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We report the results of the first search for B− decays to the Ξ̄0
cΛ̄−

c final state using 711 fb−1 of data
collected at the ϒð4SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe− collider.
The results are interpreted in terms of both direct baryon-number-violating B− decay and Ξ0

c − Ξ̄0
c

oscillations which follow the standard model decay B− → Ξ0
cΛ̄−

c . We observe no evidence for baryon
number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating
and standard model branching fractions BðB− → Ξ̄0

cΛ̄−
c Þ=BðB− → Ξ0

cΛ̄−
c Þ to be < 2.7% and on the

effective angular frequency of mixing ω in Ξ0
c − Ξ̄0

c oscillations to be < 0.76 ps−1 (equivalent to
τmix > 1.3 ps).
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Understanding the origin of the matter-antimatter asym-
metry of the Universe is one of the greatest challenges in
particle physics. Three conditions necessary for baryo-
genesis, a hypothesized physical process necessary for
generating such asymmetry in the early Universe are
(1) baryon number violation (BNV), (2) C and CP
violation, and (3) a sufficiently strong phase transition in

a departure from thermal equilibrium [1]. No experimental
evidence for BNV has been obtained so far.
A variety of processes can be used to search for BNV,

e.g., proton decay [2], which was originally proposed as a
way to probe physics at the energy scale of grand
unification, and direct BNV decays of the τ lepton [3,4]
and B mesons [5]. Most of such BNV processes would be
mediated by transitions that violate two discrete quantum
numbers, baryon number B and lepton number L, but
conserve the difference ΔðB − LÞ between them. Both B
and L numbers are, from the perspective of the standard
model (SM), accidental, i.e., not protected by gauge
symmetries, and could be violated nonperturbatively at
high temperatures in the early Universe [6]. Existing
experimental limits on proton decay strongly constrain
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new physics (NP) in such ΔðB − LÞ ¼ 0 processes [7]. The
exploration of the BNV landscape has recently been
expanded to the domain of ΔðB − LÞ ¼ 2 processes via
baryon-antibaryon oscillations. The flagship effort, moti-
vated by the discovery of neutrino oscillations that require
ΔðB − LÞ ¼ 2 interactions in the seesaw mechanism
[8–10], is in the area of neutron-antineutron oscillations
[11]. The BESIII experiment extended the search for
ΔðB−LÞ¼2 processes to include the s quark via Λ0−Λ̄0

oscillations and obtained a stringent limit [12] on the time
constant of this process to be τmix > 1.7 × 10−7 s at the
90% confidence level (CL). The LHCb experiment per-
formed a search [13] for Ξ0

b − Ξ̄0
b oscillations in the bottom

sector and set the 95% CL upper limit on the oscillation rate
to be ω < 0.08 ps−1 (equivalent to τmix ¼ 1=ω > 13 ps).
In this Letter we report the results of the first search for
BNV processes in B− decays to the Ξ̄0

cΛ̄−
c final state. The

unique feature of the analysis presented here is our ability
to probe ΔðB − LÞ ¼ 2 processes which can proceed
through several pathways. Such BNV transitions could
be due to the direct BNV decay of B− or be the result of the
SM decay of B− followed by two possible scenarios
associated with Ξ0

c: the direct BNV process and Ξ0
c − Ξ̄0

c
oscillations.
Our analysis is motivated by a model [14] that introduces

CP-violating oscillations of heavy-flavor baryons into
antibaryons at rates that are within a few orders of
magnitude of their lifetimes. The model introduces four
new particles: three light Majorana fermions and a colored
scalar. The lightest of these fermions is typically long-lived
(on collider timescales) and may be produced in decays of
bottom or/and charmed baryons. Alternatively, such
baryons could be created in the early Universe via out-
of-equilibrium decays of this Majorana fermion after
hadronization but before nucleosynthesis. This novel
approach to baryogenesis fulfills the out-of-equilibrium
Sakharov condition for a sufficiently strong phase tran-
sition in the early Universe. The discussed model could be
easily embedded in an R-parity-violating supersymmetric
theory [15], providing important connections to solving
the puzzle of dark matter and the unification of funda-
mental forces. We perform the first experimental inves-
tigation of this promising model of baryogenesis in the
charmed baryon sector where the NP effects may be first
observed.
Since charmed baryons have a relatively short lifetime

(e.g., the Ξ0
c lifetime is 0.152 ps [16]), we are not able to

resolve their decay vertices with the Belle detector [17,18].
Therefore, from the analysis perspective, the SM decay
B− → Ξ0

cΛ̄−
c followed by the oscillation of Ξ0

c into Ξ̄0
c (or

direct BNV decay of Ξ0
c) is indistinguishable from the

direct BNV decay B− → Ξ̄0
cΛ̄−

c .
We measure the ratio between B− decay rates for the

Ξ0
cΛ̄−

c and Ξ̄0
cΛ̄−

c final states and interpret this result as the
ratio between branching fractions for direct BNV and SM

decays. To address the charmed baryon-antibaryon
oscillation hypothesis, assuming that the BNV decay of
B− is actually the previously observed [19] SM decay
B− → Ξ0

cΛ̄−
c followed by the non-SM Ξ0

c − Ξ̄0
c oscillations,

we measure their effective angular frequency. In our Letter,
the final states Ξ0

cΛ̄−
c and Ξ̄0

cΛ̄−
c are referred to as the SM

and BNV modes, respectively. Charge conjugate modes are
included throughout this Letter.
The Ξ0

c and Ξ̄0
c baryons are produced as flavor eigen-

states and then evolve and decay as superpositions
of eigenstates of the Hamiltonian. The time evolution
depends on the mixing parameters x ¼ ðM1 −M2Þ=Γ
and y ¼ ðΓ1 − Γ2Þ=2Γ, whereM1;2 and Γ1;2 are the masses
and widths of the eigenstates and Γ ¼ ðΓ1 þ Γ2Þ=2.
Assuming no CP violation and small mixing parameters,
the time evolution of the event rate ratio between BNVand
SM decays of a Ξ0

c state is described by the standard mixing
formalism [20] as

rðtÞ ¼
�
RD þ

ffiffiffiffiffiffi
RD

p
y0Γtþ x02 þ y02

4
Γ2t2

�
e−Γt; ð1Þ

where RD is the ratio between branching fractions of Ξ0
c

for direct BNV and SM modes, x0 ¼ x cos δþ y sin δ,
y0 ¼ −x sin δþ y cos δ, and δ is the strong phase difference
between direct BNV and SM decays (with mixing). The
time-integrated ratio between decay rates for the BNV and
SM modes is described by

R ¼ RD þ
ffiffiffiffiffiffi
RD

p
y0 þ x02 þ y02

2
: ð2Þ

In the absence of oscillations (x ¼ y ¼ 0), R ¼ RD,
while assuming the Ξ0

c − Ξ̄0
c oscillation hypothesis only

and no direct BNV decay of Ξ0
c (i.e., RD ¼ 0), the time-

integrated ratio of the decay rates for the BNV and SM
modes is given by

R ¼ 2

��
ΔM
2

�
2

þ
�
ΔΓ
4

�
2
�
τ2 ¼ 2ω2τ2; ð3Þ

where ΔM ¼ M1 −M2, ΔΓ ¼ Γ1 − Γ2, ω is the effective
angular frequency of mixing in Ξ0

c − Ξ̄0
c oscillations, and τ

is the lifetime of Ξ0
c.

This analysis is based on the full data sample of 711 fb−1

collected at the ϒð4SÞ resonance with the Belle detector at
the KEKB asymmetric-energy eþe− collider [21]. The
detector is described in detail elsewhere [17,18].

The Monte Carlo (MC) generators EvtGen [22],
PHOTOS [23], and PYTHIA [24] are used to simulate hadronic
decay processes, final state radiation and hadronization,
respectively. The GEANT3 [25] toolkit is used to model the
detector response. To study backgrounds we use an MC
sample of ϒð4SÞ → BB̄ and eþe− → qq̄ hadronic con-
tinuum events with q ¼ u, d, s, c at

ffiffiffi
s

p ¼ 10.58 GeV
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corresponding to 6 times the integrated luminosity of the
Belle data.
In our analysis, the Ξ0

c is reconstructed in three decay
channels (Ξ−πþ, Λ0K−πþ, and pK−K−πþ), and the Λ̄−

c is
reconstructed in two decay channels (p̄K0

S and p̄Kþπ−).
Thus, a total of six decay channels of B− mesons are
analyzed. The Ξ−, Λ0, and K0

S candidates are reconstructed
via Ξ− → Λ0π−, Λ0 → pπ−, and K0

S → πþπ− decays,
respectively.
Final state charged particles are required to have trans-

verse momenta (in the plane perpendicular to the direction
of the eþ beam) above 50 MeV=c. To identify them we use
information from the central drift chamber, a barrel-like
arrangement of time-of-flight scintillation counters, and an
array of aerogel threshold Cherenkov counters [17] and
prepare particle identification (PID) likelihoods [26] Li for
particle species i ¼ K, π, p. Distinct likelihoods that also
include electromagnetic calorimeter information are used to
distinguish electron (e) and nonelectron (h) hypotheses. We
use the ratios of the PID likelihoods Ri=j ¼ Li=ðLi þ LjÞ to
select signal event candidates. Pions, kaons, and protons
are identified by requiring Rπ=K > 0.6 and Re=h < 0.95,
Rπ=K < 0.6 and Re=h < 0.95, and Rp=K > 0.6 and
Rp=π > 0.6, respectively. No such requirements are applied
to the particles from K0

S and Λ0 decays. The PID efficiency
depends on the particle species and kinematics and varies
between 92% and 98%. PID misidentification rates for
hadrons are between 4% and 6% per particle.
K0

S and Λ0 candidates are reconstructed in a multivariate
analysis using a neural network technique [27,28], and a
kinematic fit to their decay vertices is performed to improve
the mass resolution. The reconstructed masses of the Λ0

and K0
S candidates are required to be within 10 (≈� 5σ)

and 30 MeV=c2 (≈� 10σ) of the nominal Λ0 and K0
S

masses [16].
For each of the intermediate particle candidates

ðK0
S;Λ0;Ξ−;Ξ0

c; Λ̄−
c Þ, the tracks reconstructed for its daugh-

ter particles are refit to a common vertex and their invariant
mass is constrained to the nominal value. The momenta
and decay vertices obtained from such constraints are then
used in the parent particle reconstruction. The χ2-based
selection applied to the results of mass-vertex fits
suppresses the background by a factor of 3 while incurring
no efficiency loss. We apply the invariant mass
requirements jMΞ0

c
−mΞ0

c
j < 20, jMΛ̄−

c
−mΛ̄−

c
j < 10, and

jMΞ− −mΞ− j < 10 MeV=c2 (≈3σ for each), where MΞ0
c
,

MΛ̄−
c
, andMΞ− are the reconstructed masses of Ξ0

c, Λ̄−
c , and

Ξ− candidates, and mΞ0
c
, mΛ̄−

c
, and mΞ− are their nominal

masses [16], respectively.
B− candidates are identified using the beam-energy

constrained massMbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEbeamÞ2 − j  pBj2

p
and the energy

difference ΔE ¼ EB − Ebeam, where Ebeam is the beam
energy, and  pB and EB are the reconstructed momentum

and energy of the B− candidate, calculated in the eþe−

center-of-mass frame. We requireMbc > 5.20 GeV=c2 and
jΔEj < 0.25 GeV; the efficiency of this selection exceeds
99%. The region Mbc > 5.26 GeV=c2 in the BNVanalysis
of data is blinded until the final fit to extract the branching
fraction for the BNV mode is performed. The region
Mbc ≤ 5.26 GeV=c2 defines the sideband.
After applying all selection criteria, the percentages of

reconstructed signal MC events that contain more than one
candidate are, depending on the decay channel, between
6% and 17%. The candidate with the smallest cumulative
χ2 obtained from the kinematic fits to Ξ0

c, Λ̄−
c , and Ξ−

(when present in the decay chain) is selected as the best
candidate. Depending on the channel, the best candidate is
correctly reconstructed in between 72% and 94% of signal
MC events with more than one candidate. Overall
reconstruction efficiencies for individual channels are in
the range between 6.6% and 9.9%.
We measure branching fractions BðB− → Ξ0

cΛ̄−
c Þ and

BðB− → Ξ̄0
cΛ̄−

c Þ for the SM and BNV modes. For each of
the two measurements, a 2D unbinned extended maximum
likelihood (ML) fit is performed simultaneously to Mbc vs
ΔE distributions for the SM (BNV) decay B− → Ξ0

cðΞ̄0
cÞΛ̄−

c

in the Ξ0
c → Ξ−πþ, Λ0K−πþ, and pK−K−πþ channels,

summed over the two Λ̄−
c decay modes with approximately

85% of Λ̄−
c signal and background candidates reconstructed

in the p̄Kþπ− channel. Branching fractions of Ξ0
c and

reconstruction efficiencies for individual channels are used
to fix the relative yields in the fit. To handle signal
correlations between Mbc and ΔE, a 2D smoothed histo-
gram [29] obtained from signal MC samples is used to
model the signal probability density function (PDF). Bin
widths used for these histograms are 2 MeV=c2 and
2.5 MeV for Mbc and ΔE, respectively. We use a second-
order interpolation between the bins. The same signal PDFs
are used for the SM and BNV modes. The 2D background
PDF is assumed to be factorizable, i.e., PbkgðMbc;ΔEÞ ¼
PbkgðMbcÞ × PbkgðΔEÞ as the correlations between Mbc

and ΔE for background are found to be negligible. The
background Mbc distribution is modeled with an ARGUS
function [30] and the background ΔE distribution is
modeled with a first-order Chebyshev polynomial. No
peaking backgrounds have been identified using MC
samples and sideband data. Background PDF para-
meters are not constrained in the fits. The fit results for
the branching fractions for SM and BNV modes are
BðB−→Ξ0

cΛ̄−
c Þ¼ð1.13�0.12Þ×10−3 and BðB−→Ξ̄0

cΛ̄−
c Þ¼

ð−7.78�2.70Þ×10−5, where only the statistical uncertainty
is shown. According to toy MC experiments, the proba-
bility to obtain such or even more negative a result for the
BNV mode is 25% assuming zero branching fraction. This
well-understood feature of extended ML fits for event
samples with small numbers of events is discussed in
Sec. 2.3.2 of [31]. Figure 1 shows the signal-region
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projections of the fit results to data onto the Mbc and ΔE
distributions for SM and BNV analyses. For purposes of
plotting the results, the signal region is defined as Mbc >
5.27 GeV=c2 and jΔEj < 0.02 GeV. The result for the SM
mode is consistent with the previous measurement from
Belle [19]. The fit results correspond to 46.6� 4.9
(−3.2� 1.1), 49.6� 5.3 (−3.4� 1.2), and 20.9� 2.2
(−1.5� 0.5) events in the SM (BNV) modes Ξ−πþ,
Λ0K−πþ, and pK−K−πþ, respectively, where only the
statistical uncertainty is shown.
Since we use the same analysis procedure for SM and

BNV decays, most of the systematic uncertainties, such as
contributions from luminosity, PID selection, track
reconstruction, and K0

S and Λ0 reconstruction, cancel in
the ratio between branching fractions for the BNVand SM
modes. The only significant contribution to systematic
uncertainty is due to the PDF parametrization which is
taken into account in the upper limit estimation procedure
which is described later. The systematic uncertainties due to
finiteMC statistics and imperfect knowledge of the daughter
particle branching fractions are 0.4% and 0.02%, respec-
tively. The effect of these uncertainties on the final result is
negligible.
To estimate the upper limit using the frequentist

approach [32] (which is known to have a slightly biased

statistical coverage), we construct the 90% CL belt for the
ratio between the branching fractions for the BNVand SM
modes. We perform 5000 pseudoexperiments for each
assumed ratio and randomly sample the SM mode branch-
ing fraction based on its measured value and statistical
uncertainty in each toy MC experiment. We use this
procedure to estimate the number of signal events in each
of the SM and BNV modes. The expected numbers of
background events in SM and BNV modes are estimated
using sideband data scaled using background MC. Events
are generated according to the fit models described pre-
viously. Finally, to measure the ratio between branching
fractions for the BNVand SMmodes, we fit our model with
PDFs that are randomly varied to incorporate systematic
uncertainties due to PDF parametrization. To take into
account a possible difference between data and MC
resolution functions, the width of each signal PDF is
modified using a scale factor randomly sampled from a
Gaussian distribution with μ ¼ 1 and σ ¼ 0.1, in order to
increase or decrease the width of the signal PDFs, on
average, by 10%, which is a conservative upper bound on
such differences between data and MC estimated in
previous Belle analyses. In order to include systematic
uncertainties due to background PDF shapes, the back-
ground Mbc distribution is modeled with an ARGUS

FIG. 1. Signal-region projections of the data fit result ontoMbc and ΔE for (left) the SM mode B− → Ξ0
cΛ̄−

c and (right) the BNV mode
B− → Ξ̄0

cΛ̄−
c in the Ξ0

c → Ξ−πþ, Λ0K−πþ, and pK−K−πþ (top, middle, and bottom) channels, summed over the two reconstructed Λ̄−
c

decay modes. Points with error bars represent the binned data, blue solid curves show the results of the fit, green-filled regions and black
dashed curves show the signal and background fit components, respectively.
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function with released threshold and the background ΔE
distribution is modeled with a second-order Chebyshev
polynomial. For each ensemble of pseudoexperiments, the
lower and upper ends of respective confidence intervals
correspond to the values for which 5% of the fit results are
below and above these values. Figure 2 shows the 90% CL
belt for the ratio of branching fractions for the BNVand SM
modes after including both statistical and systematic
uncertainties.
Based on the central value of −0.069 for the mea-

sured ratio between branching fractions for the SM
and BNV modes, the upper limit on their ratio, R¼
BðB−→ Ξ̄0

cΛ̄−
c Þ=BðB−→Ξ0

cΛ̄−
c Þ is estimated to be < 2.7%

at the 95% CL.
An alternative interpretation of our results is provided

assuming that no direct BNVdecay ofB− takes place. In this
caseR is the time-integrated ratio betweenΞ0

c event rates for
the BNV and SM modes given by Eq. (2). Assuming no
direct BNV in Ξ0

c decays allows us to use Eq. (3) to estimate
the upper limit on the oscillation angular frequency to be
ω < 0.76 ps−1 at the 95% CL, equivalent to τmix > 1.3 ps.
The effect of the magnetic field on the energy splitting of the
baryon and antibaryon states can be safely ignored.
Assuming a zero result for the B− branching fraction for

the BNV mode, the sensitivity for the ratio between
branching fractions for the BNV and SM modes is
R ¼ 5.6% at the 95% CL. Under the hypothesis of
Ξ0
c − Ξ̄0

c oscillations a zero result corresponds to a sensi-
tivity ω ¼ 1.10 ps−1 at the 95% CL for the oscillation
angular frequency (equivalent to τmix > 0.91 ps).
In summary, using the full data sample collected by the

Belle experiment at theϒð4SÞ resonance, we performed the

first search for the baryon-number-violating processes in
B− decays to the Ξ̄0

cΛ̄−
c final state. We observe no evidence

for baryon number violation and set the 95% CL upper
limit on the ratio between branching fractions for the BNV
and SM modes in B− decays to be < 2.7%. Assuming no
direct BNV transitions in Ξ0

c decays, we set the 95% CL
upper limit on the Ξ0

c − Ξ̄0
c oscillation angular frequency to

be < 0.76 ps−1 (equivalent to τmix > 1.3 ps). This is the
first experimental result on oscillations in the charmed
baryon sector. Our work serves as a blueprint for future
studies by the Belle II experiment at the SuperKEKB
collider [33], where the time-dependent charmed baryon-
antibaryon oscillations will be further explored with a
better sensitivity using improved vertex resolution [34] and
a larger integrated luminosity.
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