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New graph-neural-network flavor tagger for Belle II and measurement
of sin 2¢; in B® - J/wK? decays
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We present GFlaT, a new algorithm that uses a graph-neural-network to determine the flavor of neutral B
mesons produced in Y (4S) decays. It improves previous algorithms by using the information from all
charged final-state particles and the relations between them. We evaluate its performance using B decays to
flavor-specific hadronic final states reconstructed in a 362 fb~! sample of electron-positron collisions
collected at the Y'(4S) resonance with the Belle II detector at the SuperKEKB collider. We achieve an
effective tagging efficiency of (37.40 & 0.43 £ 0.36%), where the first uncertainty is statistical and the
second systematic, which is 18% better than the previous Belle II algorithm. Demonstrating the algorithm,
we use B” — J/wK? decays to measure the mixing-induced and direct CP violation parameters,
S =(0.724 £ 0.035 £ 0.009) and C = (—0.035 + 0.026 + 0.029).

DOI: 10.1103/PhysRevD.110.012001

I. INTRODUCTION

In the standard model, CP violation arises from an
irreducible complex phase in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1]. Measurements of mixing-
induced CP violation in B° meson decays constrain the
values of the CKM-unitarity-triangle angles ¢; and (/52,1
helping us probe for sources of CP violation beyond the
standard model. For example, we learn ¢, from B° —
J/wK® [2-4] and ¢, from B° — (zz)° [5-7], (pp)°
[8—10]. These measurements require knowledge of the neutral
B meson flavor. At B factory experiments, B° and B° mesons
are produced in pairs from e*e™ collisions at the Y(4S)
resonance. Since their states are entangled, tagging the flavor
of one of the mesons, By,,, at the time of its decay determines
the flavor of the other one, By, at the same time [11,12].

The Belle II [13] experiment reported results using a
flavor tagger [14—16] based on algorithms developed by the
Belle and BABAR experiments [2,17]. It uses the kinematic,
topology, particle-identification, and charge information of
charged final-state particles in the B,, decay to infer if they
originated from categories of flavor-specific decays. For
instance, a charged particle is assigned as being a 4™ in a
B° - Dy*v,X decay ora K™ in the subsequent D — K™Y
decay, the charge of which correlates to the B, flavor. This
category-based flavor tagger selects the most probable
assignment in each category, discards all other possibilities
in that category, and then combines the probabilities of the
selected assignments to predict the By, flavor.

In this paper, we present a new algorithm, the graph-
neural-network flavor tagger, GFlaT, which uses a

'These angles are also known as f and a.
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dynamic-graph-convolutional-neural-network [18] to com-
bine the information from all charged final-state particles. It
improves flavor tagging by accounting for the discarded
information in the category-based flavor tagger and corre-
lations between information from final-state particles.

To demonstrate GFlaT, we measure the CP parameters of
B® - J/wK? from which we calculate ¢;. The probability
density to observe B, decay at a time Az from when By,
decays with flavor gy, (1 for B?, —1 for B) is

-|ad/z
e .
P(At, qy,) = i {1+ G (1 = 2w)[S sin(Am,At)

— Ccos(AmyAt)]}, (1)

where g, is determined by the flavor tagger, w is the
probability to wrongly determine it, 7 is the B lifetime, and
Amy is the difference of masses of the B mass eigenstates.2
Here S and C, the parameters of interest, quantify mixing-
induced and direct CP violation, respectively. In the
standard model, S = sin2¢; and C = 0 to good precision
[19-21]. At B factories, the B mesons are boosted and have
significant momentum in the lab frame, so At is determined
from the relative displacement of their decay vertices.

To measure CP parameters in tagged B® decays, we must
know w. We determine it from events with the flavor-
specific By, decaying as B = D™=z, for which

P(At’ qsig’ 6Itag)
e_‘At‘/T

4t

{1 - QSngtag(l - 2W) COS(AmdAt)}’ (2)

where g, equals the charge of the pion from the Bg,

decay, neglecting the O(10~*) wrong-sign contribution from

*We use a system of units in which # = ¢ = 1 and mass and
frequency have the same dimension.
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B » DW*z= [22-24]; we implicitly include charge
conjugated decays here and throughout. Here we as-
sume w is independent of the B, decay mode. Fl-
avor taggers also determine the quality of their flavor
assighments by the dilution factor, re0,1] which
approximates 1 —2w. We determine w in seven con-
tiguous disjoint intervals (r bins) defined by the edges
[0.0,0.1,0.25,0.45,0.6,0.725,0.875, 1.0], as in Ref. [15],
and calculate the effective tagging efficiency,

fug = D _ei(1—2w)’, (3)

where ¢; is the efficiency for a B to be reconstructed in bin i.
An increase in g, improves statistical precision for param-
eters measured in tagged B decays, for example, the
statistical uncertainties on S and C are proportional to
1/ \/ug- The effective tagging efficiency is thus a convenient
metric for evaluating tagger performance.

We reconstruct the flavor-specific B° — D*)~z* decays
from D~ —» Ktz~n~ and D*~ — Dz~ with D° - Ktz
K*n~7° or K*n~nt . We fit the background-subtracted
At distributions [25,26] to extract flavor tagger parameters,
including w, and determine the At resolution model.

For the measurements of S and C, we reconstruct the B,
candidates by combining K — z*z~ with J /s — e*e” or
u ™. The values of S and C are extracted via a fit to the
background-subtracted Ar distribution using the flavor
tagger parameters and At resolution model determined
from the study of B - D)=zt

This paper is organized as follows. We first discuss the
Belle II detector and the simulation software used in the
study in Sec. II. Section III describes the GFlaT algorithm,
including input variables, training procedure, and a dis-
cussion on the improvement from the category-based
flavor tagger. Section IV presents the evaluation of
GFlaT’s performance using the flavor-specific process,
B® — D¥)~z*. We describe the measurement of S and C
for B - J/wK? to demonstrate GFlaT’s effectiveness in
Sec. V and conclude in Sec. VI

II. DETECTOR AND SIMULATION

We evaluate GFlaT’s performance using a (362 + 2) fb~!
datset collected with the Belle II detector in 2019-—
2022. The Belle II detector is located at SuperKEKB, which
collides electrons and positrons at and near the Y(4S5)
resonance [27]. It is cylindrical and includes a two-layer
silicon-pixel detector (PXD) surrounded by a four-layer
double-sided silicon-strip detector [28] and a 56-layer central
drift chamber (CDC). These detectors reconstruct trajectories
of charged particles (tracks). Only one sixth of the second
layer of the PXD was installed for the data analyzed here.
The symmetry axis of these detectors, z, is nearly coincident
with the direction of the electron beam. Surrounding the
CDC, which also measures dE/dx ionization energy-loss, is

a time-of-propagation detector [29] in the barrel and an
aerogel-based ring-imaging Cherenkov detector in the for-
ward (+4z) endcap region. These detectors provide informa-
tion for charged-particle identification. Surrounding them is
an electromagnetic calorimeter (ECL) based on CsI(TI)
crystals that primarily measures the energies and times of
detection of photons and electrons. Outside it is a super-
conducting solenoid magnet that provides a 1.5 T field in the
z direction. Its flux return is instrumented with resistive-plate
chambers and plastic scintillator modules to detect muons,
K?, and neutrons.

We use simulated data to train GFlaT, estimate
reconstruction efficiencies and background contributions,
and construct fit models. We generate ete™ — Y(4S5) —
BB using EvtGen [30] and Pythia8 [31] and ete™ — ¢g
with g indicating a u, d, c, or s quark using KKMC [32] and
Pythia8. We simulate particle decays using EvtGen inter-
faced with Pythia8, and the interaction of particles with the
detector using Geant4 [33]. Our simulation includes effects
of beam-induced backgrounds [34]. Events in both simu-
lation and data are reconstructed using the Belle II analysis
software framework [35,36].

III. GFLAT

GFlaT is designed to run after By, is reconstructed and
uses information from the tracks and energy deposits in the
ECL (clusters) not associated with B, in the same manner
as the category-based flavor tagger [14]. We refer to these
tracks and clusters as the rest of the event (ROE), which
mostly originates from By,,. Tracks from the ROE must be
within the CDC and have points of closest approach
(POCAS) to the e e~ interaction region (IR) that are less
than 3 cm from the IR in the z direction and less than 1 cm
from it in the transverse plane. The shape and location of
the IR are determined from e*e™ — utu~ events in 30-
minute intervals. We retain only the first 16 charged
particles in the ROE, ordered by decreasing momentum
in the lab frame. According to simulation, the average
number of charged particles in the ROE is 4.8, and less than
0.001% of events have more than 16 charged particles.

GFlaT uses 25 input variables for each ROE charged
particle: the lab-frame Cartesian components of its momen-
tum and the displacement of its POCA from the IR; particle-
identification likelihoods for each of the six possible charged
final-state particles, e, u, 7, K, proton, and deuteron; and the
products of the charge of the particle and the output of the
category-based flavor tagger for each of its 13 categories.3
The input variables have the same distributions for B® and B°
except for differences in the detection and reconstruction
efficiency for negative and positive charged particles.

GFlaT wuses a dynamic-graph-convolutional-neural-
network that has been used for jet tagging at LHC

3Corresponding t0 ¢eugYea defined in Ref. [14].

012001-3



I. ADACHI et al.

PHYS. REV. D 110, 012001 (2024)

experiments [37]. GFlaT first processes the input variables
using the EdgeConv algorithm [18], which consists of three
neural networks: edge and node networks run in parallel,
and a weight network runs on their output. In the context of
graph-neural-networks, the set of ROE charged particles is
a graph with each particle a node and each pair an edge.
The node network processes the variables of each particle
to update them. The edge network processes the variables
of each pair of particles to update the variables of each
particle. To reduce computational resources, with no impact
on performance, the edge network processes information
from pairs formed from only the five nearest neighbors to
each particle. The weight network processes the outputs of
the edge and node networks with a squeeze-and-excitation
algorithm that calculates weights based on variable impor-
tance [38]. The output of the EdgeConv consists of the
updated variables for each particle that are improved to
more accurately reflect the characteristics of each particle.

GFlaT runs EdgeConv twice. The first run processes the
measured particle variables, with its edge network finding
nearest neighbors based on POCAs. The second run
processes the output of the first run, with its edge network
finding nearest neighbors based on particle similarity using
the updated particle variables. To keep output reasonably
symmetric between B® and B, the output variables of each
particle from the second EdgeConv are multiplied by its
charge. The averages, maxima, and minima of the outputs
are processed with a final network, the event network,
which outputs one variable, grggar, Which is in [—1, 1],
with gy, = sign(grgpar) and r = |grgpar|.

We train GFlaT using simulated events in which By,
decays generically according to known [39] (if known) or
assumed (otherwise) branching fractions and B, decays to
v, so that all reconstructed tracks and ECL clusters form the
ROE. The training dataset consists of 5 x 10° events; the
independent validation dataset consists of 8 x 10° events. We
minimize binary cross-entropy loss with the Adam optimizer
[40] and train with a one-cycle learning schedule [41].

Figure 1 shows the gr distributions for true B® and B° for
independent test data consisting of 1 x 10° events from
GFlaT and the category-based flavor tagger. The latter has
more reliable tagging information than reported in
Ref. [14], due to recent improvements in particle identi-
fication and parameter tuning. GFlaT better distinguishes
between B” and B than the category-based flavor tagger:
the peaks at |gr| ~ 1 are higher and the bumps at |gr| ~ 0
and |gr| = 0.65 are smaller.

Figure 2 shows the gr distributions for events classified
according to the presence of charged leptons or kaons in the
ROE. The ROE contains a charged lepton and a charged
kaon in 22.2% of events, a charged lepton and no charged
kaon in 22.9%, a charged kaon and no charged lepton in
31.5%, and neither in 23.4%. The distributions indicate that
performance is optimal when both a lepton and a kaon are
present, with the contribution from Ileptons being

00 Belle Il simulation
__ Rgo |
s000 B, GFlaT
— B, GFlaT

o 7000 F
o BO, category-based
— 6000 | _
Q B°, category-based

5000 |
w0
L 4000
©
o
=5 3000
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O

1000 f

500 —075 —0.50 025 0.00 025 050 075 1.00
qr
FIG. 1. Distributions of gr for true B® and B° from GFlaT and

the category-based flavor tagger in simulated data.

particularly significant. The distributions also reveal that
the bump at |gr| = 0.65 in the category-based flavor tagger is
due to events with charged kaons, which indicates that flavor
assignment in such events is less reliable since a K~,
predominantly associated with B® decays, can also originate
from a B° decay, for example through decay to a D~ with
D~ — K°K~. Since GFlaT accounts for the relationships
between final-state particles, it can better discern the origin
of the tracks; and so its output does not peak at |gr| ~ 0.65
for those events, but instead at |gr| ~ 1. Both flavor taggers
perform poorly for events with neither a charged lepton nor a
charged kaon, consisting mostly of pions, but GFlaT ’s
output still exhibits a visible improvement. A charged pion
from B° decay, such as B — D=z, or through an inter-
mediate resonance that decays via the strong force, corre-
lates with the B flavor. The GFlaT algorithm exploits this
correlation more effectively to improve performance.

IV. CALIBRATION AND PERFORMANCE

We evaluate GFlaT ’s performance using events in which
B, decays to the D™~z final state. The flavor of B, is
determined by the charge of the pion, neglecting the wrong-
sign contribution. We fit the A¢ probability density model to
the background-subtracted At distribution, accounting for
resolution effects, to determine the wrong-tag probability w
in each r bin. We subtract the background with sWeight
[25,26] using the B energy as a discriminating variable.

We reconstruct D~ candidates via D~ — K™z~ z~ and
D*~ via D - D%~ with D° - K*zn~, KTz~ x% or
Ktn~n"x~. Tracks must originate from the IR and have
polar angles within the CDC.

We reconstruct z° candidates via z° — yy, forming
photon candidates from ECL clusters not associated with
any tracks. To suppress beam-background photons, we
require each cluster have an energy greater than 120 MeV,
30 MeV, or 80 MeV if it is in the forward, barrel, or
backward region of the ECL, which corresponds to the lab-
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FIG. 2. Distributions of gr for true B® and B from GFlaT and the category-based flavor tagger for events classified according to the
presence of charged leptons or charged kaons in the ROE in simulation data.

frame polar angle ranges [12.4,31.4]°, [32.2,128.7]°, and
[130.7,155.1]°, respectively. The angle between the photon
momenta must be less than 52° in the lab frame and the
diphoton mass must be in the range [121,142] MeV, which
is centered on the known z° mass and is six units of
diphoton mass resolution wide.

One of the D’s decay products must be consistent with
being a K™, but no particle-identification requirements are
placed on the other charged particles. Each D~ candidate
must have a mass in [1.860,1.880] GeV, which is centered
on the known D~ mass and is a 30 range, with ¢ being the
mass resolution. Each D° candidate reconstructed from
K™z~ (z*z~) must have a mass in [1.845,1.885] GeV,
which is centered on the known D° mass and is a +5¢
range. Each D° candidate reconstructed from Kz~ z° must
have a mass in [1.810,1.895] GeV, which is an asymmetric
range of +2.5¢ and —4¢ around the known D° mass to
account for energy losses in photon reconstruction.

The z~ from a D*~ candidate decay must have momen-
tum below 300 MeV in the e"e™ center-of-mass (c.m.)
frame. Each D*~ candidate must have an energy release,
m(D*~) = m(D°) — m,-, in [4.6,7.0] MeV, which is cen-
tered around the known energy release and six units of its
resolution wide.

We reconstruct a B® candidate from a D)~ candidate and
a track that is consistent with being a z*. For each B°

candidate, we fit the trajectories and momenta of its decay
products according to its decay chain with TreeFit [42],
constraining the B” to originate from the IR and the D) to its
known mass [39]. We reject BY candidates whose fits do not
converge. The fraction of rejected signal candidates is 0.4%.
We define the signal region from a beam-constrained mass

E2

MbC = beam |2

(4)

- P

and energy difference, AE = E — Eyg,m, Where Eyean, E, and
p are the beam energy and B® energy and momentum in the
c.m. frame, respectively. The criteria for the signal region are
M. > 5.27 GeV and AE € [-0.10,0.25] GeV.

We determine the decay position of By, by fitting the
trajectories of ROE tracks with Rave [43]. Unlike TreeFit,
Rave accounts for the unknown By, decay chain by
reducing the impact of a displaced vertex due to potential
intermediate D’s, constraining the By,, vertex position to be
consistent with the origin and direction of Bg,. We reject
events in which this fit does not converge, which rejects
3.4% of the signal events.

To suppress events not coming from e*e~ — BB, such
as eTe” — qg, we exploit their topological differences, by
requiring the ratio of the second to the zeroth Fox-Wolfram
moment, R,, be less than 0.4 [44]. After applying all
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selection requirements, the average number of candidates
per event is 1.05 and all candidates are retained.

Events passing the above criteria are either correctly
identified Bg, decays or backgrounds from BB and qg
events. To separate signal from background, we fit to the
AE distribution using an extended unbinned likelihood,
combining data from B, and Bsig and all r intervals.

We model the signal contribution as the sum of
a Gaussian function and a double-sided Crystal Ball function
[45]. Their parameters and their admixture are fixed to values
obtained from fitting to simulated data, but a common shift of
their peak values and common scaling of their widths are left
free to account for differences between data and simulation.

Events in which B, decays to the DW-K* final state,
with the K™ misidentified as a z*, peak at —50 MeV in the
AE distribution. According to simulation studies, the
fraction of these events to the signal is 2.5%. We model
this contribution as a double-sided Crystal Ball function,
whose parameters are fixed to values obtained from fitting
to simulated data, including the ratio of its yield to the
signal, except for the shift of its peak value and the scaling
of its width, which are the same as for the signal. Since these
events have the same A7 distribution as B —» D™=zt we
use this contribution as signal in the sWeight calculation.

We model the BB background contribution as a second-
order polynomial, with the ratio of its yield to that of the
signal fixed to a value obtained from simulated data. We
model the gg background contribution as an exponential
function. To constrain the parameters of the gg component,
we simultaneously fit to the AE distribution in a sideband,
M, €[5.20,5.24] GeV, populated predominantly by ¢g
events. We confirm via simulation studies that the AE
distributions of the gg component in the signal and sideband
regions are sufficiently similar to warrant a simultaneous fit.

Figure 3 shows the AFE distributions in the signal region
and sideband and the fit results. The fit agrees well with the
data. Yields in the signal region are (77130 4 320) events
for the signal (for the sum of the D®)~z* and D¥)-K*
final states), (8620 +40) for the BB background, and
(14200 % 230) for the gg background.

We modify equation (2) to account for differences in the
wrong-tag probabilities for By, and Btag, by introducing
w(B’) =w+1Aw and w(B®)=w—1Aw and recon-
struction efficiency asymmetries for B, and By, dgs
and  aye, with a, = [e(BY) - &(BY)]/[e(BY) + £(BY)],
where x indicates “tag” or ‘“sig,”

P(At’ qsig’ Qtag)
e—\AtI/T ~
= (1 + asngsig)T{l + Gtag [atag(l _2W) - AW]
+ CIsngtag(l —2w+ Gragag — alagAW) COS(AmdAt)}' (5)

We determine ag, by fitting the AE distributions for
B, and Bg, separately, using the same model as for
their combined fit, without selection criteria on By, to
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FIG. 3. Distributions of AE for B — D)~z reconstructed in
data in the signal region (top) and sideband (bottom) and the best-
fit function, with background components stacked.

avoid a bias from using By, information. We measure
agy = (=2.53 £0.39%), which we attribute to charge
asymmetries in kaon identification and low-momentum
track finding.

We calculate a per-candidate signal probability using
sWeight from the AE-fit results, allowing us to statistically
subtract background contributions to the Az distributions.
This requires that AE, At, and r be independent, which is
confirmed in simulation studies.

We calculate Az from the distance, AZ, of the B,
from that of By,, along the T (4S) boost direction,

vertex

Y
Prrs’

At

(6)

where ffy = 0.28 is the Lorentz boost of the YT (4S) in the
lab frame and y; = 1.002 is the Lorentz factor of the B in
the c.m. frame.

To account for resolution and bias in measuring AZ, we
convolve equation (5) with the resolution function intro-
duced in Ref. [15]. The resolution function consists of a
core component modeled by a Gaussian function, a tail
component modeled by a weighted sum of a Gaussian and
two exponentially modified Gaussian functions, and an
outlier component modeled by a Gaussian function.
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FIG. 4. Background-subtracted Az distributions of B® — D*)~z* reconstructed in data in each of the seven r intervals (points) and the
best-fit functions (lines) for opposite- and like-flavor B pairs with the corresponding asymmetries.
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FIG. 5. Distributions of grgp,r for B® - D®)~z" in back-
ground-subtracted data and correctly reconstructed simulated
events normalized to the data signal yield.

Parameters of the resolution function are shared by all r
bins, except for the highest r bin. This bin is mostly
populated by semileptonic By,, decays, which have a better
resolution.

We fit simultaneously to the binned background-
subtracted Ar distributions in 28 subsets of the data
defined by the 7r intervals, 2 flavors of B, and 2 flavors
of By, The fit has seven free resolution-function param-
eters and 21 free flavor-tagger parameters, a,,, w, and Aw
in each of the 7r bins. The uncertainty on the At
measurement, o,,, is computed for each event and is a
conditional variable in the resolution function. We use a
histogram with 500 bins in each data subset as the
probability density function for this variable. We fix
Amy, and 7 to their world average values [39]. Figure 4
shows the At distribution in each r interval and the result
of the fit.

Figure 5 shows the grgp,r distribution in background-
subtracted data and correctly reconstructed simulated events
normalized to the data signal yield. Figure 6 shows the
dilution factors, 1 —2w;, for each r bin i for both B?dg
and B?ag. It shows that r is a good estimator of 1 — 2w for both
tag flavors. The effective tagging efficiency is e, =
(37.40 + 0.43)%, where the uncertainty is statistical only.
Table Il in the Appendix lists ay,,, w, and Aw for each r bin.

V. MEASUREMENT OF sin 2¢; IN B® - J /yKQ

We demonstrate GFlaT by measuring S and C in
B® - J/yK) decays. We reconstruct J/y candidates
via J/w — eTe” or uTu~. The leptons must fulfill the

Belle Ii [Ldt=362 fb1
0
10 + Bgg ,
_0 A
+ By
0.8} e
2
S 0.6
o~ »
I //*
— 04}
/I;
02f
A
0.0F A

0.0 0.2 0.4 0.6 0.8 1.0
r=|qreriatl

FIG. 6. Dilution factors 1 — 2w of B® — D®)~z+ as functions
of their GFlaT predictions, r for B?ag, 1 —-2w— Aw, and B?ag,
1 — 2w + Aw; the dashed line shows r = 1-2w.

same track requirements as described for the decay
products of B® - D®)~z% and be consistent with both
being electrons or both being muons. To account for
energy loss due to bremsstrahlung, the four-momenta
of photons with lab-frame energy in [75,1000] MeV
detected within 50 mrad of the initial direction of
an electron are added to the electron’s four-momentum.
Each J/w — eTe™ candidate must have a mass in
[2.90,3.14] GeV; each J/y — u*u~ candidate must have
a mass in [3.00,3.14] GeV. The resolutions at masses
above and below the known J/y mass are 8.0 MeV and
9.0 MeV for electron pairs and 6.3 MeV and 8.3 MeV for
muon pairs.

We reconstruct K candidates via K% — ztz~. The
pions must have polar angles within the CDC. Each K2
candidate must have a mass in the range [0.45,0.55] GeV, a
successful vertex fit, and a decay vertex displaced from the
IR by at least five units of the displacement’s uncertainty.
The reconstructed K mass resolution is 2.0 MeV. Possible
bias related to CP violation in the K — K system, as well
as kaon regeneration are expected to be very small and are
neglected in this analysis [46].

We fit the trajectories and momenta of B® decay products
with TreeFit, constraining the BY to originate from the IR
and the J/w to have its known mass [39]. Each B°
candidate must have M, greater than 5.27 GeV and AE
in [-0.10,0.25] GeV. The B, vertex position is deter-

mined as described for Bgig — D¥~z" above. We require
R, be less than 0.4 to remove gg background. After

applying all selection requirements, the average number
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of candidates per event is 1.01. All candidates are retained
for further analysis.

To validate our analysis, we also measure S and C for
BY — J/wK*(892)°. We expect S = 0, as this decay mode
is flavor-specific, and C = 0—as defined in Eq. (1)—as
with B® — J/yK). Hereafter, K*(892)° is written as K*°.
We reconstruct K** candidates via K*© — Kz, requiring
the positively charged particle be consistent with a K+ and
the negatively charged particle be consistent with a 7~.
Each K*Y candidate must have a mass in [0.8,1.0] GeV,
corresponding to approximately four times the K** natural
width [39]. All selection criteria on J/y and B candidates
are the same as for B — J/wK?, except that the B® must
have AE in a reduced range, [-0.10,0.10] GeV, to reject
background from B* — J/wK" with a 7z~ from By,
reconstructed as part of Bg,.

We perform extended unbinned likelihood fits to the AE
distributions to determine signal and background yields
and shapes that we use to statistically isolate the signal At
distributions using sWeight. We model the signal compo-
nents as double-sided Crystal-Ball functions with tail
parameters fixed to values determined from fits to simu-
lated data and peak values and widths freely determined by
the fits to data. We model the background components
taking into account both BB and ¢g, as exponential
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FIG. 7. Distributions of AE for B — J/ywK? (top) and B® —
J/wK*® (bottom) and the best-fit functions.

functions, whose parameters are freely determined by
the fits to data.

Figure 7 shows the AE distributions and the fit results.
The best-fit results agree well with the data. For
B’ — J/wKY, the signal yield is 6390 +90) and the
background yield is (570 4-40). For B® — J/wK*, the
signal yield is (12660 4 130) and the background yield
is (1900 £ 70).
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We determine S and C by performing a simultaneous fit
to the background-subtracted At distributions in 14 subsets
defined by the 7r intervals and 2 flavors of By,,. To take into
account detection and tagging asymmetries, we modify

Eq. (1),

e—\At\/r
47

+ qlag(l —2w+ tagQtag — atagAW)

x [Ssin(AmyAr) — Ccos(AmyAr)]}.  (7)

P(At, Qtag) = {1+ Qtag[atag(l —2w) — Aw]

To account for resolution and bias in determining Az, we
use the resolution function of the B® — D)~z decays
without the outlier component, which shows no impact on
the results. The Aags W, Aw, and resolution-function
parameters are fixed to the values determined from the
study of B — D)~z so that the only parameters left free
to vary in the Ar fit are S and C. Figure 8 shows the
background-subtracted At distributions (combining all r
intervals) and the result of the fits. For B® — J/wK2,
S =(0.724 £ 0.035) and C = (—0.035 + 0.026). The stat-
istical correlation between S and C is —0.09. For
BY = J/wK*, S = (-0.018 +0.026) and C = (0.008
0.019); as expected, both are consistent with zero. The
uncertainties are statistical only.

Additionally, we fit the B® — J/wK3 candidates without
distinguishing between B, and Btag, therefore removing
the ability to observe CP violation, with 7 free. This checks
for potential problems in the modeling of the resolution
function, which would likely result in 7 being biased from
its expected value. We measure the B° lifetime to be
(1.514 4+ 0.022) ps, which agrees with the current world
average [39]. The uncertainty is statistical only.

Table I lists the statistical and systematic uncertainties on
€ug for B® > D®=z* and S and C for B® — J/wKY.
Statistical uncertainties are computed by bootstrapping
[47], resampling the B — D")~z" and B® - J/ywK} data
1000 times each. The statistical uncertainties are larger than
the sum in quadrature of all the individual systematic
uncertainties.

Uncertainties on the alignment of the tracking system of
Belle II detector [48], the shape and location of the IR, and
the eTe™ beam energy propagate to uncertainties on Af,
resulting in potential changes to €, S, and C. We determine
€ag» S, and C from simulated events reconstructed assuming
four detector misalignment scenarios and take their changes,
added in quadrature, as systematic uncertainties. Both the IR
and beam energy are determined from ete™ — ut ™ events
in 30-minute intervals. We determine Etag> S, and C with the
parameters of the IR and beam energy varied by their
uncertainties and take the shifts as systematic uncertainties.

Uncertainties on AE-fit component shapes propagate to
uncertainties on the background-subtracted At distributions,

TABLE 1. Systematic and statistical uncertainties on &, for
B® » D®=z* and, S and C for B® — J/yK?.

Source €y [%] S C

Detector alignment 0.08 0.005 0.003
Interaction region 0.16 0.002 0.002
Beam energy 0.03 <0.001 0.001
AE-fit background model 0.11 0.001  0.001
AE-fit signal model 0.08  0.003 0.006
sWeight background subtraction 024  0.001 0.001
Fixed resolution-function parameters 0.07 0.004 0.004
7 and Amy 0.06  0.001 <0.001
0, binning 0.04 <0.001 <0.001
At-fit bias 0.09  0.002 0.005
CP violation in By, decay <0.001 0.027
BY - D®~z" sample size 0.004 0.007
Total systematic uncertainty 0.36 0.009 0.029
Statistical uncertainty 0.43 0.035 0.026

resulting in potential changes to &, S, and C. We fit using
various models and take any resulting shifts, added in
quadrature, as systematic uncertainties. For the fit to B® —
D=zt data, these models are inclusion of an additional
Gaussian function to model a small peaking background
from BB events, variation of the fixed ratio of BB events to
BY = D®=z+ events by +20%, and the freeing of the ratio
of B - D®-K* to B - D®~z* events. Variations to
the background models in the fits to B® — J/yK' g data have
negligible impact. For the signal components, we varied
fixed parameters within their uncertainties one by one.

The process of subtracting the backgrounds using
sWeight is itself a source of uncertainty. For
BY = J/wKY, it is accounted for in the Ar-fit bias dis-
cussed below. We account for the uncertainty in the
background subtraction in B — D®)~z* by determining
€ug»> S, and C replacing the At distributions with those from
1 ab~! of simulated B® — D*)~z+ data that either contain
signal events or signal and background events with back-
ground subtraction using sWeight, and take the differences
as systematic uncertainties. This is the dominant systematic
uncertainty on €.

Uncertainties on Az-fit shape parameters directly propa-
gate to changes to €, S, and C. We repeat the fits with
fixed resolution-function parameters freed one at a time and
take the resulting changes to &y, S, and C, added in
quadrature, as systematic uncertainties. We also repeat the
fits with 7 and Am varied within their known uncertainties
[39] and take the resulting changes, added in quadrature, as
systematic uncertainties. Finally, we repeat the fits with the
numbers of bins for the o,, histogrammed probability
density functions varied between 200 and 1000 and take the
largest changes as systematic uncertainties.
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The At fits have biases that we determine from fits to
simulated datasets equivalent in size to the real data, 20
such sets for B® — D™)~z" and 290 for B® — J/ywK3. We
take the quadratic sum of the biases and their uncertainties
as systematic uncertainties.

Equation (7) does not account for CP violation in B,
decays [49]. This yields a systematic uncertainty deter-
mined in Ref. [3], which is the dominant systematic
uncertainty on C. This uncertainty can be drastically
reduced by performing a combined measurement of C
and S in CP -odd and CP -even decays, e.g., B — ]/l//Kg
and B° — J/wK? have opposite CP eigenvalues. We
propagate the statistical uncertainties on GFlaT ’s param-
eters and resolution-function parameters, arising from the
BY - DW=zt sample size, to uncertainties on S and C by
repeating the fits for each B — D)~z bootstrap sample.

VI. SUMMARY

We report on a new B flavor tagger, GFlaT, for Belle 11
that uses a graph-neural-network to account for the corre-
lated information among the decay products of the tag-side
B. We calibrate it using flavor-specific hadronic B decays
reconstructed in a (362 +2) fb~! sample of Belle II data
and determine an effective tagging efficiency of

€ = (37.40 +0.43 + 0.36)%, (8)

where the first uncertainty is statistical and the second is
systematic. For comparison, using the same data, we
determine &,, = (31.68 £0.45)% for the Belle II cat-
egory-based flavor tagger.4 The GFlaT algorithm thus
has an 18% better effective tagging efficiency.

We demonstrate GFlaT by measuring S and C for
B - J/wK?,

S = 0.724 + 0.035 + 0.009, (9)

C =—-0.035£+0.026 £ 0.029, (10)

with a statistical correlation between S and C of —0.09.
This measurement supersedes our preliminary result [16]
and agrees with previous measurements [2-4,39]. The
statistical uncertainties are 8% and 7% smaller, respec-
tively, than they would be if measured using the category-
based flavor tagger, as expected given GFlaT ’s higher
effective tagging efficiency. From S, we calculate
¢ = (2324 1.540.6)°°

4Systematic uncertainties were not explicitly computed for the
category-based flavor tagger, as they are expected to be very
similar to and fully correlated with those from GFlaT.

>The other solution 7/2 — ¢, is excluded from independent
measurements [50].
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APPENDIX: GFLAT PARAMETERS

Table II lists a,y, W, and Aw for each r bin, measured
from events with B" — D)=z, The sources of systematic
uncertainty are the same as listed in Table I for &,,. Figure 9
shows the statistical correlation coefficients between the
parameters that are used as inputs to estimate systematic
uncertainties for S and C.
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FIG. 9. Correlation coefficients, in 1072, between the GFlaT parameters.

B8

Aws - &

- 100
- 75
- 50
-25
-0
--25

2

5 -3

3RS EREG | _so

9 -8 -13 -13

0 -7 -8 -14 -6

1 -6 -13 -6 -8 -10 - =75

BEl 7 5 11 -12 -7 -4

-4 44 -5 -16 -16 -10 -12 -10

- ~100

G S W S S S S

< 3 § 8§ 8 8 8 § B8

IS 53 S 5] S 5] S

Subscripts indicate r bins.

[1] M. Kobayashi and T. Maskawa, CP violation in the
renormalizable theory of weak interaction, Prog. Theor.
Phys. 49, 652 (1973).

[2] B. Aubert er al. (BABAR Collaboration), Measurement of
time-dependent CP asymmetry in B® — ¢cK*)° decays,
Phys. Rev. D 79, 072009 (2009).

[3] I. Adachi et al. (Belle Collaboration), Precise measurement
of the CP violation parameter sin2¢; in B’ — (c¢¢)K°
decays, Phys. Rev. Lett. 108, 171802 (2012).

[4] R. Aaij et al. (LHCb Collaboration), Measurement of CP
violation in B — w(— £1¢7)K%(— n"x~) decays, Phys.
Rev. Lett. 132, 021801 (2024).

[5] J. P. Lees et al. (BABAR Collaboration), Measurement of CP
asymmetries and branching fractions in charmless two-body
B-meson decays to pions and kaons, Phys. Rev. D 87,
052009 (2013).

[6] 1. Adachi er al. (Belle Collaboration), Measurement of the
CP violation parameters in B® — 7%z~ decays, Phys. Rev.
D 88, 092003 (2013).

[7] R. Aaij et al. (LHCb Collaboration), Observation of CP

violation in two-body B?S)—meson decays to charged pions

and kaons, J. High Energy Phys. 03 (2021) 075.

[8] B. Aubert et al. (BABAR Collaboration), A study of B —
pTp~ decays and constraints on the CKM angle a, Phys.
Rev. D 76, 052007 (2007).

[9] P. Vanhoefer e al. (Belle Collaboration), Study of B® —
pTp~ decays and implications for the CKM angle ¢,, Phys.
Rev. D 93, 032010 (2016); Phys. Rev. D 94, 099903(A)
(2016).

[10] B. Aubert et al. (BABAR Collaboration), Measurement of
the branching fraction, polarization, and CP asymmetries in
BY — p%° decay, and implications for the CKM angle a,
Phys. Rev. D 78, 071104 (2008).

[11] I.I Y. Bigi and A.IL Sanda, Notes on the observability of
CP violations in B decays, Nucl. Phys. B193, 85 (1981).

[12] P. Oddone, Detector considerations, UCLA linear-collider
BB factory concept. Design: Proceedings, eConf C870126
(1987) 423.

012001-13


https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1103/PhysRevD.79.072009
https://doi.org/10.1103/PhysRevLett.108.171802
https://doi.org/10.1103/PhysRevLett.132.021801
https://doi.org/10.1103/PhysRevLett.132.021801
https://doi.org/10.1103/PhysRevD.87.052009
https://doi.org/10.1103/PhysRevD.87.052009
https://doi.org/10.1103/PhysRevD.88.092003
https://doi.org/10.1103/PhysRevD.88.092003
https://doi.org/10.1007/JHEP03(2021)075
https://doi.org/10.1103/PhysRevD.76.052007
https://doi.org/10.1103/PhysRevD.76.052007
https://doi.org/10.1103/PhysRevD.93.032010
https://doi.org/10.1103/PhysRevD.93.032010
https://doi.org/10.1103/PhysRevD.94.099903
https://doi.org/10.1103/PhysRevD.94.099903
https://doi.org/10.1103/PhysRevD.78.071104
https://doi.org/10.1016/0550-3213(81)90519-8

I. ADACHI et al.

PHYS. REV. D 110, 012001 (2024)

[13] T. Abe et al. (Belle II Collaboration), Belle II technical
design report, arXiv:1011.0352.

[14] F. Abudinén et al. (Belle II Collaboration), B-flavor tagging
at Belle II, Eur. Phys. J. C 82, 283 (2022).

[15] E. Abudinén et al. (Belle II Collaboration), Measurement of
the B’ lifetime and flavor-oscillation frequency using
hadronic decays reconstructed in 2019-2021 Belle II data,
Phys. Rev. D 107, L091102 (2023).

[16] 1. Adachi et al. (Belle II Collaboration), Measurement of
decay-time-dependent CP violation in B® — J/wK? decays
using 2019-2021 Belle II data, arXiv:2302.12898.

[17] H. Kakuno et al. (Belle Collaboration), Neutral B flavor
tagging for the measurement of mixing induced CP viola-
tion at Belle, Nucl. Instrum. Methods Phys. Res., Sect. A
533, 516 (2004).

[18] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J.M. Solomon, Dynamic graph cnn for learning on point
clouds, ACM Trans. Graph. 38, 1 (2019).

[19] K. De Bruyn and R. Fleischer, A roadmap to control
penguin effects in By — J/wKY and B? — J/y¢, J. High
Energy Phys. 03 (2015) 145.

[20] M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami, In
pursuit of new physics with BY — J/wK® and B — J/w¢p
decays at the high-precision Frontier, J. Phys. G 48, 065002
(2021).

[21] M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami,
Penguin effects in BY — J/wK% and BY — J/w¢, Proc.
Sci., CKM2021 (2023) 111.

[22] L. Dunietz, Clean CKM information from B,(t) — D*Fr*,
Phys. Lett. B 427, 179 (1998).

[23] A. Das et al. (Belle Collaboration), Measurements of
branching fractions for B® — D¥z~ and B° — D{K-,
Phys. Rev. D 82, 051103 (2010).

[24] B. Aubert et al. (BABAR Collaboration), Measurement of
the branching fractions of the rare decays B’ - D§*>+77.'_,
B® = D" p, and B® —» D{")"K®)*, Phys. Rev. D 78,
032005 (2008).

[25] M. Pivk and F.R. Le Diberder, sPlot: A statistical tool to
unfold data distributions, Nucl. Instrum. Methods Phys.
Res., Sect. A 555, 356 (2005).

[26] H. Dembinski, M. Kenzie, C. Langenbruch, and M.
Schmelling, Custom orthogonal weight functions (COWs)
for event classification, Nucl. Instrum. Methods Phys. Res.,
Sect. A 1040, 167270 (2022).

[27] K. Akai, K. Furukawa, and H. Koiso, SuperKEKB collider,
Nucl. Instrum. Methods Phys. Res., Sect. A 907, 188
(2018).

[28] K. Adamczyk et al. (Belle I SVD Collaboration), The
design, construction, operation and performance of the Belle
II silicon vertex detector, J. Instrum. 17, P11042 (2022).

[29] D. Kotchetkov et al., Front-end electronic readout system
for the Belle II imaging time-of-propagation detector, Nucl.
Instrum. Methods Phys. Res., Sect. A 941, 162342 (2019).

[30] D.J. Lange, The EvtGen particle decay simulation package,
Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152
(2001).

[31] T. Sjostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desali,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.

Skands, An Introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[32] S. Jadach, B.F.L. Ward, and Z. Was, The precision
Monte Carlo event generator KK for two-fermion final
states in e e~ collisions, Comput. Phys. Commun. 130, 260
(2000).

[33] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4: A
simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[34] P. M. Lewis et al., First measurements of beam backgrounds
at SuperKEKB, Nucl. Instrum. Methods Phys. Res., Sect. A
914, 69 (2019).

[35] T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun
(Belle II Framework Software Group), The Belle II core
software, Comput. Software Big Sci. 3, 1 (2019).

[36] Belle II Collaboration, Belle IT Analysis Software Frame-
work (basf2), 10.5281/zenodo.5574115.

[37] H. Qu and L. Gouskos, ParticleNet: Jet tagging via particle
clouds, Phys. Rev. D 101, 056019 (2020).

[38] J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation net-
works, CoRR abs/1709.01507 (2017).

[39] R.L. Workman et al. (Particle Data Group), Review of
particle physics, Prog. Theor. Exp. Phys. 2022, 083CO01
(2022).

[40] D.P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[41] L. N. Smith, A disciplined approach to neural network
hyper-parameters: Part 1—learning rate, batch size, mo-
mentum, and weight decay, arXiv:1803.09820.

[42] J.-F. Krohn et al. (Belle II Analysis Software Group), Global
decay chain vertex fitting at Belle II, Nucl. Instrum.
Methods Phys. Res., Sect. A 976, 164269 (2020).

[43] W. Waltenberger, W. Mitaroff, F. Moser, B. Pflugfelder, and
H. V. Riedel, The RAVE/VERTIGO vertex reconstruction
toolkit and framework, J. Phys. Conf. Ser. 119, 032037
(2008).

[44] G.C. Fox and S. Wolfram, Observables for the analysis of
event shapes in e e~ annihilation and other processes, Phys.
Rev. Lett. 41, 1581 (1978).

[45] T. Skwarnicki, A study of the radiative CASCADE tran-
sitions between the Upsilon-Prime and Upsilon resonances,
Ph.D. thesis, Cracow, INP, 1986.

[46] M. Bjgrn and S. Malde, CP violation and material inter-
action of neutral kaons in measurements of the CKM angle y
using B* - DK* decays where D — K3z*z~, J. High
Energy Phys. 07 (2019) 106.

[47] B. Efron, Bootstrap methods: Another look at the jackknife,
Ann. Statist. 7, 1 (1979).

[48] T. Bilka et al., Alignment for the first precision measure-
ments at Belle II, EPJ] Web Conf. 245, 02023 (2020).

[49] O. Long, M. Baak, R. N. Cahn, and D. P. Kirkby, Impact of
tag side interference on time dependent CP asymmetry
measurements using coherent B’B° pairs, Phys. Rev. D 68,
034010 (2003).

[50] A. Abdesselam et al. (BABAR Collaboration), First obser-

vation of CP violation in B° —>Dggh0 decays by a
combined time-dependent analysis of BABAR and Belle
data, Phys. Rev. Lett. 115, 121604 (2015).

012001-14


https://arXiv.org/abs/1011.0352
https://doi.org/10.1140/epjc/s10052-022-10180-9
https://doi.org/10.1103/PhysRevD.107.L091102
https://arXiv.org/abs/2302.12898
https://doi.org/10.1016/j.nima.2004.06.159
https://doi.org/10.1016/j.nima.2004.06.159
https://doi.org/10.1145/3326362
https://doi.org/10.1007/JHEP03(2015)145
https://doi.org/10.1007/JHEP03(2015)145
https://doi.org/10.1088/1361-6471/abf2a2
https://doi.org/10.1088/1361-6471/abf2a2
https://doi.org/10.22323/1.411.0111
https://doi.org/10.22323/1.411.0111
https://doi.org/10.1016/S0370-2693(98)00304-9
https://doi.org/10.1103/PhysRevD.82.051103
https://doi.org/10.1103/PhysRevD.78.032005
https://doi.org/10.1103/PhysRevD.78.032005
https://doi.org/10.1016/j.nima.2005.08.106
https://doi.org/10.1016/j.nima.2005.08.106
https://doi.org/10.1016/j.nima.2022.167270
https://doi.org/10.1016/j.nima.2022.167270
https://doi.org/10.1016/j.nima.2018.08.017
https://doi.org/10.1016/j.nima.2018.08.017
https://doi.org/10.1088/1748-0221/17/11/P11042
https://doi.org/10.1016/j.nima.2019.162342
https://doi.org/10.1016/j.nima.2019.162342
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/j.nima.2018.05.071
https://doi.org/10.1016/j.nima.2018.05.071
https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.5281/zenodo.5574115
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://arXiv.org/abs/1412.6980
https://arXiv.org/abs/1803.09820
https://doi.org/10.1016/j.nima.2020.164269
https://doi.org/10.1016/j.nima.2020.164269
https://doi.org/10.1088/1742-6596/119/3/032037
https://doi.org/10.1088/1742-6596/119/3/032037
https://doi.org/10.1103/PhysRevLett.41.1581
https://doi.org/10.1103/PhysRevLett.41.1581
https://doi.org/10.1007/JHEP07(2019)106
https://doi.org/10.1007/JHEP07(2019)106
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1051/epjconf/202024502023
https://doi.org/10.1103/PhysRevD.68.034010
https://doi.org/10.1103/PhysRevD.68.034010
https://doi.org/10.1103/PhysRevLett.115.121604

