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Using Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆) data collected by the Belle detector, we discover a new three-body decay, 
Ω(2012)− → Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄, with a significance of 5.2 𝜎. The mass of the Ω(2012)− is (2012.5 ± 0.7 ± 0.5)
MeV and its effective couplings to Ξ(1530)𝐾̄ and Ξ𝐾̄ are (39+31−39 ± 9) × 10−2 and (1.7 ± 0.3 ± 0.3) × 10−2, where 
the first uncertainties are statistical and the second are systematic. The ratio of the branching fraction for the 
three-body decay to that for the two-body decay to Ξ𝐾̄ is 0.99 ± 0.26 ± 0.06, assuming isospin symmetry.
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1. Introduction

In the last twenty years, physicists have discovered new hadrons 
that are difficult to explain with the conventional quark model [1--3]. 
Some of these, like the 𝑋(3872), 𝑍𝑐(3900), and 𝑇𝑐𝑐(3875) mesons 
and the 𝑃𝑐(4312) baryon, are close to the mass thresholds of pairs of 
conventional hadrons. Many authors propose that they are hadronic 
molecules [3,4]. All these hadrons have two heavy quarks, but the 
study of such hadrons containing only light quarks is rather limited. 
The Λ(1405)0, close to the 𝑝𝐾− threshold, is widely regarded as an 𝑁𝐾̄

molecule [5--8]. New measurements of the properties of similar hadrons 
will let us rfine the model of hadronic molecules and improve our un
derstanding of the strong interaction between quarks and gluons [9,10].

One such hadron is the Ω−, which with three strange quarks is the 
strangest baryon. Its excited states have been difficult to find. The Review 
of Particle Physics [11] lists only four excited Ω− baryons: Ω(2012)−, 
Ω(2250)−, Ω(2380)−, and Ω(2470)−. The last three were established four 
decades ago [12--14]. The Ω(2012)− was first observed in 2018 by the 
Belle experiment in decays to Ξ0𝐾− and Ξ−𝐾̄0 in 𝑒+𝑒−-collision data 
near the Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆) resonances, who reported it to have 
a mass of (2012.4 ± 0.9) MeV [15] and a width of (6.4+3.0−2.7) MeV [16].

Theorists are strongly interested in understanding the Ω(2012)− [17--
36]. There are mainly two interpretations: a standard baryon [17--
26] and a Ξ(1530)𝐾̄ molecule [27--36]. A large rate for Ω(2012)− to 
Ξ(1530)𝐾̄ was predicted in the molecule scenario [27--31]�-18% to 86% 
of that for decay to Ξ𝐾̄ [28,29]. Therefore, measuring the branching 
fraction for Ω(2012)− → Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄ may inform us about the 
Ω(2012)−’s internal structure.

We report a search for Ω(2012)− → Ξ(1530)𝐾̄ using Υ(1𝑆), Υ(2𝑆), 
and Υ(3𝑆) data collected by the Belle experiment [37,38] at the KEKB 
energy-asymmetric 𝑒+𝑒− collider [39,40]. We measure its branching 
fraction with respect to that for Ω(2012)− → Ξ𝐾̄ . Charge-conjugate 
modes are included throughout.

2. Comparison with previous analysis

Belle previously searched for Ω(2012)− → Ξ(1530)𝐾̄ , but observed 
no signal and set an upper limit at 90% cofidence on the branching
fraction ratio [41],


Ξ𝜋𝐾̄
Ξ𝐾̄ ≡

(Ω(2012)− → Ξ(1530)𝐾̄)
(Ω(2012)− → Ξ𝐾̄) 

< 11.9%. (1)

That analysis was based on an inaccurate model of the decay, which 
led to selection criteria that accepted more background events than ex
pected, a misestimation of the detection efficiency, and an uncertain 
signal yield. Our new analysis is based on a more accurate model of 
the decay and uses different selection criteria, accounting for the fact 
that the Ξ(1530) is produced below threshold. We use this model, in
cluding a more detailed resonance shape and a previously neglected 
three-body phase-space factor, to fit for the signal yield. The distribu
tion of 𝑀(Ξ−𝜋+) in the previous model peaks more narrowly and at 
higher masses than the distribution in the updated model (Fig. 1). This 
leads us to determine different selection criteria than the previous anal
ysis. We further improve upon the previous analysis by vetoing events 
in which the 𝐾− may come from a 𝜙 instead of an Ω−.

These improvements increase the signal yield and greatly change 
the results for Ξ𝜋𝐾̄

Ξ𝐾̄
, which supersede those of [41]. In the new decay 

model, the mass of the Ω(2012)− and its couplings to Ξ𝜋𝐾̄ and Ξ𝐾̄ are 
free parameters. We measure these parameters, superseding the results 
reported in [16].

3. Data sample and Belle detector

The data used in this analysis were taken at the Υ(1𝑆), Υ(2𝑆), and 
Υ(3𝑆) resonances with integrated luminosities of 5.7, 24.9, and 2.9 fb−1 , 
corresponding to 102 million Υ(1𝑆), 158 million Υ(2𝑆), and 12 million 

Fig. 1. The Ξ−𝜋+ mass distributions in Ξ−𝜋+𝐾− events in data (points) and in 
simulations using the models of the previous analysis [41] (solid blue line) and 
this work (solid red line), with each simulation normalized to have an exagger
ated Ξ𝜋𝐾̄

Ξ𝐾̄
value of 4. The red arrow shows the mass requirement of this analysis; 

the blue arrows show the mass requirement of the previous analysis [41].

Υ(3𝑆) events. Since the Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆) states decay via three 
gluons or two gluons and a photon, they produce more baryons than con
tinuum 𝑒+𝑒− → 𝑞𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐) [42--45], so the signal-to-background 
ratio in on-resonance Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆) data is larger than those 
in continuum and heavier Υ data.

The Belle detector is a large solid-angle magnetic spectrometer con
sisting of a silicon vertex detector, a 50-layer central drift chamber 
(CDC), an array of aerogel threshold Cherenkov counters (ACC), a 
barrel-like arrangement of time-o-flight scintillation counters (TOF), 
and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals 
located inside a superconducting solenoid coil that provided a 1.5 T 
magnetic field and an iron flux return placed outside the coil instru
mented to detect 𝐾0

𝐿
and identify muons.

We use simulated events to determine detection efficiencies, signal 
shapes, and selection criteria. We use evtgen [46] to generate simu
lated events. We use a Flatté-like function [47] to simulate Ω(2012)− →
Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄ . We determine preliminary selection criteria assum
ing the Ω(2012)− mass is 2012.4 MeV [16] and its couplings to Ξ𝐾̄ and 
Ξ𝜋𝐾̄ are 0.01 and 0.1. We then update the model to the values we find in 
data and re-optimize our selection criteria. We repeat this several times 
until the values stabilize. Simulated samples of inclusive Υ(1𝑆), Υ(2𝑆), 
and Υ(3𝑆) decays and 𝑒+𝑒− → 𝑞𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐) with four times the lu
minosity as the real data are produced to check for possible peaking 
backgrounds [48]. geant3 [49] is used to simulate detector response.

4. Selection criteria

We search for the Ω(2012)− in the Ξ0𝐾−, Ξ−𝐾̄0, Ξ−𝜋+𝐾−, Ξ−𝜋0𝐾̄0, 
Ξ0𝜋−𝐾̄0, and Ξ0𝜋0𝐾− final states, where the three-body final states are 
used to look for the Ξ(1530) resonance via its decay to Ξ𝜋. We use the 
same selection methods and criteria for 𝜋+, 𝐾−, 𝑝, 𝜋0, 𝐾̄0, Λ0, Ξ−, and 
Ξ0 as in Refs. [16,41]. We require the mass of Ξ𝐾̄ and Ξ𝜋𝐾̄ be less than 
2200 MeV.

We veto 𝐾− that may come from decay of a 𝜙 instead of an Ω(2012)−
by rejecting events fufilling |𝑀(𝐾−𝐾+) − 𝑚𝜙| < 10 MeV for any 𝐾+

in the rest of the event, where the 𝐾+ must be identfied as a kaon with 
the same requirements as for the 𝐾−. This window covers five units of 
the mass resolution and rejects 96% of 𝜙-induced backgrounds.

5. 𝚵𝝅 distributions

Fig. 1 shows the Ξ−𝜋+ mass distributions in Ξ−𝜋+𝐾− events in data 
and in simulation using the model of the previous analysis [41] and our 
updated model. Each simulated distribution is normalized to have an 
exaggerated Ξ𝜋𝐾̄

Ξ𝐾̄
value of 4 so that it is visible in comparison to the 

data. In this updated work, we require 𝑀(Ξ−𝜋+) < 1517 MeV, shown 
by the red arrow, which maximizes 𝑆∕

√
𝑆 +𝐵, where 𝑆 and 𝐵 are 

the numbers of signal and background events according to simulation, 
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Fig. 2. The (a) Ξ−𝜋0, (b) Ξ0𝜋−, and (c) Ξ0𝜋0 mass distributions in Ξ𝜋𝐾̄ events in the data and simulated Ω(2012)− → Ξ(1530)−𝐾0
𝑆
→ Ξ−𝜋0𝐾0

𝑆
, Ω(2012)− →

Ξ(1530)−𝐾0
𝑆
→ Ξ0𝜋−𝐾0

𝑆
, and Ω(2012)− → Ξ(1530)0𝐾− → Ξ0𝜋0𝐾− data. The numbers of simulated signal events are scaled arbitrarily. The red arrows show the mass 

requirements of this analysis; the blue arrows show the mass requirements of the previous analysis [41].

Fig. 3. The (a) Ξ−𝜋+𝐾−, (b) Ξ−𝜋0𝐾0
𝑆
, (c) Ξ0𝜋−𝐾0

𝑆
, (d) Ξ0𝜋0𝐾−, (e) Ξ0𝐾−, and (f) Ξ−𝐾0

𝑆
mass distributions in data. The solid curves are the best fits and the dashed 

curves are backgrounds.

assuming Ξ𝜋𝐾̄
Ξ𝐾̄

= 1 and isospin symmetry relates the branching frac
tions for the different Ξ𝜋𝐾̄ final states to each other. This retains 79% 
of signal candidates and removes large backgrounds from Ξ(1530) not 
produced from Ω(2012)− and from Ξ−𝜋+ not produced from Ξ(1530). 
These backgrounds cause a large peak at the Ξ(1530)0 mass in the Ξ−𝜋+

mass distribution. Signal events peak below the Ξ(1530) mass because 
the Ξ(1530) is produced below threshold in Ω(2012)− → Ξ(1530)𝐾̄ . We 
apply the same 𝑀(Ξ𝜋) requirement for all three-body channels, opti
mizing it from the Ξ−𝜋+𝐾− channel since it has the largest signal yield, 
according to isospin symmetry, and largest signal-to-background ratio, 
owing to it having the simplest final state to detect.

The previous analysis required 𝑀(Ξ𝜋) ∈ [1490,1530] MeV [41], 
shown by the blue arrows in Fig. 1. This removed the 23% of signal 
candidates that are below 1.49 GeV and accepted a large number of 
background events close to the Ξ(1530) mass. The updated Ξ−𝜋+ mass 
requirement improves 𝑆∕

√
𝑆 +𝐵 by a factor of 1.4. Fig. 2 shows the in

variant mass distributions for Ξ𝜋 for the final states Ξ−𝜋0𝐾̄0, Ξ0𝜋−𝐾̄0, 
and Ξ0𝜋0𝐾− and the previous and new mass requirements.

6. 𝚵𝝅𝑲̄ and 𝚵𝑲̄ distributions

Fig. 3 shows the Ξ𝜋𝐾̄ and Ξ𝐾̄ mass distributions in data after the all 
criteria. No peaking backgrounds are found in simulated events. To de
termine the Ω(2012)− branching fractions and resonance parameters, we 

fit simultaneously to the binned Ξ−𝜋+𝐾−, Ξ−𝜋0𝐾0
𝑆
, Ξ0𝜋−𝐾0

𝑆
, Ξ0𝜋0𝐾−, 

Ξ0𝐾−, and Ξ−𝐾0
𝑆
mass distributions.

Under isospin symmetry, the branching fractions for Ω(2012)− de

cay to Ξ−𝜋+𝐾− and Ξ0𝜋−𝐾̄0 are equal, the branching fractions for 
Ω(2012)− decay to Ξ−𝜋0𝐾̄0 and Ξ0𝜋0𝐾− are equal, and the latter two 
are half the former two. Accounting for detection efficiencies and the 
branching fractions for how we observe the decays of the final-state 
particles, the proportions of events we should see in each final state are 
86.4% Ξ−𝜋+𝐾−, 7.4% Ξ0𝜋−𝐾̄0, 3.9% Ξ0𝜋0𝐾−, and 2.3% Ξ−𝜋0𝐾̄0. In 
the fit, we assume the yields for the final states have these proportions. 
The yields for Ω(2012)− two-body decay are floated in the fit.

All signal shapes are described using Flatté-like functions [47], con
volved with Gaussian functions to model detector resolutions—1.5, 2.5, 
2.3, 2.8, 1.7, and 2.1 MeV for Ω(2012)− → Ξ−𝜋+𝐾−, Ξ−𝜋0𝐾0

𝑆
, Ξ0𝜋−𝐾0

𝑆
, 

Ξ0𝜋0𝐾−, Ξ−𝐾0
𝑆
, and Ξ0𝐾−, determined from inspection of simulated 

data, and multiplied by efficiency functions linearly dependent on mass. 
The Flatté-like function is

𝑇𝑛(𝑀) ≡
𝑔𝑛𝑘𝑛(𝑀) 

|𝑀 −𝑚Ω(2012)− + 1
2

∑
𝑗=2,3

𝑔𝑗 [𝜅𝑗 (𝑀) + 𝑖𝑘𝑗 (𝑀)]|2
, (2)

where 𝑔𝑛 is the effective coupling of Ω(2012)− to the 𝑛-body final state, 
𝜅𝑛 and 𝑘𝑛 parameterize the real and imaginary parts of the Ω(2012)−
self-mass, and 𝑀 is 𝑀(Ξ𝐾̄) or 𝑀(Ξ𝜋𝐾̄). The forms of 𝜅𝑛 and 𝑘𝑛 are 
found in Eqs. (47) and (48) in Ref. [47] with mass-dependent widths. 
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Table 1
The efficiencies (𝜀), signal yields (𝑌 ), and branching-fraction products (𝑏) for 
all channels.
Mode 𝜀 (%) 𝑌 𝑏 (%) 
Ω(2012)− → Ξ(1530)0𝐾− → Ξ−𝜋+𝐾− 6.97 ± 0.07 267 ± 60 64 
Ω(2012)− → Ξ(1530)−𝐾̄0 → Ξ−𝜋0𝐾̄0 1.06 ± 0.01 7 ± 2 22 
Ω(2012)− → Ξ(1530)−𝐾̄0 → Ξ0𝜋−𝐾̄0 1.74 ± 0.02 23 ± 5 22 
Ω(2012)− → Ξ(1530)0𝐾− → Ξ0𝜋0𝐾− 0.63 ± 0.01 12 ± 3 62 
Ω(2012)− → Ξ0𝐾− 4.00 ± 0.04 242 ± 40 63 
Ω(2012)− → Ξ−𝐾̄0 15.5 ± 0.16 293 ± 65 22 

Such modeling of the Ω(2012)− shape, not included in the previous 
analysis [41], improves the signal-background separation and hence in
creases the signal yield. For Ω(2012)− → Ξ𝜋𝐾̄ , we assume the decay 
proceeds only through the Ξ(1530) resonance. When we include a non
resonant component in the fit, its yield is consistent with zero.

Background events in the Ξ𝜋𝐾̄ mass distributions are modeled by 
the same threshold function from Ref. [41], but with a threshold of 1.95 
GeV. Background events in the Ξ𝐾̄ mass distributions are modeled by 
second-order polynomials.

The fit results are shown as blue lines in Fig. 3 and the yields 
are listed in Table 1. The statistical significance for Ω(2012)− →
Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄ is 5.4 𝜎, calculated from the logarithm of a ratio 
of likelihoods [50], −2ln(0∕), which is 33, accounting for the differ
ence in the number of degrees of freedom (2), where 0 and  are the 
maximized likelihoods without and with the signal components [50]. 
Including systematic uncertainties, the significance is 5.2 𝜎. The signifi
cance of the two-body decays is 8.8 𝜎. The correlations of the yields 
are 0.136 for Ω(2012)− → Ξ−𝐾̄0 and Ω(2012)− → Ξ0𝐾−, 0.142 for 
Ω(2012)− → Ξ−𝐾̄0 and Ω(2012)− → Ξ𝜋𝐾̄ , and 0.167 for Ω(2012)− →
Ξ0𝐾− and Ω(2012)− → Ξ𝜋𝐾̄ . The signal yields for Ω(2012)− → Ξ0𝐾−

and Ω(2012)− → Ξ−𝐾0
𝑆
are consistent with those from Ref. [16]. The 

mass of Ω(2012)− is

𝑚Ω(2012)− = (2012.5 ± 0.7 ± 0.5)  MeV. (3)

The values of 𝑔3 and 𝑔2 are

𝑔3 = (38.9+31.1−38.9 ± 9.0) × 10−2,

𝑔2 = (1.7+0.3−0.3 ± 0.3) × 10−2.
(4)

The value of 𝑔3∕𝑔2 is

𝑔3∕𝑔2 = (22.9+17.9−22.4 ± 2.2). (5)

Where two uncertainties are given, the first is statistical and the second 
systematic. The effective couplings essentially determine the width of 
the Ω(2012)−. The shape of the signal does not change greatly with 𝑔3 . 
Even if 𝑔3 is very close to zero, the Flatté-like function can still describe 
the 𝑀(Ξ𝜋𝐾̄) distribution in the data. We do not have enough data to 
precisely determine 𝑔3 in the limited range where it has an effect, so 
its relative statistical uncertainty is much larger than those of 𝑚Ω(2012)−
and 𝑔2.

The previous analysis found only 22±13 signal events with a 𝜒2 per 
degree of freedom of 37.3/12 [41]. The signal yield increases greatly 
with the new model. This supports that we now more accurately model 
Ω(2012)− → Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄ and that the selection criteria and fit 
functions based on this model are reasonable.

For comparison, we also fit the 𝑀(Ξ−𝜋+𝐾−) distribution using a 
Breit-Wigner function convolved with a Gaussian resolution function 
for the Ω(2012)− signal shape, the same used in previous analysis [41]. 
This fit function does not describe the data very well especially, in the 
Ω(2012)− signal region. The 𝜒2 per degree of freedom of the result of 
the fit is 16.2/12. In the fit using our new model, it is much smaller, 
4.8/11.

We also fit our new model to data selected with the previous mass 
requirement, 𝑀(Ξ𝜋) ∈ [1490,1530] MeV, shown in Fig. 4, to demon

Fig. 4. The Ξ−𝜋+𝐾− mass distribution for events with 𝑀(Ξ𝜋) ∈ [1490,1530]
MeV in data. The solid curve is the best fit and the dashed curve is the back
ground.

strate the improvement of the new mass requirement. We fix 𝑚Ω(2012)− , 
𝑔2, and 𝑔3 to the central values in equations (3) and (4). The yield for 
Ω(2012)− → Ξ(1530)0𝐾− → Ξ−𝜋+𝐾− is 212 ± 53 with a 𝜒2 per degree 
of freedom of 23.0/14. The yield reduction is consistent with the 23% 
loss expected from inspection of simulated data.

7. Branching-fraction ratio

The numerator in Ξ𝜋𝐾̄
Ξ𝐾̄

is the sum of the branching fractions for 
the four decays Ω(2012)− → Ξ(1530)𝐾̄ with subsequent Ξ(1530) decay 
resulting in the final states Ξ−𝜋+𝐾−, Ξ−𝜋0𝐾̄0, Ξ0𝜋−𝐾̄0, and Ξ0𝜋0𝐾−. 
Assuming isospin symmetry,


Ξ𝜋𝐾̄
Ξ𝐾̄ = 3 ×(Ω(2012)− → Ξ(1530)0𝐾− → Ξ−𝜋+𝐾−) 

(Ω(2012)− → Ξ−𝐾̄0) +(Ω(2012)− → Ξ0𝐾−)
, (6)

where

(𝑋) = 𝑌 (𝑋) 
𝜀(𝑋) 𝑏(𝑋) 𝑁Ω(2012)−

, (7)

with 𝑌 (𝑋) the yield of channel 𝑋, 𝜀(𝑋) the efficiency to detect it, 𝑏(𝑋)
the product of branching fractions for the final-state-particle detection 
modes needed to detect channel 𝑋 (a subset of Ξ+ →Λ0𝜋+, Ξ0 →Λ0𝜋0, 
Λ0 → 𝑝𝜋−, 𝐾̄0 → 𝜋+𝜋−, and 𝜋0 → 𝛾𝛾), and 𝑁Ω(2012)− the number of 
Ω(2012)− produced at Belle, which cancels in the ratio. The yields, effi
ciencies, and branching-fraction products (calculated with values from 
[11]) are listed in Table 1. We obtain


Ξ𝜋𝐾̄
Ξ𝐾̄ = 0.99 ± 0.26 ± 0.06. (8)

Since the Ω(2012)− and the intermediate state, Ξ(1530)𝐾̄ , have similar 
masses, the branching-fraction ratio depends more strongly on 𝑚Ω(2012)−
and 𝑔2 than on 𝑔3. We can therefore measure it more precisely than 
𝑔3∕𝑔2.

8. Systematic uncertainties

Systematic uncertainties on the branching-fraction ratio are sum
marized in Table 2. Systematic uncertainty on the detection efficiency 
comes from tracking (0.35% per track), particle identfication (1.3% per 
kaon and 1.1% per pion), 𝐾0

𝑆
selection (2.2%) [51], and 𝜋0 reconstruc

tion (4%) [52]. Uncertainties from Λ0 detection cancel. The particle
identification uncertainties are added linearly. By including these un
certainties in the fit, we obtain the total systematic uncertainty from 
detection efficiency, 3.1%.

The masses and widths of Λ0, Ξ−, Ξ0, and Ξ(1530)0 and the mass 
resolution of Ω(2012)− are fixed in our fit. We change the masses and 
widths each by one unit of their uncertainty, rfit, and take the differ
ences in yields as systematic uncertainties. Simulation usually under
estimates the resolutions of mass peaks within 10% [16]. We enlarge 
the resolution by 10% and take the resulting change as a conservative 
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Table 2
Systematic uncertainties on the branching-fraction ratio, Ω(2012)− mass, and 
effective couplings.
Source 

Ξ𝜋𝐾
Ξ𝐾̄

𝑚Ω(2012)− [MeV] 𝑔3 𝑔2

Detection efficiency 3.1 �- �- �- 
Resonance parameters 5.3 0.1 0.034 0.001 
Fit model �- 0.5 0.083 0.002 
Isospin symmetry �- 0.1 0.002 0.001

Total 6.1 0.5 0.090 0.003 

systematic uncertainty. These uncertainties are added in quadrature to 
obtain a systematic uncertainty due to resonance parameters, 5.3%.

Fit-model uncertainties are estimated using simulated pseudoexper
iments, with events distributed according to the mass spectra observed 
in data. We repeat this numerous times and find that the mean of the 
results of these fits is consistent with the fit to data. This cross checks 
the fit’s stability.

When we allow the proportions of the three-body decays to break 
isospin symmetry by up to 10%, the fitted yields change by less than 1%. 
So uncertainty on the branching-fraction ratio from isospin-symmetry is 
negligible. The statistical uncertainties on the efficiencies determined 
from simulation and the uncertainties from the branching fractions for 
Ξ→Λ0𝜋, 𝐾0

𝑆
→ 𝜋+𝜋−, and 𝜋0 → 𝛾𝛾 are also negligible [11].

Systematic uncertainties on the Ω(2012)− mass and effective cou
plings are summarized in Table 2. The uncertainties from the input reso
nance parameters are 0.1 MeV for the 𝑚Ω(2012)− , 0.034 for 𝑔3, and 0.001 
for 𝑔2. We change the fit ranges and change the background shapes to 
higher-order polynomials and take the differences of 0.5 MeV on the 
𝑚Ω(2012)− , 0.083 on 𝑔3, and 0.002 on 𝑔2 as systematic uncertainties. We 
allow the proportions of the three-body decays to break isospin symme
try by up to 10% and take the differences of 0.1 MeV on the 𝑚Ω(2012)− , 
0.002 on 𝑔3, and 0.001 on 𝑔2 as systematic uncertainties. The statistical 
uncertainties on the efficiencies determined from simulation and the un
certainties from the branching fractions are negligible in determinations 
of the Ω(2012)− mass and effective couplings. The total systematic un
certainties on the 𝑚Ω(2012)− , 𝑔3, and 𝑔2 are 0.5 MeV, 0.090, and 0.003, 
respectively.

9. Summary

We report the first observation of Ω(2012)− → Ξ(1530)𝐾̄ → Ξ𝜋𝐾̄ , us
ing Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆) data from Belle. The mass of the Ω(2012)−
is (2012.5±0.7±0.5) MeV; its effective coupling to Ξ(1530)𝐾̄ is (39+31−39±
9)×10−2; and its effective coupling to Ξ𝐾̄ is (1.7±0.3±0.3)×10−2. As
suming isospin symmetry, the Ξ𝜋𝐾̄

Ξ𝐾̄
is 0.99 ± 0.26 ± 0.06.
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