Check for
Updates

Efficient Adaptation of Large Language Models for Smart
Contract Vulnerability Detection

Fadul Sikder

The University of Texas at Arlington
Arlington, USA
fxs5359@mavs.uta.edu

Abstract

Smart contracts underpin decentralized applications but face signif-
icant security risks from vulnerabilities, while traditional analysis
methods have limitations. Large Language Models (LLMs) offer
promise for vulnerability detection, yet adapting these powerful
models efficiently, particularly generative ones, remains challeng-
ing. This paper investigates two key strategies for the efficient adap-
tation of LLMs for Solidity smart contract vulnerability detection:
(1) replacing token-level generation with a dedicated classification
head during fine-tuning, and (2) selectively freezing lower trans-
former layers using Low-Rank Adaptation (LoRA). Our empirical
evaluation demonstrates that the classification head approach en-
ables models like Llama 3.2 3B to achieve high accuracy (77.5%),
rivaling the performance of significantly larger models such as the
fine-tuned GPT-3.5. Furthermore, we show that selectively freezing
bottom layers reduces training time and memory usage by approxi-
mately 10-20% with minimal impact on accuracy. Notably, larger
models (3B vs. 1B parameters) exhibit greater resilience to layer
freezing, maintaining high accuracy even with a large proportion
of layers frozen, suggesting a localization of general code under-
standing in lower layers versus task-specific vulnerability patterns
in upper layers. These findings present practical insights for devel-
oping and deploying performant LLM-based vulnerability detection
systems efficiently, particularly in resource-constrained settings.

CCS Concepts

« Security and privacy — Domain-specific security and pri-
vacy architectures; Distributed systems security; - Comput-
ing methodologies — Natural language processing; Supervised
learning by classification.

Keywords

Large Language Models, Smart Contracts, Vulnerability Detection,
Fine-tuning, Transfer Learning, Solidity, Layer Freezing, StarCoder,
Llama 3.2

ACM Reference Format:

Fadul Sikder, Yu Lei, and Yuede Ji. 2025. Efficient Adaptation of Large
Language Models for Smart Contract Vulnerability Detection. In 21st In-
ternational Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE °25), June 26, 2025, Trondheim, Norway. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3727582.3728688

This work is licensed under a Creative Commons Attribution 4.0 International License.
PROMISE °25, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1594-5/25/06

https://doi.org/10.1145/3727582.3728688

Yu Lei
The University of Texas at Arlington
Arlington, USA
ylei@cse.uta.edu

65

Yuede Ji
The University of Texas at Arlington

Arlington, USA
yuede.ji@uta.edu

1 Introduction

Blockchain technology has revolutionized various sectors by en-
abling secure, transparent, and decentralized transactions [24]. A
key application of this innovation is smart contracts, self-executing
contracts with the terms of the agreement directly written into code.
These programmatic agreements have found applications across
diverse domains, including finance, supply chain management, and
digital identity verification [42].

Smart contracts, particularly on platforms like Ethereum, have
experienced exponential growth in recent years, with the total value
locked (TVL) in decentralized finance (DeFi) smart contracts alone
surpassing $50 billion as of 2023 [2]. This rapid adoption, however,
has brought with it a significant rise in security vulnerabilities and
exploits. The immutable nature of blockchain, while foundational
to its trust model, exacerbates the impact of any flaws in smart
contracts. Once deployed, a vulnerable contract cannot be easily
patched, making it an attractive target for malicious actors [18].

The consequences of smart contract vulnerabilities can be se-
vere. In 2023 alone, hacking incidents involving smart contracts
resulted in approximately $1.84 billion in financial losses across
751 incidents [6]. These breaches not only cause substantial finan-
cial damage but also lead to legal disputes and undermine trust in
blockchain technology. Given the high stakes and potential for sig-
nificant reputational damage, ensuring the security and correctness
of smart contracts has become a critical priority for developers,
auditors, and blockchain platforms alike.

Traditional approaches to smart contract security analysis, broadly
categorized into static and dynamic analysis, face significant limi-
tations. Static analysis techniques, particularly symbolic execution
and model checking, attempt to systematically explore program
states by analyzing code without execution. While symbolic execu-
tion can theoretically provide complete coverage by exploring all
possible execution paths, it encounters severe scalability challenges
when dealing with smart contracts due to the state explosion prob-
lem and complex environmental dependencies [33, 34]. Dynamic
analysis methods, including fuzz testing, must navigate a vast and
complex state space with concrete input, making comprehensive
exploration challenging. Both static and dynamic approaches often
rely on expert-driven heuristics to narrow the search space, which
can lead to oversights in vulnerability detection [27]. Furthermore,
the rigidity of predefined rules in static analysis tools frequently
results in high rates of false positives and negatives, as they struggle
to adapt to the rapid emergence of new vulnerability patterns in
the blockchain ecosystem [31].

Machine learning models for smart contract vulnerability detec-
tion have made significant strides, offering notable improvements
over traditional rule-based methods. However, many approaches,

https://doi.org/10.1145/3727582.3728688
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3727582.3728688
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3727582.3728688&domain=pdf&date_stamp=2025-06-26

PROMISE 25, June 26, 2025, Trondheim, Norway

particularly graph-based neural networks and NLP-based models,
require substantial feature engineering, such as converting source
code into graph representations or extracting specific code prop-
erties, which constrains their ability to adapt and generalize to
new or complex vulnerabilities. Additionally, the effectiveness of
these models can vary significantly based on the quality and com-
prehensiveness of the engineered features, leading to inconsistent
performance across different types of smart contracts and vulnera-
bility classes [37].

Building on the challenges and constraints of feature-engineered
machine learning solutions, large language models (LLMs) have
emerged as a promising alternative for smart contract security anal-
ysis. Since this class of neural networks is designed to handle tasks
involving long-sequence processing, LLMs can directly analyze
Solidity source code with minimal preprocessing, leveraging their
broad language understanding to identify subtle vulnerability pat-
terns [15]. Broadly, two core approaches have been explored for
using LLMs in smart contract vulnerability detection: prompt-based
inference and fine-tuning-based adaptation.

In the prompt-based paradigm, researchers query a pretrained
model (e.g., GPT-3.5, GPT-4) using carefully designed instructions to
extract vulnerability-related insights without modifying its internal
parameters. This method enables rapid deployment and supports
various vulnerability types. Examples include ChatGPT’s chain-of-
thought prompts [7] and GPT-4-assisted logic checks [8], which
allow the LLM to "reason" about potential flaws in a contract. How-
ever, prompt-based approaches frequently suffer from model hal-
lucinations, high false-positive rates, and recall limitations when
faced with novel or complex exploit scenarios [8, 30]. Additionally,
performance is highly sensitive to prompt quality—slight variations
in phrasing can lead to inconsistent results.

In contrast, fine-tuning-based approaches address these short-
comings by training or partially re-training LLMs on curated vul-
nerability datasets. This process aligns the model’s internal rep-
resentations more closely with Solidity semantics and common
exploit patterns, significantly improving recall and precision [1, 41].
However, fine-tuning comes at the cost of substantial computa-
tional overhead and requires comprehensive, labeled vulnerability
datasets. Despite these challenges, fine-tuned models demonstrate
enhanced robustness, emphasizing the importance of updating
model weights and adapting LLMs for domain-specific tasks such
as Solidity smart contract vulnerability classification.

A prominent challenge in fine-tuning large language models
(LLMs) for classification tasks is reconciling the generative nature
of many popular architectures (e.g., decoder-only GPT variants)
with the requirement to select outputs from a fixed set of class labels.
In most fine-tuning workflows, the model is trained on a supervised
dataset to generate the next token corresponding to the correct
label (or label words) for each input example [20]. This token-level
classification approach leverages the model’s existing decoder to
output a label token from its vocabulary set (e.g., "Vulnerable,' "Safe,’
"Overflow"). While this method is direct and intuitive, it poses a
significant risk: the decoder may generate irrelevant tokens that do
not match the desired class labels. To mitigate this, researchers often
impose constraints on token generation or apply post-processing
techniques to map the output to the nearest recognized label [12].
Beyond irrelevant token generation, LLMs are inherently prone

66

Fadul Sikder, Yu Lei, and Yuede Ji

to hallucination—the generation of content that appears plausible
but is factually incorrect or unfounded [3]. Even when generating
class labels, the model may occasionally "hallucinate" labels that
do not belong to the predetermined set, especially when faced with
ambiguous inputs or edge cases outside their training distribution.

An alternative approach treats the LLM’s final hidden repre-
sentations as feature vectors rather than relying on its decoder to
produce a label token [12]. Instead of generating class names as
the next word, a custom classification head—such as a fully con-
nected layer—is added on top of the model’s final (or penultimate)
Transformer layer. This method replaces token-level classification
with a standard softmax layer trained on the model’s output embed-
dings, transforming the LLM into a feature-extractor-plus-classifier
pipeline. The classification head outputs discrete class probabilities
for each vulnerability type, reducing the likelihood of hallucinated
labels outside of recognized classes. Studies suggest that this ap-
proach improves accuracy in domain-specific tasks by leveraging
the semantic abstractions learned by the LLM’s encoder or decoder
blocks while avoiding extraneous token generation [11, 12].

Fine-tuning an LLM for specialized tasks like smart contract
security introduces computational and architectural challenges.
Fully retraining every layer is expensive. To mitigate these issues,
parameter-efficient fine-tuning methods such as LoRA [14] and
QLoRA [9] have been developed. These techniques freeze most
model weights and update only small adapter modules or low-rank
parameter offsets, significantly reducing computational overhead. A
related strategy, layer-wise fine-tuning, explores whether freezing
maintains (or even enhances) domain performance [19]. From a
transfer learning perspective—which underpins modern LLM fine-
tuning—it is crucial to determine which portions of the model
require adaptation for a new domain. Lower layers typically capture
general syntactic and lexical patterns, while upper layers encode
more domain- and task-specific features [11, 39]. This raises a key
question: What happens if we freeze the lower layers entirely and
fine-tune only the top few layers (along with a classification head)?
If effective, this approach could indicate that LLMs can be fine-tuned
in a more specialized way for domain-specific tasks like security
vulnerability detection in Solidity smart contracts. Additionally, it
could reduce training costs without sacrificing accuracy, making it
an efficient strategy for domain-specific adaptation.

In this paper, we address these challenges by investigating the
effectiveness of different fine-tuning configurations for large lan-
guage models in the context of smart contract vulnerability detec-
tion. Our research is guided by two key research questions that ex-
amine the trade-offs between different classification approaches and
layer-wise fine-tuning strategies. These questions aim to provide in-
sights into reducing the computational requirements for LLM-based
vulnerability detection systems without significant compromise on
performance. By systematically evaluating these approaches, we
contribute to the ongoing discourse on adapting large language
models for specialized security tasks in the blockchain domain.
Below are the two key research questions we aim to answer:

RQ1:Is fine-tuning an LLM with a dedicated classifier head
effective for detecting smart contract vulnerabilities?

We investigate how adding a dedicated classification layer on
top of the LLM’s final hidden representations affects vulnerability
detection accuracy.

Efficient Adaptation of Large Language Models for Smart Contract Vulnerability Detection

RQ2: Does restricting fine-tuning to specific high-level
Transformer layers (while freezing lower layers) achieve com-
petitive performance on vulnerability classification?

Here, we investigate whether layer-wise fine-tuning (combined
with a classification head) can adapt the LLM’s capabilities to do-
main specific tasks like smart contract vulnerability detection while
reducing computational overhead.

The remainder of this paper is organized as follows: Section 2
provides background on LLMs and fine-tuning relevant to smart
contract security. Section 3 details our methodology, including
model selection, the classification head architecture, datasets, and
evaluation strategy. Section 4 presents the experimental setup, re-
sults, and discussion for both research questions. Section 5 reviews
related work in LLM-based vulnerability detection, and Section 6
concludes with our findings and future research directions.

2 Background
2.1 Large Language Models

Large Language Models (LLMs), based on transformer-based neu-
ral network architectures, have emerged as a transformative force
in natural language processing (NLP) and, more recently, in soft-
ware development tasks such as code generation, completion, and
debugging. LLMs are characterized by their large scale, often con-
sisting of billions of parameters, which enables them to capture
complex patterns and relationships within vast amounts of tex-
tual data [5]. The transformer architecture, introduced by Vaswani
et al. [32], allows efficient parallel processing of input sequences
using self-attention mechanisms, making it particularly effective
in capturing long-range dependencies in text—a key feature for
generating coherent and contextually relevant content.

LLMs typically undergo a two-phase development process: pre-
training and fine-tuning. Pre-training is an self-supervised learning
process where models are exposed to extensive corpora of text,
including diverse sources such as books, websites, and code repos-
itories. This exposure enables the model to develop a broad un-
derstanding of language structure, semantics, and domain-specific
knowledge. The pre-training objective is usually autoregressive,
where the model learns to predict the next token in a sequence
based on the previous tokens [26].

For particular downstream tasks like smart contract vulnerability
detection, pre-trained LLMs are further refined through fine-tuning.
This process involves additional training on smaller, task-specific
label datasets, enabling the model to specialize in particular applica-
tions. Fine-tuning can involve updating all model parameters or, in
more resource-efficient methods, adjusting only a subset of param-
eters while keeping most of the pre-trained weights frozen [13].

2.2 Transfer Learning and Fine-Tuning

The adaptation of pre-trained models via transfer learning and
fine-tuning is a cornerstone of modern deep learning. Foundational
work, particularly in computer vision, established that lower layers
of deep networks often learn general features (e.g., edges and tex-
tures) transferable across tasks, while upper layers capture more
task-specific information [39]. This insight motivated early fine-
tuning strategies involving freezing lower layers and retraining
only the upper ones for new domains [39].

67

PROMISE 25, June 26, 2025, Trondheim, Norway

The evolution continued with methods addressing challenges
like overfitting on small target datasets and catastrophic forget-
ting—where general knowledge is lost during specialized train-
ing [22]. Frameworks like ULMFiT [13] introduced gradual un-
freezing techniques, while models like BERT [10] demonstrated
the success of full end-to-end fine-tuning on task-specific data.
Research also indicated that the optimal strategy (feature extrac-
tion vs. full fine-tuning) can depend on the similarity between the
pre-training and target tasks [25].

With the advent of extremely large models (e.g., GPT-3 with
175B parameters [5]), the computational cost of full fine-tuning
necessitated more efficient approaches, as noted in the Introduction.
Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-
Rank Adaptation (LoRA) [14] and its quantized variant QLoRA [9],
significantly reduce resource needs by updating only small, low-
rank adapters instead of all weights. Alongside PEFT, selective
or layer-wise fine-tuning—updating only a subset of layers—has
proven effective. For instance, studies like Lee et al. [19] have shown
that fine-tuning only the top layers (e.g., the top 25% in BERT or
RoBERTa) can retain a large fraction (90%) of the performance
achieved by full fine-tuning, while substantially lowering training
costs. Such strategies help preserve the model’s core linguistic
or domain knowledge encoded in lower layers while efficiently
specializing the upper layers for the target task, also mitigating
catastrophic forgetting [22].

This overall trend towards balancing performance with compu-
tational efficiency is highly relevant for adapting LLMs to special-
ized domains like smart contract vulnerability detection. Although
Solidity presents unique syntax and semantics, it builds on gen-
eral programming concepts potentially learned during pre-training.
Therefore, fine-tuning approaches that leverage this pre-existing
knowledge by selectively adapting higher-level representations
to identify vulnerability patterns, such as the layer-freezing tech-
niques investigated in this paper, are particularly promising.

3 Methodology

This section outlines our methodology for adapting Large Lan-
guage Models (LLMs) to detect smart contract vulnerabilities. We
explain the rationale guiding our key decisions concerning four
primary components: (1) model selection criteria and process, (2)
architectural modifications for classification, (3) dataset selection
and preparation, and (4) evaluation strategies. This section docu-
ments the analytical process that informed our experimental design,
aimed at addressing the research questions posed earlier.

3.1 Model Selection

Selecting an appropriate Large Language Model (LLM) for smart
contract vulnerability detection requires careful consideration of
several key factors: context window size, model parameters (com-
putational footprint), and domain-specific training data (Solidity
inclusion). These factors significantly impact the model’s ability to
process and analyze complex smart contracts effectively.

A large context window is crucial for smart contract analysis, as
vulnerabilities often arise from interactions spanning different code
sections, potentially across lengthy contracts. Analysis of typical

PROMISE 25, June 26, 2025, Trondheim, Norway

Table 1: Comparison of LLM characteristics relevant to smart

contract analysis

Model Parameters Max Context Solidity in Train-
Length ing
Llama-3-8B 8B 8,000 tokens Unknown
Llama-3.2-1B 1B 128,000 tokens Unknown
Llama-3.2-3B 3B 128,000 tokens Unknown
CodeLlama-7b 7B 16,000 tokens Unknown
Phi-3-mini-4k 3.8B 4,000 tokens Unknown
StarCoderBase-1b 1B 8,192 tokens Yes
StarCoderBase-3b 3B 8,192 tokens Yes
StarCoderBase-7b 7B 8,192 tokens Yes
GPT-3 175B 4,096 tokens Unknown
GPT-] 6B 2,048 tokens Unknown
GPT-2 774M 1,024 tokens Unknown
CodeT5 220M 512 tokens No

Solidity contract lengths reveals this need; using the StarCoder to-
kenizer, approximately 27% of contracts in a representative dataset
subset exceeded 2,000 tokens, and about 12% surpassed 4,000 tokens
(Figure 1). This makes models with limited context windows (e.g.,
GPT-2: 1,024, CodeT5: 512 tokens) impractical without significant
preprocessing that could obscure context. Therefore, models ca-
pable of handling sequences exceeding 4,000 tokens were deemed
necessary.

However, larger model parameters and context windows increase
computational demands. While prior work highlights resource-
intensive requirements even for moderately sized models (e.g.,
Storhaug et al. [29] reported needing multiple high-end GPUs and
extended training time for a 6B parameter model), our primary
constraint stemmed from direct experience. Attempts to fine-tune
models with 7B or more parameters (such as StarCoder-7B, LLaMA
3-8B, or CodeLlama-7b) on our target single NVIDIA A100 40GB
GPU consistently failed due to memory limitations when process-
ing the extended sequence lengths typical of smart contracts. This
established a practical upper bound of 3B parameters for our exper-
imental setup.

Another crucial factor is the inclusion of domain-specific training
data. Models pre-trained on datasets containing Solidity source code
are likely to better understand its specific syntax and semantics,
potentially improving vulnerability detection.

Another crucial factor in model selection is the composition
of the training data, particularly the inclusion of Solidity source
code. Models pre-trained on datasets that include Solidity code are
likely to have a better understanding of smart contract-specific
syntax and semantics, potentially leading to more accurate vul-
nerability detection. While other powerful models exist (e.g., GPT
family, Claude, DeepSeek, Qwen), our selection was guided by fine-
tuning requirements and accessibility. API-only models (Claude,
GPT) could not be used for our layer-wise fine-tuning experiments.
Others like DeepSeek or Qwen were either unavailable during our
research timeframe or subject to institutional usage restrictions. Our
primary focus remains on investigating generalizable fine-tuning
techniques (classification head adaptation, layer-freezing) applica-
ble to open-source models, rather than an exhaustive comparison
of all LLMs.

68

Fadul Sikder, Yu Lei, and Yuede Ji

31.4%
31.4%

400 PreTrainedTokenizerFast (Llama)

w
8
3

492%
17.7%

Number of Contracts
S
s

S o 250
i} 0.7% 1.0%
, Lt Tm Da o
S S S S S S o
Bhb NQQ @Q ’&0 ';,)Q QQ h(,)% Q 410 bQQ é’b 4,9“
I e 8
") & & o o) o) N} Nel S})
> » v WV > % » > < @

Token Length Ranges
GPT2Tokenizer (StarCoder)

435%
15.1%

150 ot
,," 79.4%
100 7“
52/ s w00
50 Son o T p
o8 oe%
o

o o Q Q X
S S & & L S
5 S S P LY LS
& 6@ °0° s & & & & ©
e »’ > > o)

Number of Contracts
S
s

&

IS
&
Token Length Ranges

Figure 1: Distribution of token lengths in the filtered Solidity
contract dataset using two different tokenizers.

Table 2: Comparative analysis of selected LLMs for smart
contract vulnerability detection

Model Context Parameters / Domain
Window Footprint Training
(Solidity)
Llama-3.2 1B + Very Large + Small (1B) ? Likely
(128k) + Fits 40GB GPU exposure
- Lower capacity
Llama-3.2 3B + Very Large + Medium (3B) ? Likely
(128k) + Fits 40GB GPU exposure
- 3x cost vs 1B
StarCoder 1B + Good (8k) + Small (1B) + Explicitly
+ Fits 40GB GPU included
- Lower
accuracy
StarCoder 3B + Good (8k) + Medium (3B) + Explicitly

+ Fits 40GB GPU

included

— 3x cost vs 1B

Based on these considerations—balancing context window size,
computational feasibility (parameters < 3B for our hardware), and
potential Solidity pre-training, as summarized in Table 2—we se-
lected Llama 3.2 (1B and 3B) and StarCoder (1B and 3B) for our
experiments. This choice allows comparing models with very large
context windows but uncertain Solidity exposure (Llama 3.2) against
models with confirmed Solidity training but standard context lengths
(StarCoder). It also enables evaluating the trade-offs between re-
source efficiency (1B) and representational capacity (3B) within our
practical hardware constraints [Source 565].

Efficient Adaptation of Large Language Models for Smart Contract Vulnerability Detection

3.2 Model Architecture

The model architecture is based on a standard Large Language
Model (LLM) framework that incorporates essential components
such as tokenization, embedding layers, and a multi-layer trans-
former stack. In this design, raw Solidity source code is first tok-
enized into numerical representations and then processed through
a series of transformer layers (each blue box in Figure 2, compris-
ing the full self-attention + feed-forward block with its residual
connections and layer-norm). This enables the model to capture
both local syntactic patterns and long-range dependencies in the
code—capabilities that are critical for understanding the complexi-
ties inherent in smart contract analysis.

To tailor the generic LLM for smart contract vulnerability detec-
tion, the conventional generative output head is replaced with a
dedicated classification head. Rather than predicting the next token
from an extensive vocabulary, this modified output layer, which
is implemented as a multi-layer perceptron (MLP), maps the final
(or penultimate) hidden representations directly to a predefined
set of vulnerability classes (e.g., reentrancy, access control, safe,
vulnerable). Figure 2 illustrates the adapted architecture. This trans-
formation effectively converts the LLM into a traditional classifier
pipeline, thereby reducing the risk of generating irrelevant tokens
and ensuring that the outputs are confined to the task-specific label
set.

3.3 Datasets

For training our models and conducting the layer-freezing experi-
ments (RQ2), we utilized the ScrawlD dataset developed by Yasha-
vant et al. [38]. ScrawlD is a substantial dataset comprising 9,252 la-
beled Solidity smart contracts. Vulnerability labels within ScrawlD
were determined via a majority-voting consensus among five analy-
sis tools (Osiris, Oyente, Mythril, Slither, SmartCheck), identifying
5,364 contracts with at least one vulnerability according to this
methodology.

From this dataset, which originally exhibited an imbalance with
roughly two-thirds of contracts labeled as vulnerable, we first par-
titioned the data into initial training (70%), validation (15%), and
test (15%) sets. Recognizing that training on imbalanced data could
bias model performance, we addressed this by applying an over-
sampling technique specifically to the training set. We augmented
the training data by replicating instances of the minority class
(non-vulnerable contracts) until a balanced distribution between
vulnerable and non-vulnerable samples was achieved before the
proceeding with the fine-tuning process.

3.4 Evaluation Strategy

Using our stratified data split, we systematically explored the impact
of freezing varying numbers of lower transformer layers during
fine-tuning for the RQ2 evaluation. For a given model with N total
transformer layers we explored configurations across a spectrum
defined by the number of frozen bottom layers (k):

(1) No Frozen Layers (k = 0): All N transformer layers and
the classification head were fine-tuned (referred to as Full
Fine-Tuning). This served as the performance baseline.

(2) All Layers Frozen (k = N): Only the classification head
was fine-tuned, with all N transformer layers kept frozen

69

PROMISE 25, June 26, 2025, Trondheim, Norway

Outputs

Linear output layer (Classification
head)

Final L?(erNorm
000000000000000

®
Dropout
Feed forward eooo000000
The original linear output layer mapped
LayerNorm 2 hidden units to the
4 number of tokens in the vocabulary
n
.
£
Drugou(
Masked multi-head attention]
Widden Lapee
LayerNorm 1 Y

6000000

We replace the original linear output layer
with a layer that maps from hidden
uniits to only 2 units, where the 2 units
represent the two classes (vulnerable and nen-vulnerable)

Dropout
t
Positional embfddmg layer

Token embedding layer

Tokenized text

Inputs

Figure 2: Model architecture for LLM with dedicated classifi-
cation head

(referred to as Head-Only Fine-Tuning). This isolated the
head’s contribution.

(3) Intermediate Freezing (k = 2,4,6, ..., < N): The bottom k
transformer layers were frozen, while the top N — k trans-
former layers and the classification head were fine-tuned.
This allowed us to map the performance impact as the freeze
boundary shifted upwards. Table 3 summarizes the different
layer-freezing configurations.

Consequently, all these layer-freezing configurations of each
model were trained using the balanced training set and subse-
quently evaluated on the test set derived from ScrawlD.

To address RQ1, which assesses the effectiveness of incorporating
a dedicated classification head, we compared our fine-tuned models
against the state-of-the-art results published by Ince et al. [17].
To facilitate a direct and equitable comparison, we evaluated our
models using the specific test benchmark curated and released by
Ince et al. This benchmark test set contains approximately 595
Solidity smart contracts for evaluation purposes. These contracts
were labeled using the identical five-tool majority-voting procedure
applied to the ScrawlD dataset. To address RQ1, we evaluated our
models using the ’Full Fine-Tuning’ configuration described above
(all N transformer layers and the classification head trained). Their
performance on this benchmark was then compared against the
results reported by Ince et al. [17] for other models evaluated on
the same test set.

Additionally, comparing the performance of these fine-tuned
LLMs against non-LLM-based vulnerability detection methods falls
outside the scope of this study, which concentrates specifically
on efficient LLM adaptation techniques. Such comparisons with
traditional static/dynamic analysis or other machine learning ap-
proaches have been addressed in prior work [36].

PROMISE 25, June 26, 2025, Trondheim, Norway

Table 3: Overview of layer-freezing configurations. Each
“transformer layer” refers to the blue box (attention + feed-
forward) detailed in Figure 2.

Configuration Trainable Frozen
Components Components
Full Fine-Tuning All N transformer None

(k=0) layers

& Classification head
Head-Only Classification head All N transformer
(k=N) layers

Bottom k transformer
layers

Partial Fine-Tuning
(0<k<N)

Top N — k
transformer layers
& Classification head

4 Experiments and Evaluations

4.1 Experimental Setup

4.1.1 Model Variants. For our experiments, we used the four mod-
els described in Section 3.1:

e Llama 3.2 1B
e Llama 3.2 3B
e StarCoderBase-1b
e StarCoderBase-3b

For both RQ1 and RQ2, the fine-tuning process followed the
methodology outlined in Section 3.4. Specifically, for RQ1, each
model underwent full fine-tuning with a dedicated classification
head. While for RQ2, the fine-tuning process involved applying dif-
ferent layer-freezing conditions, including full fine-tuning, training
only the classification head, and various intermediate configura-
tions. This allowed for the creation of trained models tailored to
each specific condition.

4.1.2 Resource Used for Fine-Tuning. All experiments were con-
ducted on a single NVIDIA A100 GPU (40 GB VRAM) from the
Texas Advanced Computing Center’s (TACC) Lonestar6 cluster. For
all model fine-tuning, we utilized the LoRA (Low-Rank Adapta-
tion) [14] methodology as our principal approch to fine-tuning the
models. For implementing the layer-wise fine-tuning strategy, we
leveraged libraries like Ludwig, Hugging Face Transformers and
LoRA. This enabled us to selectively freeze specific model layers
while applying LoRA adapters to the remaining trainable layers.
The complete code implementation, training scripts, datasets, and
detailed experimental results are available in our reproducibility
package.!

4.1.3 Hyperparameter Space. The fine-tuning process was config-
ured with carefully selected hyperparameters to optimize model
performance while working within computational constraints. We
employed a learning rate of 5e-4, which was empirically determined
to provide stable training convergence while avoiding overshoot-
ing optimal parameter values. Given the memory constraints of
processing lengthy smart contracts, we implemented a batch size
of 2 with gradient accumulation steps of 16, effectively simulating

Thttps://bit.ly/paper_repo_adapT_LLM

70

Fadul Sikder, Yu Lei, and Yuede Ji

a larger batch size of 32 while maintaining manageable memory us-
age. The models were trained for 5 epochs, which proved sufficient
for convergence in our LoRA-based setup. For optimization, we
utilized the Paged AdamW optimizer, a memory-efficient variant
of Adam that is particularly well-suited for training large language
models. This choice was motivated by the need to manage mem-
ory usage effectively while maintaining stable training dynamics.
Due to computational resource limitations associated with fine-
tuning multiple large models across numerous configurations, each
experimental condition reported in this study was trained and eval-
uated once. While this provides valuable performance indicators,
we acknowledge that single runs preclude analysis of statistical
significance or run-to-run variability.

These hyperparameter choices were guided by both empirical
testing and practical constraints, aiming to maximize model perfor-
mance within the available computational resources while ensuring
reliable vulnerability detection capabilities. Importantly, we applied
the same hyperparameter configuration across all model and layer-
freezing conditions to ensure that any observed performance dif-
ferences stem solely from the layer-freezing strategy rather than
model-specific tuning.

4.2 Results and Discussion

RQI1: Effectiveness of Classification Head Approach. To address
our first research question on the effectiveness of fine-tuning LLMs
with a dedicated classifier head for smart contract vulnerability
detection, we conducted a comprehensive evaluation comparing
our approach with state-of-the-art models. Table 4 presents the
performance metrics across various models for binary classification.
This evaluation focuses on binary classification across key metrics:
precision, recall, F; score, and accuracy.

Our fine-tuned models demonstrated substantial improvements
over the baseline approaches reported in Ince et al. [17]. Among
our models, Llama 3.2 3B-AdapT achieved the highest performance
with 77.5% accuracy, 76.5% precision, 77.8% recall, and an F1 score
of 0.771. This places it on par with the top-performing GPT-3.5FT
model (77.6% accuracy), despite the latter likely having significantly
more parameters. The comparable performance indicates that our
classification head approach effectively adapts LLM for this special-
ized domain task.

A clear trend emerges when examining performance across
model sizes within the same architecture family. The 3B parameter
variants consistently outperformed their 1B counterparts across
all metrics. For instance, Llama 3.2 3B-AdapT achieved 3.5 per-
centage points higher accuracy than Llama 3.2 1B-AdapT (77.5%
versus 74.0%), while StarCoder 3B-AdapT similarly outperformed
StarCoder 1B-AdapT by 6.3 percentage points (68.8% versus 62.5%).
This pattern suggests that increased model capacity contributed to
better discrimination of vulnerability patterns, though the perfor-
mance gains appeared to scale sub-linearly with parameter count.

Architecture differences also played a significant role in perfor-
mance. The Llama 3.2 models consistently outperformed their Star-
Coder counterparts of equivalent size. This performance gap (ap-
proximately 8.7 percentage points for 3B models and 11.5 percent-
age points for 1B models) indicated that architectural design choices

https://bit.ly/paper_repo_adapT_LLM

Efficient Adaptation of Large Language Models for Smart Contract Vulnerability Detection

Table 4: Comparison of Vulnerability Detection Performance
Across Models for Binary Classification. Models marked with
* are from this paper; results and descriptions for other mod-
els are from Ince et al. [17].

Model Prec. Rec. F; Acc.

Llama 3.2 3B-AdapT”*
Llama 3.2 3B fine-tuned w/ classif. 0.765 0.778 0.771 0.775
head

Llama 3.2 1B-AdapT”*
Llama 3.2 1B fine-tuned w/ classif. 0.742 0.735 0.738 0.740
head

StarCoder 3B-AdapT*
StarCoder 3B fine-tuned w/ classif. 0.685 0.682 0.683 0.688
head

StarCoder 1B-AdapT*
StarCoder 1B fine-tuned w/ classif. 0.628 0.610 0.619 0.625
head

GPT-3.5FT
OpenAI GPT-3.5 Turbo fine-tuned 0.770 0.782 0.776 0.776
(Ince)

GPT-4
OpenAl GPT-4 zero-shot eval (Ince) 0.675 0.646 0.660 0.661

DL-Instruct
34B Code Llama Instruct fine-tuned 0.774 0.443 0.563 0.648
(Ince)

GPTLens
GPTLens method (GPT-4 Turbo) eval 0.533 0.988 0.692 0.564
(Ince)

DL-Foundation
34B Code Llama Foundation 0.517 0.993 0.680 0.521
fine-tuned (Ince)

and pre-training strategies substantially influenced a model’s adapt-
ability to security-focused code analysis tasks, potentially more so
than raw parameter count alone. When comparing our models to
other approaches in the field, we observed distinct trade-off pat-
terns. Models like GPTLens and DL-Foundation exhibited extremely
high recall (98.8% and 99.3% respectively) but suffered from low pre-
cision (53.3% and 51.7%), resulting in lower overall accuracy. This
suggested these models were optimized for maximizing vulnerabil-
ity coverage at the expense of generating numerous false positives.
In contrast, our fine-tuned models and GPT-3.5FT achieved more
balanced precision and recall scores, indicating better overall dis-
crimination capability.

The distribution of performance metrics across all evaluated
models revealed an important insight: achieving high precision in
smart contract vulnerability detection remained challenging. Even
the best-performing models achieved precision in the mid-to-high
70% range, suggesting inherent difficulty in definitively identifying
code as vulnerable without false positives. This challenge likely
stemmed from the subtle nature of many vulnerabilities, where
small variations in context or implementation could determine
whether a pattern represented a genuine security risk.

71

PROMISE 25, June 26, 2025, Trondheim, Norway

Accuracy vs. Number of Trainable Top Layers

Accuracy (%)

® Liama32 18 Liama 3.2 38 ® StarCoder 18 ® StarCoder 38

0 2 4 6 & 10 12 14 16 18 20 22 24 26 28 30 32 34 3B

Number of Top Layers Trainable

Figure 3: Impact of layer freezing on model performance met-
rics across four models. The x-axis represents the number of
trainable top layers, while the y-axis shows the correspond-
ing accuracy

Our Llama 3.2 3B-AdapT model notably outperformed GPT-4 in
this specific task, with accuracy of 77.5% versus 66.1%. This outcome
was particularly noteworthy given GPT-4’s substantially larger size
and broader capabilities, highlighting that task-specific fine-tuning
with an appropriate architecture could exceed the performance of
more general, larger models on specialized tasks like vulnerability
detection.

These results collectively demonstrated that fine-tuning moderate-
sized LLMs with dedicated classification heads offered an effective
approach for smart contract vulnerability detection. The classi-
fication head architecture appeared to successfully leverage the
rich contextual representations of transformer-based models while
constraining outputs to a well-defined set of vulnerability classes,
avoiding potential ambiguities in token-generation approaches. Fur-
thermore, the performance achieved by our Llama 3.2 3B-AdapT
model indicated that this approach could yield state-of-the-art re-
sults while remaining computationally more efficient than employ-
ing the largest available models.

RQ2: Impact of Layer-Specific Fine-tuning. To investigate how
selective layer freezing affected model performance and compu-
tational efficiency, we conducted experiments across four models
(Llama 3.2 1B, Llama 3.2 3B, StarCoder 1B, and StarCoder 3B), sys-
tematically freezing increasing numbers of bottom layers while
measuring performance and resource usage.

Our analysis revealed a compelling pattern of diminishing re-
turns as lower layers were frozen. Both accuracy and F1 scores
remained quite stable even when a significant portion of bottom lay-
ers were prevented from updating during fine-tuning. For instance,
freezing half of the layers in most models resulted in performance
drops of less than 1.7 percentage points compared to full fine-tuning.
This consistent pattern across all tested architectures, as seen in
Figures 3 and 4, suggests that substantial task-specific adaptation
occurs in the upper layers. With such selective layer freezing strate-
gies, training time decreased by approximately 10-20% and memory
usage also decreased by about 10-20%, as illustrated in Figure 5. For

PROMISE 25, June 26, 2025, Trondheim, Norway

F1 Score vs. Number of Trainable Top Layers

F1 Score (%)

Liama 3.2 38

® StarCoder 18

® Liama32 18 ® StarCoder 38

0 2 4 6 8 10 12 14 16 18 20 2 24 26 28 30 32 34 36
Number of Top Layers Trainable

Figure 4: Impact of layer freezing on model performance met-
rics across four models. The x-axis represents the number of
trainable top layers, while the y-axis shows the correspond-
ing F1 Score

resource-constrained environments, these findings demonstrated a
viable path to deploying effective LLMs that would otherwise be
computationally prohibitive.

Model size also influenced freeze-resilience. The larger Llama 3.2
3 B retained > 75% accuracy with just the top six layers trainable
(~ 20% of the network), whereas the 1 B variant slipped below
that mark once more than ~80% of its layers were frozen. This
indicates that the extra capacity in the 3 B model provides enough
representational redundancy to tolerate more aggressive parameter-
efficiency strategies.

These results has important implications for practical applica-
tions of LLM fine-tuning. By selectively fine-tuning only the top
layers, practitioners could achieve near-optimal performance while
reducing computational requirements. In the context of smart con-
tract vulnerability detection, our findings suggested that the general
code understanding capabilities encoded during pre-training re-
mained largely applicable without modification, while task-specific
adaptation for security vulnerabilities could be effectively captured
through updates to the upper layers alone. This supported the
principle that recognizing vulnerability patterns relied more on
high-level semantic understanding than low-level syntactic pro-
cessing.

In summary, our experimental results demonstrated that restrict-
ing fine-tuning to specific high-level Transformer layers while
freezing lower layers achieved competitive performance with sig-
nificantly reduced computational requirements, making LLM-based
vulnerability detection more practical for real-world applications.

5 Related Work

Research in smart contract vulnerability detection encompassed
diverse methodological approaches that collectively aimed to ad-
dress the critical challenge of securing blockchain-based programs.
The landscape of vulnerability detection techniques spanned from

72

Fadul Sikder, Yu Lei, and Yuede Ji

Memory Footprint vs. Trainable Layers

10F —s— Llama3.2 1B
Llama 3.2 3B
g| —e— StarCoder 1B
—e— StarCoder 3B
@
e 8f
=
o
= 7r
>
»
e
g 6
o
L
5k
4
o 5 10 15 20 25 30
Number of Trainable Top Layers
Training Time vs. Trainable Layers
S50 —e— Llama3.2 1B
Llama 3.2 3B
45 —e=— StarCoder 1B
= —e— StarCoder 3B
E. 40}
5
8 35F
a
w
5 30f
a
@
E 25+
g
20F
15
o 5 10 15 20 25 30

Number of Trainable Top Layers

Figure 5: Computational resource usage versus the number
of trainable top layers during fine-tuning. Top: Approximate
VRAM footprint (GB). Bottom: Training time per epoch (min-
utes). Results shown for Llama 3.2 (1B, 3B) and StarCoder
(1B, 3B) models.

traditional software engineering methods, such as static and dy-
namic analysis, to machine learning-based approaches that lever-
aged pattern recognition and automated analysis. In the domain
of machine learning-based approaches, applications of LLMs had
also been actively pursued in recent times. This section systemati-
cally reviewed recent advancements in using LLMs specifically for
enhancing smart contract vulnerability detection.

Several studies presented robust LLM-based frameworks that en-
hanced vulnerability detection over traditional security tools. LLM-
SmartAudit, for instance, introduced a multi-agent LLM framework
that captured complex contract interactions, allowing the identi-
fication of previously undetected logic vulnerabilities through a
collaborative LLM agent system [35]. Similarly, FELLMVP employed
an ensemble of fine-tuned LLMs to classify multiple vulnerability
types, achieving higher accuracy and efficiency than both static
and dynamic analysis methods [21]. Additionally, LLMSmartSec
integrated LLMs with annotated control flow graphs to improve
vulnerability detection and remediation, showcasing the potential
of hybrid approaches in smart contract security [23]. Although
these approaches offered effective strategies, they still relied on
autoregressive generation, inheriting the limitations of LLM.

Efficient Adaptation of Large Language Models for Smart Contract Vulnerability Detection

Despite their advancements, LLM-based methods faced certain
challenges. False positives remained a persistent issue; GPTLENS
employed adversarial techniques that segmented generation and
validation stages to mitigate incorrect detections, underscoring the
need for refining detection accuracy in LLM systems [16]. Targeted
LLM applications also showed promise in detecting specific logic-
related vulnerabilities within smart contracts. Soley and GPTScan,
for instance, leveraged fine-tuned LLMs to identify intricate logic
vulnerabilities that static analysis tools often overlooked, such as
misaligned state changes and errors in business logic [28]. By fo-
cusing on Solidity code intricacies, these models demonstrated the
potential of LLMs in detecting nuanced vulnerabilities specific to
contract logic.

Additionally, Context-Driven Prompting enhanced detection
precision by structuring prompts to emphasize relevant portions
of the code, thereby optimizing the LLM’s focus during analysis
[4, 30]. RAG-Enhanced LLMs incorporated Retrieval-Augmented
Generation (RAG), which retrieved relevant contextual information
during detection, thereby improving precision by extending the
LLM’s ability to generalize and adapt to complex vulnerability
patterns [40]. These studies indicated that improved prompting
could significantly boost LLM-based detection in both accuracy and
efficiency.

Finally, the application of LLMs to multiple blockchain platforms
remained an area with unrealized potential. LLM-based vulnerabil-
ity detection methods are significantly advancing smart contract
security, addressing challenges through novel frameworks, prompt-
ing strategies, and hybrid techniques as reviewed above. However,
to the best of our knowledge, the specific adaptation strategies in-
vestigated in this paper—evaluating the effectiveness of a dedicated
classification head compared to standard token generation (RQ1)
and systematically analyzing the performance and efficiency trade-
offs of layer-wise fine-tuning by freezing lower layers (RQ2)—have
not been the primary focus of prior work in this domain. Conse-
quently, challenges such as false positives, computational costs, and
cross-platform adaptability persist. Continued research in optimiz-
ing LLM frameworks, including efficient adaptation techniques like
those studied here, expanding platform applicability, and improving
resource efficiency will be vital to fully realizing the potential of
LLMs in the evolving landscape of blockchain security.

6 Conclusion

In this study, we investigated two core questions: first, whether a
specialized classification head could enhance the effectiveness of
Large Language Models (LLMs) in identifying smart contract vul-
nerabilities; and second, how varying the number of frozen lower
layers during fine-tuning impacts resource consumption and per-
formance. Our experiments demonstrated that fine-tuning with
dedicated classification heads yielded competitive results. Notably,
our Llama 3.2 3B-AdapT model reached 77.5% accuracy, performing
comparably to the fine-tuned GPT-3.5FT model despite potential
differences in underlying architecture and size. This highlights
the effectiveness of the classification head approach for this task.
Furthermore, our investigation into layer freezing revealed that per-
formance remained stable even when a substantial number of lower
transformer layers were frozen, resulting in minimal degradation

73

PROMISE 25, June 26, 2025, Trondheim, Norway

while offering notable efficiency gains. We observed reductions in
both training time and memory usage of approximately 10-20%
when fine-tuning only the upper layers, making LLM adaptation
more feasible under resource constraints. Larger models exhibited
greater resilience; for example, Llama 3.2 3B-AdapT maintained
high accuracy even when a large proportion of the lower layers
were frozen (leaving only upper layers trainable), suggesting that
general code understanding resides largely in lower layers while
vulnerability detection patterns are primarily learned in upper lay-
ers.

Building on these findings, our future research will pursue sev-
eral promising directions. First, extending our classification ap-
proach to multi-class vulnerability detection would enhance practi-
cal utility by providing specific vulnerability classifications rather
than binary judgments. Second, exploring the application of this
fine-tuning scheme to other blockchain platforms beyond Ethereum
would test the generalizability of our approach across diverse pro-
gramming languages and execution models. Finally, implementing
adaptive layer-freezing schedules—where the number of trainable
layers was dynamically adjusted based on validation metrics—might
further optimize computational efficiency. These directions collec-
tively promise to advance the accessibility and effectiveness of
LLM-based vulnerability detection systems for blockchain security
applications, potentially making sophisticated security analysis
tools available even in resource constrained environments.

Acknowledgments

Lei’s work is partly supported by a research grant (7ONANB21H092)
from Information Technology Lab of National Institute of Standards
and Technology (NIST). Ji’s work is supported in part by National
Science Foundation grants (2516003).

The views, opinions, and/or findings expressed in this material
are those of the authors and should not be interpreted as represent-
ing the official views of the National Science Foundation, National
Institute of Standards and Technology, or the U.S. Government.

The authors acknowledge the Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin for providing com-
putational resources that have contributed to the research results
reported within this paper. URL: http://www.tacc.utexas.edu

References

[1] Md Tauseef Alam, Raju Halder, and Abyayananda Maiti. 2024. Detection Made
Easy: Potentials of Large Language Models for Solidity Vulnerabilities. doi:10.
48550/arXiv.2409.10574 arXiv:2409.10574 [cs].

[2] Andry Alamsyah, Gede Natha Wijaya Kusuma, and Dian Puteri Ramadhani. 2024.
A Review on Decentralized Finance Ecosystems. Future Internet 16, 3 (Feb. 2024),
76. doi:10.3390/f116030076

[3] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be

Too Big?. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,

and Transparency (Virtual Event, Canada) (FAccT 21). Association for Computing

Machinery, New York, NY, USA, 610-623. doi:10.1145/3442188.3445922

Mohamed Salah Bouafif, Chen Zheng, Ilham Ahmed Qasse, Ed Zulkoski, Mo-

hammad Hamdaga, and Foutse Khomh. 2024. A Context-Driven Approach

for Co-Auditing Smart Contracts with The Support of GPT-4 code interpreter.
arXiv:2406.18075 [cs.SE] https://arxiv.org/abs/2406.18075

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

[4

https://doi.org/10.48550/arXiv.2409.10574
https://doi.org/10.48550/arXiv.2409.10574
https://doi.org/10.3390/fi16030076
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2406.18075
https://arxiv.org/abs/2406.18075

=

PROMISE 25, June 26, 2025, Trondheim, Norway

Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners.
doi:10.48550/arXiv.2005.14165 arXiv:2005.14165 [cs]

CertiK. 2023. CertiK - Hack3d: The Web3 Security Report 2023. https://certik.com/
resources/blog/hack3d-the-web3-security-report-2023. Accessed: 2024-09-02.
Chong Chen, Jianzhong Su, Jiachi Chen, Yanlin Wang, Tingting Bi, Jianxing
Yu, Yanli Wang, Xingwei Lin, Ting Chen, and Zibin Zheng. 2024. When Chat-
GPT Meets Smart Contract Vulnerability Detection: How Far Are We? ACM
Transactions on Software Engineering and Methodology (Nov. 2024), 3702973.
doi:10.1145/3702973

Isaac David, Liyi Zhou, Kaihua Qin, Dawn Song, Lorenzo Cavallaro, and Arthur
Gervais. 2023. Do you still need a manual smart contract audit? doi:10.48550/
arXiv.2306.12338 arXiv:2306.12338 [cs].

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLOoRA: Efficient Finetuning of Quantized LLMs. https://arxiv.org/abs/2305.14314.
arXiv:2305.14314 [cs.LG] https://arxiv.org/abs/2305.14314

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805

Suchin Gururangan, Ana Marasovi¢, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,
Doug Downey, and Noah A. Smith. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. arXiv:2004.10964 [cs.CL] https://arxiv.org/abs/
2004.10964

Fadul Sikder, Yu Lei, and Yuede Ji

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Satoshi
Nakamoto (2008).

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To Tune
or Not to Tune? Adapting Pretrained Representations to Diverse Tasks.
arXiv:1903.05987 [cs.CL] https://arxiv.org/abs/1903.05987

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

Heidelinde Rameder, Monika di Angelo, and Gernot Salzer. 2022. Review of
Automated Vulnerability Analysis of Smart Contracts on Ethereum. Frontiers in
Blockchain 5 (March 2022). doi:10.3389/fbloc.2022.814977

Majd Soud, Waltteri Nuutinen, and Grischa Liebel. 2024. Soley: Identification
and Automated Detection of Logic Vulnerabilities in Ethereum Smart Contracts

Using Large Language Models. arXiv:2406.16244 [cs.ET] https://arxiv.org/abs/
2406.16244

André Storhaug, Jingyue Li, and Tianyuan Hu. 2023. Efficient Avoidance of
Vulnerabilities in Auto-completed Smart Contract Code Using Vulnerability-
constrained Decoding. In 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). 683-693. doi:10.1109/ISSRE59848.2023.00035
Yugiang Sun and Ying Liu. 2023. GPTScan: Detecting Logic Vulnerabilities in
Smart Contracts by Combining GPT with Program Analysis. In 2024 IEEE/ACM
46th International Conference on Software Engineering (ICSE).

[12] Arthur Hemmer, Mickaél Coustaty, Nicola Bartolo, Jérome Brachat, and Jean- [31] Xueyan Tang, Yuying Du, Alan Lai, Ze Zhang, and Lingzhi Shi. 2023. Deep
Marc Ogier. 2023. Lazy-k: Decoding for Constrained Token Classification. Learning-Based Solution for Smart Contract Vulnerabilities Detection. Scientific
arXiv:2312.03367 [cs.CL] https://arxiv.org/abs/2312.03367 Reports 13, 1 (Nov. 2023), 20106. doi:10.1038/s41598-023-47219-0

[13] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine- [32] Aﬁhlsh Vaswani, Noam Sha?eer, Niki Parmar, Jakgb Uszkoreit, Lh'on Jones,
tuning for Text Classification. arXiv:1801.06146 [cs.CL] https://arxiv.org/abs/ Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
1801.06146 You Need. doi:10.48550/arXiv.1706.03762 arXiv:1706.03762 [cs]

[14] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean [33] Qiping Wei, Fadul Sikder, Huadong Feng, Yu Lei, Raghu Kacker, and Richard

Kuhn. 2023. SmartExecutor: Coverage-Driven Symbolic Execution Guided by
a Function Dependency Graph. In 2023 5th Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS). 1-8. doi:10.1109/
BRAINS59668.2023.10316942

Qiping Wei, Fadul Sikder, Huadong Feng, Yu Lei, Raghu Kacker, and Richard Kuhn.
2025. SmartExecutor: Coverage-Driven Symbolic Execution Guided via State
Prioritization and Function Selection. Distributed Ledger Technologies: Research

Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large
Language Models. arXiv:2106.09685 [cs] http://arxiv.org/abs/2106.09685

[15] Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. 2023.
Large Language Model-Powered Smart Contract Vulnerability Detection: New
Perspectives. In 2023 5th IEEE International Conference on Trust, Privacy and (34
Security in Intelligent Systems and Applications (TPS-ISA). 297-306. doi:10.1109/
TPS-ISA58951.2023.00044

[16] Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. 2023. and Practice 4, 1 (March 2025), 1-29. doi:10.1145/3678188
Large Language Model-Powered Smart Contract Vulnerability Detection: New [35] Zhiyuan Wei, Jing Sun, Zijiang Zhang, and Xianhao Zhang. 2024.
Perspectives. arXiv:2310.01152 [cs.CR] https://arxiv.org/abs/2310.01152 LLM-SmartAudit: = Advanced Smgrt Contract Vulnerability Detection.
[17] Peter Ince, Xiapu Luo, Jiangshan Yu, Joseph K. Liu, and Xiaoning Du. 2024. Detect arXiv:2410.09381 [cs.CR] https://arxiv.org/abs/2410.09381

Zhiyuan Wei, Jing Sun, Zijian Zhang, Xianhao Zhang, Meng Li, and Mauro Conti.
2025. FTSmartAudit: A Knowledge Distillation-Enhanced Framework for Auto-
mated Smart Contract Auditing Using Fine-Tuned LLMs. arXiv:2410.13918 [cs.CR]
https://arxiv.org/abs/2410.13918

Llama - Finding Vulnerabilities in Smart Contracts Using Large Language Models. (36
Springer Nature Singapore, 424-443. doi:10.1007/978-981-97-5101-3_23

[18] Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No
Lee. 2022. Systematic Review of Security Vulnerabilities in Ethereum Blockchain

Smart Contract. IEEE Access 10 (2022), 6605-6621. doi:10.1109/ACCESS.2021. [37] Huaiguang Wu, Yibo Peng, Yaqiong He, and Jinlin Fan. 2024. A Review of Deep

3140091 Learning-Based Vulnerability Detection Tools for Ethernet Smart Contracts.
[19] Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What Would Elsa Do? Freezing Computer Modeling in Engineering & Sciences 140, 1 (2024), 77-108. doi:10.32604/

Layers During Transformer Fine-Tuning. arXiv:1911.03090 [cs.CL] https://arxiv. cmes.2024.046758

org/abs/1911.03090 [38] Chavhan Sujeet Yashavant, Saurabh Kumar, and Amey Karkare. 2022. ScrawlD:
[20] Zongxi Li, Xianming Li, Yuzhang Liu, Haoran Xie, Jing Li, Fu lee Wang, A Dataset of Real World Ethereum Smart Contracts Labelled with Vulnerabilities.

arXiv:2202.11409 [cs.CR] https://arxiv.org/abs/2202.11409

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable
are features in deep neural networks? arXiv:1411.1792 [cs.LG] https://arxiv.org/
abs/1411.1792

Qing Li, and Xiaoqin Zhong. 2023. Label Supervised LLaMA Finetuning.

arXiv:2310.01208 [cs.CL] https:/arxiv.org/abs/2310.01208 (39
[21] Yu Luo, Weifeng Xu, Karl Andersson, Mohammad Shahadat Hossain, and Dianx-

iang Xu. 2024. FELLMVP: An Ensemble LLM Framework for Classifying Smart

Contract Vulnerabilities. In 2024 IEEE International Conference on Blockchain [40] Jeffy Yu. 2024. Retrieval Augmented Generation Integrated Large Language
(Blockchain). 89-96. doi:10.1109/Blockchain62396.2024.00021 Models in Smart Contract Vulnerability Detection. doi:10.48550/arXiv.2407.14838
[22] Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. 2021. On [41] Lei Y?’ Shigi Chen,A Hang Yuan,APeng Wangf Zhirong Huang, Jingyuan Zhang,
the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong Chenjie Shen, Fegg}un Zhang, Li Yang, and Jiajia Ma. 2024. Smart-LLaMA: TVYO'
Baselines. arXiv:2006.04884 [cs.LG] https://arxiv.org/abs/2006.04884 Stage Post-Training of Large Language Models for Smart Contract Vulnerability
[23] Viraaji Mothukuri, Reza M. Parizi, and James L. Massa. 2024. LLMSmartSec: Detection and Explanation. doi:10.48550/arXiv.2411.06221 arXiv:2411.06221 [cs].

Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang.
2017. An Overview of Blockchain Technology: Architecture, Consensus, and
Future Trends. In 2017 IEEE International Congress on Big Data (BigData Congress).
557-564. doi:10.1109/BigDataCongress.2017.85

Smart Contract Security Auditing with LLM and Annotated Control Flow Graph. (42
In 2024 IEEE International Conference on Blockchain (Blockchain). 434-441. doi:10.
1109/Blockchain62396.2024.00064

74

https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165
https://certik.com/resources/blog/hack3d-the-web3-security-report-2023
https://certik.com/resources/blog/hack3d-the-web3-security-report-2023
https://doi.org/10.1145/3702973
https://doi.org/10.48550/arXiv.2306.12338
https://doi.org/10.48550/arXiv.2306.12338
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2312.03367
https://arxiv.org/abs/2312.03367
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.1109/TPS-ISA58951.2023.00044
https://doi.org/10.1109/TPS-ISA58951.2023.00044
https://arxiv.org/abs/2310.01152
https://arxiv.org/abs/2310.01152
https://doi.org/10.1007/978-981-97-5101-3_23
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.1109/ACCESS.2021.3140091
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/2310.01208
https://arxiv.org/abs/2310.01208
https://doi.org/10.1109/Blockchain62396.2024.00021
https://arxiv.org/abs/2006.04884
https://arxiv.org/abs/2006.04884
https://doi.org/10.1109/Blockchain62396.2024.00064
https://doi.org/10.1109/Blockchain62396.2024.00064
https://arxiv.org/abs/1903.05987
https://arxiv.org/abs/1903.05987
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.3389/fbloc.2022.814977
https://arxiv.org/abs/2406.16244
https://arxiv.org/abs/2406.16244
https://arxiv.org/abs/2406.16244
https://doi.org/10.1109/ISSRE59848.2023.00035
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/BRAINS59668.2023.10316942
https://doi.org/10.1109/BRAINS59668.2023.10316942
https://doi.org/10.1145/3678188
https://arxiv.org/abs/2410.09381
https://arxiv.org/abs/2410.09381
https://arxiv.org/abs/2410.13918
https://arxiv.org/abs/2410.13918
https://doi.org/10.32604/cmes.2024.046758
https://doi.org/10.32604/cmes.2024.046758
https://arxiv.org/abs/2202.11409
https://arxiv.org/abs/2202.11409
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/1411.1792
https://doi.org/10.48550/arXiv.2407.14838
https://doi.org/10.48550/arXiv.2411.06221
https://doi.org/10.1109/BigDataCongress.2017.85

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models
	2.2 Transfer Learning and Fine-Tuning

	3 Methodology
	3.1 Model Selection
	3.2 Model Architecture
	3.3 Datasets
	3.4 Evaluation Strategy

	4 Experiments and Evaluations
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

