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In the bottomonium sector, the hindered magnetic dipole transitions between P-wave states
hbð2PÞ → χbJð1PÞγ, J ¼ 0, 1, 2, are expected to be severely suppressed according to the relativized quark
model, due to the spin flip of theb quark.Nevertheless, a recentmodel following the coupled-channel approach
predicts the corresponding branching fractions to be enhanced by orders ofmagnitude. In this Letter, we report
the first search for such transitions. We find no significant signals and set upper limits at 90% confidence level
on the corresponding branching fractions: B½hbð2PÞ → γχb0ð1PÞ� < 2.7 × 10−1, B½hbð2PÞ → γχb1ð1PÞ� <
5.4 × 10−3 and B½hbð2PÞ → γχb2ð1PÞ� < 1.3 × 10−2. These values help to constrain the parameters of
the coupled-channel models. The results are obtained using a 121.4 fb−1 data sample taken around
ffiffiffi

s
p ¼ 10.860 GeV with the Belle detector at the KEKB asymmetric-energy eþe− collider.
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In recent years, bottomonium spectroscopy has shown a
number of unexpected results. A key one among them is the
observation of the spin-singlet P-wave state hbð2PÞ by the
Belle Collaboration [1]. The production of spin-singlet
bottomonia is generally rare in eþe− collisions because it
requires the spin flip of a heavy quark in a hadronic or
radiative transition. Nevertheless, hbð2PÞ is produced via
the ϒð10860Þ → hbð2PÞπþπ− transition with a surpris-
ingly large rate. The observation of this unexpected
enhancement has led to the discovery of the exotic

four-quark states Zbð10610Þ� and Zbð10650Þ� [2] that
are produced as intermediate states in the di-pion transitions.
In this analysis, we search for the hindered magnetic

dipole (M1) transitions between the spin-singlet and spin-
triplet states hbð2PÞ → γχbJð1PÞ. This is the first search for
such kind of transitions. According to the relativized quark
model [3], these are expected to be severely suppressed
because of the heavy quark spin flip, and branching
fractions of order 10−6–10−5 are predicted. Nevertheless,
a recent study [4] considering coupled-channel effects
giving rise to B meson loop diagrams predicts the branch-
ing fractions for the considered transitions to be in the order
of 10−2–10−1. The isospin violating ϒð3SÞ → π0hbð1PÞ
decay channel with a subsequent electric dipole transition
to the ηbð1SÞ found by the BABAR Collaboration [5] has
the same final states, γγhb, as the one in the electro-
magnetic cascades ϒð3SÞ → γχbJð2PÞ (J ¼ 0, 1, 2) and
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χbJð2PÞ → γhbð1PÞ [4]. Results for the hindered M1
transitions involving the hb are lacking. Therefore, exper-
imental results are needed for a correct understanding of the
transitions. Many recent results in the quarkonium sector
show that transitions which were once unlikely to observe
are now accessible. We are thus further motivated to search
for the hindered M1 transitions between P-wave bottomo-
nia for the first time.
The analysis setup is fully exclusive. We reconstruct the

di-pion transition fromϒð10860Þ in order to tag the hbð2PÞ
production. The χbJð1PÞ have large radiative decay to the
ϒð1SÞ, which can subsequently decay to μþμ−. The
radiative decays χbJð1PÞ → γϒð1SÞ are thus chosen to
tag the final state of the M1 transition, so that there are
two photons in the cascade. Therefore, we reconstruct
the complete decay chain ϒð10860Þ→hbð2PÞπþπ−→
γχbJð1PÞπþπ−→γγϒð1SÞπþπ−→γγμþμ−πþπ−. We label
as γ1 the photon radiated in the hbð2PÞ → γχbJð1PÞ decay,
and γ2 the photon emitted in χbJð1PÞ → γϒð1SÞ decays.
We use a 121.4 fb−1 data sample collected at the

ϒð10860Þ resonance by the Belle detector [6,7] at the
KEKB asymmetric-energy eþe− collider [8,9]. The average
center-of-mass (c.m.) energy of this sample is

ffiffiffi

s
p ¼

10.866 GeV. The Belle detector was a large-solid-angle
magnetic spectrometer that consisted of a silicon vertex
detector, a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACCs), a barrel-
like arrangement of time-of-flight scintillation counters,
and an electromagnetic calorimeter composed of CsI(Tl)
crystals (ECL) located inside a superconducting solenoid
coil that provided a 1.5 T magnetic field. An iron flux-
return yoke located outside of the coil (KLM) was
instrumented with resistive-plate chambers to detect K0

L
mesons and muons.
For the Monte Carlo (MC) simulation, we use the

EVTGEN generator [10]. Following the results presented
in Ref. [1], the ϒð10860Þ → hbð2PÞπþπ− transition is
simulated assuming it proceeds exclusively through the
intermediate Zbð10610; 10650Þ� states. Each angular dis-
tribution in the signal decay chain is generated according to
the corresponding spin dynamics. Final-state radiation is
included using the PHOTOS package [11]. Background MC
samples include the production of Bþ, B0, and B0

s mesons;
the continuum processes eþe− → qq̄, q ¼ u, d, s, c; and
two-photon interactions. The detector response is modeled
using GEANT3 [12]. Simulation takes into account temporal
variations of the detector configuration and data-taking
conditions.
Selection requirements are optimized using the figure of

merit, FOM ¼ S
ffiffiffiffiffiffiffi

SþB
p , where the number of signal (S) and

background (B) events are determined from simulation.
The B½hbð2PÞ → γχbJð1PÞ� values are assumed to be 1.4%,
4.0%, and 5.0% for J ¼ 0, 1, and 2, respectively [4]. The
selection requirements are summarized in Table I. Charged
tracks must have transverse momentum above 50 MeV=c

and originate from a cylindrical region of length 6.0 cm
along the beam axis and radius 1.0 cm in the transverse
plane, centered on the eþe− interaction point. Moreover,
we only retain tracks that are in the CDC geometric
acceptance and are associated with more than 20 hits
in this subdetector. We select events with exactly four
tracks. Muon candidates are identified by requiring Pμ ¼

Lμ

LμþLπþLK
> 0.8, where the likelihood Li; i ¼ μ, π, K, is

assigned based on the range of the charged particle
extrapolated from the CDC through KLM and on deviation
of hits from the extrapolated track [13]. For pion candi-
dates, we apply an electron veto Pe < 0.4, where Pe is a
similar likelihood ratio based on CDC, ACC, and ECL
information [14]. To suppress the residual background from
photon conversion, we apply a requirement on the opening
angle between the pions in the laboratory frame,
αππ > 11.7°. We apply a requirement on the μþμ− mass,
9.0 < Mμμ < 9.8 GeV=c2, which retains 96% of the signal
events.
Photons are detected as ECL clusters without associated

charged particles. We require the energies of the γ1 and γ2
candidates in the laboratory frame to exceed 267 and
305 MeV, respectively. We veto the π0 background,
mostly given by the process ϒð10860Þ → ϒð2SÞπ0π0, by
discarding events with one or more candidates for which
the diphoton invariant mass Mðγ1γ2Þ lies in a region of
20 MeV around the known π0 mass. Similarly, we veto the
η → γγ decay requiring jMðγ1γ2Þ −mðηÞj > 33.4 MeV=c2

to suppress the background coming from hbð2PÞ →
η½γγ�ϒð1SÞ½μþμ−�. Finally, we perform a 4C kinematic
fit [15], constraining the total four-momentum of the
final-state particles to the four-momentum of the initial
state and requiring corresponding p-value to exceed
10−5. If multiple candidates are found, the one with
the highest p-value is chosen. The signal region is
defined as 10.239 < Mrecðπþπ−Þ < 10.280 GeV=c2 and
315 < Mðμμγ1γ2Þ −Mðμμγ2Þ < 436 MeV=c2. The effi-
ciencies of the selection requirements, summarized in
Table I, are 5.2%, 10.9%, 10.7% for the J ¼ 0, 1, 2

TABLE I. Summary of the applied selection criteria.

Variable Value

Mμμ ½9.0; 9.8� GeV=c2
pTðπÞ >50 MeV=c
Eðγ1Þ >267 MeV
Eðγ2Þ >305 MeV
αππ >11.7°
jMðγ1γ2Þ −mðπ0Þj >10.0 MeV=c2

jMðγ1γ2Þ −mðηÞj >33.4 MeV=c2

4C kinematic fit p-value >10−5

Mrecðπþπ−Þ ½10.239; 10.280� GeV=c2
Mðμμγ1γ2Þ −Mðμμγ2Þ ½315; 436� MeV=c2
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channels, respectively. Figure 1 shows the 2D distribution
of simulated events and the signal region.
We observe a few background events in the simulated

sample. A majority of them comes from the process
eþe− → πþπ−π0χb1ð1PÞ, where the three pions are pro-
duced either directly or by the decay of an intermediate ω
meson. This background, with an expected yield of 0.92
events, is irreducible, but the corresponding branching
fraction has been measured [16] and can be used to
estimate the expected number of events from simulation.
Another source of background is eþe− → μþμ−3γ, where
one of the photons is converted in the detector. This sample
yields 0.1 events. The last source of background is
hbð2PÞ → η½γγ�ϒð1SÞ½μþμ−� with branching fraction
ð7.13.73.2 � 0.8Þ × 10−3 [17], which is reconstructed with
0.05% efficiency after applying the η → γγ veto. From
this source we retain 0.02 events.
The two-dimensional distribution in Mrecðπþπ−Þ and

Mðμμγ1γ2Þ −Mðμμγ2Þ for the candidates selected in data is
shown in Fig. 2. The region 10.130 < Mrecðπþπ−Þ <
10.185 GeV=c2 is kept blind for it may contain events
from the yet unobserved eþe− → ϒJð1DÞπþπ− →
ϒð1SÞγγπþπ− cascade, which is currently under study at
Belle. In the signal region, the observed count is zero on
experimental data, while the background count is 1.04 in
simulation.
The expected number of background events is a key

input for the estimation of the upper limits on the signal
branching fractions. The correction factor and systematic
uncertainty on the background counts are extracted from
the data/MC comparison in theMrecðπþπ−Þ sidebands. This
comparison is done after applying a looser selection in
order to increase statistics in the sidebands. With this

selection we drop the 4C kinematic fit and lower the photon
energy requirement to 150 MeV for both γ1 and γ2. We
define the three sidebands [10.000, 10.130], [10.185,
10.239], ½10.280; 10.500� GeV=c2. In the combined side-
bands we measure 1466þ39

−38 counts on data and 1444� 45

on simulation. The definition of the sidebands and the
measured number of events, alongside with the data/MC
ratios, are reported in Table II. Based on the results from the
combined sidebands, we find that the simulation correctly
describes the background within a �4% systematic uncer-
tainty. The expected number of background events in the
signal region is 1.06þ0.29

−0.20 , where the uncertainty is both
due to the correction factor and limited statistics in the
simulated sample.
In order to validate the analysis procedure and to

estimate the systematic uncertainty in the efficiency, we
apply a similar selection to a different dataset taken at the
ϒð3SÞ resonance. The dataset corresponds to 2.9 fb−1

taken at the resonance peak plus 0.3 fb−1 taken in an
off-resonance scan. We reconstruct the cascade decays

FIG. 1. Two-dimensional distribution of the simulated
events. The signal region is the rectangle defined by the
conditions 10.239 < Mrecðπþπ−Þ < 10.280 GeV=c2 and 315 <
Mðμμγ1γ2Þ −Mðμμγ2Þ < 436 MeV=c2. The bump outside of
this region corresponds to the simulated ϒð10860Þ →
πþπ−ϒJð1DÞ → πþπ−γγϒð1SÞ transitions.

FIG. 2. Two-dimensional distribution of experimental data and
expected background. The red dashed rectangle defines the signal
region. The blue dashed lines enclose the blind region 10.130 <
Mrecðπþπ−Þ < 10.185 GeV=c2 where the decay ϒð10860Þ →
πþπ−ϒJð1DÞ → πþπ−γγϒð1SÞ may be observed.

TABLE II. Counted number of events in the sidebands of the
Mrecðπþπ−Þ variable. The uncertainties include systematic con-
tributions and are propagated by summing in quadrature.

Sideband (GeV) MC Data Data=MC

[10.000, 10.130] 404þ12
−11 390þ21

−20 0.97� 0.06
[10.185, 10.239] 98� 12 124þ12

−11 1.26þ0.20
−0.19

[10.280, 10.500] 942� 25 952þ32
−31 1.01� 0.04

All 1444� 45 1466þ39
−38 1.02� 0.04
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ϒð3SÞ → γχbJð2PÞ → γγϒð2SÞ → γγπþπ−ϒð1SÞ
→ γγπþπ−μþμ−

with J ¼ 1, 2. Concerning the topology, the main differ-
ence with respect to the signal channels is that the radiated
photons are softer, however their energy is of the same
order of magnitude (∼100 MeV). The di-pion transition
ϒð2SÞ → πþπ−ϒð1SÞ ensures that pions have low momen-
tum as for the signal cascade. We apply slightly different
photon energy requirements than those described in Table I.
The photon energy in the lab frame is required to be higher
than 60 MeV. Photons with 80 < Ec:m: < 150 MeV are
selected to reconstruct the ϒð3SÞ → γχbJð2PÞ decays,
while photons with 160 < Ec:m: < 280 MeV are associated
with the χbJð2PÞ → γϒð2SÞ processes. A stringent require-
ment 9.770 < Mrecðπþπ−Þ < 9.810 GeV=c2 is applied as
for the signal channel. The π0 → γγ is vetoed analogously
to the signal selection, while the veto for η → γγ is not
applied. Due to the presence of multiple candidates, we
perform a 4C kinematic fit and select the one with highest
p-value.
In Fig. 3 we show the data/MC comparison on the

Mðμμππγ2Þ −MðμμÞ variable, where γ2 is the photon
radiated by the χbJð2PÞ states. The two distributions are
background-free and agree well. We count the number
of events in the region 700 < Mðμμππγ2Þ −MðμμÞ <
850 MeV=c2. We measure NData ¼ 211þ15

−14 , NMC ¼
209� 24, NData=NMC ¼ 1.01� 0.14. The uncertainty on
NMC includes systematic contributions from known branch-
ing fractions. Thus, we estimate an overall 14% uncertainty
on the efficiency estimation due to event selection.
All the sources of systematic uncertainty and their values

are summarized in Table III.

We estimate the upper limits on the signal branching
fractions by generating pseudoexperiments and applying
the Feldman-Cousins method [18] for the construction
of the confidence belts. The number of pseudoevents in
the Mðμμγ1γ2Þ −Mðμμγ2Þ variable for each channel
hbð2PÞ → γχbJð1PÞ, J ¼ 0, 1, 2, is extracted from a
Poisson distribution with mean defined as

νsigðJÞ ¼ LσhbππBðJÞεJBsigðJÞ

where L is the luminosity at
ffiffiffi

s
p ¼ 10.866 GeV, σhbππ ¼

σðeþe− → hbð2PÞπþπ−Þ [19], BðJÞ ¼ B½χbJð1PÞ →
γϒð1SÞ� × B½ϒð1SÞ → μμ� [20], εJ is the selection effi-
ciency, and BsigðJÞ ¼ B½hbð2PÞ → γχbJð1PÞ�. In order to
include systematic uncertainties in theupper limit estimation,
all the quantities exceptBsigðJÞ are sampled from aGaussian
distribution with mean equal to the expected value and
standard deviation equal to its uncertainty. Themean number
of background events is νb ¼ Nbsf, where Nb is sampled
from a Poisson distribution with mean equal to the
unweighted MC counts, s is the mean weight, and f is the
correction factor, sampled from a Gaussian distribution with
mean 1.02 and standard deviation 0.04 (see Table II).
The upper limits at 90% confidence level (CL) are

estimated by using the Feldman-Cousins method, where
the theoretical Poisson distribution is replaced by the
distribution of counts generated in the pseudoexperiments.
The results for the investigated channels are summarized in
Table IV.

FIG. 3. Distribution of the variable used to estimate the
systematic uncertainty due to event selection. The error bars
on data correspond to the Poisson 68% confidence interval. The
hatches on the MC histogram include the Poisson uncertainty and
the systematic uncertainties propagated from the known branch-
ing fractions.

TABLE III. Summary of the systematic uncertainties contribut-
ing to the observed upper limits of the signal branching fractions.

Source Uncertainty

Luminosity �1.70 fb−1

σðeþe− → hbð2PÞπþπ−Þ �360 fb
B½χb0ð1PÞ → γϒð1SÞ� �0.27 × 10−2

B½χb1ð1PÞ → γϒð1SÞ� �2.0 × 10−2

B½χb2ð1PÞ → γϒð1SÞ� �1.0 × 10−2

B½ϒð1SÞ → μþμ−� �0.05 × 10−2

Efficiency
hbð2PÞ → γχb2ð1PÞ �1.50 × 10−2

hbð2PÞ → γχb1ð1PÞ �1.53 × 10−2

hbð2PÞ → γχb0ð1PÞ �7.28 × 10−3

Background counts �4.24 × 10−2

TABLE IV. Observed upper limits at 90% CL for the branching
fractions of the investigated transitions.

Channel B

hbð2PÞ → γχb2ð1PÞ <1.3 × 10−2

hbð2PÞ → γχb1ð1PÞ <5.4 × 10−3

hbð2PÞ → γχb0ð1PÞ <2.7 × 10−1
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In conclusion, we performed the first search for hindered
M1 transitions between P-wave states of the bottomonium
system. Using the Belle data sample of 121.4 fb−1 collected
at

ffiffiffi

s
p ¼ 10.866 GeV, we set 90% CL upper limits for the

branching fractions B½hbð2PÞ → γχbJð1PÞ�, J ¼ 0, 1, 2,

B½hbð2PÞ → γχb0ð1PÞ� < 2.7 × 10−1;

B½hbð2PÞ → γχb1ð1PÞ� < 5.4 × 10−3; and

B½hbð2PÞ → γχb2ð1PÞ� < 1.3 × 10−2:

The upper limits are consistent with the relativized quark
model expectations [3] and help to constrain parameters of
the coupled-channel model [4].
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