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A B S T R A C T

We study power approximation formulas for peak detection using Gaussian random field theory.
The approximation, based on the expected number of local maxima above the threshold u,
E[Mu], is proved to work well under three asymptotic scenarios: small domain, large threshold,
and sharp signal. An adjusted version of E[Mu] is also proposed to improve accuracy when the
expected number of local maxima E[M−@] exceeds 1.

Cheng and Schwartzman (2018) developed explicit formulas for E[Mu] of smooth isotropic
Gaussian random fields with zero mean. In this paper, these formulas are extended to allow for
rotational symmetric mean functions, making them applicable not only for power calculations
but also for other areas of application that involve non-centered Gaussian random fields. We
also apply our formulas to 2D and 3D simulated datasets, and the 3D data is induced by a
group analysis of fMRI data from the Human Connectome Project to measure performance in
a realistic setting.

1. Introduction

Detection of peaks (local maxima) is an important topic in image analysis. For example, a fundamental goal in fMRI analysis is
to identify the local hotspots of brain activity [1,2], which are typically captured by peaks in the fMRI signal. The detection of such
peaks can be posed as a statistical testing problem intended to test whether the underlying signal has a peak at a given location.
This is challenging because such tests are conducted only at locations of observed peaks, which depend on the data. Therefore, the
height distribution of the observed peak is conditional on a peak being observed at that location. This is a nonstandard problem.
Solutions exist using random field theory (RFT) [3]. RFT is a statistical framework that can be used to perform topological inference
and modeling. RFT-based peak detection has been studied in Cheng and Schwartzman [4] and Schwartzman and Telschow [5],
which provide the peak height distribution for isotropic noise under the null hypothesis of no signal anywhere, often referred to in
the multiple testing literature as the ‘‘complete null hypothesis’’.

In general, for any statistical testing problem, accurate power calculations help researchers decide the minimum sample size
required for an informative test, and thus reduce cost. For this reason, power calculation is crucial in image analysis [6–8], yet it is
often overlooked or lacks serious consideration [9,10]. Power calculation formulas exist for common univariate tests, such as z-tests
and t-tests. However, particular challenges arise when we perform power calculations in peak detection settings. Due to the nature
of imaging data, the number and location of the signal peaks are unknown. Besides, the power is affected by other spatial aspects
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of the problem, such as the shape of the peak function and the spatial autocorrelation of the noise. Considering these difficulties, it
requires some extra effort to derive a power formula for peak detection.

A formal definition of power in peak detection is necessary to perform power calculations. In Cheng and Schwartzman [4]
and Durnez et al. [11], the authors explored approaches to control the false discovery rate (FDR). For the entire domain, average
peakwise power, i.e., power averaged over all non-null voxels, is a natural choice for these approaches. For a local domain (a subset
of the entire domain) where a single peak exists, the power can be defined as the probability of successfully detecting that peak.
Following this idea, we describe the null and alternative hypothesis and the definition of detection power. For the entire domain,
we can approximate the average peakwise power by taking the arithmetic mean of the approximation proposed in this paper over
non-null voxels. We do so informally here for didactic purposes and present formal definitions in Section 2.

Consider a local domain where a single peak may exist, and consider the hypotheses:

H0 ∶ the signal is equal to 0 in the local domain,

H1 ∶ the signal has at least one peak with height greater than 0 in the local domain.

Suppose we observe a random field to be used as test statistic at every location, typically as the result of statistical modeling of the
data. For a fixed threshold u, the existence of observed peaks with height greater than u would lead to rejecting the null hypothesis.
Therefore, we define the type I error and power as the probability of existing at least one local maximum above u under H0 and
H1 respectively:

Type I error: P{a peak is observed in the local domain with height greater than u when H0 is true},

Power: P{a peak is observed in the local domain with height greater than u when H1 is true}. (1)

Formulas for type I error have been developed for stationary fields in 1D and isotropic fields in 2D and 3D [4,12,13]. However, there
is no formula to calculate power. In order to get an appropriate estimate of power, we need to know the peak height distribution
for non-centered (the mean function is not 0) random fields. Generally speaking, it is very difficult to calculate the peak height
distribution especially when the random field has non-zero mean. Durnez et al. [11] suggests using Gaussian distribution to describe
the non-null peaks and truncated Gaussian distribution to approximate the overshoot distribution. This approach is easy to implement
but not very accurate because the peak height distribution is in reality always skewed and not close to any Gaussian distribution.

In this article, we propose to approximate the probability (1) by calculating the expected number of peaks above the threshold u.
We show that the approximation, which is also an upper bound, works well under certain scenarios. For the entire domain, we can
approximate the average peakwise power by taking the arithmetic mean of the approximation proposed in this paper over non-null
voxels.

The proposed approximation makes the problem more tractable, but in general, it does not have an explicit form. In order to
make it applicable in practice, we further simplify the formula under the isotropy assumption and show its explicit form in 1D, 2D,
and 3D. The explicit results are validated through 2D and 3D computer simulations carried out in MATLAB. The simulation also
covers multiple scenarios by modifying the parameters used to generate the data. The performance of power approximation and its
conservative adjustment under these scenarios are discussed.

Finally, to assess the real-data performance of our power approximation method, we apply it to a 3D simulation induced by a
real brain imaging dataset, where the parameters are estimated from the Human Connectome Project [14] fMRI data. By testing the
method in a realistic setting, we also demonstrate how effect size and other parameters affect the power.

The paper is organized as follows. We first show in Section 2 the problem setup and theoretical results in certain scenarios. In
Section 3, we derive the explicit formulas under isotropy. Simulation in 2D is conducted in Section 4. Details regarding how to
apply our formula in application settings are discussed in Section 5. The methodology is applied to a 3D real dataset in Section 6.

2. Power approximation

2.1. Setup

Let Y (s) = �(s)Z(s) + �(s), where Z = {Z(s), s * D} representing the noise is a centered (zero-mean), smooth (as defined by
Assumption 1 below), unit-variance Gaussian random field on an N-dimensional, non-empty, bounded, open domain D ⊂ R

N , �(s)
is the standard deviation of the noise and �(s) is the mean function. Let X(s) = Y (s)∕�(s) = Z(s)+�(s) where the ratio �(s) = �(s)∕�(s)

is the standardized mean function, which we assume to be C2. Here a.s. C3 is a sufficient smoothness condition for Z, and this will
be clarified in Assumption 1 below.

Let

Xi(s) =
)X(s)

)si
, ∇X(s) = (X1(s),& , XN (s)), Xij (s) =

)2X(s)

)si)sj
, ∇2X(s) = (Xij (s))1di,jdN ,

Zi(s) =
)Z(s)

)si
, ∇Z(s) = (Z1(s),& , ZN (s)), Zij (s) =

)2Z(s)

)si)sj
, ∇2Z(s) = (Zij (s))1di,jdN .

We will make use of the following assumptions:
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Assumption 1. Z * C2(D) almost surely and its second derivatives satisfy the mean-square Hölder condition: for any s0 * D,
there exist positive constants L, 
 and � such that

E[Zij (s) −Zij (t)]
2 d L2‖s − t‖2
 , "t, s * U (s0, �) KD, i, j * {1,& , N},

where U (s0, �) = s0 ⊕ (−�∕2, �∕2)N is the N dimensional open cube of side length � centered at s0.

Assumption 1 is satisfied, for example, if Z is C3(D).

Assumption 2. For every pair (t, s) * D ×D with s � t, the Gaussian random vector

(Z(s), ∇Z(s), vech(∇2Z(s)), Z(t), ∇Z(t), vech(∇2Z(t)))

is non-degenerate, i.e., its covariance matrix has full rank. Here vech(ç) is the half vectorization operator [15].

Assumption 2 is satisfied, for example, for random fields obtained as a convolution of white noise with a kernel (26), as used in
the data example section below.

2.2. Peak detection

Following the notation in the problem setup, the null and alternative hypotheses can be written as:

H0 ∶ �(s) = 0 for all s * D,

H1 ∶ �(s) > 0, ∇�(s) = 0, ∇2�(s) ≺ 0 for some s * D,

where ∇2�(s) ≺ 0 denotes that the Hessian matrix is negative definite. The mean function �(s) is not directly observed, so the
hypothesis is tested based on the peak height of X(s). For a peak detection procedure that aims to test this hypothesis, a threshold u
for the peak height of X(s) needs to be set in advance. If a local maximum with height greater than u is observed, we would choose
to reject the null hypothesis due to the strong evidence against it. The probability that existing a peak of X exceeds u

P
(
# s * D s.t. X(s) > u, ∇X(s) = 0, ∇2X(s) ≺ 0

)
(2)

is the type I error under H0 and power under H1. The threshold u can be obtained based on the peak height distribution under H0.
A formula for peak height distribution of smooth isotropic Gaussian random fields has been derived in Cheng and Schwartzman
[13] and it can also be derived directly from a special case of the formulas presented in this paper. Usually, u is set to be some
quantile of the null distribution of peak height to maintain the nominal � type I error. More details about selecting the threshold
will be discussed in the real data example. Selecting u is not the main focus of this paper and our method can be applied to any
choice of u.

2.3. Power approximation

Let Mu(D) be the number of local maxima of the random field X above u over the domain D. The power defined in (2) can
be represented as a function F (u,D) = P[Mu(D) e 1]. We call this the power function, seen as a function of the threshold u. In
what follows, to simplify the notation, we write Mu(D) and F (u,D) as Mu and F (u), respectively, unless a domain other than D is
specified. Note that

F (u) = P[Mu e 1] =

@1
k=1

P[Mu = k] d
@1
k=1

kP[Mu = k] = E[Mu]. (3)

On the other hand,

E[Mu] − F (u) =

@1
k=2

(k − 1)P[Mu = k] d 1

2

@1
k=2

k(k − 1)P[Mu = k] =
1

2
E[Mu(Mu − 1)]. (4)

Thus, we have

E[Mu] −
1

2
E[Mu(Mu − 1)] d F (u) d E[Mu]. (5)

This inequality tells us that for any fixed u, the power is bounded within an interval of length E[Mu(Mu − 1)]∕2. Thus, E[Mu] is a
good approximation of power if one of the two conditions below is satisfied:

(i) The factorial moment E[Mu(Mu − 1)] converges to 0 and E[Mu] does not.
(ii) They both converge to 0 and E[Mu(Mu − 1)] converges faster than E[Mu].

The convergence above refers to conditions on the signal and noise parameters. Later in this section, we introduce four related
results and demonstrate how they are useful in application. The first result can be useful for simplifying the power function and the
other three results give different scenarios where one of the conditions above holds.
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We have provided evidence supporting the use of E[Mu] to approximate power, as demonstrated by (5). However, E[Mu] alone
might not be sufficient for power approximation since it only gives an upper bound. Also, unlike power, E[Mu] sometimes exceeds
one. To correct for this, we define the adjusted E[Mu] as

E[Mu]adj = E[Mu]∕max(1,E[M−@]). (6)

The adjusted E[Mu] is the same as E[Mu] when the expected number of local maxima E[M−@] is less or equal to 1. When E[M−@]

is greater than 1, we divide E[Mu] by E[M−@] to make sure it never exceeds one. The adjusted E[Mu] is more conservative, and we
conjecture that it is a lower bound of power when there exists at least one local maximum in the domain D. In applications, people
are interested in a conservative estimator so that the test is guaranteed to have enough power. Combining E[Mu] and E[Mu]∕E[M−@],
we can get an approximate range of the true power. Later in this paper, we will compare E[Mu] and adjusted E[Mu] through
simulations.

2.4. Main results

Our first result does not concern the approximation (5) yet, but it offers a simplification of the power function and E[Mu] that
will be used later. The proposition below states that the power function and E[Mu] for peak detection are translation equivariant
with respect to peak height.

Proposition 1 (Height Equivariance). Let M̃u and F̃ (u) be the number of local maxima above u and the power function for X̃(s) =

X(s) + �0, respectively. Then Mu, E[Mu] and F (u) are translation equivariant with respect to the peak height �0, that is, M̃u = Mu−�0
,

E[M̃u] = E[Mu−�0
] and F̃ (u) = F (u − �0).

Proposition 1 indicates the shape of the power and E[Mu] curve remains unaffected by peak height. Next, we give three scenarios
where the two equalities in (5) can be achieved asymptotically: small domain size, large threshold, and sharp signal.

For the first asymptotic scenario, we demonstrate that as the size of the local domain where a single peak exists converges to 0, the
error of using E[Mu] to approximate power (i.e., the factorial moment E[Mu(Mu−1)]) goes to 0 faster than E[Mu], satisfying condition
i in 2.3. This is helpful, for example, if we want to detect smaller, localized effects.

Theorem 1 (Small Domain). Consider a local domain D� = U (s0, �) K D for any fixed s0 * D where U (s0, �) = s0 ⊕ (−�∕2, �∕2)N is the
N-dimensional open cube of side � centered at s0. As � ³ 0 and with a fixed threshold u, the power function F (u,D�), E[Mu(D�)], and
E[Mu(D�)]adj satisfy the following equation

F (u,D�) = E[Mu(D�)](1 − o(1)) = E[Mu(D�)]adj(1 − o(1)). (7)

The second asymptotic scenario is also closely relevant to applications, as the threshold u is usually chosen to be large to control
the type I error. In the following theorem, we show that as u ³ @, condition i in 2.3 holds true, so that power can be precisely
approximated by E[Mu].

Theorem 2 (Large Threshold). For any fixed domain D, as u³ @

F (u) = E[Mu](1 − o(e
−!u2 )), (8)

where the error term o(e−!u
2
) is non-negative and ! > 0 is some constant.

Notice that the threshold u does not affect the value of E[M−@] which is part of the adjusted E[Mu]. By (8)

F (u) = E[Mu]adj(1 − o(e
−!u2 )) max(1,E[M−@]).

Therefore, the adjusted E[Mu] might be overly conservative as u³ @ when E[M−@] > 1.
The third asymptotic scenario involves power approximation when the signal peak is sharp. Here condition ii in 2.3 is satisfied.

Interestingly, while the power function is generally non-Gaussian, it becomes closer to Gaussian as the signal peak becomes sharper.

Theorem 3 (Sharp Signal). Let �(s) = aℎ(s)+ �0 where ℎ(s) is a unimodal (i.e., its Hessian matrix is negative definite when gradient equals
0) mean function with maximum equal to 0 at s0, a > 0, and �0 represents the height. For any fixed threshold u, as a ³ @

F (u) = E[Mu] + o(1) = E[Mu]adj + o(1) = �(�0 − u)(1 + o(1)), (9)

where �(x) is CDF of the standard Gaussian distribution.

3. Explicit formulas

We have shown that the power for peak detection can be approximated by the expected number of local maxima above u, E[Mu],
under certain scenarios. Although the Kac–Rice formula can be applied to calculate E[Mu], it remains difficult to evaluate it explicitly
for N > 1 without making any further assumptions. In this section, we focus on the computation of E[Mu] and provide a general
formula when the noise field is isotropic. Furthermore, explicit formulas when N * {1, 2, 3} are derived for application purposes.
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3.1. Isotropic Gaussian fields

Suppose Z is a zero-mean unit-variance isotropic random field. We can write the covariance function of Z as E{Z(s)Z(t)} =

�(‖t − s‖2) for an appropriate function �(ç) ∶ [0,@) ³ R. Denote

�2 = �2(0), �22 = �22(0), � = −�2∕
√
�22, (10)

where �2 and �22 are first and second derivative of function � respectively.
The following lemma comes from Cheng and Schwartzman [13].

Lemma 1. For each s * R
N and i, j, k, ā * {1,& , N},

E{Zi(s)Z(s)} = E{Zi(s)Zjk(s)} = 0, E{Zi(s)Zj (s)} = −E{Zij (s)Z(s)} = −2�2�ij , E{Zij (s)Zkā(s)} = 4�22(�ij�kā + �ik�jā + �iā�jk),

where �2 and �22 are defined in (10) and �ij is the Kronecker delta function.

In particular, it follows from Lemma 1 that Var(Zi(s)) = −2�2 and Var(Zii(s)) = 12�22 for any i * {1,& , N}, implying �2 < 0 and
�22 > 0 and hence � > 0.

We can use theoretical results from Gaussian Orthogonally Invariant (GOI) matrices to make the calculation of E[Mu] easier. GOI
matrices were first introduced in Schwartzman et al. [16], and used for the first time in the context of random fields in Cheng and
Schwartzman [13]. It is a class of Gaussian random matrices that are invariant under orthogonal transformations, and can be useful
for computing the expected number of critical points of isotropic Gaussian fields. We call an N ×N random matrix G = (Gij )1di,jdN
GOI with covariance parameter c, denoted by GOI(c), if it is symmetric and all entries are centered Gaussian variables such that

E[GijGkā] =
1

2
(�ik�jā + �iā�jk) + c�ij�kā . (11)

The following lemma is Lemma 3.4 from Cheng and Schwartzman [13].

Lemma 2. Let the assumptions in Lemma 1 hold. Let G̃ and G be GOI(1∕2) and GOI((1−�2)∕2) matrices respectively. IN denotes N ×N

identity matrix.

(i) The distribution of ∇2Z(s) is the same as that of
√
8�22G̃.

(ii) The distribution of (∇2Z(s)|Z(s) = z) is the same as that of
√
8�22

[
G −

(
�z∕

√
2
)
IN

]
.

Lemma 2 shows the distribution and conditional distribution of the Hessian matrix of a centered random field Z(s). Next, we
establish the corresponding result for non-centered random field X(s) = Z(s) + �(s).

Lemma 3. Let G̃ and G be GOI(1∕2) and GOI((1 − �2)∕2) matrices respectively.

(i) The distribution of ∇2X(s) is the same as that of
√
8�22G̃ + ∇2�(s).

(ii) The distribution of (∇2X(s)|X(s) = x) is the same as that of

√
8�22

[
G −

�(x − �(s))√
2

IN

]
+ ∇2�(s).

3.2. General formula under isotropy

Theorem 4. Let X(s) = Z(s) + �(s), where Z(s) is a smooth zero-mean unit-variance isotropic Gaussian random field satisfying
Assumptions 1, 2. Let �(s) a C3 mean function such that ∇2�(s) is a non-singular matrix with ordered eigenvalues �22

1
(s)...�22

N
(s) at all

critical points s. Then for any domain D

E[Mu] =

(
2�22

−��2

)N∕2

+D exp

(‖∇�(s)‖2
4�2

)
+

@

u

� (x − �(s))E
[| det(Matrix(s))|1{Matrix(s)≺0}

]
dx ds, (12)

where �(x) is the PDF of the standard Gaussian distribution, Matrix(s) = G − �(x − �(s))IN∕
√
2 + diag{�22

1
(s),& , �22

N
(s)}∕

√
8�22, G as in

Lemma 3 represents GOI((1-�2)/2), and 1{ç} denotes the indicator function.

The expression (12) can be simplified further if we further assume the mean function �(s) to be a rotationally symmetric
paraboloid centered at s0. In this case, the Hessian of �(s) is the identity matrix multiplied by a constant, i.e.,

�22 = �22
1
(s) = �22

2
(s) = ď = �22

N
(s).

Then we can write the mean function as �(s) = �0 + �
22‖s − s0‖2∕2. Define

� =
�22

2�
√
�22

=
�22

−2�2
=

�22

Var(Z1(s))
. (13)
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and

H(x̃) = E
N

GOI((1−�2)∕2)

[
N/
j=1

||||||
�j −

�x̃√
2

||||||
1
{�N<

�x̃√
2
}

]
. (14)

E[Mu] can be simplified as

E[Mu] =

(
2�22

−��2

)N∕2

+D exp

(
�222‖s − s0‖2

4�2

)
+

@

ũ(s)

� (x̃ + �)H(x̃)dx̃ds, (15)

where we make a change of variable x̃ = x − �(s) − � and ũ(s) = u − �(s) − �. Note that the parameter � depends on the correlation
structure of Z(s).

3.3. Explicit formulas in 1D, 2D and 3D

In (15), a general formula for E[Mu] under isotropy was derived. To make the formula easier to apply in practice, we have the
following results for computing it in 1D, 2D, and 3D. When N = 1, the derivation is simple enough that we do not need additional
assumptions on the mean function �(s) except those in Theorem 4, and it follows directly from Kac–Rice formula. When N = 2 and
3, we assume the mean function �(s) is a rotationally symmetric paraboloid centered at s0. E[Mu] is calculated by first obtaining
explicit formulas for H(x̃), and plugging H into (15).

Proposition 2. Let N = 1, X(s) = Z(s) + �(s), where Z(s) is a smooth zero-mean unit-variance Gaussian process and �(s) is a C3 mean
function. Assume additionally that Z(s) is stationary, then

E[Mu] = +D
√
−2�2(3 − �2)

�
�

(
�2(s)√
−2�2

)
+

@

u

�(x − �(s)) 

(
�[x − �(s) − �(s)]√

3 − �2

)
dx ds, (16)

where the function  is defined as

 (x) = +
x

−@

�(y)dy = �(x) + x�(x), x * R.

Note that when N = 1,

H(x̃) = �

(
�x̃√
3 − �2

)
+

�x̃√
3 − �2

�

(
�x̃√
3 − �2

)
=  

(
�x̃√
3 − �2

)
. (17)

We need the following lemmas to calculate H(x̃) explicitly when N = 2 and N = 3. They result from a direct application of integral
by parts.

Lemma 4. Let N = 2. For constant a > −
1

2
and b * R, we have

+
R2

exp

(
−
1

2

21
i=1

�2i −
a

2

( 21
i=1

�i
)2
)(

2/
i=1

|�i − b|
)
|�1 − �2|1{�1<�2<b}d�1 d�2

=

√
2�√

1 + a
exp

(
−

1 + 2a

2(1 + a)
b2
)
�

(
1 + 2a√
1 + a

b

)
+
(
2b2 −

1 + 4a

1 + 2a

) √
�√

1 + 2a
�(

√
2(1 + 2a)b) +

b

1 + 2a
exp

(
−(1 + 2a)b2

)
. (18)

Lemma 5. Let N = 3. For constant a > 0 and b * R, we have

+
R3

exp

(
−
1

2

31
i=1

�2i +
a

2(2 + 3a)

( 31
i=1

�i
)2
)(

3/
i=1

|�i − b|
) /

1di<jd3
|�i − �j |1{�1<�2<�3<b}d�1 d�2 d�3

=

[
a3 + 6a2 + 12a + 24

2(a + 2)2
b2 +

2a3 + 3a2 + 6a

4(a + 2)
+

3

2

]
1√

�(a + 2)
exp

(
−

b2

a + 2

)
�

(
2
√
2b√

(a + 2)(3a + 2)

)

+

[
a + 1

2
b2 +

a2 − a

2
− 1

]
1√

�(a + 1)
exp

(
−

b2

a + 1

)
�

( √
2b√

(a + 1)(3a + 2)

)

+

(
a + 6 +

3a3 + 12a2 + 28a

2(a + 2)

)
b

2�(a + 2)
√
3a + 2

exp

(
−

3b2

3a + 2

)
+ b

[
b2 +

3(a − 1)

2

]
[��1

(0, b) +��2
(0, b)],

where

�1 =

(
3

2
−1

−1
a+2

2

)
, �2 =

(
3

2
−

1

2

−
1

2

a+1

2

)
.
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Proposition 3. Let N = 2 and the assumptions in Theorem 4 hold. Then the function H defined in (14) can be written explicitly as

H(x̃) =

√
2�√

3 − �2
�

(
�x̃√
3 − �2

)
�

(
�x̃√

(2 − �2)(3 − �2)

)
+
�2

2
(x̃2 − 1)�

(
�x̃√
2 − �2

)
+
�
√
2 − �2x̃

2
�

(
�x̃√
2 − �2

)
. (19)

Proposition 4. Let N = 3 and the assumptions in Theorem 4 hold. Then the function H defined in (14) can be written explicitly as

H(x̃) =

[
�2

[
(1 − �2)3 + 6(1 − �2)2 + 12(1 − �2) + 24

]

4(3 − �2)2
x̃2

+
2(1 − �2)3 + 3(1 − �2)2 + 6(1 − �2)

4(3 − �2)
+

3

2

] �(
�x̃√
3−�2

)

√
�(3 − �2)

�

(
2�x̃√

(3 − �2)(5 − 3�2)

)

+

[
�2(2 − �2)

4
x̃2 −

�2(1 − �2)

2
− 1

] �(
�x̃√
2−�2

)

√
�(2 − �2)

�

(
�x̃√

(2 − �2)(5 − 3�2)

)

+

[
7 − �2 +

(1 − �2)
[
3(1 − �2)2 + 12(1 − �2) + 28

]

2(3 − �2)

]
�x̃�(

√
3

5−3�2
�x̃)

2
√
2�(3 − �2)

√
5 − 3�2

+
�3

2
√
2
x̃(x̃2 − 3)

[
��1

(0, �x̃∕
√
2) +��2

(0, �x̃∕
√
2)
]
,

where

�1 =

(
3

2
−1

−1
3−�2

2

)
, �2 =

(
3

2
−

1

2

−
1

2

2−�2

2

)
.

Note that for N = 2 and N = 3, we need to solve an integral over the domain (see (15)) to get E[Mu]. Although we cannot
derive the explicit form for the entire formula, this can be evaluated in applications with the help of numerical algorithms.

3.4. Isotropic unimodal mean function

We have calculated the explicit formulas assuming the mean function is a concave paraboloid. This is a very strong assumption.
However, in a general setting, where the unimodal mean function is rotationally symmetric of any shape, we can apply a multivariate
Taylor expansion at the peak and use the second-order approximation to estimate power. For example, suppose the shape of the
mean function is proportional to a rotationally symmetric Gaussian density

�(s) = �0 exp

(
−
‖s − s0‖2

2�2

)
, (20)

where s0 is the center of the mean function and � is the signal bandwidth. The Taylor expansion at the center is

�(s) = �0 −
�0

2�2
‖s − s0‖2 + o(‖s − s0‖2). (21)

When the domain size gets small, we neglect the remainder term, and use its quadratic approximation as the mean function. With
quadratic mean function, it becomes convenient to use compute E[Mu]. We will evaluate the performance of this approach for
different domain sizes in the simulation study.

4. Simulations

In Section 2 above, we discussed power approximation under different scenarios. We showed the factorial moment E[Mu(Mu−1)]

decays faster than E[Mu] under some circumstances so that we can use E[Mu] or adjusted E[Mu] to approximate power. In this
section, a simulation study is conducted to validate each scenario as well as visualize the power function, E[Mu], and adjusted
E[Mu]. Through simulation, we could also get a better sense of applying them to real data.

4.1. Paraboloidal mean function

We generate B = 100, 000 centered, unit-variance, smooth isotropic 2D Gaussian random fields over a grid of size 50 × 50
pixels as Z(s), each field obtained as the convolution of white Gaussian noise with a Gaussian kernel of standard deviation 5, and
normalized to have unit variance. For the mean function �(s), we use a concave paraboloid centered at s0 = (25, 25). The equation
of the paraboloid is

�(s) = �0 −
‖s − s0‖2

2�2
, (22)



Journal of Multivariate Analysis 204 (2024) 105346

8

Y. Zhao et al.

Table 1
2D simulation: default value of each parameter.

Parameter Default value

Rad(D) 10
� 7
�0 3

Fig. 1. 2D simulation: A single instance of the mean function �(s), the isotropic noise field Z(s) and their resulting sum X(s) = �(s) +Z(s).

where � controls the sharpness of the mean function. The smaller � is, the sharper the paraboloid will be. �0 controls the height of
the signal. To maintain the rotationally symmetric property of �(s), we take closed disks centered at s0 as domain D. The size of D
is measured by the radius Rad(D). The default value of each parameter is listed in Table 1 unless otherwise specified.

The first two panels of Fig. 1 display two instances of �(s) and Z(s) respectively. The third panel displays the resulting sum X(s)

which is calculated by the signal-plus-noise model.
In the simulation, we validate and visualize the scenarios presented above, and check the effect of different choices of parameters

on the power function, E[Mu] and adjusted E[Mu]. Four different scenarios are considered as we discussed in Section 2:

(i) Height equivariance
(ii) Small domain size Rad(D)
(iii) Large threshold u
(iv) Sharp signal (small �)

For each simulated random field, we record the height of its highest peak if there exists at least one, and then for any threshold
u, we calculate the empirical estimate of detection power (1) and E[Mu]:

F̂ (u) =
1

B

B1
i=1

1(# a peak in D with height > u for ith simulated sample), (23)

Ê[Mu] =
1

B

B1
i=1

# {peaks in D with height > u for ith simulated sample}. (24)

Fig. 2 displays simulated power, E[Mu] and adjusted E[Mu] curves under the four scenarios. The first panel is to validate Scenario
1 (height equivariance). As stipulated by Proposition 1, the power, E[Mu] and adjusted E[Mu] curves are parallel for different signal
height ℎ having other parameters remain the same. In the second panel, both the E[Mu] and adjusted E[Mu] curve are close to the
power curve under Scenario 2 (small domain) which indicates that for a smaller domain (quantified by Rad(D)), using E[Mu] and
adjusted E[Mu] to approximate power becomes more accurate as stipulated by Theorem 1. We can also find in all three panels that
when u becomes larger, the E[Mu] curve converges to the power curve as u increases, as stipulated by Theorem 2. The adjusted
E[Mu] curve also converges to the power curve but with a slower rate compared to E[Mu]. The third panel shows the power, E[Mu]

and adjusted E[Mu] curve all converge to the Gaussian CDF for sharp signal (small �), as stipulated by Theorem 3.

4.2. Constant mean function

When the mean function �(s) is constant, i.e., it does not depend on location s, X(s) reduces to a centered isotropic Gaussian
random field. Within the context of this paper, �(s) = 0 can be seen as the null hypothesis and the power function becomes the
probability of Type I error. We use the peak height distribution when �(s) = 0 [13] to decide the cutoff point such that the test
meets the nominal type I error. The simulation result when �(s) = 0 is displayed in Fig. 3.

The performance of Type I error approximation when the mean function is 0 is similar to what we find when the mean function is
quadratic (Scenario 4 is ignored since the shape parameter does not exist when the mean function is constant). The conclusion is that
under large u (which is guaranteed in order to control the Type I error) or small domain, we have good Type I error approximation.
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Fig. 2. 2D simulation: Simulated power (solid), E[Mu] (dotted) and adjusted E[Mu] (dashed) against the threshold u under four different scenarios (the large
threshold scenario is displayed in all three panels) when the mean function is quadratic. The ordered colors represent ordered values of parameters.

Fig. 3. 2D simulation: Simulated power (solid), E[Mu] (dotted) and adjusted E[Mu] (dashed) against the threshold u under three different scenarios (the large
threshold scenario is displayed in both panels, and the sharp signal scenario is ignored since the shape parameter does not exist here) when the mean function
is constant. The ordered colors represent ordered values of parameters.

4.3. Gaussian mean function

The simulation results under Gaussian mean are displayed in Fig. 4. For Scenarios 2 and 3, the results are consistent with

those under quadratic mean. For Scenario 1, since �0 controls both the signal height and sharpness, the power, E[Mu] and adjusted

E[Mu] are no longer equivariant in terms of �0. For Scenario 4, if we look at Fig. 4(c) with Fig. 4(d), it can be seen that as the

signal becomes sharper, the power, E[Mu] and adjusted E[Mu] curve converges to the Gaussian CDF only when the domain size

(quantified by Rad(D)) is small. In this case, the asymptotic curve is a mixture of Gaussian CDF and E[Mu] under constant mean.

This is due to the shape of Gaussian density as it converges to 0 if we expand the domain.
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Fig. 4. 2D simulation: Simulated power (solid), E[Mu] (dotted) and adjusted E[Mu] (dashed) against the threshold u under four different scenarios (the large
threshold scenario is displayed in all four panels, and the sharp signal scenario is displayed for small and large domain sizes) when the mean function is Gaussian.
The ordered colors represent ordered values of parameters.

In conclusion, for Gaussian mean function, we recommend applying our method to approximate power only when the domain
size is small.

5. Estimation from data

To use our power approximation formula in real peak detection problems, we need to estimate the spatial covariance function of
the noise as well as the mean function from the data. In this section, we demonstrate the 3D application setting and how to estimate
the noise spatial covariance function and the mean function. Consider an imaging dataset with n subjects, and let Yi(s) represent
the signal plus noise for subject i (i * {1,& , n})

Yi(s) = �(s) + �(s)"i(s),

where s = (s1, s2, s3)
⊤ * R

3, the signal �(s), standard deviation �(s) and noise "(s) are assumed to be smooth C3 functions. If we
compute the standardized mean of all n subjects, we will get a standardized random field

X(s) = Ȳ (s)∕SE(Ȳ (s)) =
√
n�(s)∕�(s) +

√
n"̄(s), (25)

where Ȳ (s) and "̄(s) are the mean of Yi(s) and "i(s) over all subjects. This standardized random field X(s) has constant standard
deviation of 1. We can treat

√
n�(s)∕�(s) as the new signal and

√
n"̄(s) as the new noise of the standardized field. Let �(s) =√

n�(s)∕�(s) and Z(s) =
√
n"̄(s). We propose using the following method to estimate the new signal and noise.

5.1. Estimation of the noise spatial covariance function

We consider the noise Z(s) to be constructed by convolving Gaussian white noise with a kernel:

Z(s) = +
RN

K(t − s)dB(t), (26)

where K(ç) is a N dimensional kernel function, and dB(s) is Gaussian white noise. Assume that the kernel is rotationally symmetric
so that the noise Z(s) is isotropic. Under model (26), we would be able to simulate the noise if we were able to estimate the kernel
function from the data.
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It can be shown that the autocorrelation of Z(s) is the convolution of the kernel with itself:

Cor(Z(s), Z(s2)) = +
RN

K(t − s)K(t − s2)dt = +
RN

K(t − (s − s2))K(t)dt.

By the convolution theorem, convolution in the original domain equals point-wise multiplication in the Fourier-transformed
domain. Thus the kernel function can be estimated empirically using the following method:

(i) Determine a location s0 of interest (for example, center of the peak), and calculate the empirical correlation vectors between
Y (s0) and Y (s) where s lies on the three orthogonal axes centered at s0, and belongs to a subdomain of interest.

(ii) Take the average of the three estimated correlation vectors (forcing the noise to be isotropic) and perform Fourier transform.
(iii) Take the square root of the Fourier coefficients, then the estimated kernel function can be obtained by performing the inverse

Fourier transform.

5.2. Estimation of the mean function

Our explicit formulas are derived assuming the Hessian of the mean function is a constant times the identity matrix. Therefore,
we aim to find a rotationally symmetric paraboloid �̂(s) that mimics the shape of the real mean function:

�(s) = �0 + �1‖s‖2 + (�2, �3, �4) ç s, (27)

where the dot represents the vector inner product in R
3. Note that all the quadratic terms share the same coefficient which is due

to the rotational symmetry. To estimate (27), we fit a linear regression using all X(s) within the subdomain as outcome. We do not
consider other models because looking for the best model to estimate the mean is not the main focus of this paper and our method
works no matter what type of model is used as long as the shape of the fitted curve meets our requirements.

6. A 3D real data example

As an application, we illustrate the methods in a group analysis of fMRI data from the Human Connectome Project (HCP) [14].
The data consists of the 2-back vs 0-back working memory contrast [17] from 80 unrelated subjects and is used here to get realistic
3D signal and noise parameters from which to do 3D simulations as well as evaluate the performance of our formulas in power
approximation. For each subject, the size of the fMRI image is 91 × 109 × 91 voxels. The mean and standard deviation of the
data are displayed in Figs. 5(a) and 5(b). Regions like the dorsal and ventral prefrontal cortex are activated in the contrast [17] as
demonstrated by the standardized mean in Fig. 5(c).

6.1. Data preprocessing

Gaussian kernel smoothing is applied to the dataset to make the mean function unimodal around the peak and increase the
signal-to-noise ratio. The standard deviation of the smoothing kernel we use in this example is 1 voxel which translates to full
width at half maximum (FWHM) being around 2.235. It is obvious from Fig. 5(b) that the standard deviation of the noise is not a
constant for different locations, thus we use the transformation described in Section 5 to standardize the smoothed data before the
analysis. The standardized mean of the smoothed data X(s) is displayed in Fig. 5(c).

6.2. Estimation of the autocorrelation and mean functions

After standardizing the data, our next step is to estimate the mean and kernel functions using the methods described in Section 5.
Here a 15 × 15 × 15 subdomain (the red box in Fig. 5(c)) around the peak is taken to estimate the kernel. Since we assume the
noise to be isotropic, the correlation around the peak is supposed to be the same along any dimension. However, this is not always
true in real data. To tackle this, we construct an isotropic kernel that closely matches the observed kernel function derived from the
data. This is achieved through the following steps. For each of the three dimensions, we first save the correlation Cor(X(s), X(s0))

around the peak s0 as a vector and create a new vector by flipping the saved correlation vector. Then we take the mean of the
two vectors so that it is guaranteed to be symmetric. The empirical correlation after such symmetrization and the corresponding
isotropic kernel function are displayed in Fig. 6.

We consider two approaches to estimate the mean function, nonparametric and parametric. The nonparametric mean estimation
is obtained as a voxelwise average over subjects.

�̂(s) =
1

n

n1
i=1

Xi(s) = X̄(s). (28)

The parametric mean estimation is obtained by fitting a linear regression model (27) using all observed data X(s) within the
subdomain of size 6 × 6 × 6 (the blue box in Fig. 5(c)) as outcome and their corresponding location variables ‖s‖2, s as covariates.
The least square estimate of the mean is

�̂(s) = 13.03 − 0.26‖s‖2 + (0.20, 0.11, 0.39) ç s. (29)

We will compare the difference in simulated power and E[Mu] when the mean function is estimated by the nonparametric approach
(28) vs the parametric approach (29).
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Fig. 5. HCP data: Mean, standard deviation of the data, and standardized mean of the smoothed data (transverse sliced at the peak of the image along the
third dimension). The blue box represents the subdomain of the peak and the red box represents the subdomain we use to estimate the noise spatial covariance
function.

Fig. 6. Cross-section of the isotropic empirical correlation after symmetrization, and the estimated kernel from a subdomain of HCP data.

6.3. 3D simulation induced by data

We have done several simulation studies under a well-designed 2D setting where the formulas are supposed to work well, but

eventually, we want to apply the formulas to real-life data which is more complicated. Besides, in terms of fMRI data analysis, the

image is always 3D by nature. Considering all these factors, a 3D simulation study induced by real data is necessary to validate the

performance of the formulas under a more realistic setting.
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Fig. 7. 3D simulation induced by data: Simulated Peak height distribution under the null (zero mean) with different levels of effect sizes and threshold u.

In the previous two subsections, we have studied the signal and noise of the HCP data. For the simulation, we would like to
generate 3D images using the estimated mean and kernel function. The noise field is generated by convolving the estimated kernel
(displayed in Fig. 6) and Gaussian white noise. For each simulation setting, 10,000 such noise fields are generated.

The signal from the standardized data is very strong (see Fig. 5(c)). For illustrative purposes, we choose to weaken the signal
by scaling down the estimated mean function (29) while maintaining the same shape. Here signal strength is measured by effect
size, and the amount of scaling is determined by different levels of effect size. In traditional t-test or z-test, Cohen’s d values of 0.2,
0.5, and 0.8 (corresponding to 0.58th, 0.69th and 0.79th quantiles of the standard Gaussian distribution) are considered as small,
medium, and large effect sizes [18]. The peak height distribution under the null hypothesis (zero mean function) is displayed in
Fig. 7, and does not follow a Gaussian distribution. Therefore, we take 0.58th, 0.69th, and 0.79th quantile of the null distribution
minus the mean as small (0.16), medium (0.40), and large (0.65) effect size (see the black dash-dot lines in Fig. 7). For simplicity,
we see the peak height of the mean function as effect size in this simulation. However, this is not the most accurate way of defining
effect size in the peak detection setting. More details will be discussed in 7.2. The threshold u for peak detection is chosen as the
0.99 th quantile of the peak height distribution under the null (H 3.42) according to Cheng and Schwartzman [4] (see the red dashed
line in Fig. 7).

Similar to the 2D simulation, the search domain D is assumed to be a sphere centered at the true peak, and we use radius of D to
control the domain size. Signal sharpness is fixed since it is estimated from the data. The empirical power and E[Mu] are computed
using (23) and (24).

To derive the explicit formulas for E[Mu], we assume the mean function to be a rotationally symmetric paraboloid, and this
assumption might cause some bias in applications. In Fig. 8, we demonstrate the differences in simulated power and E[Mu] when
the mean function is estimated by the nonparametric approach (28) vs the parametric approach (29). It can be observed that the
quadratic approximation only has a small impact on power and E[Mu] in this example. In Fig. 9, we validate the theoretical formula
for E[Mu] (15) and adjusted E[Mu]. As we can see, the theoretical curve for E[Mu] and adjusted E[Mu] closely mirrors the empirical
curve. The figure also shows that the power approximation using E[Mu] is accurate for large u as stipulated by Theorem 2. Power
curves using three different effect sizes, and comparisons between large and small domain sizes are displayed in Fig. 10. We can
see from the figure that E[Mu] performs quite well with small sample sizes and E[Mu]adj performs better than E[Mu] with large
sample sizes. When the domain size becomes smaller, we observe an improved power approximation performance from E[Mu],
as stipulated by Theorem 1. We also use 3D simulation to compare the performance of our power approximation method versus
the method proposed in Durnez et al. [11]. Fig. 10 demonstrates that our method outperforms the power approximation method
proposed in Durnez et al. [11] which overly underestimates power except when the sample size is large.

7. Discussion

7.1. Explicit formulas and approximations

Calculating power for peak detection (1) has been a difficult problem in random field theory due to the lack of formula that
can compute it directly. In this paper, we have discussed the rationale of using E[Mu] and E[Mu]adj to approximate peak detection
power under different scenarios (Section 2.4) and derived formulas to compute E[Mu] assuming isotropy. Isotropy is assumed so
that we are able to use the GOI matrix [13] as a tool to calculate E[Mu] via the Kac–Rice formula.

Assuming the mean function to be a rotationally symmetric paraboloid, we further simplified the formula and defined the
expectation with respect to the GOI matrix as H(x̃) (14). We showed explicit formulas for H(x̃) when N * {1, 2, 3} by applying
the probability density function for the eigenvalues of GOI matrices. Then E[Mu] can be calculated by plugging H(x̃) to (15). The
integration in (15), however, cannot be evaluated explicitly. In practice, we may evaluate it with numerical integration tools. For
higher dimensions (N > 3), it remains difficult to get an explicit form of H(x̃) due to the fact inferred by Propositions 2, 3 and 4
that the integration becomes extremely complicated as N increases.
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Fig. 8. 3D simulation induced by data (Rad(D) = 3, medium effect size): Simulated power (solid), E[Mu] (dotted) and adjusted E[Mu] (dashed) against the
threshold u when the mean function is obtained from raw data vs quadratic estimation (29). The red curves represent the raw data, and the blue curves
represent the quadratic estimation.

Fig. 9. 3D Simulation induced by data (Rad(D) = 6, medium effect size): Simulated (solid) vs theoretical (dotted) E[Mu] and adjusted E[Mu] against the threshold
u. The power curve is provided for reference.

7.2. Effect size

We want to emphasize that the power depends on both the signal strength parameter �0 and shape parameter �. In a traditional
z-test or t-test which tests a single null hypothesis that the mean value is equal to 0, the detection power depends only on a single
parameter we call effect size. For our use case, the test is conditional on the point being a local maximum. Applying a simple z-test
or t-test, one could reject the null hypothesis if the peak height �0 exceeds the pre-specified threshold. This approach is not accurate
since the peak height does not follow a Gaussian or t distribution. To address this, the threshold can be determined by the null
distribution of peak height [13] to control the type I error at a nominal level. However, power calculation based on the test over
peak height is still biased since the true effect size depends both on the signal height and curvature. The height of the peak affects
the likelihood of exceeding the threshold and the curvature affects the likelihood of existing such peak in the domain. It follows
that a sharp and high peak is easier to detect compared to a flat and low peak, leading to a larger detection power.

For an interpretation of the parameter � = �22∕(−2�2), we consider two types of mean function: paraboloid and Gaussian. Suppose
the noise is the result of the convolution of white noise with a Gaussian kernel with spatial standard deviation � resulting in the
covariance function with �(r) = exp(−r∕(2�2)) as specified in Section 3.1. This is the same noise as we simulated in Section 5.
When the mean function is paraboloid, i.e., �(s) = −‖s‖2∕(2�2) + �0 as in (22), we obtain �22 = −1∕�2 and �2 = −1∕(2�2), yielding
� = �22∕(−2�2) = −�2∕�2. Thus, � is a shape parameter representing the relative sharpness of the mean function with respect to the
curvature of the noise. When the mean function is Gaussian, consider �(s) = a exp(−‖s‖2∕(2�2)). This expression is obtained, for
example, if the signal is the result of the convolution of a delta function with a Gaussian kernel with spatial standard deviation �.
We obtain �22 = −a∕�2 and �2 = −1∕(2�2), yielding � = �22∕(−2�2) = −a�2∕�2. Thus, � is the height of the signal a, scaled by the ratio



Journal of Multivariate Analysis 204 (2024) 105346

15

Y. Zhao et al.

Fig. 10. 3D Simulation induced by data: Simulated power (solid), E[Mu] (dotted) and adjusted E[Mu] (dashed) against the threshold u when the signal has
small, medium, and large effect sizes, and comparisons between large and small domain sizes. The green curve represents the simulated power from the method
proposed in Durnez et al. [11] for performance comparison.

Fig. 11. 2D simulation (u = 3.92 and Rad(D) = 10): Power and E[Mu] for different �0 and �. Since �0 and � together determine the effect size, these can be
interpreted as the plot of power and E[Mu] against the effect size.

of the spatial extent of the noise and signal filters. In both cases, the parameter �, and thus the power, are invariant under isotropic
scaling of the domain, in a similar fashion to the peak height distribution under the null hypothesis [19].

Fig. 11 illustrates how �0 and � affect power and E[Mu] in the 2D simulation described in Section 4. As we have explained, �0
and � together determine the effect size. Although deriving an explicit form of effect size as a function of �0 and � is difficult, we are
able to roughly show how the two parameters relate to power. �0 which can be seen as signal-to-noise ratio (SNR) plays a major role.
Having � stay the same, the power monotonically increases with respect to �0. On the other hand, power monotonically decreases
with respect to � having �0 stays the same. In this simulation example, the impact of �0 on power is about 10 times stronger than
� if we fit a linear model of power using �0 and �. We can also observe from the figure that the effect of � on power is stronger for
large �0 compared to that for small �0.

7.3. Application to data

Compared to simpler power approximation approaches which typically ignore the spatial correlation, our RFT-based method fully
accounts for the spatial structure of the data. We demonstrate through simulation that our power approximation method outperforms
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the one proposed in Durnez et al. [11] that uses the truncated normal distribution to approximate the distribution of peak height
in settings that closely mirror real-world conditions.

To use our formula in practice, one needs to assume the peak to be a certain type such as paraboloid or Gaussian. While specific,
this assumption is not too restrictive for the data we have analyzed. Fig. 8 shows that the estimated power using the formula under
a paraboloidal assumption is not far from the power using the true peak shape.

Regarding the conjecture of E[Mu]adj being a lower bound when there exists at least one local maximum in the domain D, it
remains difficult to prove in general, but as we showed in the real data example, it seems to be correct in practice. When it comes
to a real-life problem, we can take both E[Mu] and the E[Mu]adj into consideration to get a better understanding of the true sample
size. As demonstrated in simulation, we recommend E[Mu] when the sample size is small, and considering E[Mu]adj when the sample
size is large. E[Mu]adj also gives a more conservative estimate of power compared to E[Mu] which is useful to guarantee that the
test is powerful enough when we design future studies. Because of its difficulty, we leave further study of E[Mu]adj for future work.
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Appendix. Proofs

Proof of Proposition 1. By the definitions, it is easy to show Mu−�0
= M̃u, and E[Mu−�0

] = E[M̃u]. Considering the definition of
power, we have

F̃ (u) = P [M̃u e 1] = P [Mu−�0
e 1] = F (u − �0). ¦

Proof of Theorem 1. The proof is based on the proof of Lemma 3 in Piterbarg [20] and Lemma 4.1 in Cheng and Schwartzman
[12].

E[Mu(D�)(Mu(D�) − 1)] = +D� +D� +
@

u +
@

u

E

[
| det ∇2X(s)‖ det ∇2X(t)‖X(s) = x1, X(t) = x2

∇X(s) = ∇X(t) = 0

]

PX(s),X(t),∇X(s),∇X(t)(x1, x2, 0, 0) dx1 dx2 ds dt.

(30)

Let

E1(s, t) = E

[
| det ∇2X(s)‖ det ∇2X(t)‖ X(s) = x

∇X(s) = ∇X(t) = 0

]
,

and replace one of the integration limits in (30) by −@, we have

E[Mu(D�)(Mu(D�) − 1)] d +D� +D� P∇X(s),∇X(t)(0, 0)ds dt+
@

u

E1(s, t)PX(s) (x E ∇X(s) = ∇X(t) = 0) dx.

Then we can take the Taylor expansion

∇X(t) = ∇X(s) + ∇2X(s)(t − s) + ‖t − s‖1+
Ys,t,
where Ys,t = (Y 1

s,t,& , Y Ns,t )
⊤ is a Gaussian vector field and 
 is a positive constant. Note that the determinant of ∇2X(s) is equal to

the determinant of

⎛⎜⎜⎜⎜⎝

1 −(t1 − s1) & −(tN − sN )

0

Ď ∇2X(s)

0

⎞⎟⎟⎟⎟⎠
. (31)
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For i * {2,& , N + 1}, multiply the ith column of this matrix by (ti − si)∕‖t − s‖2, take the sum of all such columns and add the
result to the first column. Since ∇X(s) = ∇X(t) = 0, we can derive ∇2X(s)(t− s) = −‖t− s‖1+
Ys,t, and obtain the matrix below with
the same determinant as (31),

⎛⎜⎜⎜⎜⎝

0 −(t1 − s1) & −(tN − sN )

−‖t − s‖−1+
Y 1
s,t

Ď ∇2X(s)

−‖t − s‖−1+
Y Ns,t

⎞⎟⎟⎟⎟⎠
.

Let

As,t =

⎛⎜⎜⎜⎜⎝

0 −(t1 − s1)∕‖t − s‖ & −(tN − sN )∕‖t − s‖
Y 1
s,t

Ď ∇2X(s)

Y Ns,t

⎞⎟⎟⎟⎟⎠
.

We have | det ∇2X(s)| = ‖t − s‖
 | det As,t|, implying E1(s, t) = ‖t − s‖
E2(s, t), where

E2(s, t) = E

[
| det As,t‖ det ∇2X(t)‖ X(s) = x,∇X(s) = 0

∇2X(s)(t − s) = −‖t − s‖1+
Ys,t
]
.

Using the inequality of arithmetic and geometric means [20], we can bound the determinant

| det ∇2X(t)| d N2N−2
1
i,j

|Xij (t)|N , | det As,t| d (N + 1)2N
1
i,j

|aij |N+1,

where aij is the i, j entry of As,t. Apply the inequality again

| det ∇2X(t)|| det As,t| d 1

2
N2N−2(N + 1)2N+1

(1
i,j

|Xij (t)|2N +
1
i,j

|aij |2N+2

)
. (32)

For any Gaussian variable X and integer N e 0, the following inequality holds

E[X2N ] d 22N (E[X]2N + CNVar(X)2N ), (33)

where CN is a constant depending on N . Next, we can focus on the conditional expectation and conditional variance of Xij (t) and
Ys,t.

Using the fact that the conditional variance of a Gaussian variable is less or equal to the unconditional variance, we can use (33)
to bound the conditional expectation of |Xij (t)|2N and |aij |2N+2. By Assumptions 1 and 2, Xij (t) and Ys,t have finite first and second
moments. Therefore, the conditional expectation of the right-hand side of (32) is bounded above by some constant.

Summarizing the results above,

sup
s,t*D� ,s�t

|E2(s, t)| d C1

for some constant C1 > 0 and

E1(s, t) d ‖t − s‖
E2(s, t) d C1‖t − s‖
 .
Combine the results above and with a fixed threshold u

+
@

u

E1(s, t)PX(s) (x E ∇X(s) = ∇X(t) = 0) dx d C1‖t − s‖
 +
@

u

PX(s) (x E ∇X(s) = ∇X(t) = 0) dx

= C1‖t − s‖
 +
@

u

exp(−(Ax − B)2)dx = C2‖t − s‖
 ,
for some constant A, B, and C2 > 0.

Next, by the proof of Lemma 4.1 in Cheng and Schwartzman [12]

p∇X(s),∇X(t)(0, 0) d C3‖t − s‖−N ,
for some constant C3 > 0.

Therefore, there exists C4 such that

E[Mu(D�)(Mu(D�) − 1)] d C4 +D� +D�
1

‖t − s‖N−

dt ds = o(�N ).

For E[Mu(D�)], by Kac–Rice formula in Adler and Taylor [21]

E[Mu(D�)] = +D� p∇X(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds.

Denote the integrand by g(s). The function g(s) is continuous and positive over the non-empty domain D� . Thus inf s*D� g(s) e
g0 > 0, implying

E[Mu(D�)] e g0�
N .
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Then (7) is an immediate consequence of (5).
For E[M−@(D�)], by Kac–Rice formula

E[M−@(D�)] = +D� p∇X(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}|∇X(s) = 0

]
ds.

The integrand is also continuous and positive over the domain D� indicating E[M−@(D�)] = o(1) as � ³ 0. Thus, as � ³ 0, we have

E[Mu(D�)]adj = E[Mu(D�)]∕max(1,E[M−@(D�)]) = E[Mu(D�)]∕max(1, o(1)) = E[Mu(D�)]. ¦

Proof of Theorem 2. By lemma 3 of Piterbarg [20], as u ³ @, the factorial moment is super-exponentially small. That means
# ! > 0 such that

E[Mu(Mu − 1)] = o

(
e
−
u2

2
−!u2

)
.

Also, by (14.0.13) of Adler and Taylor [21], as u ³ @, # C > 0 such that

E[Mu] e P[Mu e 1] = F (u) e P[supX(s) e u] e CuN−1e
−
u2

2 .

Thus, the factorial moment decays exponentially faster than E[Mu]. Combining the above two results,

E[Mu(Mu − 1)]

E[Mu]
= o

⎛
⎜⎜⎝
e
−
u2

2
−!u2

CuN−1e
−
u2

2

⎞⎟⎟⎠
= o(e−!u

2
).

Using (5) and the results above, we have

E[Mu] − F (u) d E[Mu(Mu − 1)] = E[Mu]o(e
−!u2 ). ¦

Proof of Theorem 3. By lemma A.1 of Cheng and Schwartzman [4], as a³ @

P(M−@ = 1) e 1 − O(e−Ca
2
),

where C > 0 is some constant. Therefore M−@

p
³ 1.

SinceMu dM−@ and both of them only take non-negative integer values, |Mu(Mu − 1)| and |M−@(M−@ − 1)| are bounded above
by |M(M − 1)| where M is the number of critical points of the random field X. Apply Kac–Rice formula

E[M(M − 1)] = +D +D E
[| det ∇2X(s)|| det ∇2X(t)| E ∇X(s) = ∇X(t) = 0

]
P∇X(s),∇X(t)(0, 0)ds dt.

Denote the integrand by g(s, t, a). The function g(s, t, a) is continuous and positive over the domain D and M(M − 1)
p
³ 0 as

a³ @. Thus there exists g0 > 0 such that E[M(M − 1)] d g0. Then by dominated convergence theorem

E[Mu(Mu − 1)] ³ 0,

as a ³ @. Since M−@

p
³ 1, the adjusted E[Mu]

E[Mu]adj = E[Mu] max(1,E[M−@]) = E[Mu](1 + o(1)) = E[Mu] + o(1).

To calculate E[Mu], apply Kac–Rice formula

E[Mu] =+D p∇X(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=+D p∇X(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

=+D
1

(2�)N∕2
√
det(�)

exp(−a2(∇ℎ(s))⊤�−1∇ℎ(s)∕2)E
[| det(∇2Z(s) + a∇2ℎ(s))|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds, (34)

where � is the covariance matrix of ∇ℎ(s). Let f (s) = (∇ℎ(s))⊤�−1∇ℎ(s)∕2 which attains its minimum 0 only at s0. Similar to the
proof of A.4 in Cheng and Schwartzman [4], as a ³ @, (34) can be approximated by applying Laplace’s method

E[Mu] =
det(a∇2ℎ(s0))

(2�)N∕2
√
det(�)

(
(2�)N det(�)

a2N det(∇2ℎ(s0))

)1∕2

�(�0 − u) + O(a
−2) = �(�0 − u) + O(a

−2).

This finishes the proof. ¦

Proof of Lemma 3. Part (i) is a direct consequence of Lemma 2. For part (ii), note that (∇2X(s)|X(s) = x) is equivalent to
(∇2Z(s)|Z(s) = x − �(s)) + ∇2�(s), and the result follows immediately from Lemma 2. ¦
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Proof of Theorem 4. By the Kac–Rice formula and Lemma 1

E[Mu] = +D p∇X(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

= +D p∇Z(s)+∇�(s)(0)E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

= +D
1

(2�)N∕2(−2�2)N∕2
exp

(‖∇�(s)‖2
4�2

)
E
[| det ∇2X(s)|1{∇2X(s)≺0}1{X(s)>u}|∇X(s) = 0

]
ds

= +D
(8�222)N∕2

(2�)N∕2(−2�2)N∕2
exp

(‖∇�(s)‖2
4�2

)
+

@

u

� (x − �(s))E
[| det(Matrix(s))|1{Matrix(s)≺0}

]
dx ds

= +D
(

2�22

−��2

)N∕2

exp

(‖∇�(s)‖2
4�2

)
+

@

u

� (x − �(s))E
[| det(Matrix(s))|1{Matrix(s)≺0}

]
dx ds

=

(
2�22

−��2

)N∕2

+D exp

(‖∇�(s)‖2
4�2

)
+

@

u

� (x − �(s))E
[| det(Matrix(s))|1{Matrix(s)≺0}

]
dx ds.

Next, we show the derivation from the third to the fourth line in the equation above. Since we assume ∇2�(s) is a non-singular matrix
at all critical points, then there exists an orthonormal matrix, denoted by A(s), such that A(s)⊤∇2�(s)A(s) = diag{�22

1
(s), �22

2
,& , �22

N
(s)},

where �22
1

d ď d �22
N
(s) are ordered eigenvalues of ∇2�(s). On the other hand, GOI matrices are invariant under orthonormal

transformations. By Lemma 3, the conditional expectation E[| det(∇2X(s))|1{∇2X(s)≺0}|X(s) = x] is therefore

E

[||||||
det

(√
8�22

[
G −

�(x − �(s))√
2

IN

]
+ ∇2�(s)

)||||||
1{Matrix(s)≺0}

]

= E

[||||||
det

(√
8�22

[
G −

�(x − �(s))√
2

IN

]
+ A(s)⊤∇2�(s)A(s)

)||||||
1{Matrix(s)≺0}

]

= (
√
8�22)NE

[||||||
det

([
G −

�(x − �(s))√
2

IN

]
+ A(s)⊤∇2�(s)A(s)∕

√
8�22

)||||||
1{Matrix(s)≺0}

]

= (
√
8�22)NE

[||||||
det

(
G −

�(x − �(s))√
2

IN + diag{�22
1
(s),& , �22

N
(s)}∕

√
8�22

)||||||
1{Matrix(s)≺0}

]
. ¦

Proof of Proposition 2. Since we assume that Z(s) is stationary, Z2(s) is independent of Z(s) and Z22(s), and �2 = −Var(Z2(s))∕2 =

E[Z(s)Z22(s)]∕2 and �22 = Var(Z22(s))∕12 do not depend on s. Therefore,

Var(X(s)) = 1, Var(X2(s)) = −Cov(X(s)X22(s)) = −2�2, Var(X22(s)) = 12�22.

Note that, by the formula of conditional Gaussian distributions,

X22(s)|X(s) = x < N(�22(s) + 2�2(x − �(s)), 12�22 − 4�22).

By the Kac–Rice formula

E[Mu] = +D pX2(s)(0)E[|X22(s)|1{X(s)>u}1{X22(s)<0}|X2(s) = 0]ds

= +D pX2(s)(0)+
@

u

�(x − �(s))+
0

−@

(−x22)
1√

12�22 − 4�22
�

[
x22 − �22(s) − 2�2(x − �(s))√

12�22 − 4�22

]
dx22 dx ds

= +D pX2(s)(0)
√
12�22 − 4�22 +

@

u

�(x − �(s)) 

(
−2�2(x − �(s)) − �22(s)√

12�22 − 4�22

)
dx ds

= +D
1√
−2�2

�

(
�2(s)√
−2�2

)√
12�22 − 4�22 +

@

u

�(x − �(s)) 

(
−2�2(x − �(s)) − �22(s)√

12�22 − 4�22

)
dx ds

= +D
√
12�22 − 4�22√

−2�2
�

(
�2(s)√
−2�2

)
+

@

u

�(x − �(s)) 

(
−2�2(x − �(s)) − �22(s)√

12�22 − 4�22

)
dx ds.

The second to third line is due to the fact that

+
0

−@

(−x)
1

b
�
(
x + a

b

)
dx = +

0

−@

�
(
x + a

b

)
dx = b+

a∕b

−@

�(y)dy = b 
(
a

b

)
.

Recall the � (10) and � (13) parameters defined before. We can rewrite E[Mu] as

+D
√
−2�2(3 − �2)

�
�

(
�2(s)√
−2�2

)
+

@

u

�(x − �(s)) 

(
�[x − �(s) − �(s)]√

3 − �2

)
dx ds.

This finishes the proof. ¦



Journal of Multivariate Analysis 204 (2024) 105346

20

Y. Zhao et al.

Proof of Proposition 3. By Lemma 4 above with a = (�2 −1)∕(4−2�2) and b = �x̃∕
√
2, and Lemma 2.2 in Cheng and Schwartzman

[13],

E
N

GOI((1−�2)∕2)

[
N/
j=1

||||||
�j −

�x̃√
2

||||||
I

(
�N < −

�x̃√
2

)]

=
1

2
√
�(2 − �2) +R2

exp

(
−
1

2
(�2

1
+ �2

2
) +

1 − �2

4(2 − �2)
(�1 + �2)

2

)
(�2 − �1)

||||||
�1 −

�x̃√
2

||||||

||||||
�2 −

�x̃√
2

||||||
1
{�2<

�x̃√
2
}
d�1 d�2

=
1√

3 − �2
exp

(
−

�2x̃2

2(3 − �2)

)
�

(
�x̃√

(2 − �2)(3 − �2)

)
+
�2

2

(
x̃2 − 1

)
�

(
�x̃√
2 − �2

)
+
�
√
2 − �2x̃

2
√
2�

exp

(
−

�2x̃2

2(2 − �2)

)
.

This simplifies to (19). ¦

Proof of Proposition 4. This is a direct result of Lemma 5 above with a = 1 − �2 and b = �x̃∕
√
2. ¦
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