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Abstract
Smart contracts underpin decentralized applications but face signif-
icant security risks from vulnerabilities, while traditional analysis
methods have limitations. Large Language Models (LLMs) o�er
promise for vulnerability detection, yet adapting these powerful
models e�ciently, particularly generative ones, remains challeng-
ing. This paper investigates two key strategies for the e�cient adap-
tation of LLMs for Solidity smart contract vulnerability detection:
(1) replacing token-level generation with a dedicated classi�cation
head during �ne-tuning, and (2) selectively freezing lower trans-
former layers using Low-Rank Adaptation (LoRA). Our empirical
evaluation demonstrates that the classi�cation head approach en-
ables models like Llama 3.2 3B to achieve high accuracy (77.5%),
rivaling the performance of signi�cantly larger models such as the
�ne-tuned GPT-3.5. Furthermore, we show that selectively freezing
bottom layers reduces training time and memory usage by approxi-
mately 10-20% with minimal impact on accuracy. Notably, larger
models (3B vs. 1B parameters) exhibit greater resilience to layer
freezing, maintaining high accuracy even with a large proportion
of layers frozen, suggesting a localization of general code under-
standing in lower layers versus task-speci�c vulnerability patterns
in upper layers. These �ndings present practical insights for devel-
oping and deploying performant LLM-based vulnerability detection
systems e�ciently, particularly in resource-constrained settings.
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1 Introduction
Blockchain technology has revolutionized various sectors by en-
abling secure, transparent, and decentralized transactions [24]. A
key application of this innovation is smart contracts, self-executing
contracts with the terms of the agreement directly written into code.
These programmatic agreements have found applications across
diverse domains, including �nance, supply chain management, and
digital identity veri�cation [42].

Smart contracts, particularly on platforms like Ethereum, have
experienced exponential growth in recent years, with the total value
locked (TVL) in decentralized �nance (DeFi) smart contracts alone
surpassing $50 billion as of 2023 [2]. This rapid adoption, however,
has brought with it a signi�cant rise in security vulnerabilities and
exploits. The immutable nature of blockchain, while foundational
to its trust model, exacerbates the impact of any �aws in smart
contracts. Once deployed, a vulnerable contract cannot be easily
patched, making it an attractive target for malicious actors [18].

The consequences of smart contract vulnerabilities can be se-
vere. In 2023 alone, hacking incidents involving smart contracts
resulted in approximately $1.84 billion in �nancial losses across
751 incidents [6]. These breaches not only cause substantial �nan-
cial damage but also lead to legal disputes and undermine trust in
blockchain technology. Given the high stakes and potential for sig-
ni�cant reputational damage, ensuring the security and correctness
of smart contracts has become a critical priority for developers,
auditors, and blockchain platforms alike.

Traditional approaches to smart contract security analysis, broadly
categorized into static and dynamic analysis, face signi�cant limi-
tations. Static analysis techniques, particularly symbolic execution
and model checking, attempt to systematically explore program
states by analyzing code without execution. While symbolic execu-
tion can theoretically provide complete coverage by exploring all
possible execution paths, it encounters severe scalability challenges
when dealing with smart contracts due to the state explosion prob-
lem and complex environmental dependencies [33, 34]. Dynamic
analysis methods, including fuzz testing, must navigate a vast and
complex state space with concrete input, making comprehensive
exploration challenging. Both static and dynamic approaches often
rely on expert-driven heuristics to narrow the search space, which
can lead to oversights in vulnerability detection [27]. Furthermore,
the rigidity of prede�ned rules in static analysis tools frequently
results in high rates of false positives and negatives, as they struggle
to adapt to the rapid emergence of new vulnerability patterns in
the blockchain ecosystem [31].

Machine learning models for smart contract vulnerability detec-
tion have made signi�cant strides, o�ering notable improvements
over traditional rule-based methods. However, many approaches,
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particularly graph-based neural networks and NLP-based models,
require substantial feature engineering, such as converting source
code into graph representations or extracting speci�c code prop-
erties, which constrains their ability to adapt and generalize to
new or complex vulnerabilities. Additionally, the e�ectiveness of
these models can vary signi�cantly based on the quality and com-
prehensiveness of the engineered features, leading to inconsistent
performance across di�erent types of smart contracts and vulnera-
bility classes [37].

Building on the challenges and constraints of feature-engineered
machine learning solutions, large language models (LLMs) have
emerged as a promising alternative for smart contract security anal-
ysis. Since this class of neural networks is designed to handle tasks
involving long-sequence processing, LLMs can directly analyze
Solidity source code with minimal preprocessing, leveraging their
broad language understanding to identify subtle vulnerability pat-
terns [15]. Broadly, two core approaches have been explored for
using LLMs in smart contract vulnerability detection: prompt-based
inference and �ne-tuning-based adaptation.

In the prompt-based paradigm, researchers query a pretrained
model (e.g., GPT-3.5, GPT-4) using carefully designed instructions to
extract vulnerability-related insights without modifying its internal
parameters. This method enables rapid deployment and supports
various vulnerability types. Examples include ChatGPT’s chain-of-
thought prompts [7] and GPT-4–assisted logic checks [8], which
allow the LLM to "reason" about potential �aws in a contract. How-
ever, prompt-based approaches frequently su�er from model hal-
lucinations, high false-positive rates, and recall limitations when
faced with novel or complex exploit scenarios [8, 30]. Additionally,
performance is highly sensitive to prompt quality—slight variations
in phrasing can lead to inconsistent results.

In contrast, �ne-tuning-based approaches address these short-
comings by training or partially re-training LLMs on curated vul-
nerability datasets. This process aligns the model’s internal rep-
resentations more closely with Solidity semantics and common
exploit patterns, signi�cantly improving recall and precision [1, 41].
However, �ne-tuning comes at the cost of substantial computa-
tional overhead and requires comprehensive, labeled vulnerability
datasets. Despite these challenges, �ne-tuned models demonstrate
enhanced robustness, emphasizing the importance of updating
model weights and adapting LLMs for domain-speci�c tasks such
as Solidity smart contract vulnerability classi�cation.

A prominent challenge in �ne-tuning large language models
(LLMs) for classi�cation tasks is reconciling the generative nature
of many popular architectures (e.g., decoder-only GPT variants)
with the requirement to select outputs from a �xed set of class labels.
In most �ne-tuning work�ows, the model is trained on a supervised
dataset to generate the next token corresponding to the correct
label (or label words) for each input example [20]. This token-level
classi�cation approach leverages the model’s existing decoder to
output a label token from its vocabulary set (e.g., "Vulnerable," "Safe,"
"Over�ow"). While this method is direct and intuitive, it poses a
signi�cant risk: the decoder may generate irrelevant tokens that do
not match the desired class labels. Tomitigate this, researchers often
impose constraints on token generation or apply post-processing
techniques to map the output to the nearest recognized label [12].
Beyond irrelevant token generation, LLMs are inherently prone

to hallucination—the generation of content that appears plausible
but is factually incorrect or unfounded [3]. Even when generating
class labels, the model may occasionally "hallucinate" labels that
do not belong to the predetermined set, especially when faced with
ambiguous inputs or edge cases outside their training distribution.

An alternative approach treats the LLM’s �nal hidden repre-
sentations as feature vectors rather than relying on its decoder to
produce a label token [12]. Instead of generating class names as
the next word, a custom classi�cation head—such as a fully con-
nected layer—is added on top of the model’s �nal (or penultimate)
Transformer layer. This method replaces token-level classi�cation
with a standard softmax layer trained on the model’s output embed-
dings, transforming the LLM into a feature-extractor-plus-classi�er
pipeline. The classi�cation head outputs discrete class probabilities
for each vulnerability type, reducing the likelihood of hallucinated
labels outside of recognized classes. Studies suggest that this ap-
proach improves accuracy in domain-speci�c tasks by leveraging
the semantic abstractions learned by the LLM’s encoder or decoder
blocks while avoiding extraneous token generation [11, 12].

Fine-tuning an LLM for specialized tasks like smart contract
security introduces computational and architectural challenges.
Fully retraining every layer is expensive. To mitigate these issues,
parameter-e�cient �ne-tuning methods such as LoRA [14] and
QLoRA [9] have been developed. These techniques freeze most
model weights and update only small adapter modules or low-rank
parameter o�sets, signi�cantly reducing computational overhead. A
related strategy, layer-wise �ne-tuning, explores whether freezing
maintains (or even enhances) domain performance [19]. From a
transfer learning perspective—which underpins modern LLM �ne-
tuning—it is crucial to determine which portions of the model
require adaptation for a new domain. Lower layers typically capture
general syntactic and lexical patterns, while upper layers encode
more domain- and task-speci�c features [11, 39]. This raises a key
question: What happens if we freeze the lower layers entirely and
�ne-tune only the top few layers (along with a classi�cation head)?
If e�ective, this approach could indicate that LLMs can be �ne-tuned
in a more specialized way for domain-speci�c tasks like security
vulnerability detection in Solidity smart contracts. Additionally, it
could reduce training costs without sacri�cing accuracy, making it
an e�cient strategy for domain-speci�c adaptation.

In this paper, we address these challenges by investigating the
e�ectiveness of di�erent �ne-tuning con�gurations for large lan-
guage models in the context of smart contract vulnerability detec-
tion. Our research is guided by two key research questions that ex-
amine the trade-o�s between di�erent classi�cation approaches and
layer-wise �ne-tuning strategies. These questions aim to provide in-
sights into reducing the computational requirements for LLM-based
vulnerability detection systems without signi�cant compromise on
performance. By systematically evaluating these approaches, we
contribute to the ongoing discourse on adapting large language
models for specialized security tasks in the blockchain domain.
Below are the two key research questions we aim to answer:

RQ1: Is �ne-tuning an LLMwith a dedicated classi�er head
e�ective for detecting smart contract vulnerabilities?

We investigate how adding a dedicated classi�cation layer on
top of the LLM’s �nal hidden representations a�ects vulnerability
detection accuracy.
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RQ2: Does restricting �ne-tuning to speci�c high-level
Transformer layers (while freezing lower layers) achieve com-
petitive performance on vulnerability classi�cation?

Here, we investigate whether layer-wise �ne-tuning (combined
with a classi�cation head) can adapt the LLM’s capabilities to do-
main speci�c tasks like smart contract vulnerability detection while
reducing computational overhead.

The remainder of this paper is organized as follows: Section 2
provides background on LLMs and �ne-tuning relevant to smart
contract security. Section 3 details our methodology, including
model selection, the classi�cation head architecture, datasets, and
evaluation strategy. Section 4 presents the experimental setup, re-
sults, and discussion for both research questions. Section 5 reviews
related work in LLM-based vulnerability detection, and Section 6
concludes with our �ndings and future research directions.

2 Background
2.1 Large Language Models
Large Language Models (LLMs), based on transformer-based neu-
ral network architectures, have emerged as a transformative force
in natural language processing (NLP) and, more recently, in soft-
ware development tasks such as code generation, completion, and
debugging. LLMs are characterized by their large scale, often con-
sisting of billions of parameters, which enables them to capture
complex patterns and relationships within vast amounts of tex-
tual data [5]. The transformer architecture, introduced by Vaswani
et al. [32], allows e�cient parallel processing of input sequences
using self-attention mechanisms, making it particularly e�ective
in capturing long-range dependencies in text—a key feature for
generating coherent and contextually relevant content.

LLMs typically undergo a two-phase development process: pre-
training and �ne-tuning. Pre-training is an self-supervised learning
process where models are exposed to extensive corpora of text,
including diverse sources such as books, websites, and code repos-
itories. This exposure enables the model to develop a broad un-
derstanding of language structure, semantics, and domain-speci�c
knowledge. The pre-training objective is usually autoregressive,
where the model learns to predict the next token in a sequence
based on the previous tokens [26].

For particular downstream tasks like smart contract vulnerability
detection, pre-trained LLMs are further re�ned through �ne-tuning.
This process involves additional training on smaller, task-speci�c
label datasets, enabling the model to specialize in particular applica-
tions. Fine-tuning can involve updating all model parameters or, in
more resource-e�cient methods, adjusting only a subset of param-
eters while keeping most of the pre-trained weights frozen [13].

2.2 Transfer Learning and Fine-Tuning
The adaptation of pre-trained models via transfer learning and
�ne-tuning is a cornerstone of modern deep learning. Foundational
work, particularly in computer vision, established that lower layers
of deep networks often learn general features (e.g., edges and tex-
tures) transferable across tasks, while upper layers capture more
task-speci�c information [39]. This insight motivated early �ne-
tuning strategies involving freezing lower layers and retraining
only the upper ones for new domains [39].

The evolution continued with methods addressing challenges
like over�tting on small target datasets and catastrophic forget-
ting—where general knowledge is lost during specialized train-
ing [22]. Frameworks like ULMFiT [13] introduced gradual un-
freezing techniques, while models like BERT [10] demonstrated
the success of full end-to-end �ne-tuning on task-speci�c data.
Research also indicated that the optimal strategy (feature extrac-
tion vs. full �ne-tuning) can depend on the similarity between the
pre-training and target tasks [25].

With the advent of extremely large models (e.g., GPT-3 with
175B parameters [5]), the computational cost of full �ne-tuning
necessitated more e�cient approaches, as noted in the Introduction.
Parameter-E�cient Fine-Tuning (PEFT) methods, such as Low-
Rank Adaptation (LoRA) [14] and its quantized variant QLoRA [9],
signi�cantly reduce resource needs by updating only small, low-
rank adapters instead of all weights. Alongside PEFT, selective
or layer-wise �ne-tuning—updating only a subset of layers—has
proven e�ective. For instance, studies like Lee et al. [19] have shown
that �ne-tuning only the top layers (e.g., the top 25% in BERT or
RoBERTa) can retain a large fraction ( 90%) of the performance
achieved by full �ne-tuning, while substantially lowering training
costs. Such strategies help preserve the model’s core linguistic
or domain knowledge encoded in lower layers while e�ciently
specializing the upper layers for the target task, also mitigating
catastrophic forgetting [22].

This overall trend towards balancing performance with compu-
tational e�ciency is highly relevant for adapting LLMs to special-
ized domains like smart contract vulnerability detection. Although
Solidity presents unique syntax and semantics, it builds on gen-
eral programming concepts potentially learned during pre-training.
Therefore, �ne-tuning approaches that leverage this pre-existing
knowledge by selectively adapting higher-level representations
to identify vulnerability patterns, such as the layer-freezing tech-
niques investigated in this paper, are particularly promising.

3 Methodology
This section outlines our methodology for adapting Large Lan-
guage Models (LLMs) to detect smart contract vulnerabilities. We
explain the rationale guiding our key decisions concerning four
primary components: (1) model selection criteria and process, (2)
architectural modi�cations for classi�cation, (3) dataset selection
and preparation, and (4) evaluation strategies. This section docu-
ments the analytical process that informed our experimental design,
aimed at addressing the research questions posed earlier.

3.1 Model Selection
Selecting an appropriate Large Language Model (LLM) for smart
contract vulnerability detection requires careful consideration of
several key factors: context window size, model parameters (com-
putational footprint), and domain-speci�c training data (Solidity
inclusion). These factors signi�cantly impact the model’s ability to
process and analyze complex smart contracts e�ectively.

A large context window is crucial for smart contract analysis, as
vulnerabilities often arise from interactions spanning di�erent code
sections, potentially across lengthy contracts. Analysis of typical
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Table 1: Comparison of LLM characteristics relevant to smart
contract analysis

Model Parameters Max Context
Length

Solidity in Train-
ing

Llama-3-8B 8B 8,000 tokens Unknown
Llama-3.2-1B 1B 128,000 tokens Unknown
Llama-3.2-3B 3B 128,000 tokens Unknown
CodeLlama-7b 7B 16,000 tokens Unknown
Phi-3-mini-4k 3.8B 4,000 tokens Unknown
StarCoderBase-1b 1B 8,192 tokens Yes
StarCoderBase-3b 3B 8,192 tokens Yes
StarCoderBase-7b 7B 8,192 tokens Yes
GPT-3 175B 4,096 tokens Unknown
GPT-J 6B 2,048 tokens Unknown
GPT-2 774M 1,024 tokens Unknown
CodeT5 220M 512 tokens No

Solidity contract lengths reveals this need; using the StarCoder to-
kenizer, approximately 27% of contracts in a representative dataset
subset exceeded 2,000 tokens, and about 12% surpassed 4,000 tokens
(Figure 1). This makes models with limited context windows (e.g.,
GPT-2: 1,024, CodeT5: 512 tokens) impractical without signi�cant
preprocessing that could obscure context. Therefore, models ca-
pable of handling sequences exceeding 4,000 tokens were deemed
necessary.

However, largermodel parameters and context windows increase
computational demands. While prior work highlights resource-
intensive requirements even for moderately sized models (e.g.,
Storhaug et al. [29] reported needing multiple high-end GPUs and
extended training time for a 6B parameter model), our primary
constraint stemmed from direct experience. Attempts to �ne-tune
models with 7B or more parameters (such as StarCoder-7B, LLaMA
3-8B, or CodeLlama-7b) on our target single NVIDIA A100 40GB
GPU consistently failed due to memory limitations when process-
ing the extended sequence lengths typical of smart contracts. This
established a practical upper bound of 3B parameters for our exper-
imental setup.

Another crucial factor is the inclusion of domain-speci�c training
data. Models pre-trained on datasets containing Solidity source code
are likely to better understand its speci�c syntax and semantics,
potentially improving vulnerability detection.

Another crucial factor in model selection is the composition
of the training data, particularly the inclusion of Solidity source
code. Models pre-trained on datasets that include Solidity code are
likely to have a better understanding of smart contract-speci�c
syntax and semantics, potentially leading to more accurate vul-
nerability detection. While other powerful models exist (e.g., GPT
family, Claude, DeepSeek, Qwen), our selection was guided by �ne-
tuning requirements and accessibility. API-only models (Claude,
GPT) could not be used for our layer-wise �ne-tuning experiments.
Others like DeepSeek or Qwen were either unavailable during our
research timeframe or subject to institutional usage restrictions. Our
primary focus remains on investigating generalizable �ne-tuning
techniques (classi�cation head adaptation, layer-freezing) applica-
ble to open-source models, rather than an exhaustive comparison
of all LLMs.

Figure 1: Distribution of token lengths in the �ltered Solidity
contract dataset using two di�erent tokenizers.

Table 2: Comparative analysis of selected LLMs for smart
contract vulnerability detection

Model Context
Window

Parameters /
Footprint

Domain
Training
(Solidity)

Llama-3.2 1B + Very Large
(128k)

+ Small (1B)
+ Fits 40GB GPU
– Lower capacity

? Likely
exposure

Llama-3.2 3B + Very Large
(128k)

+ Medium (3B)
+ Fits 40GB GPU
– 3x cost vs 1B

? Likely
exposure

StarCoder 1B + Good (8k) + Small (1B)
+ Fits 40GB GPU
– Lower
accuracy

+ Explicitly
included

StarCoder 3B + Good (8k) + Medium (3B)
+ Fits 40GB GPU
– 3x cost vs 1B

+ Explicitly
included

Based on these considerations—balancing context window size,
computational feasibility (parameters  3B for our hardware), and
potential Solidity pre-training, as summarized in Table 2—we se-
lected Llama 3.2 (1B and 3B) and StarCoder (1B and 3B) for our
experiments. This choice allows comparing models with very large
contextwindows but uncertain Solidity exposure (Llama 3.2) against
models with con�rmed Solidity training but standard context lengths
(StarCoder). It also enables evaluating the trade-o�s between re-
source e�ciency (1B) and representational capacity (3B) within our
practical hardware constraints [Source 565].
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3.2 Model Architecture
The model architecture is based on a standard Large Language
Model (LLM) framework that incorporates essential components
such as tokenization, embedding layers, and a multi-layer trans-
former stack. In this design, raw Solidity source code is �rst tok-
enized into numerical representations and then processed through
a series of transformer layers (each blue box in Figure 2, compris-
ing the full self-attention + feed-forward block with its residual
connections and layer-norm). This enables the model to capture
both local syntactic patterns and long-range dependencies in the
code—capabilities that are critical for understanding the complexi-
ties inherent in smart contract analysis.

To tailor the generic LLM for smart contract vulnerability detec-
tion, the conventional generative output head is replaced with a
dedicated classi�cation head. Rather than predicting the next token
from an extensive vocabulary, this modi�ed output layer, which
is implemented as a multi-layer perceptron (MLP), maps the �nal
(or penultimate) hidden representations directly to a prede�ned
set of vulnerability classes (e.g., reentrancy, access control, safe,
vulnerable). Figure 2 illustrates the adapted architecture. This trans-
formation e�ectively converts the LLM into a traditional classi�er
pipeline, thereby reducing the risk of generating irrelevant tokens
and ensuring that the outputs are con�ned to the task-speci�c label
set.

3.3 Datasets
For training our models and conducting the layer-freezing experi-
ments (RQ2), we utilized the ScrawlD dataset developed by Yasha-
vant et al. [38]. ScrawlD is a substantial dataset comprising 9,252 la-
beled Solidity smart contracts. Vulnerability labels within ScrawlD
were determined via a majority-voting consensus among �ve analy-
sis tools (Osiris, Oyente, Mythril, Slither, SmartCheck), identifying
5,364 contracts with at least one vulnerability according to this
methodology.

From this dataset, which originally exhibited an imbalance with
roughly two-thirds of contracts labeled as vulnerable, we �rst par-
titioned the data into initial training (70%), validation (15%), and
test (15%) sets. Recognizing that training on imbalanced data could
bias model performance, we addressed this by applying an over-
sampling technique speci�cally to the training set. We augmented
the training data by replicating instances of the minority class
(non-vulnerable contracts) until a balanced distribution between
vulnerable and non-vulnerable samples was achieved before the
proceeding with the �ne-tuning process.

3.4 Evaluation Strategy
Using our strati�ed data split, we systematically explored the impact
of freezing varying numbers of lower transformer layers during
�ne-tuning for the RQ2 evaluation. For a given model with # total
transformer layers we explored con�gurations across a spectrum
de�ned by the number of frozen bottom layers (:):

(1) No Frozen Layers (: = 0): All # transformer layers and
the classi�cation head were �ne-tuned (referred to as Full
Fine-Tuning). This served as the performance baseline.

(2) All Layers Frozen (: = # ): Only the classi�cation head
was �ne-tuned, with all # transformer layers kept frozen

Figure 2: Model architecture for LLM with dedicated classi�-
cation head

(referred to as Head-Only Fine-Tuning). This isolated the
head’s contribution.

(3) Intermediate Freezing (: = 2, 4, 6, ..., < # ): The bottom :
transformer layers were frozen, while the top # � : trans-
former layers and the classi�cation head were �ne-tuned.
This allowed us to map the performance impact as the freeze
boundary shifted upwards. Table 3 summarizes the di�erent
layer-freezing con�gurations.

Consequently, all these layer-freezing con�gurations of each
model were trained using the balanced training set and subse-
quently evaluated on the test set derived from ScrawlD.

To address RQ1, which assesses the e�ectiveness of incorporating
a dedicated classi�cation head, we compared our �ne-tuned models
against the state-of-the-art results published by Ince et al. [17].
To facilitate a direct and equitable comparison, we evaluated our
models using the speci�c test benchmark curated and released by
Ince et al. This benchmark test set contains approximately 595
Solidity smart contracts for evaluation purposes. These contracts
were labeled using the identical �ve-tool majority-voting procedure
applied to the ScrawlD dataset. To address RQ1, we evaluated our
models using the ’Full Fine-Tuning’ con�guration described above
(all # transformer layers and the classi�cation head trained). Their
performance on this benchmark was then compared against the
results reported by Ince et al. [17] for other models evaluated on
the same test set.

Additionally, comparing the performance of these �ne-tuned
LLMs against non-LLM-based vulnerability detection methods falls
outside the scope of this study, which concentrates speci�cally
on e�cient LLM adaptation techniques. Such comparisons with
traditional static/dynamic analysis or other machine learning ap-
proaches have been addressed in prior work [36].
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Table 3: Overview of layer-freezing con�gurations. Each
“transformer layer” refers to the blue box (attention + feed-
forward) detailed in Figure 2.

Con�guration Trainable
Components

Frozen
Components

Full Fine-Tuning
(: = 0)

All # transformer
layers
& Classi�cation head

None

Head-Only
(: = # )

Classi�cation head All # transformer
layers

Partial Fine-Tuning
(0 < : < # )

Top # � :
transformer layers
& Classi�cation head

Bottom : transformer
layers

4 Experiments and Evaluations
4.1 Experimental Setup
4.1.1 Model Variants. For our experiments, we used the four mod-
els described in Section 3.1:

• Llama 3.2 1B
• Llama 3.2 3B
• StarCoderBase-1b
• StarCoderBase-3b

For both RQ1 and RQ2, the �ne-tuning process followed the
methodology outlined in Section 3.4. Speci�cally, for RQ1, each
model underwent full �ne-tuning with a dedicated classi�cation
head. While for RQ2, the �ne-tuning process involved applying dif-
ferent layer-freezing conditions, including full �ne-tuning, training
only the classi�cation head, and various intermediate con�gura-
tions. This allowed for the creation of trained models tailored to
each speci�c condition.

4.1.2 Resource Used for Fine-Tuning. All experiments were con-
ducted on a single NVIDIA A100 GPU (40 GB VRAM) from the
Texas Advanced Computing Center’s (TACC) Lonestar6 cluster. For
all model �ne-tuning, we utilized the LoRA (Low-Rank Adapta-
tion) [14] methodology as our principal approch to �ne-tuning the
models. For implementing the layer-wise �ne-tuning strategy, we
leveraged libraries like Ludwig, Hugging Face Transformers and
LoRA. This enabled us to selectively freeze speci�c model layers
while applying LoRA adapters to the remaining trainable layers.
The complete code implementation, training scripts, datasets, and
detailed experimental results are available in our reproducibility
package.1

4.1.3 Hyperparameter Space. The �ne-tuning process was con�g-
ured with carefully selected hyperparameters to optimize model
performance while working within computational constraints. We
employed a learning rate of 5e-4, which was empirically determined
to provide stable training convergence while avoiding overshoot-
ing optimal parameter values. Given the memory constraints of
processing lengthy smart contracts, we implemented a batch size
of 2 with gradient accumulation steps of 16, e�ectively simulating

1https://bit.ly/paper_repo_adapT_LLM

a larger batch size of 32 while maintaining manageable memory us-
age. The models were trained for 5 epochs, which proved su�cient
for convergence in our LoRA-based setup. For optimization, we
utilized the Paged AdamW optimizer, a memory-e�cient variant
of Adam that is particularly well-suited for training large language
models. This choice was motivated by the need to manage mem-
ory usage e�ectively while maintaining stable training dynamics.
Due to computational resource limitations associated with �ne-
tuning multiple large models across numerous con�gurations, each
experimental condition reported in this study was trained and eval-
uated once. While this provides valuable performance indicators,
we acknowledge that single runs preclude analysis of statistical
signi�cance or run-to-run variability.

These hyperparameter choices were guided by both empirical
testing and practical constraints, aiming to maximize model perfor-
mance within the available computational resources while ensuring
reliable vulnerability detection capabilities. Importantly, we applied
the same hyperparameter con�guration across all model and layer-
freezing conditions to ensure that any observed performance dif-
ferences stem solely from the layer-freezing strategy rather than
model-speci�c tuning.

4.2 Results and Discussion
RQ1: E�ectiveness of Classi�cation Head Approach. To address

our �rst research question on the e�ectiveness of �ne-tuning LLMs
with a dedicated classi�er head for smart contract vulnerability
detection, we conducted a comprehensive evaluation comparing
our approach with state-of-the-art models. Table 4 presents the
performance metrics across various models for binary classi�cation.
This evaluation focuses on binary classi�cation across key metrics:
precision, recall, �1 score, and accuracy.

Our �ne-tuned models demonstrated substantial improvements
over the baseline approaches reported in Ince et al. [17]. Among
our models, Llama 3.2 3B-AdapT achieved the highest performance
with 77.5% accuracy, 76.5% precision, 77.8% recall, and an F1 score
of 0.771. This places it on par with the top-performing GPT-3.5FT
model (77.6% accuracy), despite the latter likely having signi�cantly
more parameters. The comparable performance indicates that our
classi�cation head approach e�ectively adapts LLM for this special-
ized domain task.

A clear trend emerges when examining performance across
model sizes within the same architecture family. The 3B parameter
variants consistently outperformed their 1B counterparts across
all metrics. For instance, Llama 3.2 3B-AdapT achieved 3.5 per-
centage points higher accuracy than Llama 3.2 1B-AdapT (77.5%
versus 74.0%), while StarCoder 3B-AdapT similarly outperformed
StarCoder 1B-AdapT by 6.3 percentage points (68.8% versus 62.5%).
This pattern suggests that increased model capacity contributed to
better discrimination of vulnerability patterns, though the perfor-
mance gains appeared to scale sub-linearly with parameter count.

Architecture di�erences also played a signi�cant role in perfor-
mance. The Llama 3.2 models consistently outperformed their Star-
Coder counterparts of equivalent size. This performance gap (ap-
proximately 8.7 percentage points for 3B models and 11.5 percent-
age points for 1Bmodels) indicated that architectural design choices
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Table 4: Comparison of Vulnerability Detection Performance
AcrossModels for Binary Classi�cation. Modelsmarked with
* are from this paper; results and descriptions for other mod-
els are from Ince et al. [17].

Model Prec. Rec. F1 Acc.

Llama 3.2 3B-AdapT*
Llama 3.2 3B �ne-tuned w/ classif.
head

0.765 0.778 0.771 0.775

Llama 3.2 1B-AdapT*
Llama 3.2 1B �ne-tuned w/ classif.
head

0.742 0.735 0.738 0.740

StarCoder 3B-AdapT*
StarCoder 3B �ne-tuned w/ classif.
head

0.685 0.682 0.683 0.688

StarCoder 1B-AdapT*
StarCoder 1B �ne-tuned w/ classif.
head

0.628 0.610 0.619 0.625

GPT-3.5FT
OpenAI GPT-3.5 Turbo �ne-tuned
(Ince)

0.770 0.782 0.776 0.776

GPT-4
OpenAI GPT-4 zero-shot eval (Ince) 0.675 0.646 0.660 0.661

DL-Instruct
34B Code Llama Instruct �ne-tuned
(Ince)

0.774 0.443 0.563 0.648

GPTLens
GPTLens method (GPT-4 Turbo) eval
(Ince)

0.533 0.988 0.692 0.564

DL-Foundation
34B Code Llama Foundation
�ne-tuned (Ince)

0.517 0.993 0.680 0.521

and pre-training strategies substantially in�uenced a model’s adapt-
ability to security-focused code analysis tasks, potentially more so
than raw parameter count alone. When comparing our models to
other approaches in the �eld, we observed distinct trade-o� pat-
terns. Models like GPTLens and DL-Foundation exhibited extremely
high recall (98.8% and 99.3% respectively) but su�ered from low pre-
cision (53.3% and 51.7%), resulting in lower overall accuracy. This
suggested these models were optimized for maximizing vulnerabil-
ity coverage at the expense of generating numerous false positives.
In contrast, our �ne-tuned models and GPT-3.5FT achieved more
balanced precision and recall scores, indicating better overall dis-
crimination capability.

The distribution of performance metrics across all evaluated
models revealed an important insight: achieving high precision in
smart contract vulnerability detection remained challenging. Even
the best-performing models achieved precision in the mid-to-high
70% range, suggesting inherent di�culty in de�nitively identifying
code as vulnerable without false positives. This challenge likely
stemmed from the subtle nature of many vulnerabilities, where
small variations in context or implementation could determine
whether a pattern represented a genuine security risk.

Figure 3: Impact of layer freezing onmodel performancemet-
rics across four models. The x-axis represents the number of
trainable top layers, while the y-axis shows the correspond-
ing accuracy

Our Llama 3.2 3B-AdapT model notably outperformed GPT-4 in
this speci�c task, with accuracy of 77.5% versus 66.1%. This outcome
was particularly noteworthy given GPT-4’s substantially larger size
and broader capabilities, highlighting that task-speci�c �ne-tuning
with an appropriate architecture could exceed the performance of
more general, larger models on specialized tasks like vulnerability
detection.

These results collectively demonstrated that �ne-tuningmoderate-
sized LLMs with dedicated classi�cation heads o�ered an e�ective
approach for smart contract vulnerability detection. The classi-
�cation head architecture appeared to successfully leverage the
rich contextual representations of transformer-based models while
constraining outputs to a well-de�ned set of vulnerability classes,
avoiding potential ambiguities in token-generation approaches. Fur-
thermore, the performance achieved by our Llama 3.2 3B-AdapT
model indicated that this approach could yield state-of-the-art re-
sults while remaining computationally more e�cient than employ-
ing the largest available models.

RQ2: Impact of Layer-Speci�c Fine-tuning. To investigate how
selective layer freezing a�ected model performance and compu-
tational e�ciency, we conducted experiments across four models
(Llama 3.2 1B, Llama 3.2 3B, StarCoder 1B, and StarCoder 3B), sys-
tematically freezing increasing numbers of bottom layers while
measuring performance and resource usage.

Our analysis revealed a compelling pattern of diminishing re-
turns as lower layers were frozen. Both accuracy and F1 scores
remained quite stable even when a signi�cant portion of bottom lay-
ers were prevented from updating during �ne-tuning. For instance,
freezing half of the layers in most models resulted in performance
drops of less than 1.7 percentage points compared to full �ne-tuning.
This consistent pattern across all tested architectures, as seen in
Figures 3 and 4, suggests that substantial task-speci�c adaptation
occurs in the upper layers. With such selective layer freezing strate-
gies, training time decreased by approximately 10-20% and memory
usage also decreased by about 10-20%, as illustrated in Figure 5. For
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Figure 4: Impact of layer freezing onmodel performancemet-
rics across four models. The x-axis represents the number of
trainable top layers, while the y-axis shows the correspond-
ing F1 Score

resource-constrained environments, these �ndings demonstrated a
viable path to deploying e�ective LLMs that would otherwise be
computationally prohibitive.

Model size also in�uenced freeze-resilience. The larger Llama 3.2
3 B retained � 75% accuracy with just the top six layers trainable
(⇡ 20% of the network), whereas the 1 B variant slipped below
that mark once more than ⇠80% of its layers were frozen. This
indicates that the extra capacity in the 3 B model provides enough
representational redundancy to tolerate more aggressive parameter-
e�ciency strategies.

These results has important implications for practical applica-
tions of LLM �ne-tuning. By selectively �ne-tuning only the top
layers, practitioners could achieve near-optimal performance while
reducing computational requirements. In the context of smart con-
tract vulnerability detection, our �ndings suggested that the general
code understanding capabilities encoded during pre-training re-
mained largely applicable without modi�cation, while task-speci�c
adaptation for security vulnerabilities could be e�ectively captured
through updates to the upper layers alone. This supported the
principle that recognizing vulnerability patterns relied more on
high-level semantic understanding than low-level syntactic pro-
cessing.

In summary, our experimental results demonstrated that restrict-
ing �ne-tuning to speci�c high-level Transformer layers while
freezing lower layers achieved competitive performance with sig-
ni�cantly reduced computational requirements, making LLM-based
vulnerability detection more practical for real-world applications.

5 Related Work
Research in smart contract vulnerability detection encompassed
diverse methodological approaches that collectively aimed to ad-
dress the critical challenge of securing blockchain-based programs.
The landscape of vulnerability detection techniques spanned from

Figure 5: Computational resource usage versus the number
of trainable top layers during �ne-tuning. Top: Approximate
VRAM footprint (GB). Bottom: Training time per epoch (min-
utes). Results shown for Llama 3.2 (1B, 3B) and StarCoder
(1B, 3B) models.

traditional software engineering methods, such as static and dy-
namic analysis, to machine learning-based approaches that lever-
aged pattern recognition and automated analysis. In the domain
of machine learning-based approaches, applications of LLMs had
also been actively pursued in recent times. This section systemati-
cally reviewed recent advancements in using LLMs speci�cally for
enhancing smart contract vulnerability detection.

Several studies presented robust LLM-based frameworks that en-
hanced vulnerability detection over traditional security tools. LLM-
SmartAudit, for instance, introduced a multi-agent LLM framework
that captured complex contract interactions, allowing the identi-
�cation of previously undetected logic vulnerabilities through a
collaborative LLM agent system [35]. Similarly, FELLMVP employed
an ensemble of �ne-tuned LLMs to classify multiple vulnerability
types, achieving higher accuracy and e�ciency than both static
and dynamic analysis methods [21]. Additionally, LLMSmartSec
integrated LLMs with annotated control �ow graphs to improve
vulnerability detection and remediation, showcasing the potential
of hybrid approaches in smart contract security [23]. Although
these approaches o�ered e�ective strategies, they still relied on
autoregressive generation, inheriting the limitations of LLM.
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Despite their advancements, LLM-based methods faced certain
challenges. False positives remained a persistent issue; GPTLENS
employed adversarial techniques that segmented generation and
validation stages to mitigate incorrect detections, underscoring the
need for re�ning detection accuracy in LLM systems [16]. Targeted
LLM applications also showed promise in detecting speci�c logic-
related vulnerabilities within smart contracts. Soley and GPTScan,
for instance, leveraged �ne-tuned LLMs to identify intricate logic
vulnerabilities that static analysis tools often overlooked, such as
misaligned state changes and errors in business logic [28]. By fo-
cusing on Solidity code intricacies, these models demonstrated the
potential of LLMs in detecting nuanced vulnerabilities speci�c to
contract logic.

Additionally, Context-Driven Prompting enhanced detection
precision by structuring prompts to emphasize relevant portions
of the code, thereby optimizing the LLM’s focus during analysis
[4, 30]. RAG-Enhanced LLMs incorporated Retrieval-Augmented
Generation (RAG), which retrieved relevant contextual information
during detection, thereby improving precision by extending the
LLM’s ability to generalize and adapt to complex vulnerability
patterns [40]. These studies indicated that improved prompting
could signi�cantly boost LLM-based detection in both accuracy and
e�ciency.

Finally, the application of LLMs to multiple blockchain platforms
remained an area with unrealized potential. LLM-based vulnerabil-
ity detection methods are signi�cantly advancing smart contract
security, addressing challenges through novel frameworks, prompt-
ing strategies, and hybrid techniques as reviewed above. However,
to the best of our knowledge, the speci�c adaptation strategies in-
vestigated in this paper—evaluating the e�ectiveness of a dedicated
classi�cation head compared to standard token generation (RQ1)
and systematically analyzing the performance and e�ciency trade-
o�s of layer-wise �ne-tuning by freezing lower layers (RQ2)—have
not been the primary focus of prior work in this domain. Conse-
quently, challenges such as false positives, computational costs, and
cross-platform adaptability persist. Continued research in optimiz-
ing LLM frameworks, including e�cient adaptation techniques like
those studied here, expanding platform applicability, and improving
resource e�ciency will be vital to fully realizing the potential of
LLMs in the evolving landscape of blockchain security.

6 Conclusion
In this study, we investigated two core questions: �rst, whether a
specialized classi�cation head could enhance the e�ectiveness of
Large Language Models (LLMs) in identifying smart contract vul-
nerabilities; and second, how varying the number of frozen lower
layers during �ne-tuning impacts resource consumption and per-
formance. Our experiments demonstrated that �ne-tuning with
dedicated classi�cation heads yielded competitive results. Notably,
our Llama 3.2 3B-AdapT model reached 77.5% accuracy, performing
comparably to the �ne-tuned GPT-3.5FT model despite potential
di�erences in underlying architecture and size. This highlights
the e�ectiveness of the classi�cation head approach for this task.
Furthermore, our investigation into layer freezing revealed that per-
formance remained stable even when a substantial number of lower
transformer layers were frozen, resulting in minimal degradation

while o�ering notable e�ciency gains. We observed reductions in
both training time and memory usage of approximately 10-20%
when �ne-tuning only the upper layers, making LLM adaptation
more feasible under resource constraints. Larger models exhibited
greater resilience; for example, Llama 3.2 3B-AdapT maintained
high accuracy even when a large proportion of the lower layers
were frozen (leaving only upper layers trainable), suggesting that
general code understanding resides largely in lower layers while
vulnerability detection patterns are primarily learned in upper lay-
ers.

Building on these �ndings, our future research will pursue sev-
eral promising directions. First, extending our classi�cation ap-
proach to multi-class vulnerability detection would enhance practi-
cal utility by providing speci�c vulnerability classi�cations rather
than binary judgments. Second, exploring the application of this
�ne-tuning scheme to other blockchain platforms beyond Ethereum
would test the generalizability of our approach across diverse pro-
gramming languages and execution models. Finally, implementing
adaptive layer-freezing schedules—where the number of trainable
layers was dynamically adjusted based on validationmetrics—might
further optimize computational e�ciency. These directions collec-
tively promise to advance the accessibility and e�ectiveness of
LLM-based vulnerability detection systems for blockchain security
applications, potentially making sophisticated security analysis
tools available even in resource constrained environments.
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