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Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive an-
alytics on graph-structured data. Hence, they have become very popular in diverse real-world applications.
However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory-
and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy
efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth.
Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been pro-
posed as suitable candidates for accelerating Al applications at the edge, including GNN training. However,
ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low perfor-
mance when they are used for GNN training in real-world scenarios with large graphs. In this work, we
propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC)
to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate
the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces
the amount of redundant information in input graph(s) to speed up the overall training process, improves
the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast,
energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demon-
strate that using this learning for data pruning framework, we can accelerate GNN training and improve the
reliability of ReRAM-based PIM architectures by up to 1.6X, and reduce the overall training cost by 100X
compared to state-of-the-art data pruning techniques.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved notable success in a large range of applica-
tions, and they have become mainstream for performing cognitive tasks (e.g., node classification,
link/edge prediction, and graph classification) on graph structured data, which are ubiquitous in
diverse application domains. Examples of such domains and their applications include chemistry
(e.g., designing compounds), medicine (e.g., experimental drug-discovery), transportation (e.g.,
finding efficient routes), and so on [1, 2]. However, the exponential growth in computation cost
as graph datasets grow in size (up to billions of nodes and edges [1]) and GNN model structures
become more complex, present a significant challenge. The massive computational and storage re-
quirements for processing real-world graph data limit the deployment of GNN models on resource-
constrained and time-sensitive computing platforms such as IoT devices in edge Al applications
[1, 3, 4]. Moreover, traditional architectures (such as CPUs, GPUs and TPUs) do not provide the
compute efficiency (FLOPs/W) and low latency required for edge AI applications such as GNN
training and inference due to their limited memory bandwidth and high-power consumption [5].

To address this challenge, domain-specific architectures such as processing in memory (PIM)-
based computing platforms have emerged as suitable candidates for edge AI applications [6-8].
Resistive random-access memory (ReRAM)-based crossbar arrays enable energy-efficient and
high-performance Matrix Vector Multiplication (MVM) operations [9]. MVM is the core com-
putational kernel of GNN computation. Hence, ReRAM-based PIM architectures are suitable for
GNN computation. However, the high computational requirements imposed by large-scale graph
datasets still make executing GNN models on PIM-based architectures very challenging. In addi-
tion, PIM architectures based on ReRAMs suffer from low write endurance, which significantly
limits the number of times they can be re-programmed before they fail due to faults [10, 11].
Therefore, it is important to explore approaches that reduce the number of ReRAM write opera-
tions arising from the high computation cost associated with GNN training tasks for large graph
datasets. This will enable more GNN training instances to be performed on PIM architectures.

To reduce the high computation cost of GNN training, approaches such as Unified Graph
Sparsification (UGS) [12] and Graph early-bird tickets (GEBT) [13] for weight- and graph
pruning have been developed. Both UGS and GEBT are based on the Lottery Ticket Hypothesis
(LTH) [13, 14]. Specifically, these methods attempt to generalize the LTH (originally proposed for
CNNs) to GNN, for pruning both the graph dataset and model weights with little accuracy loss
[12, 13]. However, LTP-based methods don’t take the ReRAM crossbar structure into consideration.
As a result, there is no significant area or power savings. Recently, an LTH-inspired crossbar-
aware model pruning (CAP) method for GNN training on ReRAM-based architectures was pro-
posed in [15]. This method enhances existing CAP methods by taking the overall crossbar structure
into consideration and implements model pruning in an iterative manner to ensure that the pruned
GNN models can be trained from scratch. However, LTH-based approaches for GNNs usually
adopt an iterative cycle (train-prune-retrain) that require multiple training rounds to find a sparse
GNN model and graph dataset pair for the purpose of reducing both the training and inference cost
[3]. As we show later, this approach is very expensive and increases the overall training cost by
over 20x. In this work, we specifically define cost in terms of the training time required to find the
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maximally pruned graph dataset that can be trained with a given GNN model without any
accuracy loss. In order to reduce the cost of data graph pruning with negligible loss in accuracy,
there is a pressing need to explore low-cost data pruning approaches to enable resource efficient
graph learning.

In this work, we propose a novel data graph pruning approach that enables the training of
GNNs using a fraction of the original graph dataset, with negligible loss in accuracy. The pro-
posed method leverages a low-cost graph classification technique to reliably predict input sub-
graphs from a monolithic graph that can be pruned for GNN training in resource-constrained
scenarios without any accuracy loss in the predictive accuracy of the trained GNN model after
data pruning. This low-cost graph classification approach leverages a small Multi-layer Percep-
tron (MLP) classifier to learn patterns over subgraph structures and predict if a given subgraph
should be pruned or retained during GNN training. In short, this approach can be conceptualized
as a learning-for-data pruning paradigm, where the graph classifier is pre-trained offline to learn
how to prune an unseen graph dataset during the early part of online GNN training. For the sake
of brevity, we refer to this MLP-based subgraph classifier for efficient GNN training as the Binary
Graph Classifier (BGC) throughout the rest of this paper. Due to the simple MLP-based struc-
ture, the execution of the BGC algorithm introduces an insignificant timing penalty to the total
GNN training time as we show in our experimental analysis. Moreover, it is implemented offline on
the host device. Overall, our approach reduces the overall computational cost by scaling-down the
size of the graph dataset, reduces the number of ReRAM cell write operations, and improves the
performance of GNN training on PIM-based architectures without compromising the predictive
test accuracy of the trained GNN model. Consequently, this enables reliable GNN training with-
out the occurrence of untimely ReRAM device breakdown or malfunction due to cell-wear induced
faults. For the scope of this work, we consider PIM architectures based on ReRAM devices as a spe-
cific embodiment, as they are known to suffer more from the low endurance problem compared
to other non-volatile memory (NVM) devices [9]. However, the proposed BGC-enabled graph
pruning technique is applicable to other NVM-based PIM based architectures, as well as conven-
tional CMOS-based CPU, GPU and TPU-based computing platforms. However, unlike NVM-based
PIM endurance is not a major problem in CMOS-based architectures.

To evaluate the effectiveness of our proposed BGC-enabled GNN training framework, we per-
form extensive experiments across a variety of GNN models and large graph datasets. We demon-
strate that our proposed approach is GNN model- and graph dataset-agnostic and can be gener-
alized to even unseen graph datasets and other types of GNN models. In addition, we also show
that our approach achieves the same level of performance as LTH-based pruning approaches while
significantly reducing the overall GNN training cost. In particular, BGC-enabled GNN training sig-
nificantly reduces the number of write operations to the ReRAM crossbar during training, thereby
increasing the number of GNN training tasks that can be reliably executed on ReRAM-based PIM
architectures, while ensuring performance speedup. We note that the proposed method can also
be combined with existing ReRAM endurance-aware techniques (e.g., gradient sparsification and
low-rank-training) to offer even higher improvements in the reliability for GNN training. Overall,
our contributions in this paper can be highlighted as follows:

* We propose a novel approach to create Binary Graph Classifier (BGC) models to prune
subgraphs during the GNN training process to reduce the overall training cost, improve
performance and reliability without compromising the GNN test accuracy on ReRAM-
based PIM architectures.

* We establish a trade-off between training cost, reliability, predictive accuracy, and per-
formance for BGC-enabled subgraph pruning for GNN training on ReRAM-based PIM
accelerators.
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* We show that the proposed BGC-enabled subgraph pruning achieves up to 1.7X and 1.5X
improvement in performance speedup and reliability respectively, and a reduction of up
to 120X in training cost compared other existing LTH-based pruning methodologies on
ReRAM-based GNN accelerators.

To the best of our knowledge, this is the first work that leverages the idea of subgraph pruning to
enable resource-efficient GNN training on PIM-based architectures. The rest of this paper is orga-
nized as follows. Section 2 discusses relevant prior work. Section 3 elaborates the methodology for
BGC-enabled subgraph pruning. Section 4 presents the results of the comprehensive experiments,
and Section 5 concludes the paper by summarizing the key features of this work.

2 RELATED PRIOR WORK

In this section, we present some relevant prior work. GNNs leverage neighborhood aggregation
to learn representations for nodes, edges, and entire graphs using various state of the art mod-
els such as Graph Convolution Networks (GCNs) [2], Graph Attention Networks (GAT)
[16], and GraphSAGE [17]. In addition, these GNN models are often trained on a suite of very
large graph datasets, each of which consists of millions/billions of nodes and edges with their as-
sociated features and have achieved remarkable accuracy. However, while the training of these
GNN models with large graphs has been shown to be feasible on traditional CPU/GPU systems,
these models cannot be easily adapted for training on resource-constrained computing platforms.
Moreover, the computational overhead involved with GNN training on PIM-based accelerators is
often not considered. Hence, it is important to understand the challenges associated with resource-
constrained platforms and propose techniques to address them in order to enable resource-efficient
GNN training.

In particular, ReRAM-based crossbars have been demonstrated to efficiently accelerate Matrix-
Vector-Multiplication (MVM) operations, which are the predominant operations in GNN train-
ing and inferencing [7]. Recent work has proposed a 3D ReRAM-based PIM architecture to address
the on-chip communication challenges of GNN training [18, 19]. However, both training and infer-
encing are affected by the non-ideal nature of ReRAM cells [9, 20]. ReRAM-based systems have low
precision and limited write endurance that can affect the accuracy of the GNN model. Software-
level optimization techniques such as dropout, quantization, and pruning can also be used to im-
prove performance and energy-efficiency of GNN training on ReRAM-based architectures [6, 15].
However, the low write endurance problem of ReRAM devices remains a significant challenge and
limits the feasibility of these proposed techniques. Therefore, it is important to explore techniques
that collectively enable reliable GNN training with large graphs on ReRAM-based architectures.

Various methods have been proposed to address the reliability challenges of ReRAM-based ar-
chitectures due to their low endurance. These techniques range from device-level optimizations to
software-level approaches. Device-level methods such as programming latency optimization and
low-voltage write schemes have been proposed to improve the reliability of ReRAM crossbars [11,
21]. However, these methods aim at reducing only the per-write energy and do not reduce the ac-
tual number of writes. Structured gradient sparsification (SGS) and weight re-mapping (RM)
have been proposed to mitigate the effect of low write endurance [22, 23]. Other endurance-aware
approaches such as fault-tolerant training schemes have also been proposed to mitigate the effects
of faults and train ML models with limited write endurance [24]. However, these methods focus
solely on reducing the number of write operations due to weight updates in Deep Neural Net-
works (DNNs); they are not directly applicable to GNNs. Unlike DNN training where only weights
are updated, GNN training exhibits properties of both DNNs (weight updates), and graph analytics
which requires intermittent graph adjacency matrix storage on ReRAM crossbars, thereby leading
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to frequent write operations. Moreover, existing fault-tolerant training methods often introduce
relatively high area, power, and performance overheads [10, 24].

We show in this work that graph pruning (also known as graph sparsification) can be used to
improve device lifetime. Graph pruning is a well-known technique that removes irrelevant edges
and nodes in the graph. Traditional graph pruning methods attempt to use unsupervised learn-
ing approaches that aim to retain the statistical properties of the original graph. However, these
techniques perform poorly on GNN downstream tasks such as node classification or graph classifi-
cation [25, 26]. Supervised learning-based graph sparsification methods such as NeuralSparse have
been proposed to improve generalization by learning to remove from input graphs those edges that
are irrelevant for node classification [27]. Also, DropEdge has been proposed as a regularization
technique that randomly removes graph edges during training to improve the overall generaliza-
tion of GNNs. However, as we show later, these methods do not lead to significant benefits in terms
of overall performance speed-up, end-to-end latency, and reliability.

Recent work has proposed to generalize the LTH method proposed originally for CNN model
weights to GNN models and graphs [12, 13, 15]. These approaches aim to find a pruned GNN model
and graph dataset pair that can be trained from scratch to match the accuracy of the unpruned GNN
model and dataset. Unified GNN sparsification (UGS, and the Graph Early Bird Ticket (GEBT)
are two state-of-the art frameworks proposed to prune graphs for GNN training [12, 13]. However,
these two methods make use of pruning masks, which are transductive in nature, i.e., they are
derived uniquely for a given graph adjacency matrix [3]. Hence, they cannot be transferred or
applied to unseen or new graph datasets [3]. Moreover, LTH-based pruning methods are iterative
in nature and require many training rounds to prune GNN models and data graphs. As a result, this
increases the training cost by more than 20x, and makes it expensive to apply LTH-based pruning
to new or unseen large graphs. In addition, these LTH-based GNN pruning methods still aim to
prune the entire monolithic graph and they do not reduce the number of input subgraphs used for
the end-to-end GNN training process. As we show later, this leads to device reliability issues.

In this work, we address the limitations of existing approaches by proposing a fundamentally
different solution based on the concept of learned binary classifiers for low-cost subgraph pruning.
This method enhances the reliability of ReRAM architectures by reducing the number of write
operations. Subgraph pruning also reduces the training cost and improves the performance of
GNN training with minimum accuracy loss.

3 METHODOLOGY

In this section, we first discuss some preliminaries of GNN training, and present the details of the
proposed BGC-enabled subgraph pruning framework for GNN training on ReRAM-based many-
core architectures (illustrated in Figure 1 and Figure 2). Next, we discuss how BGC enabled pruning
improves performance in terms of end-to-end execution time, device reliability, and training cost
for a ReRAM-based manycore system during GNN training.

3.1 Preliminaries

A monolithic data graph is represented by an adjacency matrix G € {0, 1}"*", and a node feature
matrix X € R™9, where n is the number of nodes in the graph, and d is the dimensionality of
each node feature vector. Due to the limited amount of storage available in PIM accelerators, we
leverage mini-batch GNN training, where the large monolithic graph (G) is partitioned into smaller
parts known as subgraphs and used for GNN training [17, 28-30]. Hence, a monolithic data graph
G is partitioned into K subgraphs such that {SG;, SG,,...,SGk} C G, where SG; denotes the ith
subgraph. Each subgraph has its unique adjacency matrix (A).
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titioned into subgraphs and mapped to PEs, alongside GNN weights, and activations. (b) Pipeline stages
during GNN training; each stage is a GNN layer. (c) Pipelined execution of GNN training with K input sub-
graphs on ReRAM-based accelertors. After each subgraph is processed, crossbar write (cw) operations occur
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A GNN consists of L neural layers, where each layer performs forward- and backward-phase
computations. The forward-phase computations are described as follows:

Forward-propagation:

H = X' xw! (1)
GNN layer I: { H*! = Ax H! (2)
X!*1 = ReLU (H') 3)

During the forward phase, an MVM operation is performed between the input feature vector (X*)
and the GNN model weights (W') for a given GNN layer (I) as shown in Equation (1). The updated
feature vector (H') is multiplied with the subgraph adjacency matrix (A) to perform the node-
feature aggregation of neighboring nodes to produce an output embedding (H'*'). This embedding
is passed through a non-linear ReLU activation function to produce the input activations (X'*1)
for the next GNN layer (I + 1) shown in Equation (3). The backward phase can be expressed as
follows:

Backward-propagation:

errl = (W) x 811 ReLU’(X!Y) )

GNN layer 1I:
Y {51 =Axerr! (5)

Equations (4) and (5) represent the error calculation in the back-propagation phase during GNN
training. As shown in Equation (4), the activations of the preceding layer (X'~!) are needed for the
computation of the error (err’) of layer I. Here, ReLU’ represents the derivative of the activation
function. In Equation (5), this error vector is multiplied with the adjacency matrix to obtain the
accumulated error vector (8!), which is then used to compute gradients for the weight update
process.

3.1.1 GNN Training on ReRAM-based PIM Architectures. ReRAMs enable parallel and effi-
cient in-memory Matrix-Vector-Multiplication (MVM) operations. To enable GNN training on
ReRAM-based PIM accelerators, the GNN weights are mapped to ReRAM cells in each processing
element (PE) following [6] and [19]. The graph adjacency matrix of subgraphs, as well as the acti-
vations (intermediate output of each GNN layer) are mapped to separate PEs. Figure 1(a) illustrates
how the GNN weights, adjacency matrix, and activations are mapped to the ReRAM crossbars. In
the forward propagation (Equations (1)—-(3)), an MVM operation is performed on ReRAM crossbars
in PEs storing the weights between the GNN weights, and the output activations of the previous
GNN layer (X!~1). This step is referred to as the ‘combination phase’ of the forward propagation, as
shown in Equation (1). Next, in the ‘aggregation phase’ during the forward propagation, an MVM
operation is performed between the output of the combination phase and the graph adjacency
matrix (Equation (2)). To implement these MVM operations on the ReRAM crossbar, one of the
operands must be written to the ReRAM cells, while the other operand is fed as an input. In Equa-
tions (1) and (2), the weights (W) and the adjacency matrices (A) respectively are written on to the
crossbars. Each tile is equipped with a non-linear activation unit to perform the ReLU operation
(Equation (3)) following prior work [7, 31]. In the backward propagation, the intermediate acti-
vations stored in separate PEs during the forward phase are used to compute the error gradients
(err!). As shown in Equations (4) and (5) above, this operation is simply a MVM operation between

the intermediate activations (8'), and the transpose of the weights ((Wl’l)T). Figure 1 illustrates
how the GNN weights (W'), activations (X'*'), and subgraph adjacency matrices (A) are mapped
to the ReRAM-based accelerator.
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As mentioned earlier, to enable GNN training of large graphs on the ReRAM-based
PIM architecture, the large monolithic graph is partitioned into multiple smaller subgraphs
({SG1, SGg,...,SGk}) using a graph partitioning algorithm [32]. Hence, this allows us to pipeline
the GNN training process such that each input subgraph ( SG ) is analogous to an input image
to the pipeline as in traditional DNN architectures. Figure 1(b) and Figure 1(c) shows an illus-
tration of the overall pipelined GNN training process. In Figure 1(c), each input subgraph is sent
sequentially as input to the pipeline, while Figure 1(b) shows the end-to-end pipeline for training
a L-layer deep GNN for one input subgraph. This deep pipelining strategy allows all layers of the
GNN to be computed in parallel. As a result, this speeds up the entire GNN training process, and
improves throughput and energy-efficiency compared to its unpipelined version. In Figure 1(b),
FL; and BL; denote the forward- and backward- propagation computation respectively of the Ith
layer of the GNN during training. The worst-case delay associated with a pipeline stage is denoted
as tszqge- Following prior work, we assume each GNN layer as one pipeline stage [33]. The training
time is determined by the longest latency among all the layers (as shown in Figure 1(b)), and the
end-to-end pipeline depth (D) given by:

D=2L+K-1 (6)

Where K is the total number of input subgraphs, and L is number of GNN layers. During GNN
training, the overall execution consists of computation (i.e., MVM operations) on ReRAM-based
crossbars and inter-PE communication (the data of one layer must be sent to the next layer). The
overall execution time is determined by the end-to-end pipeline depth (D) and the delay of each
pipeline stage (tstage)- The overall execution time is given by: D X f544e. To improve the execution
time, we must reduce the pipeline depth, which is governed by the input dataset, i.e., number of
subgraphs (K) used for training.

However, it is well known that multiple writes to the ReRAM cells can lead to device failure [9,
11, 34]. Specifically, during GNN training, ReRAM cell write operations (cw) occur due to weights
updates, intermediate activation storage, and subgraph adjacency matrix storage after each sub-
graph is processed, as shown in Figure 1(c). Moreover, for very large graphs partitioned into many
subgraphs (i.e., large K), and for deep GNNs with many layers (i.e., large L), the number of write
operations, overall pipeline depth, and end-to-end training latency increases significantly as il-
lustrated in Figure 1(c). Consequently, this leads to severe degradation in the ReRAM reliability
(i.e., due to limited write endurance), and incurs significant training performance penalty. From
Equation (6) and Figures 1(a)-(c), we can see that reducing the number of subgraph partitions (K),
for example, by creating fewer partitions, but larger subgraphs will lead to a reduction in pipeline
depth (D) and number of ReRAM cell write operations (cw). However, creating larger subgraphs
with high storage requirements for pipelined GNN training on ReRAM-based PIM accelerators is
often not desirable. This is due to the small memory footprint of ReRAM-based PIM architectures.
Moreover, training GNNs with large subgraphs leads to significant accuracy loss as shown in prior
work [33]. Therefore, it is desirable to choose a higher number of partitions with smaller subgraph
sizes that can fit within the on-chip memory. However, the high number of write operations due to
more subgraphs still leads to reliability issues. Hence, in this work, we propose a unique method
for subgraph pruning to reduce all types of write operations to the ReRAM crossbars, thereby
improving reliability and the overall training execution time without compromising accuracy.

3.2 Binary Graph Classifier (BGC) for Subgraph Pruning

As discussed earlier, the overall training time and the number of ReRAM crossbar write operations
are directly related to the number of input subgraphs for a given graph dataset used for training
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GNN models. Consequently, the number of subgraphs has a direct impact on the performance,
reliability, and predictive accuracy of GNN model for a given GNN training workload (model and
dataset) executed on the ReRAM based manycore platform. The key challenge is to prune the input
subgraphs for GNN training on the ReRAM-based PIM architecture, such that the performance in
terms of execution time, and reliability is improved without any significant loss in accuracy of the
GNN model. To address this challenge, we propose an algorithm to train a binary graph classifier
(BGQ) for pruning subgraphs on unseen graph data.

We formulate the subgraph pruning problem as a graph classification task. Given a set of sub-
graphs {SG1, SG,,...,SGk} for a graph dataset G, a trained subgraph classifier will predict a
binary label for a given subgraph (SG;): 0 means that the subgraph should be pruned and 1 means
that the subgraph should be retained for training the given GNN model. We employ the subgraph
representation from a trained GNN model and use a simple MLP classifier on top of this learned
subgraph representation, which is obtained by aggregating the node features of the subgraph us-
ing a graph-level pooling function [30]. The trained subgraph pruning classifier (BGC) produces a
binary output prediction g; (0 means to prune and 1 to mean not prune) for a given subgraph SG;.
The key insight behind pruning the subgraphs is to exploit the inherent redundancy of information
in the graph including nodes with similar features, labels, and neighborhood. Additionally, with
a small number of training iterations, it is possible to use the GNN model to score the subgraphs
in terms of their usefulness for further training [33, 35]: a high score for a subgraph means that
the GNN model can make accurate predictions (node/edge classification) and additional training
using such subgraphs will not improve the predictive accuracy of the GNN model. We leverage
these insights to design an effective algorithm to train such subgraph pruning classifiers. Note that
we perform subgraph pruning using this trained classifier after a small number of initial training
epochs. We demonstrate later that pruning subgraphs after five training epochs gives consistently
good results on diverse training/testing splits over a set of GNN training workloads. There are
two key challenges in creating an effective binary classifier for subgraph pruning on unseen graph
data: (1) How to create supervised training data of subgraphs and binary pruning decision pairs?
(2) How to train a binary classifier on a given imbalanced training dataset where the number of
subgraphs with ‘prune’ labels will be higher than those with ‘not prune’ labels. In what follows,
we provide algorithmic solutions to answer these two questions.

Creation of Supervised Binary Classification Data. We assume the availability of a set of
known GNN training workloads (i.e., GNN model and graph data pairs: {gnn;, G;}) for this pur-
pose. Suppose we use a fixed early training epoch E (say 5th iteration) at which we will perform
subgraph pruning for any given GNN training workload. For a given graph G; there can be many
subsets of subgraphs that can preserve the GNN model accuracy after training epoch E. Algorithm
1 describes the overall supervised binary classification data generation process. Ideally, we want to
find the smallest subset of accuracy preserving subgraphs ({SGy, . . ., SG¢}) and the corresponding
pruning labels ({y1, v2, ..., yc}) because it aligns with our overall goal. However, this leads to a
hard combinatorial optimization problem (search over subsets of different sizes in the decreasing
order and performing GNN training with each candidate subset). Additionally, there can be multi-
ple different subsets with the same minimum size and selecting one of them arbitrarily for different
GNN training workloads can create inconsistent training data for subgraph pruning classifier. To
overcome these challenges, we leverage recent work on DNN model-based importance scoring of
input examples for data pruning [35] and generalize this to subgraph pruning for a pre-specified
pruning percentage. The importance score assigned to each subgraph corresponds to the likelihood
of the subgraph can be pruned: a low score means the corresponding subgraph can be pruned with
a high probability (lines 5-9 of Algorithm 1). The key idea behind our approach is to create binary
classification data as follows. First, we use these importance scores to sort the subgraphs. Second,
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ALGORITHM 1: Creation of Supervised Binary Classification Data
Input : GNN training workloads: GNN + Graph Set {gnn; + G;}
Output: BGC Training data and labels: {SGj,...,SGc}, {y1,.-,¥yc},

1 Initialize GNN;
2 for each gnn; and G; do

3 while No accuracy loss in gnn; do
4 Train gnn; with G; for E epochs ;
5 Compute Score: score(SG;) =3 |0'(SG;)W;| V SG; C Gy;
6 Sort: subgraphs as-per scores;
7 if E ==05 then
8 | Prune: subgraphs with low scores
9 end if
10 Search: max value of k, such that removing k% subgraphs
preserves ideal accuracy;
11 Label: subgraphs with top-k% scores as ‘1’;
12 Label: remaining subgraphs as ‘0’
13 end while
14 end for

15 Aggregate subgraphs and labels from all GNNs;
16 Return{SGy,...,SG¢} and labels: {yi,...,yc};

we train the GNN model by pruning the top k percent subgraphs for different values of k in an
increasing order to find k such that the accuracy is preserved with respect to the ideal setting (no
subgraphs are pruned). By gradually increasing the value of k (in discrete intervals, say 10) until
we see loss in accuracy (line 10 of Algorithm 1), we identify the maximum subset of subgraphs that
can be pruned in a sound manner. Since this experiment with each value of k involves training the
GNN model, we perform a discrete search to efficiently identify the maximum value of k as part
of a one-time offline process. Importantly, sorting the subgraphs based on their importance scores
injects inductive bias to avoid the generation of inconsistent binary classification data across dif-
ferent GNN training workloads. We aggregate the binary classification data over all GNN training
workloads to form our overall training set for the binary subgraph classifier.

Model-based Importance Scoring: We score each subgraph (SG;) in the set of subgraphs, as shown
in Equation (7) and line 5 of Algorithm 1. This formulation, described by Equation (7), scores the
importance of each subgraph (SG;) by its expected loss gradient norm, which bounds (up to a
constant) the expected change in loss for an arbitrary subgraph example caused by removing SG;
[35]. In other words, subgraphs with low scores are expected to have a limited influence on learning
how to make predictions (based on their structure) for the rest of the training subgraphs. The
importance of each subgraph in the coreset (SG;) is determined by a scoring function (score(SG;))
described below:

score(SG;) = Z 151(SG;) AW | @)

We have conducted experiments where the above scoring function was used to rank all sub-
graphs based on the magnitude of the product of the gradient with respect to the input subgraph
SGj (i.e., st (5Gj)) and the change in the weights in GNN layers (AW;) [33]. This score indicates
the contribution of each subgraph (SG;) to the change in the overall training loss function. The
parameter &' is the gradient update, like the one used earlier in Equation (5). We normalize the
importance score associated with each subgraph SG; to a continuous value ranging from 0.0-1.0
to account for variability across different GNN training workloads. Hence, to generate the cor-
responding labels of each subgraph ({y1, y2,. .., yc}), we quantize the score values to be binary
values (0 or 1) by identifying the maximum top k% subgraphs from the sorted list based on the
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importance scores that can be pruned without any loss in accuracy. This is done by searching over
discrete values of k and performing GNN training with top-k% pruned subgraphs. In this work,
the value of k was chosen to be 10, consistent with prior work [33].

Training Binary Subgraph Classifier from Imbalanced Data. It is conceivable, and em-
pirically observed in both prior work and current work, that the number of subgraphs that can
be pruned are higher (majority class) than those that cannot be pruned (minority class) for each
GNN training workload, even though the specific imbalance ratio varies from one training work-
load to another. Additionally, the accuracy of the trained subgraph pruning classifiers can impact
performance, power, reliability, and model accuracy when the GNN is trained on a ReRAM-based
hardware platform. For example, if we prune important subgraphs (determined by Equation (7)),
then we can potentially lose GNN model accuracy. Similarly, if we do not prune unimportant sub-
graphs, then we incur penalties in terms of performance, power consumption, and reliability.

A naive approach of using standard classification training data will result in a classifier that will
be biased to predict the majority class; however, this approach potentially leads to a significant loss
in predictive accuracy. To overcome this challenge, we propose to use a cost-sensitive classifier
training approach that assigns higher importance weight to examples from the minority class as
we do not want to make mistakes on those examples. Algorithm 2 demonstrates the overall training
process of the MLP-based BGC using a weighted binary cross entropy loss function (£,,41;) shown
in Equation (8), and line 5 of Algorithm 2. A weighted cross entropy loss function is used to prevent
any bias in the BGC model that may arise due to class imbalance in the overall binary classification
training data. The weighted binary cross entropy loss is given by:

C
Lughs == ) [wpyy-1og ) + (1= 3;) .1og (1 - 3] ®)
j=1

The weighted cross entropy loss applies a rescaling parameter (w,) to the conventional binary
cross entropy loss [36], allowing us to penalize false positives or false negatives appropriately
depending on the needs of the application at hand. This cost-sensitive learning (CSL) process
ensures that the BGC model pays more attention to the minority class, thus improving its per-
formance in cases when the training set is imbalanced. Here, y; and §j; are the binary label and
prediction from the MLP-based binary classifier (fyrp) model, respectively, of a given subgraph
(SGj) in the BGC training set (line 4 of Algorithm 2), and C is the total number of subgraphs in the
training set. As we show later in our experiments, we automatically select the value of w;, based
on the performance on a small validation data set such that the BGC model is trained to make un-
biased predictions when used for the online training process on a ReRAM-based PIM accelerator.
In summary, using the training subgraphs ({SG1, SG,, . ..,SG¢}) as training data for the MLP-
based BGC model, we have described how a classifier can be trained to accurately predict if a new
subgraph should be pruned or not for an unseen GNN training workload. We refer to this overall
framework as the Binary graph classifier (BGC), where the MLP-based model is pre-trained offline
and used to prune subgraphs of any given dataset during online GNN training on the ReRAM-
based PIM accelerator. In this context, ‘offline’ refers to any training process that is carried out on
conventional hardware platforms, while ‘online’ refers to training executed on the ReRAM-based
PIM accelerator.

The BGC model is a light-weight MLP-based neural network (consisting of only few layers),
which is pre-trained to reliably perform the subgraph pruning task for unseen GNN training work-
loads. The goal of training the BGC model is to learn the subgraph network structure, and not to
learn subgraph node-level representation as in the actual GNN training task. Hence, to train the
BGC model we employ the aggregate set of subgraphs ({SGy,...,SG¢}) from the known GNN
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ALGORITHM 2: Offline Binary Graph Classifier Training
Input : BGC training subgraphs; G = {SG1,..., SG¢}, Training
labels Y = {y1,...,yc} | Y € {0,1}, MLP binary classifier
frmrp(G1Y, WanLp)
Output: Trained MLP classifier fy,; p
Initialize fMLP;
for each training iter do
for each SG; € G do
Make prediction §; = farrp(SG;);
Ewght = _l/C Z[wp *Yj IOg(gJ) + (1 - yj) log(l - gj)];
Compute gradients in backward-pass ;
Update fMLP weights (WMLP)
end for
end for
Return fy;; p

© @ N o AW N

-
(=}

training workloads along with their binary labels. Note that subgraphs ({SGY, ..., SG%}) refer
to an unknown GNN training workload and will be used for the online GNN training process on
the ReRAM-based PIM accelerator. Moreover, the training of the MLP-based BGC model using the
training subgraphs is a one-time event performed offline on conventional architectures (such as
CPU/GPU). The pre-trained BGC model can be used multiple times to prune subgraphs for GNN
training with any given graph dataset on the ReRAM-based PIM accelerator.

3.3 GNN Training with Unseen Graphs on ReRAM-based Accelerators using Subgraph
Pruning Classifier

In Figure 2, we present a high-level illustration of how the BGC model is pre-trained offline, and
then used for online GNN training with an unseen data graph on the PIM architecture. In this
subsection, we explain how the pre-trained MLP-based BGC model is used for subgraph prun-
ing during the online GNN training process on the ReRAM-based PIM architecture. Algorithm 3
describes the online subgraph pruning process, for new or unseen graph datasets. It has been
demonstrated in recent work that redundant examples can be pruned very early in training, with-
out significant degradation in the final test accuracy [13, 35]. Hence, in this work, we propose to
apply the pre-trained BGC model to prune training examples (subgraphs in this case) very early
in the GNN training process (within a few epochs). In other words, the pre-trained BGC model is
used to prune the input training samples. For our analysis, we consider a scenario where the BGC-
enabled subgraph pruning is applied before the start of training (E = 0), and very early during the
GNN training process (E = 5). As we show in our experimental results, pruning subgraphs at the
fifth epoch (line 3 of Algorithm 3) is sufficient to accelerate the GNN training process, and yield
significant improvement in reliability and performance of the ReRAM-based PIM accelerator with
negligible loss in accuracy. The pretrained BGC model is a light-weight MLP-based neural net-
work consisting of only a few layers and parameters. It is being executed offline on the CPU/GPU
host as shown in Figure 2(a). Hence, executing the pretrained BGC model to prune input sub-
graphs during training is a simple inference pass of the MLP layers, which has a negligible timing
overhead. Moreover, this process is performed only once very early during a given GNN training
workload instance. Consequently, as shown in Figure 2(b), P subgraphs have been predicted by
the BGC model as unimportant and are pruned (line 5 of Algorithm 3). The remaining important
subgraphs ({SGY, . .., SG%_ p}) of the new/unseen dataset are used for online GNN training on the
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Table 1. BGC Model and Dataset Specs

Layer Type | #Layers | # parameters Size Lr | Epochs
FC (2),
ReLU (1)

3 66K 0.13MB | 0.01 50

ALGORITHM 3: Online BGC-enabled Subgraph Pruning
Input : Pre-trained BGC: f};; p; Unknown Graph dataset:
Gnew = {SGY, ..., SG%}; GNN Model: g(Grew, W)
Output: Unpruned Subgraphs {SGY, ..., SGY_,}
1 Initialize g(Gnew, W);
2 while GNN training for E epochs do
3 if £ ==5 then
Apply fi71p(Grew);
P subgraphs are pruned;
end if
7 end while
s Return ({SGY,...,SG%_p})

[ N

ReRAM-based architecture. Instead of training on K subgraphs, the GNN model now trains only on
(K — P) subgraphs. Consequently, this reduces the pipeline depth as illustrated in Figure 1(b) and
Equation (6), which automatically speeds up training as there are fewer input subgraphs (hence
smaller end-to-end pipeline depth (D)). As we show later, this process leads to trained GNN models
with little to no test accuracy loss when compared to training with all subgraphs (no subgraph
pruning setting). In Section 4, we show the predictive performance of the BGC-enabled pruning
for GNN models at different early epochs during the online training process. Overall, this leads to
a reduction in ReRAM crossbar cell write operations, thus enabling reliable GNN training on the
ReRAM-based PIM architecture.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed subgraph pruning framework for
training diverse GNN models with large real-world graphs on ReRAM-based PIM architectures.

4.1 Experimental Setup

Datasets and GNN models (Workloads): We consider three types of state-of-the-art GNN mod-
els to demonstrate generality of our proposed subgraph pruning approach, namely: Graph Con-
volution Network (GCN), Graph Attention Networks (GAT), and Graph Sample and Ag-
gregate (SAGE). The proposed BGC technique leverages a simple MLP-based Neural Network
(also known as a feed-forward network) for pruning subgraphs during GNN training. Table 1
shows the BGC model based on a multilayer perceptron network and its training configuration.
The BGC model is trained offline on the host machine (CPU/GPU) for 50 epochs, with a learn-
ing rate of 0.01. In this work we evaluate the performance of the BGC technique on a total of six
graphs ranging from different application domains like: medicine (PPI), social-networks (FlickR,
Reddit and Yelp), e-commerce (Amazon2M), and a citation dataset (ogbl-citations2). The datasets
include small- (consisting of <100K nodes and edges) to large-scale (consisting of >1M nodes and
edges) graph datasets in this work [29]. Hence, they are representative of a wide range of real-
world applications of predictive graph analytics specifically suitable for edge Al applications. In
this paper, we have shown that the BGC method can be used to make pruning decisions for dif-
ferent datasets (small to large). This demonstrates the scalability and transferability of the BGC
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Table 2. GNN Configuration

Model #la(}grs Ir Epochs
GCN 4 0.01 200
SAGE 4 0.01 200
GAT 4 0.005 200

Table 3. Graph Dataset Statistics

Dataset #Nodes | #Edges | Classes Node K
degree
PPI 56K 818K 121 15 50
Reddit 233K 11.2M 41 50.5 150
Amazon2M 2.45M 61.9M 47 10 1000
FlickR 89K 899K 7 10 75
Yelp 716K 13.9M 100 10 500
Ogbl-citation2 2.9M 30.5M 6 20.7 1500

Gray shaded datasets are used for training the BGC.

framework to larger graph workloads from diverse application domains without requiring any
additional training. Tables 2 and 3 provide the details of the GNN models and the graph datasets
respectively used in this work. All GNN models considered here utilize mini-batch based train-
ing, which uses multiple smaller subgraphs created by using a graph partitioning algorithm from
a large monolithic graph. Different graph partitioning algorithms have already been previously
explored extensively in the literature, such as Random Edge-cut algorithm, METIS, Degree-based
hashing (DBH), and edge partitioning via Neighborhood heuristic (NH) [37, 38]. A recent
ablation study on partition algorithms for GNN training showed that METIS achieves superior
performance in terms of accuracy compared to other partitioning algorithms [38]. Moreover, un-
like the other methods, METIS creates graph partitions such that each subgraph can be bounded
by a controlled size, so that a batch of a fixed number of subgraphs can always fit within the
on-chip memory [32, 37]. This makes METIS amenable to resource constrained platforms such as
ReRAM-based Processing-in-Memory (PIM) architectures. Hence, in this paper, we specifically
use the METIS graph partitioning algorithm. However, it is worth noting that the proposed BGC
framework in this work can be used with other graph partitioning algorithms.

Moreover, this enables pipelined training of GNNs [19]. For graph partitioning, we employ
METIS, which is a fast and scalable graph clustering algorithm [32]. The graph clustering algorithm
only takes a small portion of preprocessing time and allows us to train GNNs with large datasets.
The graph partitions (subgraphs) are loaded from main memory onto the ReRAM architecture for
the online training process. As shown in Table 2, each GNN model is trained for 200 epochs (one
training instance) with suitable learning rates (Ir) and appropriate number of GNN layers (L) to
ensure their convergence without overfitting. The number of input subgraphs (K) obtained using
the METIS graph partitioning algorithm for each dataset is shown in Table 3. Following prior work,
we chose the number of subgraph partitions (K) appropriately for each graph dataset to achieve
the best possible trade-off between the GNN accuracy and performance [15, 33].

ReRAM-based PIM Architecture: The PIM architecture considered (without loss of gener-
ality) in this work consists of 36 ReRAM-based processing elements (PEs) distributed over four
planar tiers connected using through silicon via (TSV)-based vertical links. Table 4 presents the
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Table 4. Hardware Specifications

OS: Linux CentOS. GPU: NVIDIA V100, 32GB. CPU: Intel Xeon Gold 5222 @
3.8GHz, 16 cores, 32K L1 cache and 1024K L2 cache.

ReRAM-based 3D PIM architecture: 4 planar tiers, 9 PEs per tier, 4 ReRAM
tiles per PE.

96-ADCs (8-bits), 12 x 128 x 8 DACs (1-bit), 96 crossbars, 96 SRUs, 128 X
128 center crossbar size, 10MHz, 2-bit/cell resolution, 0.34W, 0.38 mm? [7].

Offline Preprocessing Hardware:

Online in-field Training Hardware:

ReRAM Tile:

details of the ReRAM-based PIM architecture used in this work. We model the area, energy, and
latency of all on-chip buffers, peripheral circuits, number of writes to ReRAM cells, and GNN train-
ing accuracy using the NeuroSim v2.1 simulator [31]. We incorporate a Python wrapper function
based on PyTorch API into NeuroSIM to obtain the GNN model test accuracies for the different
GNN models and datasets considered in this work. The GNN model weights and activations are
stored using 16-bit fixed point precision on the ReRAM crossbar of size 128 x 128, and 2-bit/cell
resolution as it provides the best performance-area-energy trade-off [19]. The adjacency matrix is
binary (‘1” indicates the presence of an edge between two nodes and ‘0 indicates no connection).
Hence, it is stored with 1-bit/cell. We incorporate stochastic rounding units (SRUs) in each tile
to reduce the accuracy drop due to the use of 16-bit precision [39]. Stochastic rounding enables
high accuracy even at lower precision settings [40]. The implementation of the stochastic round-
ing unit introduces less than 1% area and energy overhead. GNN training generates an enormous
volume of traffic, which can be a bottleneck performance [6, 19]. In this architecture, we utilize a
multicast-enabled 3D mesh network on chip (NoC) as the interconnection backbone for com-
municating between the processing elements during GNN training [39]. The NoC performance
has been modeled using Garnet, and NeuroSim was used to calculate the injection rate needed for
the cycle-accurate NoC simulator [41].

4.2 Accuracy of the BGC

In this subsection, we discuss the performance of the MLP-based BGC for pruning subgraphs dur-
ing GNN training. As shown in Table 1, the BGC model is a light-weight model (only 0.13 MB
of storage). In comparison, a GCN model considered in this work trained with the PPI dataset
consists of ~13 M parameters and requires 49.9 MB of storage. Hence, the MLP-based BGC intro-
duces negligible overhead in terms of storage and training time cost as we show later. The BGC
comprises of only two fully connected (FC) layers, and one ReLU non-linear activation layer.
As discussed earlier, we train the BGC model with a core set of subgraphs ({SG;, SG,...,SG¢})
drawn from two known graph datasets (G; and G, as an example). Subgraphs drawn from differ-
ent known graph datasets usually differ in input feature dimensions. Hence, to enable training the
BGC with these coreset of subgraphs, we pad the input feature vectors of subgraphs in the core
set ({SGy, SGy, . ..,SGc}) to match the input dimension of the first FC layer of the BGC model.
We then use the trained BGC model to prune subgraphs for new (or unseen) datasets during on-
line GNN training on the ReRAM-based PIM architecture. However, we must first evaluate the
performance of the BGC in terms of its classification accuracy before it is deployed for in-field
GNN training scenarios with new datasets. Hence, we use the leave-one-out cross-validation
(LOOCYV) procedure to estimate the performance of the BGC model when it is used to make pre-
dictions on graph datasets not used to train the model. Here, we consider a third dataset (Gs) as
the validation graph dataset used in the LOOCV procedure. We then perform LOOCV experiments
with the BGC using Gy, G, and Gs. The LOOCV experiments yield three cases where the BGC is
trained with: (i) G; and G,, and validated with Gs, (ii) G, and Gs, and validated with Gy, and (iii) G;
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Fig. 3. (a) Leave-one-out cross-validation (LOOCYV) experiments for the BGC using Reddit, Amazon2M, and
PPI. The BGC is trained with dataset in parentheses, and used for subgraph pruning during GNN training on
the validation dataset. We compare GNN training with the unpruned data graph, with the BGC enabled sub-
graph pruning, and the BGC trained using a weighted loss function. (b) An illustration of True Positive (TP),
True Negative(TN), False Postive (FP), and False Negative (FN) rates for the trained BGC making predictions
on the PPl dataset.

and G, and validated with G;. LOOCV experiments tend to be computationally expensive as the
number of datapoints increase [42]. Hence, in this work, we limit the number of datapoints used
to only three datasets (Gi, Gy, and G3). The overall performance of the BGC model is estimated in
terms of accuracy when used to make pruning predictions during GNN training on the validation
dataset as demonstrated in the LOOCV experiments.

In Figure 3(a), we present the results of the LOOCV experiments performed on the BGC. We
consider PPI Reddit, and Amazon2M as the representative datasets (G;, G2, and Gs) used in eval-
uating the BGC model. Note, however, that the BGC method is general, and can be applied to
any other graph datasets. The datasets used to train the BGC in each case are shown in paren-
theses, followed by the dataset used for validation. For example, when the BGC is trained with
Reddit and PPI, and validated using Amazon2M, we denote this as “(Reddit, PPI) Amazon2M”.
Here, for each case in the LOOCV experiment, we train the BGC with two datasets, and use then
use it for making pruning predictions on the validation dataset during GNN training. As shown in
Figure 3(a), we compare the accuracy of a GNN trained using the entire validation dataset (un-
pruned), with the accuracy of the GNN trained with the BGC-enabled subgraph pruning on the
validation dataset (BGC). For the LOOCV experiments, we consider the GCN model as the rep-
resentative GNN trained with the validation dataset in each case. Our results demonstrate that
the GCN can be trained with BGC-enabled data pruning with an average accuracy loss of ~4.0%
in all three scenarios as shown in Figure 3(a). Note that we observe a similar accuracy loss trend
when the LOOCV experiments are performed using other GNN models (GAT and SAGE). This
relatively high average accuracy loss of 4.0% can be attributed to the false predictions made by the
BGC model. Hence, we quantify the false positive (FP) and false negative (FN) prediction rates
when PPI (as an example) is used as the validation dataset (i.e., the (Amazon2M, Reddit) PPI case),
as shown in Figure 3(b). In this context, an FN prediction means pruning an important subgraph
with a high score that should otherwise be kept, and an FP prediction implies keeping a subgraph
with a low score that should otherwise be pruned. On the other hand, true positive (TP) and true
negative (TN) rates denote the accurate subgraph pruning predictions by the BGC. We observe
relatively high FP and FN prediction rates of 0.41 and 0.42 respectively for the BGC when it is
used to prune the PPI dataset. This implies that the BGC is making subgraph pruning predictions
with a high degree of uncertainty. As a result, this can potentially have negative effects on the
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Fig. 4. (a) Ablation experiments used to chose the value of importance weighting parameter wj, to train
the BGC model using a cost-sensitive training approach (CSL). Here, the BGC is trained using Amazon2M
and Reddit dataset, and tested with the PPl dataset. (b) An illustration of True positive (TP), True negative
(TN), False postive (FP) and False negative (FN) rates for the improved BGC trained using the weighted loss
function, and used to make predictions on PPI.

performance and reliability of the ReRAM-based PIM architecture. This also impacts the accuracy
of the GNN model. The goal of the BGC model is to prune unimportant subgraphs with low scores
and keep important subgraphs with high scores as shown in Figure 3(b). Hence, this implies that
the BGC model should have high true positive (TP) and true negative (TN) rates, and low FN and
FP rates, which is not the case as shown in Figure 3(b). Hence, we address this challenge of high
false prediction rates by proposing a cost-sensitive learning (CSL) method for the BGC using a
weighted loss function, as introduced in Section 3.

Training the BGC model using weighted loss: To address the accuracy loss of the BGC-
enabled pruning due to its high FP and FN rates (shown in Figure 3(b)), we propose to train the
BGC using a cost-sensitive learning approach discussed earlier. This cost sensitive learning ap-
proach uses a weighted binary cross entropy loss function (bce,,g;) to train the BGC model while
penalizing false positives or false negatives significantly. This is achieved by using a rescaling pa-
rameter w, as shown in Equation (8). We perform ablation experiments shown in Figure 4(a) to
find a suitable value for wj,. In Figure 4(a), the BGC is trained with the Amazon2M and Reddit
datasets using the cost-sensitive loss (£,,45;) in Equation (8) and is validated on the PPI dataset.
As shown in Figure 4(a), our experiments demonstrate that a w, = 3.0 is sufficient to improve the
performance of the BGC in-terms of accuracy when used to prune the validation dataset. However,
although Figure 4(a) shows the (Reddit, Amazon2M) PPI case, we generally observe thataw, = 3.0
works well in other scenarios (i.e., (Reddit, PPT) Amazon2M) and (Amazon2M, PPI) Reddit). Hence,
in our LOOCV experiments shown in Figure 4(a), we fix the w, = 3.0, and train the BGC us-
ing the cost-sensitive learning approach (BGC+CSL) as discussed in Section 3. Consequently, we
now observe a GNN average accuracy loss of only 2.1% compared to GNN training with the en-
tire dataset (unpruned). In Figure 4(b), we also observe a corresponding reduction in the FP and
FN rates to 0.25 and 0.19 respectively, and an improvement in the TP and TN rates to 0.81 and
0.75 respectively for PPL. Note that we also observe a similar trend with Reddit, and Amazon2M
when they are also used as the validation dataset. Overall, our LOOCV experiments have given a
better insight to evaluating the performance of the BGC model. For the rest of our experiments and
analysis, we use a the BGC trained with Reddit on PPI dataset (highlighted in gray in Table 3). We
then carry out our performance, reliability, and accuracy trade-off analysis for the BGC-enabled
GNN training on the ReRAM based PIM architectures using other datasets (or new datasets).
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4.3 BGC-enabled Subgraph Pruning for GNN Training

So far, we have introduced the BGC model, and demonstrated its ability to prune subgraphs of a
graph dataset during GNN training. In this subsection, we present the results of executing the BGC
for subgraph pruning during GNN training with new or unseen datasets. To do this, we employ
four datasets as shown in Table 3, namely Amazon2M, Flickr, Yelp, and ogbl-citation2. The datasets
considered here were not used in training the BGC, hence they are referred to as new or unseen
graph datasets. We consider PPI and Reddit as ‘known’ datasets because they were used to train
the BGC. Hence, for the rest of our analysis, we evaluate the performance of the BGC only on the
unseen graph datasets: Amazon2M, Flickr, Yelp and ogbl-citation2. During the execution of the
GNN training on the ReRAM-based PIM architecture, the pre-trained BGC is used to perform the
subgraph pruning. When the BGC model is executed, it predicts P subgraphs to be unimportant,
and then prunes them. As a result, this leaves behind K — P subgraphs (i.e., {SGy,...,SGk_p}),
which are then used for the GNN training process. The remaining or unpruned subgraphs are
then loaded on the ReRAM-based architecture and used for the rest of the GNN training process.

However, determining when to prune remains crucial to enabling reliable GNN training with
significant performance speedup. For example, pruning datasets early (within few initial epochs)
during training reduces the total number of write operations to the ReRAM crossbar cells. As a
result, this potentially allows more training instances to be executed on the ReRAM crossbar be-
fore it reaches its endurance limit. In addition, reducing the number of subgraphs used for training
shortens the pipeline depth (D), thereby leading to performance speed-up of the entire GNN train-
ing process. Recent work has shown that input data can be pruned very early during the training
process, without significant accuracy loss [13]. In Figures 5(a)-(c), we present the final GNN test
accuracy when the BGC-enabled subgraph pruning is applied at different points within the first
five epochs. Here, the unpruned case refers to the GNN training on the ReRAM-based architec-
ture using all subgraphs without the BGC-enabled pruning. We apply the BGC subgraph pruning
before the start of training (E0), at the second epoch (E2), and at the fifth epoch (E5). We perform
these experiments on the GCN, SAGE, and GAT models and on the Amazon2M, Flickr, Yelp, and
ogbl-citation2 graph datasets. As shown in Figures 5(a)—(c), our results demonstrate that when the
BGC-enabled subgraph pruning is performed at the fifth epoch, this leads to a minimal accuracy
loss of compared to at other epochs. For example, in GCN, applying the BGC at Epoch 5 leads to
~2% accuracy loss on average across all datasets. Meanwhile, applying the BGC before the start
of training (E0), and at epoch 2 (E2) leads to ~17% and 9% accuracy loss on average respectively
compared to the unpruned case. Applying the BGC subgraph pruning too early (for example, at E0)
can potentially lead to significant accuracy loss, as the model suffers from information loss during
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Table 5. Data Pruning Percentage (p) Achieved with Different GNN Models and Datasets at Epoch 5

Dataset Amazon2M FlickR Yelp Ogbl-citation2
Pruning Method | BGC | SDP | BGC SDP BGC | SDP | BGC | SDP
GCN 43.2% | 45.0% | 24.50% | 26.00% | 33.2% | 36.0% | 40.31% | 45.0%
SAGE 41.0% | 44.0% | 29.5% 32.0% 30.5% | 35.0% | 39.50% | 40.0%
GAT 45.1% | 44.0% | 30.2% 33.3% | 31.51% | 35.0% | 38.33% | 40.0%

training. Hence, we propose to apply the BGC-enabled subgraph pruning at the fifth epoch (E5)
during GNN training in a one-shot manner. Importantly, the training data to create BGC model
is generated in a consistent manner for E5. The remaining unpruned subgraphs are then used for
the rest of the GNN training process, hence leading to an improvement in the overall training
performance speed-up without a significant loss in the GNN test accuracy. Overall, we observe a
similar trend with the SAGE and GAT models in Figure 5(b) and Figure 5(c) respectively across
all datasets. In Table 5, we show the percentage of data pruning achieved by the BGC at the fifth
epoch. As discussed in the previous subsection, when P subgraphs are pruned, the percentage
(p) of subgraph pruning achieved is; p = (K—I;P) % 100%, where K is the total number of subgraphs
(as shown in Table 3). To benchmark the performance of the proposed BGC classifier in terms of
its achievable pruning percentage, we compare the pruning percentage (p) of the BGC with a re-
cently proposed score-based data pruning (SDP) approach as a baseline (shown in Table 5) [33].
As shown in Table 5, we observe that the SDP approach achieves a slightly higher pruning per-
centage of 3.5% on average for each dataset. The SDP method initially trains the GNN model on the
unseen dataset to directly find unimportant input subgraphs using the GNN training loss function
and prunes them. However, as we show later in our experimental results, this approach requires
multiple training rounds to find the appropriate pruning percentage, which significantly raises the
training time cost. Moreover, this approach is not generalizable to unseen graph datasets without
requiring prior training on each new graph dataset. The aim of the BGC method is to also achieve
high pruning percentages similar to the SDP approach, without prior GNN training iterations with
the unseen graph to find important subgraphs. As we show in the next sub-section, the pretrained
BGC method requires no prior, hence outperforms the SDP approach in-terms of overall training
time cost. We observe that large graphs with higher number of nodes, edges, and subgraphs (K)
such as Amazon2M and Ogbl-citation2 (as shown in Table 3) tend to achieve a higher amount of
pruning relative to FlickR and Yelp as we see in Table 5. This can be attributed to the higher amount
of redundant information present in larger graphs. Hence, they can be pruned more during GNN
training without incurring significant accuracy loss.

Training time speedup: As discussed above, pruning subgraphs using the BGC at the fifth
epoch (E5) leads to less accuracy loss compared to earlier epochs. Hence, in this work, we compare
the GNN training performance speedup achieved on the full dataset (unpruned) with our proposed
BGC-enabled subgraph pruning applied at the fifth epoch (E5) during GNN. Figure 6(a), Figure 7(b),
and Figure 7(c) show the performance speedup achieved by the BGC-enabled subgraph pruning
for GCN, SAGE, and GAT, respectively. The BGC is a light-weight MLP model consisting of only
three layers. Hence, a forward pass on the pretrained BGC takes less than 1% timing overhead
of the overall training execution time. This negligible time overhead (1%) required for the pre-
trained BGC forward pass is taken into consideration in all of our performance analyses. Overall,
our results demonstrate that the BGC enabled subgraph pruning achieves speedups of up to 1.6x
compared to the unpruned case in Amazon2M and Ogbl-Citation2, and average speedup of 1.25X
on Flickr and Yelp across GCN, SAGE, and GAT. BGC-enabled subgraph pruning leads to perfor-
mance speedup during GNN training as the number of input subgraphs processed during training
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reduces. As a result, this reduces the overall pipeline depth, reduces the end-to-end latency, and
extends the lifespan of ReRAM-crossbars due to fewer cell write operations. Moreover, the power
and performance can be improved further by synergistically combining the proposed BGC-enabled
data pruning method with other techniques such as weight pruning and/or quantization [33].

4.4 Reliability Improvement due to Subgraph Pruning

In this sub-section, we discuss the benefits in terms of the possible number of GNN training tasks
that can be executed on ReRAM crossbars enabled by the BGC-enabled subgraph pruning method.
The BGC-enabled data pruning technique reduces the number of ReRAM cell writes during train-
ing. Consequently, this extends the lifespan of the ReRAM crossbar, as more training instances
can be performed on it before it reaches its endurance limit. Hence, subgraph pruning enables re-
liable GNN training on ReRAM-based PIM architectures especially for workloads with large graphs
datasets.

To adequately evaluate the improvement in reliability due to the BGC-enabled pruning, we
first quantify the worst-case number of write operations on a ReRAM cell during a GNN training
instance. We then compare this to the number of ReRAM crossbar cell writes for a GNN training
instance with the entire graph dataset (all subgraphs). For our analysis, we look at the ReRAM
crossbar write distributions, and consider the maximum crossbar cell write count. This gives the
worst-case number of writes for the ReRAM crossbar. The ReRAM cell with the maximum or
worst-case number of writes will reach the endurance limit and fail first. The failure of a single
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Table 6. Increase in Number of GNN Training Instances for the
ReRAM-based PIM Architecture

Amazon2M | Flickr | Yelp | Ogbl-citation2
SGS+RM 1.25X% 1.20x | 1.33X 1.36X
BGC 1.64X 1.31X | 1.48X 1.62X

ReRAM cell results in the outcome that the whole crossbar array produces incorrect results. Here,
we consider an endurance limit of 10° write operations, as this is in line with fabricated ReRAM
devices [9, 43].

As discussed in Section 2 above, a recent endurance aware training technique known as struc-
tured gradient sparsification (SGS) has been proposed for ReRAM-based PIM architectures.
SGS performs gradient accumulation, and prunes gradients based on their magnitude, or in a sto-
chastic fashion thereby reducing the frequency of weight updates [23]. In addition, SGS also takes
into account the shape of the crossbar array and incorporates row remapping (RM) to reduce the
number of writes to the ReRAM crossbar and balance out the write across crossbars. Consequently,
this improves the reliability of ReRAM-based PIM architectures. Figure 7 shows the worst-case to-
tal number of write operations on to a ReRAM cell during a GCN training instance for all the four
datasets: Amazon2M Reddit, Yelp, and Ogbl-citation2. Here, the maximum (or worst-case) number
of writes per ReRAM-cell for each endurance-aware training method (SGS, SGS+RM and BGC) is
normalized with respect to the endurance-unaware training baseline. We train each GNN model
(GCN, SAGE and GAT) for the same number of training iterations (200 epochs), while keeping
the number of subgraphs consistent across all the GNN models. As shown in Figure 7, the Ogbl-
citation2 dataset has the highest number of write operations (over 200K writes in the baseline
case) for a GNN training instance. This is attributed to the large size of the graph and high number
of input training subgraphs. Meanwhile, Flickr has the lowest worst-case number of write opera-
tions on to the ReRAM crossbar cells due to its small size and small number of subgraphs. In this
work, we compare our proposed BGC approach with SGS in terms of the total number of write
operations, and the improvement in possible number of training instances as shown in Figure 7.
In addition to SGS, we incorporate a remapping-based (RM) technique that remaps weights, acti-
vations, and adjacency matrices to even-out the write operations across crossbars [23]. As shown
in Figure 7, the standalone SGS technique has the same worst-case number of writes as the base-
line case without any endurance-aware training. This happens as despite its advantages, SGS is
not well suited for GNN training, as it focuses solely on reducing the number of write operations
due to weight updates and does not account for ReRAM cell writes due to activations and graph
adjacency matrix storage. As a result, this only improves the reliability of ReRAM cells storing the
weights. Meanwhile, cells storing activations and the adjacency matrices are not impacted by SGS.
Hence, these cells will fail early due to repeated writes, thereby jeopardizing the whole GNN train-
ing process. Moreover, SGS results in performance degradation due to frequent row remapping.
This is due to the additional timing overhead incurred by the top-k gradient selection that must
be performed for pruning and row remapping at run-time. However, when remapping is incor-
porated with SGS (SGS+RM) to balance out the number of writes across crossbars, it reduces the
worst-case number of writes compared to the baseline. In Table 6, we show the improvement in
the number of possible training instances for SGS+RM, and the proposed BGC enabled GNN train-
ing with respect to the baseline method. The SGS+RM method can enable up to a ~1.4X increase
in the number of training instances before failing, as shown in Table 6. However, the SGS+RM
reliability improvement method incurs significant on-chip area and energy overhead for remap-
ping workloads at runtime to achieve even write distribution, and achieve lower number of writes
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Fig. 8. Normalized training time required using the BGC, GraphDiet, and UGS data pruning method for
Amazon2M, Flickr, Yelp, and Ogbl-citation2 datasets. Each method is normalized with respect to the time
required for training the GNN on the unpruned dataset.

[23, 24, 44]. Unlike this method, the proposed BGC-enabled pruning framework is a simple yet
effective method that effectively reduces the worst-case total number of write operations to the
ReRAM, thereby achieving up to a 1.6X improvement in the number of possible training instances
as shown in Table 6. Hence, this leads to more reliable training on ReRAM-enabled PIM accelera-
tors without incurring any additional hardware area and energy cost.

4.5 Training Cost, Reliability, and Performance Trade-offs

Training Cost: As discussed in Section 2 on related prior work, data pruning is a well-known
method to reduce the amount of computation performed during training of neural networks [31,
45]. As discussed in Section 1, we specifically define the training cost as the amount of train-
ing time required to find the maximally pruned dataset that can be trained with the GNN with-
out any accuracy loss. However, most existing data pruning techniques usually incur high train-
ing cost, as they require multiple rounds of training to maximally prune the dataset [3]. For ex-
ample, as discussed in Section 2, existing LTH-based pruning methods require multiple training
rounds/instances to prune input graphs such as the UGS method. Also, a score-based data prun-
ing (SDP) approach that relies on few initial training epochs to prune subgraphs for GNN training
known as ‘GraphDiet’ was recently proposed in [33]. This method also prunes subgraphs during
GNN training. However, it requires initial training on the new datasets (Amazon2M, Flickr, Yelp,
and Ogbl-citation2) to identify important and unimportant subgraphs based on a score. More-
over, GraphDiet chooses the pruning percentage (p) by repeating the training process to find the
appropriate pruning percentage for a new dataset. As a result, this makes it difficult to transfer
the GraphDiet mechanism to unseen or new datasets without prior training with the new graph
dataset. Unlike GraphDiet, BGC offers a one-time predictive pruning approach that is transferrable
to new or unseen graph datasets. The BGC relies on a one-time supervised learning approach to
learn the patterns of subgraph structures in terms of node features/labels and their connectivity
for subgraphs that can pruned, and subgraphs that are important for subsequent training. Hence,
this generalized knowledge can be transferred to new or unseen datasets as demonstrated by our
strong experimental results across diverse unseen graph datasets.

For our analysis, we compare the overall cost in terms of training time required for existing
data pruning approaches with our proposed BGC-enabled subgraph pruning. Figure 8 shows a
comparison between UGS, GraphDiet, and the proposed BGC-based graph pruning methods in
terms of the total training time cost. Here, all three methods considered (UGS, GraphDiet, and
BGC) are normalized with respect to the time required for GNN training on the unpruned datasets
(Amazon2M Flickr, Yelp, and Ogbl-citation2). We incorporate the training time required for the
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and UGS graph pruning methods used on the Amazon2M and Yelp datasets. Each method is normalized with
respect to the unpruned version of the dataset.

MLP-based BGC classifier. Given that the BGC is an MLP based model with only two feed-forward
layers and a ReLU layer, its training time is very small compared to the training of an entire GNN.
Moreover, existing methods require some form of training on the new dataset before it can be
pruned. The proposed BGC model is trained only once with selected known datasets (PPI and
Reddit). As a result, the one-time training and transferability of the BGC-enabled pruning frame-
work to new or unseen graph dataset and amortizes its training cost over multiple GNN training
instances with new datasets, as no extra training is required for a new or unseen graph dataset. As
shown in Figure 8, the cost of training required to prune new datasets (Amazon2M, Flickr Yelp, and
Ogbl-citation2) is quantified. The UGS method requires up to 100X more training time compared
to a training scenario without any data pruning (unpruned) for Amazon2M as an example. We ob-
serve a similar trend across other datasets and models. Meanwhile, GraphDiet requires about 8.5X
more training time on average for all datasets as shown in Figure 8. This additional timing over-
head is required for the initial training epochs on the new dataset before it can be pruned without
any accuracy loss. For a fair comparison of UGS and GraphDiet with our proposed BGC-enabled
pruning approach, we ensure that UGS and GraphDiet achieves the same percentage of pruning
(p) with BGC in each dataset.

Reliability, Speedup, and Training Cost Trade-off: We also perform a trade-off analysis of
the reliability, speedup, and training cost for the three data pruning methods (BGC, GraphDiet,
and UGS). In Figure 9(a) and Figure 9(b), we show the key figure of merits (reliability, performance
speedup, and training cost) together, and show the trade-off for the Amazon2M and Yelp datasets
trained with the GCN and SAGE GNN models, respectively. Note that we see a similar trend in
our trade-off analysis with the Flickr and Ogbl-citation2 datasets, and the GAT model. Here, the
reliability, and performance speedup, for BGC, UGS, and GraphDiet, are normalized with respect
to the unpruned case for each dataset under consideration. As shown in Figure 9(a) and Figure 9(b),
the normalized training cost increases exponentially for UGS, while there is a low improvement
in reliability and performance speedup of less than 1.2X. This is because UGS only prunes graph
edges on the entire monolithic graph. Hence, when the pruned monolithic graph is partitioned
into subgraphs, each individual subgraph is sparse, but the total number of subgraphs (K) still
remains the same. As a result, this still leads to high number of ReRAM cell writes and thus low
reliability as the unpruned case. The slight improvement in performance speed-up observed in UGS
is attributed to a reduced number of MVM operations performed due to model and graph pruning.
However, this has little to no impact on the reliability of the ReRAM-based PIM accelerator and
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GNN training speedup. We observe a higher improvement in performance speedup and reliability
for the BGC and GraphDiet as shown in Figure 9(a) and Figure 9(b). For the Amazon2M dataset in
Figure 9(a), GraphDiet achieves slightly improved performance in terms of speedup and reliability
over BGC, while it is slightly lower for the Yelp dataset. However, Graph Diet has a training cost
that is 10X more than the BGC in Amazon2M, and 8.8x more than the BGC in Yelp. This is because
the GraphDiet pruning percentage (p = 48.0%) for the Amazon2M dataset with GCN is 5% higher
than BGC’s pruning percentage (p = 43.1%). Meanwhile, GraphDiet technique achieves a slightly
lower pruning percentage of 28%, while BGC prunes up to 30.5% for the Yelp dataset with SAGE.
Nonetheless, the GraphDiet method still incurs significantly more training time cost than BGC
in both cases (Figure 9(a) and Figure 9(b)), as the first GNN needs to be trained on the unseen
dataset before it can be pruned. Unlike UGS and GraphDiet, our proposed BGC-enabled pruning
only relies on a light-weight model trained once on known datasets and can be transferred to new
datasets without requiring prior GNN training. In addition, the BGC incurs the least training time
cost, as it relies on simple MLP network trained only once, that can be transferred to new datasets.
Overall, the BGC method achieves the best performance speedup, reliability, and training time cost
trade-off when compared to UGS and GraphDiet.

4.6 Performance Analysis of BGC-enabled GNN Training on ReRAM-based PIM
Architecture

In this subsection, we present a thorough performance evaluation of the ReRAM-based 3D PIM
architecture outlined in Table 4 by incorporating the proposed BGC framework. We compare the
performance of the PIM architecture with BGC with respect to other existing PIM-enabled many-
core architectures for GNN training. For this comparison, we consider two other ReRAM-based
architectures DARe and ReMaGN, which were designed for GNN training [6, 19]. The ReMaGN
architecture uses low-precision with stochastic rounding to improve the performance of GNN
training on ReRAM-based architectures. Meanwhile, the DARe framework, leverages dropout and
DropEdge to improve the computation and communication efficiency of ReMaGN. Hence, DARe
achieves better performance and energy-efficiency compared to ReMaGN. We consider overall
speedup, energy-delay-product (EDP), and resource utilization as the relevant metrics in this
comparative performance evaluation. Here, we define the resource utilization as the amount of
hardware resources (number of ReRAM crossbars) required for training the same GNN model us-
ing the three frameworks under consideration (ReMaGN, DARe, and BGC). For this comparative
performance evaluation, we consider three datasets, viz., PPI, Reddit and Amazon2M for the sake
of brevity. However, we observe a similar trend in speedup and EDP improvement across the other
datasets (Flickr, Yelp and Ogbl-citation2). Figure 10(a) and Figure 10(b) show the speedup, and en-
ergy delay product (EDP) respectively of the proposed BGC framework compared to DARe, and
ReMaGN and a conventional GPU-baseline (Nvidia V100 in this case). It is evident that all the
ReRAM-based architectures outperform the GPU as shown in Figure 10(a) and Figure 10(b). How-
ever, among all the ReRAM-based architectures BGC achieves the best performance. Overall, our
proposed BGC framework achieves on an average speedup improvement over ReMaGN and DARe
by 1.6x and 1.3%, respectively. Similarly, we also observe on an average EDP improvement in BGC
of 5.2x and 2.5x with respect to ReMaGN and DARe, respectively. In Figure 10(c), we compare the
ReRAM utilization (i.e., number of ReRAM crossbars required for training) for the BGC framework
normalized with respect to ReMaGN and DARe. It should be noted that DARe utilizes a software
technique (viz., Dropout and DropEdge-based regularization) to improve the performance of Re-
MaGN. Hence, DARe and ReMaGN have exactly similar hardware utilization. BGC utilizes 35% less
ReRAM crossbars on an average compared to DARe and ReMaGN as it prunes subgraphs, thereby
reducing the storage requirement for graph adjacency matrices.
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Fig. 10. (a) Performance Speedup, and (b) EDP improvement of BGC compared to ReMaGN, and DARe,
all normalized with respect to GPU. (c) ReRAM utilization (i.e., number of ReRAM crossbars required for
training) for the BGC framework normalized with respect to ReMaGN and DARe. (d) Allowable accuracy
loss threshold vs graph pruning percentage.

Graph pruning vs accuracy-loss trade-off: We have also performed ablation experiments to
determine the corresponding graph pruning percentage of BGC for various accuracy loss thresh-
olds of 1%, 2% and 3%. To perform this ablation study, we set these accuracy thresholds in the
process of generating the supervised binary classification data (i.e., Algorithm 1). The maximum
value of k for each accuracy threshold is chosen such that removing k% of subgraphs does not lead
to an accuracy loss beyond the set threshold. Figure 10(d) shows the accuracy loss and the cor-
responding graph pruning percentage of the Amazon2M, Flickr, Yelp, and Ogbl-citation2 datasets
using different accuracy thresholds. As shown in Figure 10(d), for an accuracy loss of less than 1%
(<1%), 2% (<2%), and 3% (<3%), we obtain a corresponding average graph pruning percentage of
23.75%, 40.75% and 47% respectively across all four datasets. As observed, the amount of pruning
that can be achieved in each dataset is directly proportional to the corresponding accuracy loss,
i.e., more pruning leads to more accuracy loss. Hence, the achievable improvement in performance
and reliability is limited due to significant accuracy loss penalty. As a result, there exists a trade-
off between the allowable accuracy loss and percentage of graph pruning both of which have an
impact on the overall performance, and reliability of the ReRAM-based PIM architecture. Pruning
more subgraphs is desirable from a design perspective, as this leads to significant improvement in
speedup and reliability (due to fewer write operations). However, certain GNN applications have
stringent accuracy requirements which limit the amount of pruning that the BGC can achieve as
shown in Figure 10(d). Therefore, depending on the GNN application under consideration, the BGC
can achieve different levels of speed-up and improvement in reliability. The user can choose the
BGC setting based on the desired trade-off between performance, reliability and accuracy. Here,
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Set / Reset

- Adjust write
Read verify time/write
voltage

Write success

Fig. 11. Overview of the write-verify scheme [48].

Table 7. Max. Number of Writes, and Increase in Number of GNN Training Instances
with and without Write-Verify (WV)

. . No. of possible No. of possible
No. of writes | No. of writes oo L
Dataset without WV with WV training instances training instances
without WV with WV
AmazonZzM 360K 931K ~290 times ~107 times
Amazon2M+BGC 203K 542K ~500 times ~184 times

we do not show graph pruning percentages for accuracy loss beyond 3% (in Figure 10(d)), as such
accuracy loss in many real world GNN applications may not be permissible.

4.7 Endurance of BGC-enabled GNN Training Accelerator

Prior work has reported ReRAM endurance that ranges from 10° to 10!2 writes [11, 21]. However,
the number of times a GNN model can be trained before the ReRAM devices reach the endurance
limit depends on the graph dataset under consideration. A single training epoch requires a certain
number of ReRAM crossbar writes which is directly proportional to the number of input sub-
graphs (K), and one training process (or instance) is typically made-up of multiple training epochs
(E). Hence, the total number of write operations during the training process is proportional to
E x K. For example, with an average case endurance of 10 writes, a GNN model can be trained
with the Amazon2M dataset (consisting of 1,000 subgraphs) for approximately five hundred (~500)
times using the BGC framework before the ReRAM cells begin to fail. However, considering the
write variation problems, i.e., a single write operation makes it difficult to tune the ReRAM device
to the target resistance value, the available training times of the ReRAM-based architecture may
be less than 500 times. Hence, we need to consider the write variation problem in ReRAM, i.e., a
single write operation makes it difficult to tune the ReRAM device to the target resistance value.
Prior work has proposed the write verify technique to address the write variation problems of
ReRAM devices and ensure robust training on ReRAM-based platforms [46, 47]. Figure 11 shows
an overview of the write verify technique [48]. However, incorporating the write-verify technique
during GNN training increases the number of crossbar cell write operations during each program-
ming phase, due to repetitive application of a write voltage for the SET/RESET operation. Hence,
this limits the number of training instances that can be performed before the device reaches its
endurance limit.

In this work, we have adopted a simple write-verify technique proposed in [48] into our BGC-
enabled GNN training framework. In Table 7, we show the total number of writes, and the number

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.



Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:27

of training instances that can be performed with and without the incorporation of a write-verify
scheme. Here, we consider an endurance limit of 102, for both the unpruned and BGC-pruned
Amazon2M (Amazon2M+BGC) dataset trained with the GCN model as an example. However,
note that the write-verify scheme is model- and dataset-agnostic, hence a similar trend is observed
across other datasets (Flickr, Yelp and ogbl-citation2) and models (SAGE and GAT). As shown in
Table 7, we can observe that with the write-verify scheme incorporated during GNN training, the
total number of writes during training increases by over ~2.5X on average. Hence, this limits the
number of possible training instances that can be executed on the ReRAM-based PIM platform
before the ReRAM cell with the worst-case number of writes reaches its endurance limit of 10%
writes and fails first. As shown in Table 7, the Amazon2M dataset can be trained for about 500
times without write-verify, and 184 times with the write-verify technique. Also, we observe that
the BGC enabled GNN training on the ReRAM-based PIM architecture consistently achieves an
improvement of over ~1.6X in the number of training instances compared to its unpruned coun-
terpart with and without the write-verify scheme. Hence, this demonstrates that our proposed
BGC method is compatible with the write-verify technique, and still enhances the possible GNN
training instances compared to the unpruned version. In summary, the BGC enabled data pruning
approach is orthogonal to the write-verify scheme, as well as other write optimization algorithms
[11, 49], hence they can be incorporated with BGC to improve the available GNN training instances
for ReRAM-based PIM architectures.

5 CONCLUSION

ReRAM-based non-volatile memories enable the design of high-performance and energy-efficient
architectures for accelerating GNN training [19, 50]. However, the limited write endurance of
ReRAM crossbar cells decreases their reliability for GNN training. Moreover, the end-to-end execu-
tion time for GNN training, and the number of write operations to crossbar cells in ReRAM-based
PIM architectures is determined by the number of subgraphs (size of input data graph workload).
We have presented a novel subgraph pruning framework based on Binary Graph Classification
(BGC) to reduce the number of input subgraphs without sacrificing the GNN model accuracy
to improve the performance and reliability of GNN training on ReRAM-based architectures. The
BGC model leverages a pre-trained MLP Neural Network to perform pruning predictions on sub-
graphs very early during the GNN training process to improve the performance and reliability of
ReRAM-based PIM architectures. The BGC-enabled pruning framework improves the reliability of
ReRAM-based architectures and accelerates GNN training by up to 1.6X compared to its unpruned
counterpart without any significant model accuracy on ReRAM-based PIM architectures. Overall,
the proposed method reduces the overall training cost by up to 100X compared to state-of-the-art
graph pruning techniques.
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