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Abstract

Motivation: Extensive research has uncovered the critical role of the human gut microbiome in various aspects of health, including metabolism,
nutrition, physiology, and immune function. Fecal microbiota is often used as a proxy for understanding the gut microbiome, but it represents
an aggregate view, overlooking spatial variations across different gastrointestinal (Gl) locations. Emerging studies with spatial microbiome data
collected from specific Gl regions offer a unique opportunity to better understand the spatial composition of the stool microbiome.

Results: We introduce Micro-DeMix, a mixture beta-multinomial model that deconvolutes the fecal microbiome at the compositional level by
integrating stool samples with spatial microbiome data. Micro-DeMix facilitates the comparison of microbial compositions across different
Gl regions within the stool microbiome through a hypothesis-testing framework. We demonstrate the effectiveness and efficiency of
Micro-DeMix using multiple simulated datasets and the inflammatory bowel disease data from the NIH Integrative Human Microbiome Project.

Availability and implementation: The R package is available at https://github.com/liuruogian/MicroDemix.

1 Introduction

The human gut microbiome and its role in host health have
been the subject of extensive research, establishing its in-
volvement in human metabolism (Devaraj et al. 2013), nutri-
tion (Zhang 2022), physiology (Andoh 2016), and immune
function (Wu and Wu 2012, Bull and Plummer 2014).
Recent studies have also demonstrated the association be-
tween the gut microbiota and the emergence of obesity (Aoun
et al. 2020), metabolic syndrome and the onset of type 2 dia-
betes (Devaraj et al. 2013, Iatcu et al. 2021). Moreover, al-
tered composition and function of the gut microbiota has
been found associated with chronic diseases (Pellanda et al.
2021) ranging from gastrointestinal (GI) inflammatory (Shan
et al. 2022) and metabolic conditions to neurological (Cryan
et al. 2020), cardiovascular (Tang et al. 2017), and respira-
tory illnesses (Durack and Lynch 2019, Chunxi et al. 2020).
Most scientific findings regarding the gut microbiome have
been derived from stool samples. However, it is increasingly rec-
ognized that the stool microbiome offers only an aggregate
view, overlooking the spatial heterogeneity of the microbiome
across different GI locations (Ahn et al. 2023, Levitan et al.
2023). Recent studies have revealed significant variations in mi-
crobial composition and function along distinct segments of the
GI tract (Leite et al. 2020). For instance, the small intestine is
dominated by Lactobacillaceae and Enterobacteriaceae,
whereas the colon harbors species from families such as

Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae,
and Ruminococcaceae (Donaldson et al. 2016). Furthermore,
spatial metagenomics applied to the mouse colonic microbiome
has revealed a heterogeneous distribution of taxa throughout
the gut (Sheth ez al. 2019). Thus, understanding the spatial com-
position of the stool microbiome is essential for enhancing the
biological relevance of stool-based microbiome analyses, allow-
ing for more accurate interpretations of its role in health and
disease. Although spatial microbiome data from specific GI
locations remain relatively rare due to the invasive nature of
sample collection, they offer a unique opportunity to deconvo-
lute stool samples, thereby providing a deeper understanding of
the gut microbiome’s spatial heterogeneity.

We develop Micro-DeMix, a novel statistical model
designed to deconvolute the fecal microbiome into specific GI
locations by integrating spatial microbiome data. The develop-
ment of Micro-DeMix was motivated by data from the inflam-
matory bowel disease (IBD) Multiomics Database (IBDMDB)
project, part of the NIH Integrative Human Microbiome
Project (iHMP). This project followed 132 individuals and col-
lected 17835 stool samples and 651 intestinal biopsies over time
(Integrative HMP et al. 2019). The integrated nature of this
dataset, combining microbial profiles from both stool samples
and distinct GI locations, highlighted the need for a tool like
Micro-DeMix to effectively analyze and integrate these diverse
sources of microbiome data.
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Micro-DeMix is a mixture beta-multinomial model devel-
oped to deconvolute the fecal microbiome into specific GI
locations. The multinomial component effectively handles the
compositional nature of microbiome data by jointly modeling
microbial proportions, while the beta component adjusts for
sample heterogeneity, incorporating key demographic and
clinical variables that may influence the composition of the
fecal microbiome. We introduce two estimation procedures
for the parameters in the Micro-DeMix model. The first pro-
cedure directly maximizes the likelihood of the observed mi-
crobial counts, offering computational efficiency. This
approach is also equipped with an efficient hypothesis-testing
framework for comparing microbial compositions from dif-
ferent GI regions within the mixed stool sample based on the
asymptotic null distribution. The second procedure is based
on the Expectation-Maximization (EM) algorithm, which
provides greater numerical robustness than the first method.
It is particularly useful for scenarios with extremely rare
microbes, where the first procedure may encounter limita-
tions, although it is computationally more intensive. This EM
approach includes a permutation test to identify differentially
abundant microbial groups across GI locations. Unlike con-
ventional differential abundance (DA) tools, which compare
microbial abundances between predefined groups (e.g. dis-
ease versus healthy or across body sites), Micro-DeMix is
specifically designed to detect compositional changes within
a mixed population (e.g. the stool sample), where the groups
are not prespecified and must be statistically estimated. This
enables Micro-DeMix to uncover group differences and spa-
tial heterogeneity within the stool microbiome by integrating
spatial microbiome data. Traditional DA tools, which rely on
predefined group distinctions, are less suited to detect these
types of within-sample variations. We demonstrate the effec-
tiveness of Micro-DeMix through extensive simulation stud-
ies and an application to IBD cohorts, where we integrate
stool microbiome data with rectum microbiome data.

The rest of the paper is organized as follows. In Section 2,
we describe the Micro-DeMix model, develop two
maximume-likelihood-based estimation procedures, and pro-
pose hypothesis-testing frameworks for detecting differen-
tially abundant microbes between GI locations. In Section 3,
we conduct simulation studies to demonstrate the effective-
ness of Micro-DeMix in terms of the estimation accuracy and
the power of the hypothesis testing method. In Section 4, we
apply our method to the IBD microbiome data from iHMP to
elucidate the composition of fecal microbiome in IBD
patients. We close with a discussion of our method in
Section 5.

2 Materials and methods
2.1 The Micro-DeMix model

In this section, we present a beta-multinomial framework for
modeling microbial abundance in stool samples. Our model
considers a multivariate extension of the beta-binomial
model proposed in a recent research (Martin et al. 2020)
which models individual taxa separately. As shown later,
while this multivariate extension allows for joint modeling of
multiple microbes, it also brings several new statistical and
computational challenges.

For ease of presentation and biological relevance, we assume
the reference spatial microbiome data are collected at the

Liu et al.

rectum. However, the methodology proposed below can seam-
lessly extend to other segments of the GI tract, including the il-
eum, jejunum, colon, and beyond, given the data availability.

Let y;gr) denotes the observed absolute abundance for taxon g in
the jth subject of the reference rectum microbiome data for

j=1,...,87. Let y;, denotes the observed absolute abundance
for taxon g in the ith stool samples for g=1,...,G and
i=1,...,S. For all subjects, we also collect covariate informa-
tion x;r) andx; forj=1,...,8” andi=1,...,S. We model the

stool microbial abundance y; = (y;1,...,yic)  using a multino-
mial model y;|p; ~ Multinomial(N;,p;), where N; = chzl Vig

and p;, = (pi1,... .pic)" is the underlying true microbial propor-
tions. We are particularly interested in the spatial composition
of the stool microbiome. Acknowledging that the stool micro-
biome consists of microbes from rectum and other GI locations
(mostly, the small intestine), we consider

pig = mpy) + (1 -m)p{; (1)

here, z; € (0,1) denotes the latent proportion of the rectal
microbiome in the ith stool sample; pg) and péo) denotes the
proportion of taxon g in the rectum and other GI locations,
respectively.

To allow #; to vary across individuals, we assume z; ~
Beta(a1 ;,a2 ;). Hence, we write the joint density function of
(Vig: m:) as

f(%’g>ﬂi\Pg)7PéO),a1,i,az,i) = ,H{”ng
- YiG!
ai-1 a;-1
oy T (1-m)
+ 1 — T g ¢+ N 007
( z)pg } B(al,iyal,i)
(2)

where B(ay ;, a;) = I'(a1 ) (a> )T (a1 ;+ az,;)

To capture the association between z; and the subjects’ char-
acteristics, we further link each x; with covariates x; through a
beta-regression model. With additional reparameterization

M
H; _aiquaz,,-’ (3)
¢; = a;i+az;, (4)
we consider
log<1 ) Po+x7 B, (5)
log(¢;) =70 +x/7. (6)

Some calculations yield that y; is the expected proportion of
the rectum microbiome in the ith stool sample, i.e. y; = E(x;),
and Var(m) =u;(1-p;)/(1+¢;), where ¢, is known as the
precision parameter.

Thus, our first goal is to estimate each pg and p ) to un-
derstand the spatial heterogeneity of the stool microbiome.
Then, we aim to identify microbial groups that are differen-
tially abundant between the rectum and other GI locations
with the stool sample. Below we will present two procedures
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for these two analyses, each with its own strengths for differ-
ent types of applications.

Remark 1. Under the proposed model, we derive the mean

and variance of yig:
aii
ayi+ay; aritaz

ai; 2
varon) =N 22 (020000 -0 42(607)')

2
al‘t al,zalz
7t 2
(a1i+azi)”  (aitaz) (a1i+az;i+1)

(=) w20~ () 0 (o))

2 G1idr
+ Nz( ) G2 )
AU (a1;+a) (a1 + a2+ 1)

al
E(yig) = N {Plz’) —— oy plo) (1 -

See derivations in the Supplementary Material.

2.2 Micro-DeMix-1
2.2.1 Estimation

The joint likelihood in Equation (2) involves x;, which is
unobserved. Thus, we calculate the log-likelihood of observ-

ing {yig:i=1,...,85¢g=1,...,G} in stool samples:
S 1
logL(8) = > Iog | flyie ml0)d. )
i=1 0
where 6 = 360, B.70,7) T, We estimate 6 in two steps.
We first estlmate pg using the reference rectum microbiome
data for g=1,...,G. Recall that y ) denotes the observed ab-

solute abundance for taxon g and sample iji=1,...,87 col-
lected from rectum. Let N\” denotes the sequencing depth for
the jth sample from rectum. We assume the absolute abun-
dance to follow a multinomial distribution

(r)

y\") ~ Multinomial(N\”, p"). (8)

Based on this model, we estimate pgl with the sample
proportions

(r)

S0 _ 2 9

py = (9)
2N

After replacing pl;l in Equation (7) by [ng, we estimate the

remaining parameters using an iterative procedure with the

main steps given in Algorithm 1.Specifically, in the mth itera-

tion, we obtain {péol}m by maximizing the objective function

(7) given {ﬁ07ﬂ,y0,y}m_l. Since the integral in Equation (7)
does not have a closed form, we used the Gauss-Legendre
quadrature (Golub and Welsch 1969) to approximate it.

Solving for {pé(’)}m is a constrained optimization problem be-
cause pl;’) €[0,1] and Z§:1 pif’) = 1. To address this problem,
we consider the parameterization

Algorithm 1. Estimating {plga),ﬁo,ﬂ,yo,y} for Micro-DeMix

Require: yj;, x;, an integer M, a small number ¢ (e.9. 6 = 0.001)
1: Initialize: {808,707} = {0.B.70,7}°
2:form=1,...,Mdo
3: Update {p(")} = argmaxlogL(#) as in (7) given
{Bo-B.10:7} = {BosBo 10,7}
4: Update {ﬂo,ﬂ,yo,y}m =argmaxlogL(@) as in (7) given
{p } {pg }m. Let Ly, denote the value of (7) at this step.
if |Ly— Lm-1| <o then
return 6 = {péO)nﬁO’ﬂa yO’y}m
7: end if
8: end for
9:return 6 = {p20)7ﬁ07ﬂ7 }/Ovy}M

() __ "
Py =—c——> (10)
¢ chzl e

where u, €R for g=1,...,G. With this reparametrization,
we first obtain {u,}"” using the Nelder—-Mead optlmlzatlon al-
gorithm from R package optimx and then calculate {p }
from {u,}" using Equation (10). Finally, given {pg 1 we
obtain the optimal set {$,,8,79,7}" using the Nelder—Mead
optimization algorithm by maximizing log-likelihood func-
tion (7). We repeat this iterative procedure until we achieve
convergence or reach the maximum number of iterations.

2.2.2 Hypothesis testing

The proposed Micro-DeMix framework also facilitates the
investigation of the biodiversity of the fecal microbiome by
detecting microbial groups that are differentially abundant in
rectum and other GI locations. Specifically, we consider a hy-
pothesis testing problem with Hy : p(® = p(), where p(©) and
p") are introduced in Section 2.1, representing the true pro-
portions of the microbes of interest in the rectum and other
GI locations, respectively.

Under Hy, we have |[p®©
lowing test statistic:

-p||, = 0, motivating the fol-

T=0"-p") " -p"), (11)

where p ) are maximum llkellhood estimators obtained from
Algorithm 1 i 1n Sect1on 2.2, and p ) is given in Equation (9).
Under Hy : pg pg , we can rewrite Equation (11) as

c (12)
2BV =B - p),
g=1
indicating that T is a function of f) ) —-p') and ﬁ °) - p©) un-

der Hy. Thus, finding the null dlstrlbutlon of T reduces to
finding the null distributions of p -p" and p -pl
Specifically, applying the central limit theorem (CLT) based
on model (8), we have
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4
NO@" -p") 5 Ne(0, V(p) (13)
where
pa-p)  -pp -p\"p¢
Vo) = -y Y=Y L —pY
o' -0dnd e (1-pd)

and N0 = ZISZ; N/(r). Also, under Hy, the joint density func-
tion in Equation (2) reduces to

f()’ig7 ”i|Pfgo>, aij,az;) =

G, H{p )P

nf;u— 1 (1 _ 77.'1')[12" -1
B(aij,a2;)

and the density function (2) becomes

figl) =

1 _ai-1 ay;—1
ve [ 71 (1 =m)™ _
%1!.. 'H{Pg ) J B(ai,a2,) i

As the integral of the beta density is 1, we have

f(y; |p<o)7ﬂli742i) - Lﬁ{p(o)}m.
R yiloyich o ¢

This indicates that under Hj, the proposed beta-multinomial
model in Section 2.1 reduces to a multinomial model.

Indeed, when p{” = p{, Var(y;) in Remark 1 simplifies to

N,péo> (1- péo)), which equals the variance of y;, under the mul-
tinomial model. Thus, under Hy, the maximum likelihood the-
ory (MLE) derived from the mixture beta-multinomial model is
equivalent to that derived from the multinomial model. Thus,
we can apply the CLT again and obtain

VNG = p) 4 NG (0, V(p)), (14)

where N = Zle N; is the total counts of all samples collected
from stool.

Assuming no overlapping between stool samples and rec-
tum samples, we establish the asymptotic distribution of T in
the following result.

Proposition 1. Let random vector (y;,y,) follow the
multivariate normal distribution

0 V(p") 0
Nog ;
0 0 V(p")
Suppose p =pt) and N®/N — K>0. Then
NT L g(yyy) as N — oo, where g(y,y,)=yy +

(1/K)y3y, = (2/VK)yy,.
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Algorithm 2. Simulation method of testing Hp : p© = p("

Require: yg) y,g7x, a Iarge integer B (e.g. B=10000)

1: Estlmatep ° and p ) as in Section 2.2.

2: Compute T as in (11) using p” and ")

3:forb=1,...,Bdo

4: Simulate vector vq, v, independently from
Ng(0, V(")) in (13) and (14).

5: Approximate p'” = p) and p'” - p(@ with vy /v/NT
and vz/\/N, respectively. Compute T asin(12).

6: end for

7: Calculate the p-value:

o1 1+ZB:1{Tb>T
P=17B =

b=1

8: return p

As a special case of Proposition 1, when K =1 or N = N,

we have NT ig(yhyz) =y!/y,+v,¥,-2y]{y,. Based on
Proposition 1, we develop a simulation-based algorithm for
calculating the p-value, as detailed in Algorithm 2.

2.3 Micro-DeMix-2: an EM approach

The proposed Micro-DeMix-1 procedure has strengths in easy
and efficient computation: its estimation component can be
implemented using standard optimization packages, and its
hypothesis-testing component runs quickly due to the use of an
asymptotic null distribution. However, it may have a limited
scope of applicability due to the numerical evaluation of the log-
likelihood in Equation (7). Specifically, based on Equation (2),
we know that when {mpg) +(1- Jr,-)péo)}y‘g is close to 0, which
can occur for rare microbes with extremely small proportions or
more common microbes with very large counts, Equation (7)
may be evaluated as negative infinity. This happens because, al-
though {n,-pg) +(1-m) pg)) 1 is technically not zero, it falls be-
low the smallest representable number in standard software.

To address this issue, instead of working with the marginal
density function of y;, in Equation (7), we develop a new esti-
mation procedure based on the joint density function of y;,
and z;, as shown in Equation (2). Specifically, the joint log-
likelihood is given by

lioine(8; Y, ) Zlogf v, milp", p) ari,a2,)
5 .
ZZ Vig log( ﬂlpg +(1 _”i)pé@)
=1 g=1

[5)

S
+ (a1 = 1)log(m) + > (a2 —1)log(1 - ;)

i i=1

'Flﬂ“ ¥

I
—-

log (B(a1,,42,)) + C,
(15)

where C is some constant, Y = (y,,...,ys) , and 7= (m1,
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Algorithm 3. Estimating {pf,"),ﬁo,ﬂ,yo,y}: an EM approach

Algorithm 4. Permutation method of testing Hp : p(® = p()

Require: yj;, x;, an integer K, an integer M, a small number ¢

(e.g. 6 =0.0001)

1: Initialize: {p(go),ﬂo,ﬂ,]/o,}’} = {DEJO)v:BOvﬂ?VO?y}O

2:fork=1,...,Kdo

3: (E-step) Generate a random sample ir,,f from the
conditional distribution of z given Y and %~ using the
Metropolis—Hastings (MH) algorithm. Approximate the condi-
tional expectation Ok( ) Elhoint (8, Y, m)|[0% "V y,:i=1,.... 8]
using Qx(0) = M= "M 150, Y77~!r75)),

4:  (M-step) Obtain 8X) by maximizing the objective
function Q,(8).

5. if Y [jo® “V|| <o then

6: return 0 = {p\” fo.B,70,7}*
7: endif

8: end for

9: return 6 = {péo)ﬁoyﬁ#o#}K

..,ms)". Thanks to the logarithm, Equation (15) is always well
defined, regardless of how small {ﬂ,-pg) +(1- zr,»)péo)}y 8
becomes. However, we cannot directly maximize Equation (15)
because the 7; values are not observed. To address this, we de-
velop an EM algorithm (Dempster et al. 1977) for estimating 6
based on Equation (15). We begin with an initial value 6. In
the kth E-step, we compute O(0) = E[lioin(0,Y,x)
|0,_1,y;:i=1,...,S], which is the conditional expectation of
lioine given y; :i=1,..., S and the values of @ from the previous
(k—1)th step for k> 1. Unfortunately, Q(0) does not have a
closed form Thus, we approximate (@) using
Qk( y=M"! Zm 1 lioine (0, Y,irgf)), where itg? is a random
sample from the conditional distribution of 7 given Y and 0, _ 1,
generated using the Metropolis-Hastings (MH) algorithm
(Hastings 1970). In the kth M-step, we then obtain @), by maxi-

mizing Qk(ﬂ) with existing optimization tools such as the
Nelder—Mead algorithm.  The final

( , p , ﬁo,ﬂ7y0, #)" is obtained by iterating the EM algo-
rithm between the E-step and M-step until convergence.Due to
the additional variation introduced by the EM algorithm,
Algorithm 2 is no longer suitable for generating p-values for
testing Hy : p'© = p") based on the EM estimates. We fix this
issue by developing a permutation-based procedure that works
seamlessly with the EM algorithm; see Algorithm 4. Recall that

estimate 0 =

yg) denotes the absolute abundance for taxon g in the jth sub-

ject of the rectum dataset and X/(-r) is the corresponding covari-

’y/('g )", we first randomly select S

7y_(Sry)’y17"'

stool microbiome dataset, with the remaining S, subjects form-
ing a permuted rectum microbiome dataset. We also obtain the
permuted covariates corresponding to the permuted stool sam-
ple. Next, we use the permuted rectum sample to estimate p(”)
and apply the EM algorithm to the permuted stool microbiome
data and covariates to obtain an estimate of @, denoted by

A _($( ) p A ; T

operm - (pperm7ppermaﬁo,permvﬂpermv }/O,perm7},perm) . We then cal-
—_np® 50 2 :

Tperm - prcrm - ppcrm” - This

permutation procedure is repeated B times to generate B

ate. Letting ylm = (y;;),

individuals from {y({), . ,¥s} to form a permuted

culate the permuted test statistic

Require: yg y,g x,,x/ a large integer B

1: Estimate p ) and p usmg Algorithm 3 in Section 2.3.

2: Compute T as in (11) using ' and p"”

3:forb=1,...,Bdo

4: Randomly permute data {(yj’%x}’))}f;’{7{(y,.7x,-)},5:1 to
generate permuted rectum data and permuted stool
data {(7,", >}/ 1,{@, ,;,)};51

5: Estlmate ppe,m and pperm using permutated
data {3, % )71 ((7, %)} i

6 Compute Thor = b~ iorl -

7: end for

8: Calculate the p-value:
B ) s
p(iiB 1+21{Tperm2T}
b=1

9: return p

permuted test statistics T[()ir)m, e, Tf,fr)m. Finally, the permutation

p-value for testing Hp : p”) = p©) is defined as the proportion

of Tf,lr)m, .

muted test statistic T = Hf)(y) o) ||*.Compared to Micro-
DeMix-1, the proposed EM algorithm overcomes the numerical
issues caused by rare microbes or large counts, giving it broader
applicability. However, the EM algorithm is more computation-
ally intensive due to its relatively slow convergence rate and the
repeated use of the MH algorithm in the E-step. Additionally,
the permutation test requires running the EM algorithm multi-
ple times, making it less efficient than Algorithm 2, which relies
on the asymptotic null distribution. Furthermore, as shown in
the simulation studies below, Micro-DeMix-1 may have higher
power than the EM algorithm in numerical applications.

,Téfr)m that are larger than or equal to the unper-

3 Results

We first investigate the finite-sample performance of
Micro-DeMix using simulation. We studied the accuracy in
the estimation of p® and the type-I error rate and power
when testing for differential abundance between the gut
microbiome in the rectum and other GI locations. "

;

For rectum samples, we simulated the microbial counts y;

N;’)7p(’>) distribution with p{’ =1/G
for g=1,...,G and j=1,...,5"). We next generated the
stool microbiome data using the proposed beta-multinomial
model.  Specifically, we first set  (By,B,70,7) =
(0.1,0.1,0.2,0.1) and generated the covariate x; from the
standard normal distribution. We then randomly generated
7 from Beta(ay;,as;), where a;; and a,; are defined in
Equations (3)-(6). We assigned u, at evenly spaced values
from -1 to 1 for g=1,...,G-1 and let MG__Zgl Ug.
o)

We computed pé from u, according to Equation (10).
Finally, we simulated the stool microbiome data y; from a
Multinomial(Nj,p;) distribution where p; is defined in
Equation (1) fori=1,...,S.

from a Multinomial(
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Table 1. Mean and standard deviation of RSE obtained under each setting
while estimating p'© in Micro-DeMix.

G=5 G=10

Library size 500 1000 5000 500 1000 5000

Mean 0.00049 0.00035 0.00014 0.00557 0.00501 0.00364
Stand. Dev. 0.00045 0.00035 0.00027 0.00261 0.00201 0.00111

3.1 Simulation: Estimation

We assessed the performance of Micro-DeMix in estimating
p'® under six settings, where we considered S =S =100,
N = N; = 500,1000,5000 for all i and j, and G = 5,10,
Given the small scale of this simulation and the efficiency of
the Micro-DeMix-1 algorithm, we only implemented the
Micro-DeMix-1 algorithm in this section. We reported rela-
tive squared errors (RSE) to quantify the discrepancy between
our Micro-DeMix estimators p'” and the true parameters
according to

RSE — S vy —132‘)’)2.

The mean and standard deviation of RSE under all six settings
are presented in Table 1. It was observed that as the library size
increases, both the mean and standard deviation of the RSE
tend to decrease. This indicates that the accuracy of estimation
improves as we increase the library size. Furthermore, it is no-
ticeable that the RSEs for G = 10 are greater than those for
G = 5. This phenomenon occurs because the true proportions
become smaller as the total number of taxa increases.

Specifically, by design, p{” ={0.059,0.116,0.225,0.439,

0.161} when G =35, and p°’ = {0.031,0.039,0.051,0.065,
0.083,0.107,0.137,0.177,0.227, 0.083} when G =10.
This makes estimation more challenging and contributes to a
decrease in relative accuracy.

We also examined the performance of Micro-DeMix-EM
using a larger-scale simulation study with G =100, as de-
tailed in the Supplementary Material.

3.2 Simulation: Type-I error rate and power

In this subsection, we assessed the empirical type-1 error rate
and power of both Micro-DeMix testing procedures to detect
differential abundance between rectal microbes and microbes
from other GI locations. Accordingly, we increased the total
number of microbes to G = 10,20. The data-generating pro-
cess was the same as that in the previous section except for a
few modifications to facilitate the assessment of the type-I
error rate and power. Specifically, we set (By,8,70,7) =
(0.1,0.1,0.7,0.2) and generated the covariate x; from a nor-
mal distribution N(10,0.1). For each G, we generated p"") by
allowing each p(é,ﬂ and péo) to differ by &: p((g” = pg’) +6 for
g=1,...,G/2, andpg) :pfgo) -S§forg=G/2+1,...,G. This
process ensures that 2521 pg) =1 for any 6. We considered
relatively weak signals, i.e. §=10,0.0004,0.0008,...,0.002,
for G =10, and further decreased the signal strength by con-
sidering 6 = 0,0.0002,0.0004,...,0.001 for G=20. To en-
sure a large enough sample size and library size for signal

detection, we considered S=S" =100, me =N;=30000
for G =10 and N\” = N; = 35000 for G = 20.

Liu et al.

We compared the performance of our method with seven
existing differential abundance tools for microbiome data,
including ANCOM-BC (Mandal et al. 2015), DESeq2
(Love et al. 2014), edgeR (Robinson et al. 2010), limma
voom (Ritchie et al. 2015), MaAsLin2 (Mallick et al. 2020),
t-test, and Wilcoxon test, using simulated datasets with two
sample groups. The Wilcoxon test and #-test were conducted
using the R functions wilcox.test and t.test, respec-
tively. ANCOM-BC, which analyzes microbiome composi-
tions, was performed using the ancombc function from the R
package ANCOMBC. EdgeR, DESeq2, limma voom, and
MaAsLin2 were implemented based on microbial counts us-
ing the R packages edgeR, DESeq2, limma, and
Maaslin2, respectively.

However, all these existing methods perform separate uni-
variate tests for individual taxa, while our proposed Micro-
DeMix focuses on global testing for a group of microbes. To
facilitate a meaningful comparison, we applied Bonferroni
correction to the univariate p-values generated by each exist-
ing method to control the family-level type-I error rate, reject-
ing the global null hypothesis if at least one adjusted p-value
was below the significance level of @ = 0.05.

We implemented the proposed Micro-DeMix testing proce-
dure (detailed in Algorithm 2) to produce a p-value for test-
ing Hy : p) = p(® based on 10 000 simulated datasets from
the null distribution; i.e. B=10,000 in Algorithm 2.
Meanwhile, we also applied the Micro-DeMix-EM testing
procedure as outlined in Algorithm 4 to obtain a p-value with
B =100. A smaller value of B was chosen for the permuta-
tion procedure to reduce the computational burden of
Algorithm 4.

Based on 100 independent replications and the significance
level @ = 0.035, for § =0 and 6> 0, the rejection rate in Fig. 1
represents the type-1 error rate and the power, respectively.
The value ¢ on x-axis represents the total signal, and some
calculations yield that ¢ = |[p(") —p(”)H% = G#&%. The points at
0 on x-axis representing the scenario that p(") = p(©),

As shown in Fig. 1, the power increases as the total signal
grows. Micro-DeMix-EM exhibits lower power than Micro-
DeMix, likely due to the slow convergence rate of the EM algo-
rithm and/or the reduced number of permutations. Nonetheless,
both Micro-DeMix procedures outperform all existing meth-
ods, except for ANCOM-BC in terms of power, but ANCOM-
BC exhibits the highest type-I error rate. This result highlights
that Micro-DeMix offers the best balance between type-I error
rate and power among the methods evaluated. The reason most
existing methods lack power is that they overlook the fact that
the stool microbiome is a mixed population of rectum microbes
and microbes from other GI locations. ANCOM-BC’s distinct
performance warrants further benchmarking studies to better
understand its unique behavior.

We next revisit the iHMP IBD cohort, which is briefly dis-
cussed in Section 1, to demonstrate the effectiveness and effi-
ciency of the proposed Micro-DeMix in elucidating the
composition of real fecal microbiome data. We are particu-
larly interested in understanding the heterogeneity of the
stool microbiome, how the stool microbiome differs from the
rectum microbiome in IBD populations, and how that differ-
ence may be related to the pathology of IBD.

As discussed in Section 1, the IBD cohort was a longitudi-
nal study, collecting taxonomic data on the microbiome from
132 individuals (104 IBD patients) by analyzing 1785 stool
samples and 651 intestinal biopsies over the course of 1 year
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Figure 1. Type-l error rates and powers obtained at various signal strengths from the simulation study. (A) Power curves for G=10. (B) Power curves for
G=20. A horizontal dashed line is shown at 0.05; t on the x-axis denotes the total signal. Rejection rates were obtained using both Micro-DeMix

procedures and seven existing tools.

(Integrative HMP et al. 2019). This IBD cohort was part of
the iHMP, which was designed to explore host-microbiome
interplay to gain a holistic view of host-microbe interactions
(Integrative HMP et al. 2019). The IBD IBDMDB research
team collected microbiome data from different sites within
the human gut of individuals with IBD to understand how the
microbiome impacts human health and disease. For a fair com-
parison, our analysis focused on stool and rectum samples col-
lected at the baseline, resulting in 13 samples for stool and 38
samples for rectum data in IBD patients. After excluding sub-
jects with missing covariates of interest, such as age and gen-
der, the stool group was narrowed down to 12 subjects.

The operational taxonomic unit (OTU)-level data for both
groups are highly zero-inflated. More than 90% of the entries
in the OTU table derived from the stool samples are zero.
Therefore, in the results below, we took a hierarchical ap-
proach to investigate the microbial composition of the fecal
microbiome as compared to the rectum microbiome at higher
taxonomic levels to mitigate the potential influences of excess
zeros. We also noticed significant variations in total reads (li-
brary size) across samples for both groups, specifically, ranging
from 1499 to 79 228 for stool samples and from 34 to 31 781
for rectum samples. This nonbiological variation can result in
samples with disproportionately high read counts dominating
the analysis under the multinomial model, potentially masking
true biological patterns due to this technical factor. We miti-
gated this issue by performing rarefaction, using the R function
rarefy even depth from package phyloseq as in the
exiting literature (McMurdie and Holmes 2013). In microbial
studies, such rarefying has been used for normalization by ran-
domly subsampling the data to mitigate the potential influence
of varying library sizes (Hughes and Hellmann 2005, Koren
et al. 2013, Navas-Molina et al. 2013). We also acknowledge
that there is an ongoing debate in the research community re-
garding the use of rarefaction; see McMurdie and Holmes
(2014) for more details. Given this, we suggest that the decision
to perform rarefaction in microbiome data analysis should be
carefully considered based on the data characteristics, research
goals, and biological interpretations. We also applied the
Micro-DeMix-EM algorithm to the IBD data without perform-
ing rarefaction, and the results are presented in the
Supplementary Material.

3.3 iHMP IBD data: Phylum-level analysis

We aggregated the absolute counts from the OTU level to the
phylum level, resulting in eight phyla, leading to a much

lower percentage of zeros compared to the OTU-level data
(50.9% versus 93.6%). We used 1499 as the rarefaction level
for stool samples, as it is the minimum library size in the stool
group. For a fair comparison, we applied the same rarefac-
tion level to rectum samples, resulting in 30 samples in rec-
tum group. Since this procedure is based on random
subsampling without replacement, we repeated the procedure
100 times and took the average to reduce variability for both
groups. Samples with library sizes less than 1499 were re-
moved from the analysis.

We computed the relative abundance of these eight phyla
in both the rectum and stool samples, and the results revealed
a clear difference in the microbiome composition (Fig. 2).

Phylum Firmicutes was highly abundant in both the rectum
and stool. It was the major phylum detected, representing
more than 50% of the total microbial relative abundance in
both groups. Overall, the relative abundance of Firmicutes in
the stool (~61.4%) was slightly higher than that in the rec-
tum (~52.0%). When compared to the microbial profile in
rectum, the stool samples exhibited a considerable increase in
the relative abundance of phylum Proteobacteria (from 7.1%
to 30.1%), while the relative abundance of Bacteroidetes de-
creased from 38.1% to 6.7%. In addition, we observed an el-
evated relative abundance of the Verrucomicrobia phylum in
the stool microbiome compared to the rectum, with an in-
crease from 0.31% to 1.5%. Conversely, the phylum
Fusobacteria showed a decrease from over 1.9% to a lower
level. The remaining three phyla were nearly imperceptible in
rectum and stool.

To further understand the composition of the fecal micro-
biome in IBD populations, we fitted the proposed Micro-
DeMix model, incorporating gender and age as covariates. This
analysis revealed estimates of the relative abundance of selected
phyla from the other GI locations (Fig. 2). Compared to the rec-
tum microbiome, the microbial profile of other GI locations
revealed a higher relative abundance of phylum Firmicutes
(~64.3%), Proteobacteria (~33.7%), and Verrucomicrobia
(~1.7%). Phylum Bacteroidetes was undetectable in other GI
locations. The remaining phyla also exhibited relatively low
abundance (<1%). Based on 10 000 simulated datasets, the
Micro-DeMix test suggested significant differences in the taxo-
nomic composition of the eight phyla between the rectum and
other GI locations in IBD populations (p-value < 1e-4).

Our findings are consistent with recent studies on the gut
microbiome in IBD populations. Specifically, the rectum and
fecal microbiome of IBD patients is dominated by three major
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Figure 2. Relative abundance of microbial populations at the phylum level in the rectum, stool, and other Gl locations.

bacterial phyla: Firmicutes, Bacteroidetes, Proteobacteria,
and to a lesser degree Verrucomicrobia and Actinobacteria
(Frank et al. 2007, Lo Presti et al. 2019). Our results are also
consistent with recent studies that described distinct changes
in the composition of the microbiota along the GI tract in
IBD populations. The lower GI tract exhibited a larger abun-
dance of Firmicutes and Bacteroidetes, whereas the upper GI
tract was predominated by Proteobacteria and Firmicutes
(Vuik et al. 2019). Compared to healthy individuals, the re-
duction in the relative abundance of Firmicutes and an eleva-
tion in Bacteroidetes have been observed in IBD patients
(Khan et al. 2019, Lo Presti et al. 2019, Vuik et al. 2019,
Zhang et al. 2022). Thus, our results shed light on the scien-
tific premise of developing an effective microbiome-based
treatment approach for IBD, such as the therapeutic supple-
mentation of probiotics, prebiotics, and symbiotics, and fecal
microbiota transplantation.

3.4 iHMP IBD data: Microbial composition within
Proteobacteria and Firmicutes

In Section 4.1, we identified Proteobacteria and Firmicutes as
the most abundant phyla in stool samples. To further under-
stand the microbes in these two phyla, we conducted analyses
of microbial composition at lower taxonomic levels (class, or-
der, family) within Proteobacteria and Firmicutes phy-
lum (Fig. 3).

Similar to the analyses in Section 4.1, we computed the rel-
ative abundance of all microbial classes and orders within
phylum Proteobacteria for both the stool and rectum sam-
ples, and implemented the Micro-DeMix model to elucidate
the difference between the rectum microbiome and the
microbes in other GI locations. We followed the rarefying
procedure that described in Section 4.1 to process the stool
OTU data. In stool samples, the minimum library size is 13,
which is not big enough to be included in the study.
Therefore, we used 369, the second minimum, as the rarefac-
tion level for both stool and rectum group. The outcomes of
our analyses are visually represented in Fig. 3A and B.

Fig. 3A reveals that within phylum Proteobacteria, the ma-
jor classes in rectum and stool are Betaproteobacteria and
Gammaproteobacteria. However, the rectum microbiome is

distinguished by a higher relative abundance of class
Deltaproteobacteria (~11.1%) and Alphaproteobacteria
(~3.0%), which are significantly low in abundance in stool
samples. There is a low relative abundance of
Epsilonproteobacteria (<1%) in both stool and rectum. As
seen in Fig 3A, Gammaproteobacteria (~ 99.6%) is the most
dominant class among the selected classes in other GI loca-
tions, while the other four classes are nearly undetectable.
Although this finding may appear extreme, it is aligned with
the existing knowledge that IBD patients have an altered gut
microbiota marked by an increased relative abundance of
Gammaproteobacteria class (Scales et al. 2016).

We proceeded to analyze the microbial composition of the
phylum Proteobacteria at the order level, revealing
marked differences between the rectum and stool samples
(Fig. 3B). While both showed high abundance in orders
Burkholderiales, Enterobacteriales, and Pasteurellales, the
rectum samples were mainly characterized by the orders
Desulfovibrionales and Neisseriales. We utilized the Micro-
DeMix method to assess the microbiome composition in
other GI locations. Our analysis revealed a dominance of
Enterobacteriales (~81.1%), along with a lower proportion
of Pasteurellales (~ 18.83%). This finding is supported by a
recent study showing that Enterobacteriaceae exhibit in-
creased abundance in the low-pH GI location and ileum
(Morgan et al. 2012).

The Micro-DeMix test indicates significant differences in
microbial profiles between the rectum and other GI locations
(p-value <1le—4) within the phylum Proteobacteria at both
the class and order levels.

We further explored the microbial composition of the
Firmicutes phylum. In the stool samples, three classes were
identified: Bacilli, Clostridia, and Erysipelotrichi. At the orig-
inal OTU level, class Clostridia dominated with a percentage
of 97.1%, while class Erysipelotrichi was nearly undetect-
able. Given these findings, we narrowed our focus to lower
taxonomic levels, specifically, order and family within the
Firmicutes phylum. Similarly, we employed the minimum li-
brary size, 493, as the rarefaction level and processed both
stool and rectum OTU data. The corresponding results are
shown in Fig. 3C and D.
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Figure 3. Relative abundance of microbial populations at various taxonomic levels in the rectum, stool, and other Gl locations. (A, B) Microbial
composition at the class and order levels within the phylum Proteobacteria. (C, D) Microbial composition at the order and family levels within the

phylum Firmicutes.

Notably, at the order level (Fig. 3C), the phylum
Firmicutes in the rectum and stool was predominantly repre-
sented by the order Clostridiales (97.1% in rectum and
93.6% in stool of all Firmicutes). Our results demonstrate
the presence of order Turicibacterales in the stool samples,
while it is absent in the rectum samples, which suggest that
order Turicibacterales in stool samples may originate from
other GI locations. The relative abundance of the order
Lactobacillales increased in stool compared to rectum from
0.86% to 5.7%. In contrast, order Erysipelotrichales is found
to be present (2.0%) in the rectum but remains at lower levels
in the stool. The results of Micro-DeMix analysis show a p-
value < 1le-4 for testing differential abundance between the
rectum and other GI locations. Meanwhile, it highlights a sig-
nificantly higher relative abundance of Lactobacillales
(~63.4%) in other GI locations compared to the rectum and
stool. The analysis estimates that order Turicibacterales
(~6.4%) is also more abundant in other GI locations. These
findings indicate a distinct microbial composition in other GI
locations, with increased prevalence of orders Lactobacillales
and Turicibacterales.

At the family level within the Firmicutes phylum (Fig. 3D), ma-
jor families of the rectum microbiota are Ruminococcaceae,
Lachnospiraceae, and Veillonellaceae. Comparisons between
stool and rectum samples reveal an increase in Ruminococcaceae
and a decrease in Lachnospiraceae and Veillonellaceae, aligning
with findings from other studies (Lo Presti et al. 2019). One sig-
nificant finding is the presence of the Clostridiaceae,
Enterococcaceae, Planococcaceae, and Turicibacteraceae families
in stool samples but not in the rectum. This observation suggests
that these families detected in stool originate from other GI
microbiome community. In other GI locations, our analysis
shows a higher abundance of the Clostridiaceae and
Ruminococcaceae  families. In  contrast, the family
Lachnospiraceae exhibits a comparatively lower abundance.
Furthermore, the p-value obtained through Micro-DeMix

hypothesis testing is low (< 1e —4). These findings imply distinc-
tive microbial profiles among the rectum, stool, and other GI
locations, indicating variations in the relative abundance of spe-
cific taxa.

4 Conclusion

In this paper, we introduced Micro-DeMix, a beta-multinomial
model designed for deconvoluting microbial abundance in stool
samples. We proposed two parameter estimation procedures for
the model, each with its strengths in specific types of applica-
tions. Additionally, we developed hypothesis testing procedures
for detecting differential abundance, which has proven more ef-
fective compared to existing methods. We applied Micro-
DeMix to rectum and stool microbiome datasets from the
iHMP IBD cohort in elucidating the composition of real fecal
microbiome data in IBD populations.

In the analyses of the iIHMP IBD data, we performed rare-
fying on stool and rectum datasets to address the large varia-
tions in library sizes across samples. While rarefaction has
been widely adopted in real microbiome applications, a limi-
tation of this approach is that the selection of rarefaction
level is data-dependent, and different rarefaction levels may
lead to slightly different results. Due to the limited sample
size, our strategy for selecting the rarefaction level is to keep
as many samples as possible while removing samples with
unreliably low library sizes. Different strategies may be con-
sidered for other datasets.

As mentioned earlier, the current paper focuses on integrating
rectum samples and fecal samples due to data availability and
biological relevance. However, the proposed method can seam-
lessly be used for integration of fecal samples with microbiome
data collected from other GI locations. Furthermore, with
microbiome data available from two or more GI locations, we
could extend Micro-DeMix to have a refined decomposition of
the fecal microbiome. Specifically, following work could
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consider the stool microbiome as a ([ component mlxture of gut
microbes, ie. we let pi=ux; p + -

(1 —n}l) - 1))pg ) in Equatlon (1), where p 2 follows a
Dirichlet (a;) distribution. We leave this fruitful area for fu-
ture research.
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