
service mesh are out-of-scope for adversaries due to their
code bases being relatively small, open-source and highly
vetted technologies across a number of large enterprises and
US government agencies [38]–[41]. Instead, we focus upon
limiting the impact and horizontal actions of adversaries
and their influence upon the broader system by detecting
unintended actions occurring within the microservice de-
ployment and raising alerts to system administrators for
targeted remediation and isolation. While this threat model
assumes a sophisticated attacker with knowledge and skills
necessary to execute such attacks, we believe the domain
of microservice systems and the large amount of resources
dedicated to these types of deployments make them highly
valuable targets for adversaries to attempt to exploit. Ad-
ditionally, this threat model was previously presented and

1189

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Client App A
(Standard)

Client App B
(Sensitive)

Data Service

DB X
(Standard)

DB Y
(Sensitive)

App A --> Data Svc
App A --> Data Svc --> DB X
App B --> Data Svc
App B --> Data Svc --> DB Y

Desired Policies

Current Solution Policies[30]

CloudCover Policies

App A --> Data Svc (/data/X)
App B --> Data Svc (/data/Y)
Data Svc --> DB X
Data Svc --> DB Y
Attacker has route to DB Y

App A --> Data Svc
App A --> Data Svc --> DB X
App B --> Data Svc
App B --> Data Svc --> DB Y

Figure 3: Confused Deputy Analysis – Under current
access control policies in service meshes, the confused
deputy attack is enabled. Adversaries may leverage multi-
hop dependencies and exploit existing systems. CloudCover
prevents these actions by capturing multi-hop dependencies
and enforcing these policies with verification-in-the-loop
access control.
leveraged in work by Li, et al. [3]. This work expands
upon this previously analyzed threat model by considering
two domain-enabled threats to microservices that have been
considered by past work, but not directly addressed within
the microservices domain. Namely, these threats are con-

fused deputy attacks and path-suffix attacks. We note that
while these may not represent a comprehensive list of multi-
hop attacks available to adversaries, we highlight these as
representative of a class of threats that have gone previously
unaddressed within the domain of microservices and require
domain-informed solutions to combat. Next, we elaborate on
these threats and the characteristics of microservices that
enable their existence.

4.2. Microservices Attacks

Due to the extremely complex and interconnected nature
of microservice deployments, it is highly challenging to
accurately describe and map all of the potential connections
that microservices may make between one another. As such,
we identify a previously uncharacterized structure that exists
within microservice deployments that we refer to as a multi-

hop dependency, or “dependency chains”. In this sense, for
the microservice system to fulfill the original request, a
new request must be serviced before ultimately returning
the final response. For example, a frontend service A may
make a request for data retrieval from service B which
then coordinates the actual data query with service C before
returning final results to service A. This type of structure
is shown in Figure 3 through the connections of App
A to Data Service at path /data/X and ultimately
to DB X. Through this multi-hop service request process,
complex dependencies are naturally created and necessary
within microservice architectures. Further, all access control
schemes and state-of-the-art service mesh implementations
for microservices fail to capture or address these complex
relationships.
Confused Deputy Attack: In the context of this work, we
refer to the “Confused Deputy Attack” as one that occurs
when a benign, uncompromised service is leveraged for
malicious purposes via a legitimate intermediary hop for
which they have a valid access policy. Current access control
methods in service mesh tools are unable to verify multi-
hop relationships as traffic propagates through the system.

Rather, current state-of-the-art approaches examine requests
in isolation, enforcing defined policies only at the recipient
microservice, rather than at a system-wide monitor. These
isolated, single-hop connection policies are shown for an
example system within Figure 3 under the “Current Solution
Policies” heading. This shortcoming allows an opening for
adversaries to traverse legitimate paths and manipulate the
intermediary, or “broker” services to do their bidding for
them. In this way, the intermediary service is unknow-
ingly participating in a malicious action and is a “con-
fused deputy” on behalf of the adversary. The first scenario
depicted in Figure 2 shows how a compromised service
traverses a legitimate path between them and the deputy in
order to make illegitimate requests against a victim service.
Further, Figure 3 demonstrates how such restrictive policies
can fail to address this phenomenon in practical systems.
Despite the strength of such an attack and the complexity of
reasoning about these relationships, CloudCover allows us
to detect and mitigate such threats in microservice systems
(more details in Section 6).
Path-Suffix Attack: With intricate relationships between
microservices in a deployment, we analyze an additional
threat within the domain where an attacker bypasses the full,
legitimate multi-hop dependency path. In other words, the
entirety of a multi-hop path should be secured and access
should only be provided in the case where the origin service
generates the beginning request of a service chain. As the
second scenario in Figure 2 shows, if an adversary has
presence and control of a microservice that exists along a
multi-hop service path, illegitimate requests may be sent
to target services that exist along the suffix of a multi-hop
path. Again, due to the fact that the current service mesh
design only accounts for isolated, single-hop connections,
this complex dependency relationship goes unaddressed. In
this way, the adversary may bypass the requirement of an
originator to start a service request chain and may instead
simply replay or generate malicious requests towards the
target service, as shown in the second scenario of Figure 2.
Figure 3 expands upon this idea by highlighting the policies
generated by CloudCover that prevent such attacks. Under
the “CloudCover Policies” heading, any request destined for
a DB service within the environment must originate by one
of the App services and may not originate directly from the
Data Svc. By accounting for the entirety of the service
request path and enforcing proper prerequisite approval for
service requests, CloudCover is able to prevent such threats.
CloudCover helps to ensure that “zero-trust” networking is
maintained and malicious presence within a microservice
deployment is limited.

5. Microservice Code Analysis

The goal of microservice code analysis is to extract the
requests between different microservices, which will serve
as the foundation for later access control policy enforcement.
With that, we can construct a request dependency graph that
can help verify the validity of the real-time requests. In the

1190

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

import com.example.http;
String checkOrderHealth() {
 String id = "100";
 String r = "error";
 int stat = http.get("status.com");
 if (stat == 1) {
 r = http.get("order.com/?o=" + id);
 }
 return r;
}

(a) An example service code.

1
2
3
4
5
6
7
8
9
10

checkOrderHealth
- Type: HTTP
 URL: status.com
 Method: GET
 Dependency: []

- Type: HTTP
 URL: order.com/?o=100
 Method: GET
 Dependency:
 - status.com

(e) Extracted result.

(b) The CPG of the code in (a).

(c) Service request extraction. (d) Dependency-aware request extraction.

false
D

id

CFG edge

AST edge

PDG edge

3 4 Exit5 6 7 9

D
r

String

id

String =

r “error”

int =

stat Call

http.get Arg

“status.com”

==

stat 1

=

r Call

http.get Arg

“order.com/?o=”

+

id

return

r

Entry

=

“100”

D
rtrue

D
stat

C
true

5 6 7

int =

stat Call

http.get Arg

“status.com”

==

stat 1

=

r Call

http.get Arg

“order.com/?o=”

+

id

true

D
stat C

true

68

79

3 7

String

id

=

r Call

http.get Arg

“order.com/?o=”

+

id

=

“100”

D
id

1

2

3

4

5

Figure 4: Dependency Analysis Methodology – A simplified example of our service request extraction method. (a) denotes
an example service code, (b) shows its CPG, (c) explains our service request extraction method, (d) explains our dependency-
aware request extraction method, and (e) shows the extracted result.

following, we will discuss the unique challenges of ana-
lyzing microservice code, and our methods for addressing
them. We also provide a comparison with the state-of-the-art
in the Appendix.

5.1. Challenges of Microservice Code Analysis

We identify three unique challenges in analyzing mi-
croservice code: cross-language, accurate extraction of re-
quests, and dependency across microservices.
Cross-Language: A microservice application typically in-
volves multiple services, each of which provides well-
defined APIs that are functionally independent from other
services. Each service can be implemented in a variety of
languages. Different combinations of these languages pose a
challenge to code analysis due to different syntax, semantics,
libraries, and frameworks. In addition, some communication
protocols have flexible formats that can be customized by
users, e.g., the remote procedure call (RPC) [42]. Fur-
thermore, tedious human efforts to replicate code analysis
techniques between languages are not scalable. To address
this challenge, we design our code analysis technique on top
of a language-agnostic representation, i.e., code property
graph (CPG). We discuss this in more detail in Section 5.2.
Accurate Extraction of Service Requests: To provide the
ground truth for allowed access policies, accurate extrac-
tion results are necessary. However, it is challenging to
accurately extract these results since the correct context
information is required to find the exact requests and parse
variables in said requests. Additionally, configuration files
must be included as important key values might be explicitly

defined. To address this challenge, we design a control and
data flow graph backtracking algorithm that can accurately
extract and parse the requests. We elaborate on this in
Section 5.2. Alternative approaches to performing request
extraction have examined using dynamic analysis to track
the behaviors of source code during operation, however, dy-
namic analysis may not provide comprehensive coverage of
all possible network requests if they are note appropriately
exercised. In contrast, our static analysis approach extracts
all possible network requests, whether they are commonly
exercised or not, due to analysis of source code directly.
Dependency Across Services: Though a group of given ser-
vices are independent of each other, microservices are often
required to work together to complete a task. For example,
before a request is made to an order microservice, we
must check user validation and retrieve product details by
making requests to the user and product microservices,
respectively. This opens up the possibility for dependencies
across microservices, which must be analyzed. To address
this challenge, we design a dependency-aware extraction
technique. We discuss this in more detail in Section 5.3.

5.2. Language-Agnostic Code Analysis

To address the cross-language challenge, we leverage
a language-agnostic code analysis technique. In particular,
we represent different types of microservice code as code
property graphs (CPGs), and design an accurate service
request extraction algorithm.

A code property graph (CPG) is a unified data struc-
ture that represents the code in a graph-based format [43].

1191

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: CPG-based service request extrac-
tion.

Input: G - Code property graph of the microservice;
M - Methods of sending requests to others;

Output: R - Extracted requests
1 Q = ;
2 for each method m 2 G do
3 if m 2 M then
4 R,D = ;
5 for arg 2 m.ast do
6 find(arg, R, D)
7 parse the requested service s through R
8 Q.push(s)
9 extract dependencies based on D and Q

CPGs provide the foundation for our static analysis method-
ology. We use CPGs in this scenario for two main reasons.
(i) CPG is language-agnostic as it focuses on capturing
the relationships and dependencies between code elements
rather than specific language details. In particular, a popular
CPG framework, Joern [44], has developed specific front-
end tools to convert more than ten languages to CPGs. (ii)
CPG enables deep static analysis processes required for the
follow-up code analysis in microservice applications.

A CPG includes three types of subgraphs: abstract syn-
tax tree (AST), control flow graph (CFG), and program
dependence graph (PDG). An AST encodes the syntactic
information in a hierarchical tree representation, a CFG
represents the execution flow between instructions in a graph
representation, and a PDG captures both data and control
dependencies between the program statements.

Figure 4(b) denotes the CPG of an example code in
Figure 4(a). Line 7 is denoted as node 7 in CPG. It is
further decomposed into an AST rooted in 7, which includes
complete syntax of this statement. Also, line 7 has a control
flow dependency of line 6 based on the condition of whether
variable stat equals 1. Further, variable id in line 7 has
a data dependency on its definition in line 3.
CPG-based Service Request Analysis: Algorithm 1
presents our service request analysis algorithm. Given the
CPG of the service to be analyzed, we aim to find out
which services it requests. To achieve that, we first identify
the methods of sending requests in the CPG (lines 2-3).
Then, we parse the parameters, find out their specific values,
and merge them to get the exact services. In particular, we
traverse the method’s AST (line 5). For each variable on the
AST, we call the find algorithm (Algorithm 2) to find out
the values of these variables (line 6). Next, we parse the
values of that request using a variable value queue (line 7).

Algorithm 2 illustrates the find algorithm, which finds
the value of a variable by recursively backtracking. Given a
variable v, there are five different cases we need to consider.
(i) If the variable value is constant, e.g., a string, or it is
pre-defined in the configuration file, we use it as the value
for variable v (lines 1-2). (ii) If the variable is a user-
defined input argument, that means we cannot get its specific

Algorithm 2: Find the value of a variable.
Function find(v,R,D):

1 if v is constant or pre-defined in configuration files then
2 R.push(v) and return
3 if v is a user-defined input argument then
4 R.push(⇤)
5 if v uses other variables then
6 for each variable a used by v do
7 find(a,R,D)

8 if v uses the return values of another method b then
9 find(b, R,D)

10 if method b 2 M then
11 D.push(b)

12 if v is a parameter of a method c then
13 find(c, R,D)

value as it is determined during runtime, we use a wildcard
to represent it (lines 3-4). (iii) If the variable uses other
variables, we will call the find algorithm to recursively
determine the value of other variables (lines 5-7). (iv) If the
variable uses the return value of another method, we will
call the find algorithm to recursively find the return value
of this method (lines 8-9). (v) If the variable is a parameter
of a method, the find algorithm recursively finds its value
(lines 12-13).

Framework-Agonostic RPC Analysis: RPC (Remote Pro-
cedure Call) is a communication protocol that allows a
program to execute a procedure in a different address space,
typically on a remote system [42]. There are different RPC
frameworks and they define their own APIs and store them
in different configuration files, e.g., .proto and .thrift
for gRPC [45] and Apache Thrift [46], respectively. This
poses a challenge for analyzing different RPC frameworks.
To address this challenge, we propose a framework-agnostic
RPC analysis method. In particular, we first scan all the
method definitions from the CPGs of the services to extract
all the RPC-related APIs. In this step, we locate a method
as the combination of method name, parameters, and return
values. After that, we apply the same CPG-based service
request analysis to capture the requests.

Example: Figure 4(c) presents an example of extracting a
service request. Starting from a method called http.get,
which is known to be used for sending requests, we find it
uses a string constant and another variable id. With that,
we follow 1 to find the value of variable id. With that,
we backtrack the node id to node 7 following 2 . Then, as
node 7 has a data dependency on node 3, we backtrack it to
node 3 following 3 . Realizing node 3 is the root node of an
AST subtree, we traverse it to find the definition of variable
id and its value “100” as shown by 4 and 5 . To this end,
we are able to recover the value of the service request at
line 7 as “order.com/?o=100”, shown in Figure 4(e).

1192

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

5.3. Dependency-Aware Analysis

Though the language-agnostic code analysis method can
identify service requests, it misses the dependency across
different services as discussed in Section 5.1, which is also
a major limitation in existing microservice code analysis
methods, e.g., AutoArmor [3]. To address this challenge, we
design a dependency-aware analysis method by identifying
three types of dependencies as follows.

(i) Data dependency refers to the case that there exists
a data dependency between the two services. For example,
the value of one service request can be used to construct
another service request. To capture that, we add an extra
step in extracting service requests. In particular, when the
value of variable v is affected by another method, we not
only recursively find its value, but also save this dependency
into a queue D (lines 10-11 in Algorithm 2). When it is
finished, we further extract the dependencies based on D

and service request queue Q.
(ii) Control dependency refers to the case where there

exists a control flow among different service requests. For
example, the result of one service request is used in the
condition of making another service request. In the example
service code in Figure 4(a), the service request in line 7
is controlled by the condition in line 6, while the variable
stat in line 6 is defined by another service request in line
5. To find the control dependency, we backtrack the service
requests based on the control flow edges. If any service
request-related variables are identified, we backtrack them
with an algorithm similar to Algorithm 2 to recover values.
Note our method can capture both dependencies even if they
appear simultaneously.

(iii) Architecture dependency refers to the dependency
relationship between different services from the architec-
ture design of a specific microservice application. Different
from the previously discussed data and control dependencies
which are mainly used to analyze one service, the archi-
tecture dependency aims to capture the overall architecture
of all the services in a system. In particular, based on
the extracted relationship from the service requests, data
dependency, and control dependency, we construct the over-
all architecture of a service by backtracking. Additionally,
we identify the originator services, which are critical to
thwarting our identified threats, especially the path-suffix
attack. Specifically, a service is regarded as an originator
if it either (i) only makes requests without accepting any
requests; or (ii) accepts requests from other services, while
there is no control or data dependency between them.
Example: Figure 4(d) shows an example of capturing the
data and control dependency. Starting from the service re-
quest at node 7, we find it has a control flow dependency
to node 6. Then, we backtrack to node 6 by following 6 .
Similarly, we traverse the AST rooted at node 6 and find
a variable named stat by following 7 . As its value is
unknown, we backtrack it to node 5 by following the data
flow edge (8). By traversing the AST rooted at node 5,
we realize the value of stat is defined by the service
request “status.com” (9). To this end, we are able to

Figure 5: Verification-in-the-loop involves service proxies
consulting with a verification oracle to approve all service-
to-service requests within a deployment. We utilize Open
Policy Agent [47] and etcd [48] to facilitate this
process. We test with etcd configurations to investigate
performance benefits.

identify this dependency across different services. As shown
in Figure 4(e), we extract out metadata corresponding to
dependencies to compile a comprehensive list of connection
flows within analyzed microservice systems.

To provide a direct comparison of our methodology
against the current state-of-the-art tooling, AutoArmor [3],
we provide a detailed description of our techniques in com-
parison to this previous approach and present it in the Ap-
pendix. Additionally, as part of our evaluation in Section 7,
we examine five example microservice deployments and
compare our results against the results previously presented
in the AutoArmor work [3].

6. CloudCover

Utilizing the current state-of-the-art technologies in the
DevOps toolset and service meshes, we design and imple-
ment CloudCover to address the shortcomings in access
control enforcement for microservice deployments.

6.1. Architecture and Design

Due to observed issues within the state-of-the-art in mi-
croservice access control, holistic visibility and control over
microservice behavior is critical in thwarting the domain-
critical threats noted in Section 4. As such, we design
CloudCover to operate as a supplemental access control
system alongside existing tooling used for deploying and
operating microservices. CloudCover leverages three key
elements in its defense: a list of microservice dependencies,
a capability to intercept traffic inbound/outbound from a mi-
croservice, and an external service, we term a “verification
oracle”, that renders acceptance decisions for requests based
upon extracted policies (single-hop and multi-hop). Access
control requests are received from service proxies deployed
at the network boundary of all microservices. Instead of
utilizing the built-in access control methods provided by
Istio [49], we re-route all access control checks to the
verification oracle for approval. By re-routing this traffic to

1193

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

a standalone entity within the deployment, observation of
microservice behavior across multi-hop dependencies can
be captured and system-wide visibility into the security
concerns of deployments are possible.

Another factor in this process is that the normal service-
to-service traffic conducted by the default service proxies
within a service mesh do not carry all of the necessary
request metadata and historical context needed to perform
multi-hop access control verification tasks. To accomplish
this, we first assign a unique name and key tuple to each
unique microservice that is attached to requests that exit the
microservice boundary. Next, we deploy etcd [48] storage
elements for temporary storage of previous request metadata
(list of target services with corresponding access keys from
originating services) so that a record or “chain” of previous
microservice request information can be passed in request
headers. The storage of request headers are stored external
to microservices, residing securely within the CloudCover
system elements and are transparent to the underlying mi-
croservice code. In this manner, microservice code changes
are not necessary and attackers residing within a compro-
mised microservice have no knowledge of the CloudCover
system or metadata critical to verification processes. When
a microservice receives a request, the Istio and etcd com-
ponents first extract this name+key tuple and forward it for
verification before allowing the request access to the target
microservice. The verification oracle examines the tuple
that is sent and the corresponding policy entry for a target
microservice to validate the originating microservice’s claim
to target resources. For multi-hop connections, the process
remains the same, however, when the CloudCover metadata
tuples are appended as the number of hops grows and the
verification oracle examines all tuples and their targets for
validity before approving the request. If the verification
decision is to accept the traffic, the request is stripped of
any CloudCover details and verification-in-the-loop tokens,
and the request payload is passed to the target microservice.

While this design necessitates new network connec-
tions be generated by the service mesh elements for access
control verification, separating the access control logic is
essential to provide the holistic, system-wide protection that
CloudCover offers. Otherwise, administrators are left with
isolated, single-hop access control verification that leaves
microservice deployments open to potential compromise and
attack. We provide an overview of CloudCover’s implemen-
tation details and the setup for our experimental testbed
below. Afterwards, in Section 7, we provide theoretical and
experimental data to support the feasibility and scalability
of CloudCover in real-world environments.

6.2. Implementation

We implement our previously described approach using
industry-standard technologies, namely Kubernetes [50] for
container orchestration and management of workloads. Atop
Kubernetes, we leverage the Istio service mesh [49] for
service proxy capabilities and service management and dis-
covery. Next, we make use of Open Policy Agent (OPA) [47]

for providing the mechanism of enforcement for microser-
vice requests made within the deployment and we utilize
etcd [48] for storage of request metadata and tokens from
previous connections. The combination of these technolo-
gies and the overall structure of deployment (under both
tested configurations) is provided in Figure 5.

Next, we deploy experimental workloads of our de-
sign to a privately managed and operated cloud environ-
ment. This environment is comprised of 52 desktop hosts
with identical hardware configurations of Intel i7-9700K
(3.60GHz) CPUs and 16 GB of RAM. These desktop hosts
are connected via a 1 Gbps switching network. Addition-
ally, an industry-grade Dell PowerEdge [51] server was
used for Kubernetes control-plane purposes to coordinate
the deployment and management of workloads. To evaluate
the feasibility and scalability of CloudCover for real-world
workloads, we design a series of experiments to capture the
network costs and performance behavior of CloudCover in
different circumstances.

7. Evaluation

The evaluation of CloudCover is comprised of three
components: a performance investigation of extracting mi-
croservice requests from source code, an analysis of the
network overhead imposed by CloudCover, and experimen-
tal microservice deployments under realistic load. This ap-
proach is intended to show both the security-performance
tradeoff and the system costs when making use of Cloud-
Cover for microservice access control enforcement.

7.1. Performance of Service Request Extraction

This experiment studies the performance of service
request extraction. We implement the code analysis task
of CloudCover on top of a popular code property graph
framework, i.e., Joern [44]. We implement it to support
five programming languages that are frequently used in
microservice applications, including C++, Java, JavaScript,
Ruby, and Python. The experiments are performed on a
server with two Intel Xeon Silver 4309Y CPUs running
Rocky Linux 8.6. We compared it with AutoArmor [3],
which is the state-of-the-art code analysis-based access con-
trol framework for microservices.

We tested five microservice applications as summarized
in Table 1, including Bookinfo [4], Online Boutique [5],
Sock Shop [52], Social Network [53], and Media Ser-
vice [53], The first three are commonly tested by existing
works, e.g., AutoArmor [3], the other two are from Death-
StarBench [53], which is an open-source benchmark suite to
evaluate the performance of large-scale cloud microservices-
based applications.

In particular, Bookinfo [4] is a simple bookstore appli-
cation that displays the description and reviews of a book.
Online boutique [5] is a web-based e-commerce application
where users can browse items, add them to the cart, and
purchase them. Sock shop [52] simulates the user-facing
part of an e-commerce website that sells socks. Social

1194

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Dependency Extraction – Results of service request extraction for five microservice applications. LoC denotes
lines of code. Service requests column denotes the number of requests extracted by CloudCover, AutoArmor, and ground
truth, respectively. Time column denotes the runtime of CloudCover and AutoArmor, respectively. Speedup denotes
CloudCover’s extraction performance relative to AutoArmor. Note: AutoArmor was not evaluated against DeathStarBench’s

examples, therefore, no comparison for service extraction, time required, or speedup is provided.

Application Service Language LoC Service requests Time (s) Speedup

BookInfo
productpage Python 788 5:3:5 6:21 3.5⇥
details Ruby 197 1:1:1 1:4 4⇥
reviews Java 211 1:1:1 5:27 5.4⇥
ratings JavaScript 275 2:2:2 2:27 13.5⇥

Online Boutique
currencyservice JavaScript 692 - 1:25 25⇥
paymentservice JavaScript 668 - 1:26 26⇥
emailservice Python 1,317 - 1:20 20⇥
recommendationservice Python 1,389 1:1:1 1:28 28⇥
adservice Java 659 - 2:29 14.5⇥

SockShop
front-end JavaScript 3,503 33:33:33 126:125 0.99⇥
orders Java 1,710 8:8:8 9:55 6.1⇥
carts Java 1,541 7:7:7 23:48 2.1⇥
shipping Java 594 2:2:2 6:34 5.7⇥
queue-master Java 667 2:2:2 4:31 7.8⇥

Social Network
(DeathStarBench)

composepostservice C++ 632 14:-:14 3:- -
hometimelineservice C++ 427 6:-:6 1:- -
mediaservice C++ 103 - 1:- -
poststorageservice C++ 718 - 1:- -
socialgraphservice C++ 1,123 48:-:48 7:- -
textservice C++ 235 4:-:4 1:- -
uniqueidservice C++ 222 - 1:- -
urlshortenservice C++ 264 - 1:- -
usermentionservice C++ 304 - 1:- -
userservice C++ 1,042 14:-:14 2:- -
usertimelineservice C++ 513 3:-:3 1:- -
writehometimelineservice C++ 215 2:-:2 1:- -

Media Service
(DeathStarBench)

castinfoservice C++ 429 - 1:- -
composereviewservice C++ 881 18:-:18 3:- -
movieidservice C++ 430 12:-:12 2:- -
movieinfoservice C++ 540 - 1:- -
moviereviewservice C++ 463 3:-:3 1:- -
pageservice C++ 251 8:-:8 1:- -
plotservice C++ 328 - 1:- -
ratingservice C++ 171 4:-:4 1:- -
reviewstorageservice C++ 423 - 1:- -
textservice C++ 123 4:-:4 1:- -
uniqueidservice C++ 283 4:-:4 1:- -
userreviewservice C++ 461 3:-:3 1:- -
userservice C++ 1,081 12:-:12 2:- -

Total 39 Unique Services 5 Languages 25,873 221:60:221 - -

network [53] is a broadcast-style social network with uni-
directional follows relationships. Media service [53] is an
online website for browsing movie information, as well as
reviewing, rating, renting, and streaming movies. In total,
there are 39 unique services crossing five programming lan-
guages, including C++, Java, JavaScript, Ruby, and Python.

Table 1 summarizes our results, providing two interest-
ing conclusions. First, CloudCover is able to identify all
the service requests inside five microservice applications.
In particular, it uncovers all 221 requests, matching the
results of manual ground-truth analysis, from the 39 unique
services, with an average of 5.7 requests per service. For the
first three applications, AutoArmor is able to capture most
of the requests, i.e., 60 out of 62. It failed to capture two
from the productpage service of the Bookinfo appli-
cation caused by ignoring the multiple requests for the same
service (more details in Section 7.3). Also, the front-end
service of SockShop sends up to 33 requests, which clearly
demonstrates the frequent communication between services.

Second, CloudCover runs much faster than AutoAr-
mor. That is, CloudCover achieves 11.6⇥ speedup over
AutoArmor on average of the 14 commonly tested ser-

vices from the first three applications, where the speedup
is calculated by the runtime of AutoArmor relative to
ours. CloudCover achieves the highest speedup for the
recommendationservice in Online boutique,
which is 28⇥. Such a high speedup derives from our design
of directly extracting requests on CPGs, instead of running
program slicing first and then extracting requests. Cloud-
Cover runs similarly for one service, front-end. This
is because AutoArmor only identifies the requests, while
we need to analyze the dependencies after we identify the
requests. In addition, CloudCover is also fast for the other
two applications in DeathStarBench [53], i.e., 1.5 seconds
per service.

7.2. Network Overhead

To evaluate the feasibility and practicality for Cloud-
Cover’s deployment in real-world environments and appli-
cations, we first consider the network load imposed upon the
microservice deployment that facilitate CloudCover imple-
mentation. During initial testing and design, we implement
CloudCover with OPA and etcd operating as separate

1195

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

services within the service mesh that are reachable via
the service proxies deployed alongside microservices. We
refer to this configuration as the “standalone” configura-
tion of CloudCover. To measure network cost and number
of generated connections in the system, we leverage the
ksniff [54] Kubernetes plugin that deploys an instance
of Wireshark [55] at the Kubernetes pod boundary to
collect and report network traffic that passes through the
pod (pairing of microservice container with CloudCover
component).
CloudCover Standalone Configuration: Based on our ex-
periments and observations, in the standalone configuration,
CloudCover creates five new network connections for our
verification-in-the-loop system. We mathematically repre-
sent the cost of these network connections in Equation 1.

Os = (Orq(e+OPA) +Orp(e+OPA) +Oack(e+OPA)) ⇤ n
Os = (2, 673 + 2, 992 + 360) ⇤ n

(1)
In the above equation, total (system) overhead cost

is represented as Os comprised of sub-components
(1.Orq(e+OPA), 2.Orp(e+OPA), 3.Oack(e+OPA), and n).
These components represent: (1) requests (Orq) for verifica-
tion with network calls to etcd and OPA components; (2)
responses (Orp) from verification components with network
responses from etcd and OPA; (3) and finally the acknowl-
edgement (Oack) packets from CloudCover components
etcd and OPA. n represents the total number of verification
requests occurring in the system over a period of time.
Experimental results show the total cost of this process is
five network connections, totaling 6.025 KB exchanged in
TLS handshakes and payloads between elements.

Using this experimental data, we calculate an estimation
of overall network load imposed upon deployments with
CloudCover. The results of CloudCover’s cost in large-scale
systems are provided in Figure 6. The first three bars of
each cluster represent component costs of CloudCover’s im-
plementation (described in Equation 1) and are summed, re-
sulting in the final bar of each cluster (Os). As shown, under
10,000 service-to-service requests per second, CloudCover’s
components introduce a network load of 36.54 MB per
second (over the baseline microservice deployment), which
we believe to be an acceptable cost for large, performant
networks. The other component of cost considered with
respect to network load when using CloudCover is response
latency imposed by our verification-in-the-loop approach.
These details are discussed below in Section 7.3 where we
perform load testing upon CloudCover.
CloudCover Sidecar Configuration: To offset cost and
improve system performance, we design and implement an
alternative configuration for CloudCover that makes use of
etcd [48] as a sidecar container alongside microservices,
similar to service proxies. By adapting CloudCover, we save
four inter-pod network connections, relative to the baseline
implementation that invokes connections external to the pod,
now containing the microservice container and CloudCover
etcd component.

Os = (999 + 162 + 72) ⇤ n (2)
Equation 2 represents the optimized cost of Cloud-

Cover when operating in the sidecar configuration which
significantly decreases network load. In this scenario, only
1.233 KB are exchanged as part of the verification-in-the-
loop process and only 1 network connection is required
to communicate with OPA. Under these circumstances, a
load of 10,000 service-to-service requests per second results
in additional network load of 12.25 MB per second atop
the network cost of the microservices. Details regarding
network latency costs imposed under this configuration and
the performance of CloudCover relative to a baseline of no
security mechanisms are provided below in Section 7.3.

7.3. Case Study: Istio Bookinfo

The Bookinfo example application [4], created by the
authors of Istio is intended to be a small-scale representation
of a microservice environment. It contains 6 microservice
definitions that collaborate to provide the functionality of
a simple bookstore application. Even in small-scale and
limited scope, the Bookinfo example contains multi-hop de-
pendency relationships demonstrating that such relationships
manifest in real-world deployments, thus requiring domain-
specific access control policies for these connections.

To analyze the Bookinfo application, we perform
language-agnostic code analysis and dependency detection
upon the microservice source code independently. Using all
known methods of sending network requests (i.e., Python’s
requests library), we extract all requests and dependency
relationships between unique microservices. Additionally,
the Bookinfo microservices have conditions that guard cer-
tain network requests. In comparison to AutoArmor [3], we
capture dependencies that their analysis misses. Following
initial dependency extraction, we apply our dependency-
aware analysis to extract architectural dependencies. To
accomplish this, backtracking of the initially collected de-
pendencies is performed and multi-hop dependencies are
constructed. For example, ProductPage, Reviews, and
Ratings constitute a multi-hop dependency chain.

Table 1 enumerates all service requests that occur within
the sampled open-source microservice systems. We show the
number of service requests extracted from source code by
CloudCover, relative to a ground truth manual analysis and
the comparative work of AutoArmor [3].

To capture the practical overhead imposed upon a mi-
croservice deployment when using CloudCover, we con-
duct a series of performance trials using the Locust [56]
load testing framework. We first examine our case study
microservice example deployment, Bookinfo and conduct
experiments within our testbed environment as discussed
previously in Section 6. We analyze the results of these
experiments based upon total number of requests answered,
average latency, 90th percentile latency (90% latency), and
requests per second, the results of which are presented in
Table 2. As seen by the results, the Bookinfo deployment

1196

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Network Overhead of CloudCover – The theoretical network overhead of CloudCover components (Orq , Orp, and
Oack) introduced by CloudCover, with etcd deployed as a standalone service in the environment, is shown. The summation
of component costs is the final bar on the right of each cluster (Os). Through packet captures and calculations, we compute
the additional overhead to a microservice system introduced by CloudCover, separate from baseline microservice operations.
In the worst case of 10,000 service-to-service requests generated per second, CloudCover imposes a network overhead of
36.54 MB/sec. Detailed analysis of network overhead of component elements (OPA and etcd) are provided in the Appendix.

Trial Type Total
Reqs

Avg.
Latency (ms)

90%ile
Latency (ms) Reqs/sec

Default 37937 3909 4100 63.23
Istio Authz. 37265 3979 4300 62.11
CloudCover (standalone) 36962 4012 4200 61.60
CloudCover (sidecar) 38587 3844 4100 64.31

TABLE 2: BookInfo Experiment Results – Experiment
trials conducted over 10mins of full load using Python
Locust.Our results show CloudCover, in both deployment
scenarios, performing as well as scenarios with Istio’s de-
fault access control enabled and no access control enabled.

behaves nearly identically in all trials with varying security
configurations. We believe that this is due to the process-
ing time associated with requests being consumed by mi-
croservices themselves, rather than the security components
associated with deployments. The outcome of these trials
indicate that CloudCover is not the source of significant
latency and processing requirements, even in very simple
microservice deployments. Expanding upon this finding,
we present a series of detailed experiments under these
“worst-case” conditions where microservices do very little
processing of requests in the Appendix.

8. Discussions and Limitations

When considering whether to centralize or decentralize
access control in distributed environments, it is critical to
consider possible tradeoffs, such as performance for security.
CloudCover Deployment Strategies: CloudCover’s imple-
mentation relies upon an external “verification oracle” to
validate requests between microservices. CloudCover ex-
tends the threat model presented by [3] to include system-
wide relationships spanning “chains” of microservice re-
quests. Without enforcement being made by an external
element, the context of multi-hop connections are lost and
the risk of a “false originator” emerges. Through our exper-
imental observations of microservice systems under load,
we observe performance loss due to the use of CloudCover.
However, leveraging cloud deployment techniques such as

sidecar containers and replication, large portions of the cost
of CloudCover may be offset. These performance improve-
ments are illustrated in the Appendix. A further area of
exploration would be to deploy the verification oracle as a
“DaemonSet” [57]. In the context of Kubernetes, this means
that an instance of the verifier will be deployed on each
of the physical machines hosting microservices, providing
load-balancing and close network proximity.
Security vs. Performance: As with any security solution,
it is important to consider the security-performance tradeoff
created by introducing new systems. As discussed previ-
ously, CloudCover is the only access control solution for mi-
croservice architectures that addresses the domain-specific
threats analyzed in this work. As microservice systems grow
and become increasingly difficult to manage, strong security
techniques grow in importance as well. CloudCover signifi-
cantly strengthens the security posture of these deployments
without the need for administrator intervention or effort.

9. Conclusions

CloudCover represents a critical step in securing mi-
croservice systems by providing holistic access control for
the lifetime of microservice requests. Through our static
analysis dependency extraction methods and verification-
in-the-loop implementation, CloudCover is able to detect
and enforce multi-hop dependencies in microservices. Our
proof-of-concept system is able to defend against two previ-
ously unaddressed threats to microservices that we highlight
as part of this work. Additionally, CloudCover is able to
sustain high-throughput and strict access control policies in
environments with heavy request transaction load, demon-
strating feasibility in real-world environments.

10. Acknowledgements

We are grateful to our anonymous reviewers and shep-
herd for their thoughtful and constructive comments. This
work was supported by the National Science Foundation

1197

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

(NSF) Awards 2143393 and 2319975. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the NSF.

Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This paper describes ob-
jective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government.

References

[1] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using docker technology,” in SoutheastCon 2016.
IEEE, 2016, pp. 1–5.

[2] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for
microservices: a systematic mapping study,” in CLOSER 2018:
Proceedings of the 8th International Conference on Cloud Computing
and Services Science; Funchal, Madeira, Portugal, 19-21 March 2018.
SciTePress, 2018.

[3] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy
generation for inter-service access control of microservices,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021.

[4] Istio Authors, “Bookinfo application (accessed 05/2024),” https://
istio.io/latest/docs/examples/bookinfo/, 2024.

[5] G. C. Platform, “Online Boutique (accessed 05/2024),” 2024, https:
//github.com/GoogleCloudPlatform/microservices-demo.

[6] M. Benedict and V. Charanya, “How we built a metering &
chargeback system to incentivize higher resource utilization
(accessed 07/2022),” 2016, https://www.linux.com/training-tutorials/
how-we-built-metering-chargeback-system-incentivize-higher-
resource-utilization-michael/.

[7] CloudZero, “Netflix architecture: How much does netflix’s aws cost?
(accessed 07/2022),” 2021, https://www.cloudzero.com/blog/netflix-
aws.

[8] H. Krishna, “5 microservices examples: Amazon, net-
flix, uber, spotify, and etsy (accessed 07/2022),” 2021,
https://www.sayonetech.com/blog/5-microservices-examples-
amazon-netflix-uber-spotify-and-etsy/.

[9] R. Chandramouli and Z. Butcher, “Building secure microservices-
based applications using service-mesh architecture,” NIST Special
Publication, vol. 800, p. 204A, 2020.

[10] Istio, “Architecture,” 2022, https://istio.io/latest/docs/ops/deployment/
architecture/ (accessed 07/2022).

[11] ——, “Istio / security faq (accessed 01/2020),” 2020, https://istio.io/
latest/about/faq/security/.

[12] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust
architecture,” National Institute of Standards and Technology, Tech.
Rep., 2020.

[13] A. W. Services, “Serverless computing – amazon web services (ac-
cessed 09/2024),” 2024, https://aws.amazon.com/serverless/.

[14] ——, “Lambda runtimes - aws lambda (accessed 09/2024),”
2024, https://docs.aws.amazon.com/lambda/latest/dg/lambda-
runtimes.html.

[15] G. C. Platform, “Serverless — google cloud (accessed 09/2024),”
2024, https://aws.amazon.com/developer/tools/.

[16] T. K. Authors, “Home - knative (accessed 09/2024),” 2024, https:
//knative.dev/docs/.

[17] A. Ellis, “Home — openfaas - serverless functions made simple
(accessed 09/2024),” 2024, https://www.openfaas.com/.

[18] T. L. Foundation, “Knative — cncf (accessed 09/2024),” 2024, https:
//www.cncf.io/projects/knative/.

[19] Istio, “Authorization for HTTP Traffic (accessed 06/2020),” 2020,
https://istio.io/latest/docs/tasks/security/authorization/authz-http/.

[20] I. Gomes, P. Morgado, T. Gomes, and R. Moreira, “An overview on
the static code analysis approach in software development,” Faculdade
de Engenharia da Universidade do Porto, Portugal, 2009.

[21] The MITRE Corporation, “Cve-2021-44228 (accessed
01/2023),” 2021, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-44228.

[22] M. Mirza, “Protect kubernetes workloads from apache
log4j vulnerabilities (accessed 03/2023),” 2022, https:
//aws.amazon.com/blogs/containers/protect-kubernetes-workloads-
from-apache-log4j-vulnerabilities/.

[23] D. Uberti, J. Rundle, and C. Stupp, “The log4j vulnerability: Mil-
lions of attempts made per hour to exploit software flaw (ac-
cessed 01/2023),” 2021, https://www.wsj.com/articles/what-is-the-
log4j-vulnerability-11639446180.

[24] FTC CTO, FTC DPIP staff, and the FTC AI Strategy team, “Ftc
warns companies to remediate log4j security vulnerability (accessed
01/2023),” 2021, https://www.ftc.gov/policy/advocacy-research/
tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-
vulnerability.

[25] B.-C. Tak, C. Isci, S. S. Duri, N. Bila, S. Nadgowda, and J. Do-
ran, “Understanding security implications of using containers in the
cloud.” in USENIX annual technical conference, 2017, pp. 313–319.

[26] Z. Jian and L. Chen, “A defense method against docker escape attack,”
in Proceedings of the 2017 International Conference on Cryptography,
Security and Privacy, 2017, pp. 142–146.

[27] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel,
“Cimplifier: Automatically Debloating Containers,” in Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering,
2017, pp. 476–486.

[28] T. Yarygina and A. H. Bagge, “Overcoming Security Challenges
in Microservice Architectures,” in 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE, 2018, pp. 11–
20.

[29] J. Nam, S. Lee, H. Seo, P. Porras, V. Yegneswaran, and S. Shin, “Bas-
tion: A security enforcement network stack for container networks,”
in Proceedings of the 2020 USENIX Conference on Usenix Annual
Technical Conference, 2020, pp. 81–95.

[30] A. Sankaran, P. Datta, and A. Bates, “Workflow integration allevi-
ates identity and access management in serverless computing,” in
Proceedings of the 36th Annual Computer Security Applications
Conference, 2020, pp. 496–509.

[31] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv,
T. Schmitz, and K. Winstein, “Secure serverless computing using
dynamic information flow control,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1–26, 2018.

[32] D. S. Jegan, L. Wang, S. Bhagat, and M. Swift, “Guarding serverless
applications with kalium,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4087–4104.

[33] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, and A. Bates,
“Valve: Securing function workflows on serverless computing plat-
forms,” in Proceedings of The Web Conference 2020, 2020, pp. 939–
950.

[34] P. Centonze, R. J. Flynn, and M. Pistoia, “Combining static and
dynamic analysis for automatic identification of precise access-control
policies,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). IEEE, 2007, pp. 292–303.

1198

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

[35] S. Lachmund, “Auto-generating access control policies for applica-
tions by static analysis with user input recognition,” in Proceedings
of the 2010 ICSE Workshop on Software Engineering for Secure
Systems, 2010, pp. 8–14.

[36] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2020, pp. 23–43.

[37] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-Service for
Microservices-Based Cloud Applications,” in 2015 IEEE 7th
International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE, 2015, pp. 50–57.

[38] N. Chaillan and D. E. D. I. Co-Lead, “How did this department of
defense move to kubernetes and istio,” 2020.

[39] Istio, “Github istio/istio (accessed 02/2020),” https://github.com/istio/
istio.

[40] C. (CNCF), “With kubernetes, the u.s. department of defense
is enabling devsecops on f-16s and battleships,” 2020, https:
//www.cncf.io/blog/2020/05/07/with-kubernetes-the-u-s-department-
of-defense-is-enabling-devsecops-on-f-16s-and-battleships/.

[41] F. Lardinois, “Google donates the istio service mesh to the
cloud native computing foundation (accessed 07/2022),” 2022,
https://techcrunch.com/2022/04/25/google-donates-the-istio-service-
mesh-to-the-cloud-native-computing-foundation/.

[42] A. D. Birrell and B. J. Nelson, “Implementing remote procedure
calls,” ACM Transactions on Computer Systems (TOCS), vol. 2,
no. 1, pp. 39–59, 1984.

[43] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 590–604.

[44] joern.io, “Overview — joern documentation (accessed 05/2024),”
https://docs.joern.io/, 2024.

[45] gRPC Authors, “Introduction to grpc (accessed 05/2024),” https://
grpc.io/docs/what-is-grpc/introduction/, 2024.

[46] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-
language services implementation,” Facebook white paper, vol. 5,
no. 8, p. 127, 2007.

[47] O. P. Agent, “Open policy agent (accessed 10/2023),” 2023, https:
//openpolicyagent.org.

[48] etcd, “etcd (accessed 05/2024),” 2024, https://etcd.io/.

[49] Istio, “Istio (accessed 05/2024),” 2024, https://istio.io.

[50] Kubernetes, “Kubernetes - Production-Grade Container Orchestration
(accessed 05/2024),” 2024, https://kubernetes.io/.

[51] Dell, “Servers: Poweredge servers — dell usa (accessed 01/2022),”
2022, https://www.dell.com/en-us/work/shop/dell-poweredge-
servers/sc/servers?⇠ck=bt.

[52] Weaveworks, “Microservices demo: Sock shop (accessed 05/2024),”
https://github.com/microservices-demo, 2024.

[53] S. G. Cornell University, “Deathstarbench: Open-source benchmark
suite for cloud microservices (accessed 05/2024),” https://github.com/
delimitrou/DeathStarBench, 2024.

[54] eldadru, “ksniff – kubectl plugin to ease sniffing on kubernetes
pods using tcpdump and wireshark (accessed 10/2023),” 2023, https:
//github.com/eldadru/ksniff.

[55] W. Foundation, “Wireshark (accessed 05/2024),” 2024, https://
www.wireshark.org/.

[56] L. Authors, “Locust – a modern load testing framework (accessed
10/2023),” 2023, https://locust.io.

[57] T. K. Authors, “Daemonset — kubernetes (accessed 09/2024),”
2024, https://kubernetes.io/docs/concepts/workloads/controllers/
daemonset/.

[58] F. E. Allen, “Control flow analysis,” ACM Sigplan Notices, vol. 5,
no. 7, pp. 1–19, 1970.

[59] F. E. Allen and J. Cocke, “A program data flow analysis procedure,”
Communications of the ACM, vol. 19, no. 3, p. 137, 1976.

[60] J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “TaintPipe: Pipelined
symbolic taint analysis,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 65–80. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/ming

[61] nicholasjackson, “fake-service – simple service for testing up-
stream service communications (accessed 04/2023),” 2023, https:
//github.com/nicholasjackson/fake-service.

Appendix – Code Analysis Techniques

Significant work has been conducted in the domain
of static code analysis for the purposes of detecting bugs
and vulnerabilities in software. Below, we elaborate upon
previous work, covering the commonly used techniques of
control flow analysis, data flow analysis, and taint analysis.
Control Flow Analysis analyzes the ordering of program
statements and flow of control within a program by identi-
fying issues or defects in program flows (e.g., dead code,
infinite loops, and incorrect control flow structures) [58].
Data Flow Analysis tracks the flow of data within a pro-
gram with a focus on understanding how variables, values,
and data dependencies propagate throughout code. Through
data flow analysis, potential issues and defects in code
can be identified. Namely, data handling issues, such as
uninitialized or unused variables, and data inconsistencies
can be discovered [59].
Taint Analysis is a technique facilitated by data flow analy-
sis. It can track the flow of tainted data (e.g., untrusted data)
within a program. Taint analysis can be used to understand
the impact of specific data, and how tainted data can poten-
tially influence the behavior and security of the software or
system [60].

Appendix – Code Analysis Comparison with
AutoArmor

Compared to the state-of-the-art work, i.e., AutoAr-
mor [3], CloudCover outperforms in four aspects. (i) Cloud-
Cover analyzes the service requests on top of a language-
agnostic representation, i.e., CPG. However, AutoArmor
implements service request extraction for each language,
which requires tedious human efforts and is not scalable to
new languages. Instead, our design provides generalizability
to support all programming languages in theory.

(ii) To extract the service request, AutoArmor uses a
two-step solution with program slicing first and request
extraction next. Though program slicing helps to improve
the runtime of downstream request extraction, it takes a
much longer time. On the contrary, CloudCover directly
implements the service request extraction on the CPG,
where unnecessary codes are inherently excluded. With this,
CloudCover achieves 11.6⇥ speedup over AutoArmor (more
details in Section 7.1).

1199

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Network Overhead of OPA Connections – OPA
is utilized for CloudCover’s verification-in-the-loop process.
We plot the additional overhead to a microservice system
introduced by the required network connections to the OPA
component of CloudCover in deployments. In the worst
case, we observe that the OPA network requests impose
12.25 MB/sec upon a deployment under 10,000 requests/sec
load.

(iii) CloudCover is able to identify dependencies be-
tween different services, which is critical to defend-
ing against our identified threats and is unaddressed
by previous work. This can help identify the invalid
accesses that might appear valid under pair-based ac-
cess control policies, e.g., AutoArmor. For the exam-
ple code in Figure 4(a), existing works will allow
direct access from service “checkOrderHealth” to
“order.com/?o=100”. This might be invalid as they
ignore the service “status.com”, which serves as a pre-
requisite before visiting “order.com/?o=100”.

(iv) Together with data, control, and architecture de-
pendency, CloudCover can identify the multi-hop request
chains among different microservices. By adding the multi-
hop request chains in the policies, CloudCover can thwart
both path-suffix attacks and confused deputy attacks. For
example, as shown in Figure 3, although an attacker can
access the “Data Service” service from the “Client
App A” service, it is not allowed to further access the
“DB Y (Sensitive)” service because such a multi-hop
request is not in the allowed policies.

Appendix – Network Overhead

With the inclusion of CloudCover into microservice
systems, the primary source of new overhead imposed
upon these environments is network load. The design of
CloudCover necessitates additional network interactions and
requests made amongst system components to provide for
verification-in-the-loop access control. However, at the cost
of these additional network requests, the microservice sys-
tem receives stable security benefits not currently offered by
state-of-the-art tools.

As previously described in Section 6, CloudCover is de-
signed with two key elements that are added into microser-
vice deployments. The first of which is the verification ora-

Figure 8: Network Overhead of etcd Connections – etcd
is utilized for CloudCover’s temporary token storage pro-
cess in verification. We plot the additional overhead to a
microservice system introduced by the required network
connections to the etcd compoenent of CloudCover in
deployments. In the worst case, we observe that the etcd
network requests impose 24.15 MB/sec upon a deployment
under 10,000 requests/sec load.

cle component which is built upon OPA. Figure 7 illustrates
the theoretical network overhead imposed by the addition
of OPA into the microservice environment. Particularly, the
theoretical network overhead required to facilitate network
connections made to OPA that provide the verification oracle
functionality. As microservice requests are made amongst
deployed microservices, each time a new service request is
received, OPA is used to verify that the request is legitimate
and has a valid policy to access the requested resource. In
this way, one new network connection is required to perform
this transaction. The recipient microservice bundles the re-
quest metadata in a new request to OPA which examines the
contents and returns a verification decision of approval or
denial. This transaction is quite small in size, resulting in a
worst-case network overhead of 12.25 MB/sec under 10,000
microservice requests per second.

The other key element of CloudCover’s design is the
ability for CloudCover to maintain request state temporar-
ily during microservice requests in order to construct the
multi-hop connections that OPA reasons about. To facilitate
this functionality, we utilize etcd as temporary metadata
storage. Etcd provides fast, key-value storage, which aligns
well with the temporary metadata storage needs of Cloud-
Cover. As part of our experimentation and design, we con-
sider two methods of utilizing etcd: first, as a standalone
service that microservices make requests to for storage
and extraction of request metadata; second, as a sidecar
container to each of the deployed microservices for faster
request and retrieval. Despite these deployment options,
both scenarios require two new network requests (one for
storage of inbound request metadata, one for retrieval of
outbound request metadata). After calculation, we find that
under a load of 10,000 microservice requests per second,
the overhead imposed upon the deployment by the etcd
component is 24.15 MB/sec. As observed, this is roughly
twice the overhead imposed by OPA, which is logical due to

1200

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Trial Type Total Reqs Avg. Latency (ms) 90%ile Latency (ms) Reqs/sec 4 Reqs/sec relative to NoSec
NoSec 1-hop 2389526 60 85 3982.54 —
NoSec 2-hop 1763016 82 140 2938.36 —
NoSec 3-hop 12233605 118 250 2056.01 —
NoSec 4-hop 923177 159 340 1538.63 —
NoSec 5-hop 732724 201 430 1221.21 —
Istio Authz 1-hop 2347843 61 88 3913.07 -69.47
Istio Authz 2-hop 1668969 87 150 2781.62 -156.74
Istio Authz 3-hop 1114017 131 260 1856.70 -199.31
Istio Authz 4-hop 791131 185 370 1318.55 -220.08
Istio Authz 5-hop 635204 232 450 1058.67 -162.54
CC Standalone 1-hop 717258 203 280 1195.43 -2387.11
CC Standalone 2-hop 406495 363 570 677.49 -2260.87
CC Standalone 3-hop 361766 410 580 602.94 -1453.07
CC Standalone 4-hop 267769 554 730 446.28 -1092.35
CC Standalone 5-hop 237863 624 800 396.44 -824.77

CC Sidecar 1-hop 1074254 136 240 1790.42 -2192.12
CC Sidecar 2-hop 644579 229 350 1074.30 -1864.06
CC Sidecar 3-hop 538086 275 450 896.81 -1159.20
CC Sidecar 4-hop 433796 341 550 722.99 -815.64
CC Sidecar 5-hop 314473 471 730 524.12 -697.09

TABLE 3: Multi-Hop Fake Service Experiment Results – Experiment trials conducted over 10mins of full load using
Python Locust. *CC - CloudCover.

the fact that etcd requires two small network transactions
relative to OPA’s singular network transaction. We plot the
full results of these calculations in Figure 8.

As mentioned previously, etcd provides the flexibil-
ity for different deployment options within CloudCover.
Namely, we explore the implementation of etcd as a
standalone service that microservices target with metadata
storage transactions, but we also examine etcd’s ability
to be deployed as a sidecar container alongside all mi-
croservices. While both options still necessitate two new
network requests be made to facilitate proper functionality,
their performance does differ. The first option of etcd
deployment, as a standalone service, provides the ability for
etcd to be replicated to provide load-balancing function-
ality for microservices. However, when etcd is deployed
as a sidecar container, the network distance between the
microservices and etcd is incredibly short, providing for
high speed storage/retrieval actions which improve through-
put of the overall system. Deploying etcd as a sidecar
container alongside microservices is very low cost because
etcd itself is a very small application, requiring a relatively
small footprint on the host. Both standalone and sidecar
container options were explored and the results of these
experiments are elaborated further below.

Appendix – Experimental Throughput

Along with the theoretical network overhead analysis of
CloudCover, we examine the response latency incurred by
our proof-of-concept system through a series of load testing
experiments. We accomplish these load testing experiments
through sample microservice deployments and leveraging
Python Locust [56], a load testing library written in Python.
Our load tests were conducted in our experimentation plat-
form described in Section 6. To generate load within the
environment, we make use of five instances of load gen-
erators targeting a sample deployment to place the system
under heavy load. These tests are aimed at seeing the max

throughput of the environment and finding the worst-case
performance of CloudCover under these circumstances.

Through these experimental trials, we examine how
multiple dependency hops affect the latency of the system.
We develop experiments that compare baseline microser-
vice deployments with no security deployed against: de-
fault Istio authorization policies, CloudCover deployed in
“standalone” mode where the verification oracle and etcd
are both configured to be centralized instances, and finally
CloudCover deployed with a standalone verification oracle
and etcd deployed as sidecar containers for each of the
microservices within the environment. The results of these
experimental trials are shown in Table 3. As Table 3 shows,
as the number of dependency hops increase in the deployed
system, the number of requests able to be serviced by every
form of access control decreases and the response latency
suffers as a result. However, when CloudCover is deployed
with etcd as a sidecar container for the environment, the
performance of CloudCover increases significantly. From
these experiments, we developed the load balancing and
replication capabilities of CloudCover further in an attempt
to improve performance.

In order to explore the replication and load balancing
performance of CloudCover, we design additional exper-
iments that vary the levels of replication for CloudCover
components and compare these results. These experimental
trials contain a five dependency hop microservice deploy-
ment targeting baseline microservice deployment perfor-
mance against: Istio default access control policies, Cloud-
Cover with OPA and etcd deployed as standalone services
with varying levels of replication of each component, and
CloudCover with etcd deployed as a sidecar container and
varying levels of OPA replication. We present the results of
these experimental trials in Table 4. As our results show,
when CloudCover is deployed in a load balancing fashion
with multiple instances of the OPA verification oracle han-
dling verification requests and etcd deployed as a sidecar
container, the performance of CloudCover is highly com-

1201

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

Trial Type Total Reqs Avg. Latency (ms) 90%ile Latency (ms) Reqs/sec 4 Reqs/sec relative to NoSec
NoSec 5-hop 732724 201 430 1221.21 —
Istio Authz 5-hop 635204 232 450 1058.67 -162.54
CC 1-OPA 2-etcd 338163 438 600 563.61 -657.60
CC 1-OPA 3-etcd 368907 402 570 614.85 -606.36
CC 1-OPA 4-etcd 379362 391 540 632.27 -588.94
CC 1-OPA 5-etcd 388362 382 510 647.27 -573.94
CC 2-OPA 1-etcd 222267 668 860 370.45 -850.76
CC 3-OPA 1-etcd 239349 620 800 398.91 -822.29
CC 4-OPA 1-etcd 246717 602 770 411.20 -810.01
CC 5-OPA 1-etcd 236343 628 810 393.91 -827.30
CC 2-OPA 2-etcd 352668 420 550 587.78 -633.43
CC 3-OPA 3-etcd 400608 370 490 667.68 -553.53
CC 4-OPA 4-etcd 413539 358 460 689.23 -531.98
CC 5-OPA 5-etcd 413915 358 460 689.86 -531.35
CC 2-OPA sidecar-etcd 466758 317 500 777.93 -443.28
CC 3-OPA sidecar-etcd 499264 290 470 832.11 -389.10
CC 4-OPA sidecar-etcd 529294 280 440 882.16 -339.05
CC 5-OPA sidecar-etcd 551640 268 420 919.40 -301.81

TABLE 4: Multi-Hop Fake Service Replication Experiment Results – Experiment trials conducted over 10mins of full
load using Python Locust. *CC - CloudCover.

parable to Istio’s default access control implementation. In
this manner, CloudCover is able to provide superior security
by defending against previously discovered threats, but is
also able to maintain performance that is comparable to the
current state-of-the-art in service meshes. Due to this, we
believe that CloudCover is feasible for deployment in real-
world environments.

Appendix – Fake Service Experiments
To capture and compare the performance results of

CloudCover in a microservice application that spends mini-
mal time processing microservice requests, we conduct ex-
perimental trials with microservices emulated by the fake
service application [61]. Under this configuration, the
microservices themselves are extremely lightweight web
server applications, performing little to no processing of
incoming requests. Additionally, we experiment with in-
creasing numbers of service dependency hops to represent
“deep” microservice deployments where there are many
dependent services waiting for upstream service calls before
returning. Table 3 presents the results of these experiments.
As shown in the table, default Istio authorization policies
perform very near the baseline of no security enabled,
however, Istio authorization policies only consider isolated,
single-hop dependencies. This limited view of dependencies
may leave deployments open to the confused deputy and

path-suffix attacks discussed in Section 4. Default Istio
authorization policies are enforced by the service mesh
directly, not requiring new network connections that leave
the pod network boundary, resulting in little overhead over
baseline performance. In comparison, CloudCover config-
urations introduce new network connections to the verifi-
cation oracle, but effectively mitigate the domain-relevant
threats, providing a stronger, more holistic access control
approach within microservice systems.

To offset the cost of verification-in-the-loop network
connections, we explore various configurations and deploy-
ment strategies for CloudCover. Access control in service
meshes is vital to securing microservice systems and admin-
istrators have incentives to ensure performant applications at
the cost of additional computing nodes/hosts. Due to this,
we deployed replicated CloudCover elements and investi-
gated the performance effects. These results are presented
in Table 4. A notable comparison within these scenarios
is the baseline performance of default Istio authorization
policies relative to CloudCover when deployed with etcd
as sidecars and OPA with 5 replications. Under this model,
CloudCover achieves comparable performance to Istio poli-
cies and baseline performance. Due to the simple nature
of the deployed workloads, we believe that these results
show promise for CloudCover to be adopted in real-world
deployments to secure realistic microservice systems.

1202

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 06,2025 at 21:56:06 UTC from IEEE Xplore. Restrictions apply.

