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Abstract

Motivation: Extensive research has uncovered the critical role of the human gut microbiome in various aspects of health, including metabolism, 
nutrition, physiology, and immune function. Fecal microbiota is often used as a proxy for understanding the gut microbiome, but it represents 
an aggregate view, overlooking spatial variations across different gastrointestinal (GI) locations. Emerging studies with spatial microbiome data 
collected from specific GI regions offer a unique opportunity to better understand the spatial composition of the stool microbiome.

Results: We introduce Micro-DeMix, a mixture beta-multinomial model that deconvolutes the fecal microbiome at the compositional level by 
integrating stool samples with spatial microbiome data. Micro-DeMix facilitates the comparison of microbial compositions across different 
GI regions within the stool microbiome through a hypothesis-testing framework. We demonstrate the effectiveness and efficiency of 
Micro-DeMix using multiple simulated datasets and the inflammatory bowel disease data from the NIH Integrative Human Microbiome Project.

Availability and implementation: The R package is available at https://github.com/liuruoqian/MicroDemix.

1 Introduction

The human gut microbiome and its role in host health have 
been the subject of extensive research, establishing its in-
volvement in human metabolism (Devaraj et al. 2013), nutri-
tion (Zhang 2022), physiology (Andoh 2016), and immune 
function (Wu and Wu 2012, Bull and Plummer 2014). 
Recent studies have also demonstrated the association be-
tween the gut microbiota and the emergence of obesity (Aoun 
et al. 2020), metabolic syndrome and the onset of type 2 dia-
betes (Devaraj et al. 2013, Iatcu et al. 2021). Moreover, al-
tered composition and function of the gut microbiota has 
been found associated with chronic diseases (Pellanda et al. 
2021) ranging from gastrointestinal (GI) inflammatory (Shan 
et al. 2022) and metabolic conditions to neurological (Cryan 
et al. 2020), cardiovascular (Tang et al. 2017), and respira-
tory illnesses (Durack and Lynch 2019, Chunxi et al. 2020).

Most scientific findings regarding the gut microbiome have 
been derived from stool samples. However, it is increasingly rec-
ognized that the stool microbiome offers only an aggregate 
view, overlooking the spatial heterogeneity of the microbiome 
across different GI locations (Ahn et al. 2023, Levitan et al. 
2023). Recent studies have revealed significant variations in mi-
crobial composition and function along distinct segments of the 
GI tract (Leite et al. 2020). For instance, the small intestine is 
dominated by Lactobacillaceae and Enterobacteriaceae, 
whereas the colon harbors species from families such as 

Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, 
and Ruminococcaceae (Donaldson et al. 2016). Furthermore, 
spatial metagenomics applied to the mouse colonic microbiome 
has revealed a heterogeneous distribution of taxa throughout 
the gut (Sheth et al. 2019). Thus, understanding the spatial com-
position of the stool microbiome is essential for enhancing the 
biological relevance of stool-based microbiome analyses, allow-
ing for more accurate interpretations of its role in health and 
disease. Although spatial microbiome data from specific GI 
locations remain relatively rare due to the invasive nature of 
sample collection, they offer a unique opportunity to deconvo-
lute stool samples, thereby providing a deeper understanding of 
the gut microbiome’s spatial heterogeneity.

We develop Micro-DeMix, a novel statistical model 
designed to deconvolute the fecal microbiome into specific GI 
locations by integrating spatial microbiome data. The develop-
ment of Micro-DeMix was motivated by data from the inflam-
matory bowel disease (IBD) Multiomics Database (IBDMDB) 
project, part of the NIH Integrative Human Microbiome 
Project (iHMP). This project followed 132 individuals and col-
lected 1785 stool samples and 651 intestinal biopsies over time 
(Integrative HMP et al. 2019). The integrated nature of this 
dataset, combining microbial profiles from both stool samples 
and distinct GI locations, highlighted the need for a tool like 
Micro-DeMix to effectively analyze and integrate these diverse 
sources of microbiome data.
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Micro-DeMix is a mixture beta-multinomial model devel-
oped to deconvolute the fecal microbiome into specific GI 
locations. The multinomial component effectively handles the 
compositional nature of microbiome data by jointly modeling 
microbial proportions, while the beta component adjusts for 
sample heterogeneity, incorporating key demographic and 
clinical variables that may influence the composition of the 
fecal microbiome. We introduce two estimation procedures 
for the parameters in the Micro-DeMix model. The first pro-
cedure directly maximizes the likelihood of the observed mi-
crobial counts, offering computational efficiency. This 
approach is also equipped with an efficient hypothesis-testing 
framework for comparing microbial compositions from dif-
ferent GI regions within the mixed stool sample based on the 
asymptotic null distribution. The second procedure is based 
on the Expectation-Maximization (EM) algorithm, which 
provides greater numerical robustness than the first method. 
It is particularly useful for scenarios with extremely rare 
microbes, where the first procedure may encounter limita-
tions, although it is computationally more intensive. This EM 
approach includes a permutation test to identify differentially 
abundant microbial groups across GI locations. Unlike con-
ventional differential abundance (DA) tools, which compare 
microbial abundances between predefined groups (e.g. dis-
ease versus healthy or across body sites), Micro-DeMix is 
specifically designed to detect compositional changes within 
a mixed population (e.g. the stool sample), where the groups 
are not prespecified and must be statistically estimated. This 
enables Micro-DeMix to uncover group differences and spa-
tial heterogeneity within the stool microbiome by integrating 
spatial microbiome data. Traditional DA tools, which rely on 
predefined group distinctions, are less suited to detect these 
types of within-sample variations. We demonstrate the effec-
tiveness of Micro-DeMix through extensive simulation stud-
ies and an application to IBD cohorts, where we integrate 
stool microbiome data with rectum microbiome data.

The rest of the paper is organized as follows. In Section 2, 
we describe the Micro-DeMix model, develop two 
maximum-likelihood-based estimation procedures, and pro-
pose hypothesis-testing frameworks for detecting differen-
tially abundant microbes between GI locations. In Section 3, 
we conduct simulation studies to demonstrate the effective-
ness of Micro-DeMix in terms of the estimation accuracy and 
the power of the hypothesis testing method. In Section 4, we 
apply our method to the IBD microbiome data from iHMP to 
elucidate the composition of fecal microbiome in IBD 
patients. We close with a discussion of our method in 
Section 5.

2 Materials and methods

2.1 The Micro-DeMix model

In this section, we present a beta-multinomial framework for 
modeling microbial abundance in stool samples. Our model 
considers a multivariate extension of the beta-binomial 
model proposed in a recent research (Martin et al. 2020) 
which models individual taxa separately. As shown later, 
while this multivariate extension allows for joint modeling of 
multiple microbes, it also brings several new statistical and 
computational challenges.

For ease of presentation and biological relevance, we assume 
the reference spatial microbiome data are collected at the 

rectum. However, the methodology proposed below can seam-
lessly extend to other segments of the GI tract, including the il-
eum, jejunum, colon, and beyond, given the data availability. 

Let y
ðrÞ
jg denotes the observed absolute abundance for taxon g in 

the jth subject of the reference rectum microbiome data for 

j¼ 1; . . . ;SðrÞ. Let yig denotes the observed absolute abundance 

for taxon g in the ith stool samples for g¼ 1; . . . ;G and 
i¼ 1; . . . ;S. For all subjects, we also collect covariate informa-

tion x
ðrÞ
j and xi for j¼ 1; . . . ;SðrÞ and i¼ 1; . . . ;S. We model the 

stool microbial abundance yi ¼ ðyi1; . . . ;yiGÞ> using a multino-

mial model yijpi ÿMultinomialðNi;piÞ; where Ni ¼
PG

g¼1 yig 

and pi ¼ ðpi1; . . . ;piGÞ> is the underlying true microbial propor-
tions. We are particularly interested in the spatial composition 
of the stool microbiome. Acknowledging that the stool micro-
biome consists of microbes from rectum and other GI locations 
(mostly, the small intestine), we consider 

pig ¼ πip
ðrÞ
g þð1 − πiÞpðoÞg ; (1) 

here, πi 2 ð0;1Þ denotes the latent proportion of the rectal 

microbiome in the ith stool sample; p
ðrÞ
g and p

ðoÞ
g denotes the 

proportion of taxon g in the rectum and other GI locations, 
respectively.

To allow πi to vary across individuals, we assume πi ÿ
Betaða1;i;a2;iÞ: Hence, we write the joint density function of 
(yig;πi) as 

f ðyig; πijpðrÞg ;p
ðoÞ
g ; a1;i; a2;iÞ ¼

Ni!

yi1! . . . yiG!

Y

G

g¼1

fπip
ðrÞ
g

þð1 − πiÞpðoÞg gyig
π

a1;i − 1
i ð1 − πiÞa2;i − 1

Bða1;i; a2;iÞ
;

(2) 

where B(a1,i, a2,i)¼Γ(a1,i)Γ(a2,i)/Γ(a1,iþ a2,i)
To capture the association between πi and the subjects’ char-

acteristics, we further link each πi with covariates xi through a 
beta-regression model. With additional reparameterization 

μi ¼
a1;i

a1;iþ a2;i
; (3) 

ϕi ¼ a1;iþ a2;i; (4) 

we consider 

log
μi

1 − μi

ÿ ÿ

¼ β0þx>i β; (5) 

logðϕiÞ ¼ γ0þx>i γ: (6) 

Some calculations yield that μi is the expected proportion of 
the rectum microbiome in the ith stool sample, i.e. μi ¼ EðπiÞ, 
and VarðπiÞ ¼ μið1 − μiÞ=ð1þϕiÞ, where ϕi is known as the 
precision parameter.

Thus, our first goal is to estimate each p
ðrÞ
g and p

ðoÞ
g to un-

derstand the spatial heterogeneity of the stool microbiome. 
Then, we aim to identify microbial groups that are differen-
tially abundant between the rectum and other GI locations 
with the stool sample. Below we will present two procedures 
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for these two analyses, each with its own strengths for differ-

ent types of applications.

Remark 1. Under the proposed model, we derive the mean 

and variance of yig: 

E yigð Þ ¼ Ni p
rð Þ

g
a1;i

a1;iþ a2;i
þp oð Þ

g 1 −
a1;i

a1;iþ a2;i

ÿ ÿÿ ÿ

Var yigð Þ ¼ Ni

ÿ

a1;i

a1;iþ a2;i
p rð Þ

g − 2p rð Þ
g p oð Þ

g − p oð Þ
g þ2 p oð Þ

g

ÿ ÿ2
ÿ ÿ

þ
a2

1;i

a1;iþ a2;ið Þ2
þ a1;ia2;i

a1;iþ a2;ið Þ2 a1;iþ a2;iþ 1ð Þ

 !

− p
rð Þ

g

ÿ ÿ2

þ2p
rð Þ

g p
oð Þ

g − p
oð Þ

g

ÿ ÿ2
ÿ ÿ

þp
oð Þ

g − p
oð Þ

g

ÿ ÿ2
ÿ

þN2
i p

rð Þ
g − p

oð Þ
g

ÿ ÿ2 a1;ia2;i

a1;iþ a2;ið Þ2 a1;iþ a2;iþ1ð Þ
:

See derivations in the Supplementary Material.   

2.2 Micro-DeMix-1
2.2.1 Estimation

The joint likelihood in Equation (2) involves πi, which is 

unobserved. Thus, we calculate the log-likelihood of observ-

ing fyig : i¼ 1; . . . ;S;g¼ 1; . . . ;Gg in stool samples: 

log LðθÞ ¼
X

S

i¼1

log

ð1

0

f ðyig; πijθÞdπi; (7) 

where θ¼ ðpðrÞ;pðoÞ;β0;β; γ0;γÞ>. We estimate θ in two steps. 

We first estimate p
ðrÞ
g using the reference rectum microbiome 

data for g¼ 1; . . . ;G. Recall that y
ðrÞ
jg denotes the observed ab-

solute abundance for taxon g and sample j, j¼ 1; . . . ;SðrÞ, col-

lected from rectum. Let N
ðrÞ
j denotes the sequencing depth for 

the jth sample from rectum. We assume the absolute abun-

dance to follow a multinomial distribution 

y
ðrÞ
j ÿMultinomialðNðrÞj ;pðrÞÞ: (8) 

Based on this model, we estimate p
ðrÞ
g with the sample 

proportions 

p̂
ðrÞ
g ¼

P

j y
ðrÞ
jg

P

j N
ðrÞ
j

: (9) 

After replacing p
ðrÞ
g in Equation (7) by p̂

ðrÞ
g , we estimate the 

remaining parameters using an iterative procedure with the 

main steps given in Algorithm 1.Specifically, in the mth itera-

tion, we obtain fpðoÞg gm by maximizing the objective function 

(7) given fβ0;β; γ0;γgm −1. Since the integral in Equation (7) 

does not have a closed form, we used the Gauss–Legendre 

quadrature (Golub and Welsch 1969) to approximate it. 

Solving for fpðoÞg gm is a constrained optimization problem be-

cause p
ðoÞ
g 2 ½0;1ÿ and 

PG
g¼1 p

ðoÞ
g ¼ 1. To address this problem, 

we consider the parameterization 

pðoÞg ¼
eug

PG
k¼1 euk

; (10) 

where ug 2 R for g¼ 1; . . . ;G. With this reparametrization, 

we first obtain fuggm using the Nelder–Mead optimization al-
gorithm from R package optimx and then calculate fpðoÞg gm 

from fuggm using Equation (10). Finally, given fpðoÞg gm, we 

obtain the optimal set fβ0;β; γ0;γgm using the Nelder–Mead 
optimization algorithm by maximizing log-likelihood func-

tion (7). We repeat this iterative procedure until we achieve 
convergence or reach the maximum number of iterations.

2.2.2 Hypothesis testing

The proposed Micro-DeMix framework also facilitates the 
investigation of the biodiversity of the fecal microbiome by 

detecting microbial groups that are differentially abundant in 
rectum and other GI locations. Specifically, we consider a hy-

pothesis testing problem with H0 : pðoÞ ¼ pðrÞ, where pðoÞ and 
pðrÞ are introduced in Section 2.1, representing the true pro-
portions of the microbes of interest in the rectum and other 

GI locations, respectively.
Under H0, we have jjpðoÞ−pðrÞjj2 ¼ 0, motivating the fol-

lowing test statistic: 

T̂ ¼ ðp̂ðoÞ − p̂
ðrÞÞ>ðp̂ðoÞ − p̂

ðrÞÞ; (11) 

where p̂
ðoÞ

are maximum likelihood estimators obtained from  

Algorithm 1 in Section 2.2, and p̂
ðrÞ

is given in Equation (9). 
Under H0 : p

ðrÞ
g ¼ p

ðoÞ
g , we can rewrite Equation (11) as 

T̂ ¼
X

G

g¼1

ðp̂ðrÞg − pðrÞg Þ
2þ
X

G

g¼1

ðp̂ðoÞg − pðoÞg Þ
2

− 2
X

G

g¼1

ðp̂ðrÞg − pðrÞg Þðp̂
ðoÞ
g − pðoÞg Þ;

(12) 

indicating that T̂ is a function of p̂
ðrÞ

− pðrÞ and p̂
ðoÞ

−pðoÞ un-

der H0. Thus, finding the null distribution of T̂ reduces to 
finding the null distributions of p̂

ðrÞ
− pðrÞ and p̂

ðoÞ
− pðoÞ. 

Specifically, applying the central limit theorem (CLT) based 
on model (8), we have 

Algorithm 1. Estimating fpðoÞg ;β0;β;γ0; γg for Micro-DeMix

Require: yig ;xi , an integer M, a small number σ (e.g. σ ¼ 0:001Þ
1: Initialize: fβ0;β; γ0; γg ¼ fβ0;β; γ0;γg0

2: for m ¼ 1; . . . ;M do

3:  Update fpðoÞg gm ¼ argmax logLðθÞ as in (7) given   

fβ0;β; γ0; γg ¼ fβ0;β; γ0;γgm − 1
.

4:   Update fβ0;β; γ0; γgm ¼ argmax logLðθÞ as in (7) given   

fpðoÞg g ¼ fpðoÞg gm
. Let Lm denote the value of (7) at this step.

5:   if jLm − Lm − 1j≤σ then

6:    return θ̂¼ fpðoÞg ;β0;β; γ0; γgm

7:   end if

8: end for

9: return θ̂¼ fpðoÞg ;β0;β; γ0; γgM
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ooooooooo

NðrÞ
p

ðp̂ðrÞ − pðrÞÞ!d NGð0;VðpðrÞÞÞ; (13) 

where 

VðpðrÞÞ ¼

p
ðrÞ
1 ð1 − p

ðrÞ
1 Þ − p

ðrÞ
1 p

ðrÞ
2 . . . − p

ðrÞ
1 p

ðrÞ
G

− p
ðrÞ
1 p

ðrÞ
2 p

ðrÞ
2 ð1 − p

ðrÞ
2 Þ . . . − p

ðrÞ
2 p

ðrÞ
G

..

. . .
. ..

.

− p
ðrÞ
1 p

ðrÞ
G − p

ðrÞ
2 p

ðrÞ
G . . . p

ðrÞ
G ð1 − p

ðrÞ
G Þ

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

and NðrÞ ¼
PSðrÞ

j¼1 N
ðrÞ
j . Also, under H0, the joint density func-

tion in Equation (2) reduces to 

f ðyig; πijpðoÞg ; a1;i; a2;iÞ ¼
Ni!

yi1! . . . yiG!

Y

G

g¼1

fpðoÞg g
yig

π
a1;i − 1
1 ð1 − πiÞa2;i − 1

Bða1;i; a2;iÞ

and the density function (2) becomes 

f ðyigjÿÞ ¼
Ni!

yi1! . . . yiG!

Y

G

g¼1

fpðoÞg g
yig

ð1

0

π
a1;i − 1
1 ð1 − πiÞa2;i − 1

Bða1;i; a2;iÞ
dπi:

As the integral of the beta density is 1, we have 

f ðyigjpðoÞg ; a1;i; a2;iÞ ¼
Ni!

yi1! . . . yiG!

Y

G

g¼1

fpðoÞg g
yig :

This indicates that under H0, the proposed beta-multinomial 
model in Section 2.1 reduces to a multinomial model. 

Indeed, when p
ðrÞ
g ¼ p

ðoÞ
g , VarðyigÞ in Remark 1 simplifies to 

Nip
ðoÞ
g ð1 −p

ðoÞ
g Þ, which equals the variance of yig under the mul-

tinomial model. Thus, under H0, the maximum likelihood the-
ory (MLE) derived from the mixture beta-multinomial model is 
equivalent to that derived from the multinomial model. Thus, 
we can apply the CLT again and obtain 

ooooo

N
p
ðp̂ðoÞ − pðoÞÞ!d NGð0;VðpðrÞÞÞ; (14) 

where N ¼PS
i¼1 Ni is the total counts of all samples collected 

from stool.
Assuming no overlapping between stool samples and rec-

tum samples, we establish the asymptotic distribution of T̂ in 
the following result.

Proposition 1. Let random vector ðy1;y2Þ follow the 
multivariate normal distribution 

N2G

0

0

0

@

1

A ;
VðpðrÞÞ 0

0 VðpðrÞÞ

0

@

1

A

0

@

1

A:

Suppose pðoÞ ¼ pðrÞ and NðrÞ=N ! K>0. Then 
NT̂!d gðy1;y2Þ as N ! 1, where gðy1;y2Þ ¼ y>1 y1þ
ð1=KÞy>2 y2 − ð2=

oooo

K
p
Þy>1 y2.

As a special case of Proposition 1, when K¼ 1 or NðrÞ ¼N, 

we have NT̂!d gðy1;y2Þ ¼ y>1 y1þy>2 y2 −2y>1 y2. Based on 

Proposition 1, we develop a simulation-based algorithm for 
calculating the p-value, as detailed in Algorithm 2.

2.3 Micro-DeMix-2: an EM approach

The proposed Micro-DeMix-1 procedure has strengths in easy 
and efficient computation: its estimation component can be 
implemented using standard optimization packages, and its 
hypothesis-testing component runs quickly due to the use of an 
asymptotic null distribution. However, it may have a limited 
scope of applicability due to the numerical evaluation of the log- 
likelihood in Equation (7). Specifically, based on Equation (2), 

we know that when fπip
ðrÞ
g þð1 − πiÞpðoÞg gyig is close to 0, which 

can occur for rare microbes with extremely small proportions or 
more common microbes with very large counts, Equation (7) 
may be evaluated as negative infinity. This happens because, al-

though fπip
ðrÞ
g þð1 − πiÞpðoÞg gyig is technically not zero, it falls be-

low the smallest representable number in standard software.
To address this issue, instead of working with the marginal 

density function of yig in Equation (7), we develop a new esti-
mation procedure based on the joint density function of yig 

and πi, as shown in Equation (2). Specifically, the joint log- 
likelihood is given by 

ljointðθ;Y;πÞ ¼
X

S

i¼1

log f ðyi; πijpðrÞ;pðoÞ; a1;i; a2;iÞ

¼
X

S

i¼1

X

G

g¼1

yig logðπip
ðrÞ
g þð1 − πiÞpðoÞg Þ

þ
X

S

i¼1

ða1;i − 1Þ logðπiÞþ
X

S

i¼1

ða2;i − 1Þ logð1 − πiÞ

−
X

S

i¼1

log ðBða1;i; a2;iÞÞþC;

(15) 

where C is some constant, Y ¼ ðy1; . . . ;ySÞ>, and π¼ ðπ1;

Algorithm 2. Simulation method of testing H0 : pðoÞ ¼ pðrÞ

Require: y
ðrÞ
jg ;yig ;xi , a large integer B (e.g. B ¼ 10000)

1: Estimate p̂
ðoÞ

and p̂
ðrÞ

as in Section 2.2.

2: Compute T̂ as in (11) using p̂
ðoÞ

and p̂
ðrÞ

.

3: for b ¼ 1; . . . ;B do

4:   Simulate vector v1;v2 independently from   

NGð0;V ðp̂ðrÞÞÞ in (13) and (14).

5:   Approximate p̂
ðrÞ

− pðrÞ and p̂
ðoÞ

− pðoÞ with v1=
ooooooooo

NðrÞ
p

and v2=
oooo

N
p

, respectively. Compute T̂
b 

as in (12).

6: end for

7: Calculate the p-value: 

p̂  1

1þB
1þ

X

B

b¼1

1fT̂b ≥ T̂g

0

@

1

A:

8: return p̂
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. . . ;πSÞ>. Thanks to the logarithm, Equation (15) is always well 

defined, regardless of how small fπip
ðrÞ
g þð1 − πiÞpðoÞg gyig 

becomes. However, we cannot directly maximize Equation (15) 
because the πi values are not observed. To address this, we de-
velop an EM algorithm (Dempster et al. 1977) for estimating θ 

based on Equation (15). We begin with an initial value θ0. In 
the kth E-step, we compute QkðθÞ ¼ E½ljointðθ;Y;πÞ
jθk − 1;yi : i¼ 1; . . . ;Sÿ, which is the conditional expectation of 

ljoint given yi : i¼ 1; . . . ;S and the values of θ from the previous 

ðk −1Þth step for k≥1. Unfortunately, QkðθÞ does not have a 
closed form. Thus, we approximate QkðθÞ using 
~QkðθÞ ¼M− 1

PM
m¼1 ljointðθ;Y; ~πðkÞm Þ, where ~πðkÞm is a random 

sample from the conditional distribution of π given Y and θk− 1, 
generated using the Metropolis–Hastings (MH) algorithm 
(Hastings 1970). In the kth M-step, we then obtain θk by maxi-

mizing ~QkðθÞ with existing optimization tools such as the 

Nelder–Mead algorithm. The final estimate θ̂¼
ðp̂ðrÞ; p̂ðoÞ; β̂0; β̂; γ̂0; γ̂Þ> is obtained by iterating the EM algo-
rithm between the E-step and M-step until convergence.Due to 
the additional variation introduced by the EM algorithm,  
Algorithm 2 is no longer suitable for generating p-values for 

testing H0 : pðoÞ ¼ pðrÞ based on the EM estimates. We fix this 
issue by developing a permutation-based procedure that works 
seamlessly with the EM algorithm; see Algorithm 4. Recall that 

y
ðrÞ
jg denotes the absolute abundance for taxon g in the jth sub-

ject of the rectum dataset and x
ðrÞ
j is the corresponding covari-

ate. Letting y
ðrÞ
j ¼ ðy

ðrÞ
j1 ; . . . ;y

ðrÞ
jGÞ
>, we first randomly select S 

individuals from fyðrÞ1 ; . . . ;y
ðrÞ
Sr
;y1; . . . ;ySg to form a permuted 

stool microbiome dataset, with the remaining Sr subjects form-
ing a permuted rectum microbiome dataset. We also obtain the 
permuted covariates corresponding to the permuted stool sam-

ple. Next, we use the permuted rectum sample to estimate pðrÞ

and apply the EM algorithm to the permuted stool microbiome 
data and covariates to obtain an estimate of θ, denoted by 

θ̂perm ¼ ðp̂ðrÞperm; p̂
ðoÞ
perm; β̂0;perm; β̂perm; γ̂0;perm; γ̂permÞ>. We then cal-

culate the permuted test statistic Tperm ¼ jjp̂ðrÞperm − p̂
ðoÞ
permjj

2. This 

permutation procedure is repeated B times to generate B 

permuted test statistics T
ð1Þ
perm; . . . ;T

ðBÞ
perm. Finally, the permutation 

p-value for testing H0 : pðrÞ ¼ pðoÞ is defined as the proportion 

of T
ð1Þ
perm; . . . ;T

ðBÞ
perm that are larger than or equal to the unper-

muted test statistic T ¼ jjp̂ðrÞ− p̂
ðoÞjj2.Compared to Micro- 

DeMix-1, the proposed EM algorithm overcomes the numerical 
issues caused by rare microbes or large counts, giving it broader 
applicability. However, the EM algorithm is more computation-
ally intensive due to its relatively slow convergence rate and the 
repeated use of the MH algorithm in the E-step. Additionally, 
the permutation test requires running the EM algorithm multi-
ple times, making it less efficient than Algorithm 2, which relies 
on the asymptotic null distribution. Furthermore, as shown in 
the simulation studies below, Micro-DeMix-1 may have higher 
power than the EM algorithm in numerical applications.

3 Results

We first investigate the finite-sample performance of 
Micro-DeMix using simulation. We studied the accuracy in 
the estimation of pðoÞ and the type-I error rate and power 
when testing for differential abundance between the gut 
microbiome in the rectum and other GI locations.

For rectum samples, we simulated the microbial counts y
ðrÞ
j 

from a MultinomialðNðrÞj ;pðrÞÞ distribution with p
ðrÞ
g ¼ 1=G 

for g¼ 1; . . . ;G and j¼ 1; . . . ;SðrÞ. We next generated the 
stool microbiome data using the proposed beta-multinomial 
model. Specifically, we first set ðβ0;β; γ0; γÞ ¼
ð0:1;0:1;0:2;0:1Þ and generated the covariate xi from the 
standard normal distribution. We then randomly generated 
πi from Betaða1;i;a2;iÞ, where a1;i and a2;i are defined in 

Equations (3)–(6). We assigned ug at evenly spaced values 

from −1 to 1 for g¼ 1; . . . ;G − 1 and let uG ¼ −
PG − 1

g¼1 ug. 

We computed p
ðoÞ
g from ug according to Equation (10). 

Finally, we simulated the stool microbiome data yi from a 

MultinomialðNi;piÞ distribution where pi is defined in 

Equation (1) for i¼ 1; . . . ;S.

Algorithm 3. Estimating fpðoÞg ;β0;β;γ0; γg: an EM approach

Require: yig ;xi , an integer K , an integer M, a small number σ  

(e.g. σ ¼ 0:0001Þ
1: Initialize: fpðoÞg ;β0;β; γ0;γg ¼ fp

ðoÞ
g ;β0;β; γ0; γg0

2: for k ¼ 1; . . . ;K do

3:  (E-step) Generate a random sample ~π
ðkÞ
m from the   

conditional distribution of π given Y and θðk − 1Þ using the 

Metropolis–Hastings (MH) algorithm. Approximate the condi-

tional expectation QkðθÞ ¼ E½ljointðθ;Y ;πÞjθðk − 1Þ;yi : i ¼ 1; . . . ;Sÿ
using ~Q kðθÞ ¼M − 1

PM
m¼1 ljointðθ;Y ; ~π

ðkÞ
m Þ,

4:  (M-step) Obtain θðkÞ by maximizing the objective   

function ~Q kðθÞ.
5:  if 

P

kθðkÞ− θðk − 1Þk≤σ then

6:   return θ̂¼ fpðoÞg ;β0;β; γ0; γgk

7:  end if

8: end for

9: return θ̂¼ fpðoÞg ;β0;β; γ0; γgK

Algorithm 4. Permutation method of testing H0 : pðoÞ ¼ pðrÞ

Require: y
ðrÞ
jg ;yig ;xi ;x

ðrÞ
j , a large integer B

1: Estimate p̂
ðrÞ

and p̂
ðoÞ

using Algorithm 3 in Section 2.3.

2: Compute T̂ as in (11) using p̂
ðoÞ

and p̂
ðrÞ

.

3: for b ¼ 1; . . . ;B do

4:  Randomly permute data fðyðrÞj ;x
ðrÞ
j Þg

SðrÞ

j¼1;fðyi ;xiÞgS
i¼1 to   

generate permuted rectum data and permuted stool 

data fð~yðrÞj ; ~x
ðrÞ
j Þg

SðrÞ

j¼1;fð~y i ; ~x iÞgS
i¼1.

5:  Estimate p̂
ðrÞ
perm and p̂

ðoÞ
perm using permutated   

data fð~yðrÞj ; ~x
ðrÞ
j Þg

SðrÞ

j¼1;fð~y i ; ~x iÞgS
i¼1.

6:  Compute T̂
ðbÞ
perm ¼ jjp̂

ðrÞ
perm − p̂

ðoÞ
permjj

2
.

7: end for

8: Calculate the p-value: 

p̂  1

1þB
1þ

X

B

b¼1

1fT̂ ðbÞperm ≥ T̂g

0

@

1

A:

9: return p̂
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3.1 Simulation: Estimation

We assessed the performance of Micro-DeMix in estimating 
pðoÞ under six settings, where we considered S¼ SðrÞ ¼ 100, 
N
ðrÞ
j ¼Ni ¼ 500;1000;5000 for all i and j, and G¼ 5;10. 

Given the small scale of this simulation and the efficiency of 
the Micro-DeMix-1 algorithm, we only implemented the 
Micro-DeMix-1 algorithm in this section. We reported rela-
tive squared errors (RSE) to quantify the discrepancy between 
our Micro-DeMix estimators p̂

ðoÞ
and the true parameters 

according to 

RSE ¼
P

g ðp
ðoÞ
g − p̂

ðoÞ
g Þ

2

P

g ðp
ðoÞ
g Þ2

:

The mean and standard deviation of RSE under all six settings 
are presented in Table 1. It was observed that as the library size 
increases, both the mean and standard deviation of the RSE 
tend to decrease. This indicates that the accuracy of estimation 
improves as we increase the library size. Furthermore, it is no-
ticeable that the RSEs for G¼ 10 are greater than those for 
G¼ 5. This phenomenon occurs because the true proportions 
become smaller as the total number of taxa increases. 

Specifically, by design, p
ðoÞ
g ¼ f0:059;0:116;0:225;0:439;

0:161g when G¼ 5, and p
ðoÞ
g ¼ f0:031;0:039;0:051;0:065;

0:083;0:107;0:137;0:177;0:227; 0:083g when G¼ 10. 
This makes estimation more challenging and contributes to a 
decrease in relative accuracy.

We also examined the performance of Micro-DeMix-EM 
using a larger-scale simulation study with G¼ 100, as de-
tailed in the Supplementary Material.

3.2 Simulation: Type-I error rate and power

In this subsection, we assessed the empirical type-I error rate 
and power of both Micro-DeMix testing procedures to detect 
differential abundance between rectal microbes and microbes 
from other GI locations. Accordingly, we increased the total 
number of microbes to G¼ 10;20. The data-generating pro-
cess was the same as that in the previous section except for a 
few modifications to facilitate the assessment of the type-I 
error rate and power. Specifically, we set ðβ0;β; γ0; γÞ ¼
ð0:1;0:1;0:7;0:2Þ and generated the covariate xi from a nor-

mal distribution Nð10;0:1Þ. For each G, we generated pðrÞ by 

allowing each p
ðrÞ
g and p

ðoÞ
g to differ by δ: p

ðrÞ
g ¼ p

ðoÞ
g þδ for 

g¼ 1; . . . ;G=2, and p
ðrÞ
g ¼ p

ðoÞ
g − δ for g¼G=2þ1; . . . ;G. This 

process ensures that 
PG

g¼1 p
ðrÞ
g ¼ 1 for any δ. We considered 

relatively weak signals, i.e. δ¼ 0;0:0004;0:0008; . . . ;0:002, 
for G¼ 10, and further decreased the signal strength by con-
sidering δ¼ 0;0:0002;0:0004; . . . ;0:001 for G¼ 20. To en-
sure a large enough sample size and library size for signal 

detection, we considered S¼ SðrÞ ¼ 100, N
ðrÞ
j ¼Ni ¼ 30000 

for G¼ 10 and N
ðrÞ
j ¼Ni ¼ 35000 for G¼ 20.

We compared the performance of our method with seven 
existing differential abundance tools for microbiome data, 
including ANCOM-BC (Mandal et al. 2015), DESeq2 
(Love et al. 2014), edgeR (Robinson et al. 2010), limma 
voom (Ritchie et al. 2015), MaAsLin2 (Mallick et al. 2020), 
t-test, and Wilcoxon test, using simulated datasets with two 
sample groups. The Wilcoxon test and t-test were conducted 
using the R functions wilcox.test and t.test, respec-
tively. ANCOM-BC, which analyzes microbiome composi-
tions, was performed using the ancombc function from the R 
package ANCOMBC. EdgeR, DESeq2, limma voom, and 
MaAsLin2 were implemented based on microbial counts us-
ing the R packages edgeR, DESeq2, limma, and 
Maaslin2, respectively.

However, all these existing methods perform separate uni-
variate tests for individual taxa, while our proposed Micro- 
DeMix focuses on global testing for a group of microbes. To 
facilitate a meaningful comparison, we applied Bonferroni 
correction to the univariate p-values generated by each exist-
ing method to control the family-level type-I error rate, reject-
ing the global null hypothesis if at least one adjusted p-value 
was below the significance level of α¼ 0:05.

We implemented the proposed Micro-DeMix testing proce-
dure (detailed in Algorithm 2) to produce a p-value for test-
ing H0 : pðrÞ ¼ pðoÞ based on 10 000 simulated datasets from 
the null distribution; i.e. B¼ 10;000 in Algorithm 2. 
Meanwhile, we also applied the Micro-DeMix-EM testing 
procedure as outlined in Algorithm 4 to obtain a p-value with 
B¼ 100. A smaller value of B was chosen for the permuta-
tion procedure to reduce the computational burden of  
Algorithm 4.

Based on 100 independent replications and the significance 
level α¼ 0:05, for δ¼ 0 and δ>0, the rejection rate in Fig. 1 
represents the type-I error rate and the power, respectively. 
The value t on x-axis represents the total signal, and some 

calculations yield that t¼ jjpðrÞ−pðoÞjj22 ¼Gδ2. The points at 

0 on x-axis representing the scenario that pðrÞ ¼ pðoÞ.
As shown in Fig. 1, the power increases as the total signal 

grows. Micro-DeMix-EM exhibits lower power than Micro- 
DeMix, likely due to the slow convergence rate of the EM algo-
rithm and/or the reduced number of permutations. Nonetheless, 
both Micro-DeMix procedures outperform all existing meth-
ods, except for ANCOM-BC in terms of power, but ANCOM- 
BC exhibits the highest type-I error rate. This result highlights 
that Micro-DeMix offers the best balance between type-I error 
rate and power among the methods evaluated. The reason most 
existing methods lack power is that they overlook the fact that 
the stool microbiome is a mixed population of rectum microbes 
and microbes from other GI locations. ANCOM-BC’s distinct 
performance warrants further benchmarking studies to better 
understand its unique behavior.

We next revisit the iHMP IBD cohort, which is briefly dis-
cussed in Section 1, to demonstrate the effectiveness and effi-
ciency of the proposed Micro-DeMix in elucidating the 
composition of real fecal microbiome data. We are particu-
larly interested in understanding the heterogeneity of the 
stool microbiome, how the stool microbiome differs from the 
rectum microbiome in IBD populations, and how that differ-
ence may be related to the pathology of IBD.

As discussed in Section 1, the IBD cohort was a longitudi-
nal study, collecting taxonomic data on the microbiome from 
132 individuals (104 IBD patients) by analyzing 1785 stool 
samples and 651 intestinal biopsies over the course of 1 year 

Table 1. Mean and standard deviation of RSE obtained under each setting 

while estimating pðoÞ in Micro-DeMix.

G¼ 5 G¼ 10

Library size 500 1000 5000 500 1000 5000

Mean 0.00049 0.00035 0.00014 0.00557 0.00501 0.00364
Stand. Dev. 0.00045 0.00035 0.00027 0.00261 0.00201 0.00111
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(Integrative HMP et al. 2019). This IBD cohort was part of 
the iHMP, which was designed to explore host–microbiome 
interplay to gain a holistic view of host–microbe interactions 
(Integrative HMP et al. 2019). The IBD IBDMDB research 
team collected microbiome data from different sites within 
the human gut of individuals with IBD to understand how the 
microbiome impacts human health and disease. For a fair com-
parison, our analysis focused on stool and rectum samples col-
lected at the baseline, resulting in 13 samples for stool and 38 
samples for rectum data in IBD patients. After excluding sub-
jects with missing covariates of interest, such as age and gen-
der, the stool group was narrowed down to 12 subjects.

The operational taxonomic unit (OTU)-level data for both 
groups are highly zero-inflated. More than 90% of the entries 
in the OTU table derived from the stool samples are zero. 
Therefore, in the results below, we took a hierarchical ap-
proach to investigate the microbial composition of the fecal 
microbiome as compared to the rectum microbiome at higher 
taxonomic levels to mitigate the potential influences of excess 
zeros. We also noticed significant variations in total reads (li-
brary size) across samples for both groups, specifically, ranging 
from 1499 to 79 228 for stool samples and from 34 to 31 781 
for rectum samples. This nonbiological variation can result in 
samples with disproportionately high read counts dominating 
the analysis under the multinomial model, potentially masking 
true biological patterns due to this technical factor. We miti-
gated this issue by performing rarefaction, using the R function 
rarefy_even_depth from package phyloseq as in the 
exiting literature (McMurdie and Holmes 2013). In microbial 
studies, such rarefying has been used for normalization by ran-
domly subsampling the data to mitigate the potential influence 
of varying library sizes (Hughes and Hellmann 2005, Koren 
et al. 2013, Navas-Molina et al. 2013). We also acknowledge 
that there is an ongoing debate in the research community re-
garding the use of rarefaction; see McMurdie and Holmes 
(2014) for more details. Given this, we suggest that the decision 
to perform rarefaction in microbiome data analysis should be 
carefully considered based on the data characteristics, research 
goals, and biological interpretations. We also applied the 
Micro-DeMix-EM algorithm to the IBD data without perform-
ing rarefaction, and the results are presented in the 
Supplementary Material.

3.3 iHMP IBD data: Phylum-level analysis

We aggregated the absolute counts from the OTU level to the 
phylum level, resulting in eight phyla, leading to a much 

lower percentage of zeros compared to the OTU-level data 
(50:9% versus 93:6%). We used 1499 as the rarefaction level 
for stool samples, as it is the minimum library size in the stool 
group. For a fair comparison, we applied the same rarefac-
tion level to rectum samples, resulting in 30 samples in rec-
tum group. Since this procedure is based on random 
subsampling without replacement, we repeated the procedure 
100 times and took the average to reduce variability for both 
groups. Samples with library sizes less than 1499 were re-
moved from the analysis.

We computed the relative abundance of these eight phyla 
in both the rectum and stool samples, and the results revealed 
a clear difference in the microbiome composition (Fig. 2).

Phylum Firmicutes was highly abundant in both the rectum 
and stool. It was the major phylum detected, representing 
more than 50% of the total microbial relative abundance in 
both groups. Overall, the relative abundance of Firmicutes in 
the stool (ÿ61.4%) was slightly higher than that in the rec-
tum (ÿ52.0%). When compared to the microbial profile in 
rectum, the stool samples exhibited a considerable increase in 
the relative abundance of phylum Proteobacteria (from 7.1% 
to 30.1%), while the relative abundance of Bacteroidetes de-
creased from 38.1% to 6.7%. In addition, we observed an el-
evated relative abundance of the Verrucomicrobia phylum in 
the stool microbiome compared to the rectum, with an in-
crease from 0.31% to 1.5%. Conversely, the phylum 
Fusobacteria showed a decrease from over 1.9% to a lower 
level. The remaining three phyla were nearly imperceptible in 
rectum and stool.

To further understand the composition of the fecal micro-
biome in IBD populations, we fitted the proposed Micro- 
DeMix model, incorporating gender and age as covariates. This 
analysis revealed estimates of the relative abundance of selected 
phyla from the other GI locations (Fig. 2). Compared to the rec-
tum microbiome, the microbial profile of other GI locations 
revealed a higher relative abundance of phylum Firmicutes 
(ÿ64.3%), Proteobacteria (ÿ33.7%), and Verrucomicrobia 
(ÿ1.7%). Phylum Bacteroidetes was undetectable in other GI 
locations. The remaining phyla also exhibited relatively low 
abundance (<1%). Based on 10 000 simulated datasets, the 
Micro-DeMix test suggested significant differences in the taxo-
nomic composition of the eight phyla between the rectum and 
other GI locations in IBD populations (p-value <1e −4).

Our findings are consistent with recent studies on the gut 
microbiome in IBD populations. Specifically, the rectum and 
fecal microbiome of IBD patients is dominated by three major 

Figure 1. Type-I error rates and powers obtained at various signal strengths from the simulation study. (A) Power curves for G¼10. (B) Power curves for 

G¼ 20. A horizontal dashed line is shown at 0.05; t on the x-axis denotes the total signal. Rejection rates were obtained using both Micro-DeMix 

procedures and seven existing tools.
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bacterial phyla: Firmicutes, Bacteroidetes, Proteobacteria, 
and to a lesser degree Verrucomicrobia and Actinobacteria 
(Frank et al. 2007, Lo Presti et al. 2019). Our results are also 
consistent with recent studies that described distinct changes 
in the composition of the microbiota along the GI tract in 
IBD populations. The lower GI tract exhibited a larger abun-
dance of Firmicutes and Bacteroidetes, whereas the upper GI 
tract was predominated by Proteobacteria and Firmicutes 
(Vuik et al. 2019). Compared to healthy individuals, the re-
duction in the relative abundance of Firmicutes and an eleva-
tion in Bacteroidetes have been observed in IBD patients 
(Khan et al. 2019, Lo Presti et al. 2019, Vuik et al. 2019, 
Zhang et al. 2022). Thus, our results shed light on the scien-
tific premise of developing an effective microbiome-based 
treatment approach for IBD, such as the therapeutic supple-
mentation of probiotics, prebiotics, and symbiotics, and fecal 
microbiota transplantation.

3.4 iHMP IBD data: Microbial composition within 

Proteobacteria and Firmicutes

In Section 4.1, we identified Proteobacteria and Firmicutes as 
the most abundant phyla in stool samples. To further under-
stand the microbes in these two phyla, we conducted analyses 
of microbial composition at lower taxonomic levels (class, or-
der, family) within Proteobacteria and Firmicutes phy-
lum (Fig. 3).

Similar to the analyses in Section 4.1, we computed the rel-
ative abundance of all microbial classes and orders within 
phylum Proteobacteria for both the stool and rectum sam-
ples, and implemented the Micro-DeMix model to elucidate 
the difference between the rectum microbiome and the 
microbes in other GI locations. We followed the rarefying 
procedure that described in Section 4.1 to process the stool 
OTU data. In stool samples, the minimum library size is 13, 
which is not big enough to be included in the study. 
Therefore, we used 369, the second minimum, as the rarefac-
tion level for both stool and rectum group. The outcomes of 
our analyses are visually represented in Fig. 3A and B.

Fig. 3A reveals that within phylum Proteobacteria, the ma-
jor classes in rectum and stool are Betaproteobacteria and 
Gammaproteobacteria. However, the rectum microbiome is 

distinguished by a higher relative abundance of class 
Deltaproteobacteria (ÿ11.1%) and Alphaproteobacteria 
ðÿ 3:0%Þ, which are significantly low in abundance in stool 
samples. There is a low relative abundance of 
Epsilonproteobacteria (<1%) in both stool and rectum. As 
seen in Fig 3A, Gammaproteobacteria ðÿ 99:6%Þ is the most 
dominant class among the selected classes in other GI loca-
tions, while the other four classes are nearly undetectable. 
Although this finding may appear extreme, it is aligned with 
the existing knowledge that IBD patients have an altered gut 
microbiota marked by an increased relative abundance of 
Gammaproteobacteria class (Scales et al. 2016).

We proceeded to analyze the microbial composition of the 
phylum Proteobacteria at the order level, revealing 
marked differences between the rectum and stool samples 
(Fig. 3B). While both showed high abundance in orders 
Burkholderiales, Enterobacteriales, and Pasteurellales, the 
rectum samples were mainly characterized by the orders 
Desulfovibrionales and Neisseriales. We utilized the Micro- 
DeMix method to assess the microbiome composition in 
other GI locations. Our analysis revealed a dominance of 
Enterobacteriales (ÿ81.1%), along with a lower proportion 
of Pasteurellales ðÿ 18:83%Þ. This finding is supported by a 
recent study showing that Enterobacteriaceae exhibit in-
creased abundance in the low-pH GI location and ileum 
(Morgan et al. 2012).

The Micro-DeMix test indicates significant differences in 
microbial profiles between the rectum and other GI locations 
(p-value <1e− 4) within the phylum Proteobacteria at both 
the class and order levels.

We further explored the microbial composition of the 
Firmicutes phylum. In the stool samples, three classes were 
identified: Bacilli, Clostridia, and Erysipelotrichi. At the orig-
inal OTU level, class Clostridia dominated with a percentage 
of 97.1%, while class Erysipelotrichi was nearly undetect-
able. Given these findings, we narrowed our focus to lower 
taxonomic levels, specifically, order and family within the 
Firmicutes phylum. Similarly, we employed the minimum li-
brary size, 493, as the rarefaction level and processed both 
stool and rectum OTU data. The corresponding results are 
shown in Fig. 3C and D.

Figure 2. Relative abundance of microbial populations at the phylum level in the rectum, stool, and other GI locations.
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Notably, at the order level (Fig. 3C), the phylum 
Firmicutes in the rectum and stool was predominantly repre-
sented by the order Clostridiales (97.1% in rectum and 
93.6% in stool of all Firmicutes). Our results demonstrate 
the presence of order Turicibacterales in the stool samples, 
while it is absent in the rectum samples, which suggest that 
order Turicibacterales in stool samples may originate from 
other GI locations. The relative abundance of the order 
Lactobacillales increased in stool compared to rectum from 
0.86% to 5.7%. In contrast, order Erysipelotrichales is found 
to be present (2.0%) in the rectum but remains at lower levels 
in the stool. The results of Micro-DeMix analysis show a p- 
value <1e−4 for testing differential abundance between the 
rectum and other GI locations. Meanwhile, it highlights a sig-
nificantly higher relative abundance of Lactobacillales 
(ÿ63.4%) in other GI locations compared to the rectum and 
stool. The analysis estimates that order Turicibacterales 
(ÿ6.4%) is also more abundant in other GI locations. These 
findings indicate a distinct microbial composition in other GI 
locations, with increased prevalence of orders Lactobacillales 
and Turicibacterales.

At the family level within the Firmicutes phylum (Fig. 3D), ma-
jor families of the rectum microbiota are Ruminococcaceae, 
Lachnospiraceae, and Veillonellaceae. Comparisons between 
stool and rectum samples reveal an increase in Ruminococcaceae 
and a decrease in Lachnospiraceae and Veillonellaceae, aligning 
with findings from other studies (Lo Presti et al. 2019). One sig-
nificant finding is the presence of the Clostridiaceae, 
Enterococcaceae, Planococcaceae, and Turicibacteraceae families 
in stool samples but not in the rectum. This observation suggests 
that these families detected in stool originate from other GI 
microbiome community. In other GI locations, our analysis 
shows a higher abundance of the Clostridiaceae and 
Ruminococcaceae families. In contrast, the family 
Lachnospiraceae exhibits a comparatively lower abundance. 
Furthermore, the p-value obtained through Micro-DeMix 

hypothesis testing is low (<1e −4). These findings imply distinc-
tive microbial profiles among the rectum, stool, and other GI 
locations, indicating variations in the relative abundance of spe-
cific taxa.

4 Conclusion

In this paper, we introduced Micro-DeMix, a beta-multinomial 
model designed for deconvoluting microbial abundance in stool 
samples. We proposed two parameter estimation procedures for 
the model, each with its strengths in specific types of applica-
tions. Additionally, we developed hypothesis testing procedures 
for detecting differential abundance, which has proven more ef-
fective compared to existing methods. We applied Micro- 
DeMix to rectum and stool microbiome datasets from the 
iHMP IBD cohort in elucidating the composition of real fecal 
microbiome data in IBD populations.

In the analyses of the iHMP IBD data, we performed rare-
fying on stool and rectum datasets to address the large varia-
tions in library sizes across samples. While rarefaction has 
been widely adopted in real microbiome applications, a limi-
tation of this approach is that the selection of rarefaction 
level is data-dependent, and different rarefaction levels may 
lead to slightly different results. Due to the limited sample 
size, our strategy for selecting the rarefaction level is to keep 
as many samples as possible while removing samples with 
unreliably low library sizes. Different strategies may be con-
sidered for other datasets.

As mentioned earlier, the current paper focuses on integrating 
rectum samples and fecal samples due to data availability and 
biological relevance. However, the proposed method can seam-
lessly be used for integration of fecal samples with microbiome 
data collected from other GI locations. Furthermore, with 
microbiome data available from two or more GI locations, we 
could extend Micro-DeMix to have a refined decomposition of 
the fecal microbiome. Specifically, following work could 

Figure 3. Relative abundance of microbial populations at various taxonomic levels in the rectum, stool, and other GI locations. (A, B) Microbial 

composition at the class and order levels within the phylum Proteobacteria. (C, D) Microbial composition at the order and family levels within the 

phylum Firmicutes.
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consider the stool microbiome as a J-component mixture of gut 
microbes, i.e. we let pig ¼ π

ð1Þ
i p

ð1Þ
g þ ÿ ÿ ÿ þπ

ðJ − 1Þ
i p

ðJ − 1Þ
g þ

ð1 − π
ð1Þ
i − ÿ ÿ ÿ − π

ðJ − 1Þ
i ÞpðJÞg in Equation (1), where πi follows a 

Dirichlet ðaiÞ distribution. We leave this fruitful area for fu-
ture research.
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