
Data Pruning-enabled High Performance and Reliable

Graph Neural Network Training on ReRAM-based

Processing-in-Memory Accelerators

CH UK W UFUMNAN YA OGBOGU , Washington State University, Pullman, United States

BIRESH JOARDAR , University of Houston System, Houston, United States

KRISHNENDU CHAKRABARTY , Arizona State University, Tempe, United States

JANA DOPPA , Washington State University, Pullman, United States

PARTHA PRATIM PANDE , Washington State University, Pullman, United States

Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive an-

alytics on graph-structured data. Hence, they have become very popular in diverse real-world applications.

However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory-

and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy

efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth.

Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been pro-

posed as suitable candidates for accelerating AI applications at the edge, including GNN training. However,

ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low perfor-

mance when they are used for GNN training in real-world scenarios with large graphs. In this work, we

propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC)

to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate

the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces

the amount of redundant information in input graph(s) to speed up the overall training process, improves

the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast,

energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demon-

strate that using this learning for data pruning framework, we can accelerate GNN training and improve the

reliability of ReRAM-based PIM architectures by up to 1.6 ×, and reduce the overall training cost by 100 ×

compared to state-of-the-art data pruning techniques.

CCS Concepts: •Hardware → Emerging technologies ; Analysis and design of emerging devices and

systems ; Emerging architectures ;

Additional Key Words and Phrases: Performance, reliability, non-volatile memory, endurance

This work was supported, in part by the US National Science Foundation (NSF) under grants CNS-1955353, CNS-1955196

and CNS-2308530.

Authors’ Contact Information: Chukwufumnanya Ogbogu, Washington State University, Pullman, Washington, United

States; e-mail: c.ogbogu@wsu.edu; Biresh Joardar, University of Houston System, Houston, Texas, United States; e-mail:

bjoardar@Central.UH.EDU; Krishnendu Chakrabarty, Arizona State University, Tempe, Arizona, United States; e-mail:

krishnendu.chakrabarty@asu.edu; Jana Doppa, Washington State University, Pullman, Washington, United States;

e-mail: jana.doppa@wsu.edu; Partha Pratim Pande, Washington State University, Pullman, Washington, United States;

e-mail: pande@wsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1084-4309/2024/08-ART72

https://doi.org/10.1145/3656171

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

https://orcid.org/0000-0002-8170-1161
https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0003-4475-6435
https://orcid.org/0000-0002-3848-5301
https://orcid.org/0000-0002-5930-8531
mailto:permissions@acm.org
https://doi.org/10.1145/3656171
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656171&domain=pdf&date_stamp=2024-08-13

72:2 C. Ogbogu et al.

ACM Reference Format:

Chukwufumnanya Ogbogu, Biresh Joardar, Krishnendu Chakrabarty, Jana Doppa, and Partha Pratim Pande.

2024. Data Pruning-enabled High Performance and Reliable Graph Neural Network Training on ReRAM-

based Processing-in-Memory Accelerators. ACM Trans. Des. Autom. Electron. Syst. 29, 5, Article 72 (August

2024), 29 pages. https://doi.org/10.1145/3656171

1

G

t

l

d

(

fi

a

b

q

c

[

c

t

b

R

h

p

G

d

t

l

T

t

d

S

p

(

C

[

A

a

p

i

G

a

G

[

o

A

 INTRODUCTION

raph Neural Networks (GNNs) have achieved notable success in a large range of applica-
ions, and they have become mainstream for performing cognitive tasks (e.g., node classification,
ink/edge prediction, and graph classification) on graph structured data, which are ubiquitous in
iverse application domains. Examples of such domains and their applications include chemistry
e.g., designing compounds), medicine (e.g., experimental drug-discovery), transportation (e.g.,
nding efficient routes), and so on [1 , 2]. However, the exponential growth in computation cost
s graph datasets grow in size (up to billions of nodes and edges [1]) and GNN model structures
ecome more complex, present a significant challenge. The massive computational and storage re-
uirements for processing real-world graph data limit the deployment of GNN models on resource-
onstrained and time-sensitive computing platforms such as IoT devices in edge AI applications
 1 , 3 , 4]. Moreover, traditional architectures (such as CP Us, GP Us and TP Us) do not provide the
ompute efficiency (FLOPs/W) and low latency required for edge AI applications such as GNN
raining and inference due to their limited memory bandwidth and high-power consumption [5].
To address this challenge, domain-specific architectures such as processing in memory (PIM) -

ased computing platforms have emerged as suitable candidates for edge AI applications [6 –8].
esistive random-access memory (ReRAM) -based crossbar arrays enable energy-efficient and
igh-performance Matrix Vector Multiplication (MVM) operations [9]. MVM is the core com-
utational kernel of GNN computation. Hence, ReRAM-based PIM architectures are suitable for
NN computation. However, the high computational requirements imposed by large-scale graph
atasets still make executing GNN models on PIM-based architectures very challenging. In addi-
ion, PIM architectures based on ReRAMs suffer from low write endurance, which significantly
imits the number of times they can be re-programmed before they fail due to faults [10 , 11].
herefore, it is important to explore approaches that reduce the number of ReRAM write opera-
ions arising from the high computation cost associated with GNN training tasks for large graph
atasets. This will enable more GNN training instances to be performed on PIM architectures.
To reduce the high computation cost of GNN training, approaches such as Unified Graph

parsification (UGS) [12] and Graph early-bird tickets (GEBT) [13] for weight- and graph
runing have been developed. Both UGS and GEBT are based on the Lottery Ticket Hypothesis

LTH) [13 , 14]. Specifically, these methods attempt to generalize the LTH (originally proposed for
NNs) to GNNs, for pruning both the graph dataset and model weights with little accuracy loss
 12 , 13]. However, LTP-based methods don’t take the ReRAM crossbar structure into consideration.
s a result, there is no significant area or power savings. Recently, an LTH-inspired crossbar-
ware model pruning (CAP) method for GNN training on ReRAM-based architectures was pro-
osed in [15]. This method enhances existing CAP methods by taking the overall crossbar structure
nto consideration and implements model pruning in an iterative manner to ensure that the pruned
NN models can be trained from scratch. However, LTH-based approaches for GNNs usually
dopt an iterative cycle (train-prune-retrain) that require multiple training rounds to find a sparse
NN model and graph dataset pair for the purpose of reducing both the training and inference cost
 3]. As we show later, this approach is very expensive and increases the overall training cost by
ver 20 ×. In this work, we specifically define cost in terms of the training time required to find the
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

https://doi.org/10.1145/3656171

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:3

m

a

t

g

G

p

g

s

d

t

s

a

h

o

G

t

G

t

s

p

t

o

f

c

t

p

t

P

f

s

a

t

s

n

i

a

b

l

o

aximally pruned graph dataset that can be trained with a given GNN model without any
ccuracy loss. In order to reduce the cost of data graph pruning with negligible loss in accuracy,
here is a pressing need to explore low-cost data pruning approaches to enable resource efficient
raph learning.
In this work, we propose a novel data graph pruning approach that enables the training of
NNs using a fraction of the original graph dataset, with negligible loss in accuracy. The pro-
osed method leverages a low-cost graph classification technique to reliably predict input sub-
raphs from a monolithic graph that can be pruned for GNN training in resource-constrained
cenarios without any accuracy loss in the predictive accuracy of the trained GNN model after
ata pruning. This low-cost graph classification approach leverages a small Multi-layer Percep-

ron (MLP) classifier to learn patterns over subgraph structures and predict if a given subgraph
hould be pruned or retained during GNN training. In short, this approach can be conceptualized
s a learning-for-data pruning paradigm, where the graph classifier is pre-trained offline to learn
ow to prune an unseen graph dataset during the early part of online GNN training. For the sake
f brevity, we refer to this MLP-based subgraph classifier for efficient GNN training as the Binary
raph Classifier (BGC) throughout the rest of this paper. Due to the simple MLP-based struc-
ure, the execution of the BGC algorithm introduces an insignificant timing penalty to the total
NN training time as we show in our experimental analysis. Moreover, it is implemented offline on
he host device. Overall, our approach reduces the overall computational cost by scaling-down the
ize of the graph dataset, reduces the number of ReRAM cell write operations, and improves the
erformance of GNN training on PIM-based architectures without compromising the predictive
est accuracy of the trained GNN model. Consequently, this enables reliable GNN training with-
ut the occurrence of untimely ReRAM device breakdown or malfunction due to cell-wear induced
aults. For the scope of this work, we consider PIM architectures based on ReRAM devices as a spe-
ific embodiment, as they are known to suffer more from the low endurance problem compared
o other non-volatile memory (NVM) devices [9]. However, the proposed BGC-enabled graph
runing technique is applicable to other NVM-based PIM based architectures, as well as conven-
ional CMOS-based CPU, GPU and TPU-based computing platforms. However, unlike NVM-based
IM endurance is not a major problem in CMOS-based architectures.
To evaluate the effectiveness of our proposed BGC-enabled GNN training framework, we per-

orm extensive experiments across a variety of GNN models and large graph datasets. We demon-
trate that our proposed approach is GNN model- and graph dataset-agnostic and can be gener-
lized to even unseen graph datasets and other types of GNN models. In addition, we also show
hat our approach achieves the same level of performance as LTH-based pruning approaches while
ignificantly reducing the overall GNN training cost. In particular, BGC-enabled GNN training sig-
ificantly reduces the number of write operations to the ReRAM crossbar during training, thereby
ncreasing the number of GNN training tasks that can be reliably executed on ReRAM-based PIM
rchitectures, while ensuring performance speedup. We note that the proposed method can also
e combined with existing ReRAM endurance-aware techniques (e.g., gradient sparsification and
ow-rank-training) to offer even higher improvements in the reliability for GNN training. Overall,
ur contributions in this paper can be highlighted as follows:

• We propose a novel approach to create Binary Graph Classifier (BGC) models to prune
subgraphs during the GNN training process to reduce the overall training cost, improve
performance and reliability without compromising the GNN test accuracy on ReRAM-
based PIM architectures.

• We establish a trade-off between training cost, reliability, predictive accuracy, and per-
formance for BGC-enabled subgraph pruning for GNN training on ReRAM-based PIM
accelerators.
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:4 C. Ogbogu et al.

e

n

B

a

2

I

t

e

[

l

s

G

t

M

o

c

G

V

i

t

e

p

l

p

H

l

t

c

s

l

2

t

h

a

o

s

w

a

w

A

• We show that the proposed BGC-enabled subgraph pruning achieves up to 1.7 × and 1.5 ×
improvement in performance speedup and reliability respectively, and a reduction of up
to 120 × in training cost compared other existing LTH-based pruning methodologies on
ReRAM-based GNN accelerators.

To the best of our knowledge, this is the first work that leverages the idea of subgraph pruning to
nable resource-efficient GNN training on PIM-based architectures. The rest of this paper is orga-
ized as follows. Section 2 discusses relevant prior work. Section 3 elaborates the methodology for
GC-enabled subgraph pruning. Section 4 presents the results of the comprehensive experiments,
nd Section 5 concludes the paper by summarizing the key features of this work.

 RELATED PRIOR WORK

n this section, we present some relevant prior work. GNNs leverage neighborhood aggregation
o learn representations for nodes, edges, and entire graphs using various state of the art mod-
ls such as Graph Convolution Networks (GCNs) [2], Graph Attention Networks (GAT)

 16], and GraphSAGE [17]. In addition, these GNN models are often trained on a suite of very
arge graph datasets, each of which consists of millions/billions of nodes and edges with their as-
ociated features and have achieved remarkable accuracy. However, while the training of these
NN models with large graphs has been shown to be feasible on traditional CP U/GP U systems,
hese models cannot be easily adapted for training on resource-constrained computing platforms.
oreover, the computational overhead involved with GNN training on PIM-based accelerators is
ften not considered. Hence, it is important to understand the challenges associated with resource-
onstrained platforms and propose techniques to address them in order to enable resource-efficient
NN training.
In particular, ReRAM-based crossbars have been demonstrated to efficiently accelerate Matrix-

ector-Multiplication (MVM) operations, which are the predominant operations in GNN train-
ng and inferencing [7]. Recent work has proposed a 3D ReRAM-based PIM architecture to address
he on-chip communication challenges of GNN training [18 , 19]. However, both training and infer-
ncing are affected by the non-ideal nature of ReRAM cells [9 , 20]. ReRAM-based systems have low
recision and limited write endurance that can affect the accuracy of the GNN model. Software-
evel optimization techniques such as dropout, quantization, and pruning can also be used to im-
rove performance and energy-efficiency of GNN training on ReRAM-based architectures [6 , 15].
owever, the low write endurance problem of ReRAM devices remains a significant challenge and
imits the feasibility of these proposed techniques. Therefore, it is important to explore techniques
hat collectively enable reliable GNN training with large graphs on ReRAM-based architectures.
Various methods have been proposed to address the reliability challenges of ReRAM-based ar-

hitectures due to their low endurance. These techniques range from device-level optimizations to
oftware-level approaches. Device-level methods such as programming latency optimization and
ow-voltage write schemes have been proposed to improve the reliability of ReRAM crossbars [11 ,
1]. However, these methods aim at reducing only the per-write energy and do not reduce the ac-
ual number of writes. Structured gradient sparsification (SGS) and weight re-mapping (RM)

ave been proposed to mitigate the effect of low write endurance [22 , 23]. Other endurance-aware
pproaches such as fault-tolerant training schemes have also been proposed to mitigate the effects
f faults and train ML models with limited write endurance [24]. However, these methods focus
olely on reducing the number of write operations due to weight updates in Deep Neural Net-

orks (DNNs) ; they are not directly applicable to GNNs. Unlike DNN training where only weights
re updated, GNN training exhibits properties of both DNNs (weight updates), and graph analytics
hich requires intermittent graph adjacency matrix storage on ReRAM crossbars, thereby leading
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:5

t

r

i

a

i

t

c

b

a

t

t

o

w

a

m

a

t

d

a

i

i

t

p

t

d

T

o

G

3

I

p

c

i

f

3

A

m

e

l

p

G

s

o frequent write operations. Moreover, existing fault-tolerant training methods often introduce
elatively high area, power, and performance overheads [10 , 24].
We show in this work that graph pruning (also known as graph sparsification) can be used to

mprove device lifetime. Graph pruning is a well-known technique that removes irrelevant edges
nd nodes in the graph. Traditional graph pruning methods attempt to use unsupervised learn-
ng approaches that aim to retain the statistical properties of the original graph. However, these
echniques perform poorly on GNN downstream tasks such as node classification or graph classifi-
ation [25 , 26]. Supervised learning-based graph sparsification methods such as NeuralSparse have
een proposed to improve generalization by learning to remove from input graphs those edges that
re irrelevant for node classification [27]. Also, DropEdge has been proposed as a regularization
echnique that randomly removes graph edges during training to improve the overall generaliza-
ion of GNNs. However, as we show later, these methods do not lead to significant benefits in terms
f overall performance speed-up, end-to-end latency, and reliability.
Recent work has proposed to generalize the LTH method proposed originally for CNN model
eights to GNN models and graphs [12 , 13 , 15]. These approaches aim to find a pruned GNN model
nd graph dataset pair that can be trained from scratch to match the accuracy of the unpruned GNN
odel and dataset. Unified GNN sparsification (UGS, and the Graph Early Bird Ticket (GEBT)

re two state-of-the art frameworks proposed to prune graphs for GNN training [12 , 13]. However,
hese two methods make use of pruning masks, which are transductive in nature, i.e., they are
erived uniquely for a given graph adjacency matrix [3]. Hence, they cannot be transferred or
pplied to unseen or new graph datasets [3]. Moreover, LTH-based pruning methods are iterative
n nature and require many training rounds to prune GNN models and data graphs. As a result, this
ncreases the training cost by more than 20 ×, and makes it expensive to apply LTH-based pruning
o new or unseen large graphs. In addition, these LTH-based GNN pruning methods still aim to
rune the entire monolithic graph and they do not reduce the number of input subgraphs used for
he end-to-end GNN training process. As we show later, this leads to device reliability issues.
In this work, we address the limitations of existing approaches by proposing a fundamentally
ifferent solution based on the concept of learned binary classifiers for low-cost subgraph pruning.
his method enhances the reliability of ReRAM architectures by reducing the number of write
perations. Subgraph pruning also reduces the training cost and improves the performance of
NN training with minimum accuracy loss.

 METHODOLOGY

n this section, we first discuss some preliminaries of GNN training, and present the details of the
roposed BGC-enabled subgraph pruning framework for GNN training on ReRAM-based many-
ore architectures (illustrated in Figure 1 and Figure 2). Next, we discuss how BGC enabled pruning
mproves performance in terms of end-to-end execution time, device reliability, and training cost
or a ReRAM-based manycore system during GNN training.

.1 Preliminaries

 monolithic data graph is represented by an adjacency matrix G ∈ { 0 , 1 } n×n , and a node feature
atrix X ∈ R

n×d , where n is the number of nodes in the graph, and d is the dimensionality of
ach node feature vector. Due to the limited amount of storage available in PIM accelerators, we
everage mini-batch GNN training, where the large monolithic graph (G) is partitioned into smaller
arts known as subgraphs and used for GNN training [17 , 28 –30]. Hence, a monolithic data graph
 is partitioned into K subgraphs such that { S G 1 , S G 2 , . . . , S G K } ⊆ G , where S G i denotes the i th
ubgraph. Each subgraph has its unique adjacency matrix (A).
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:6 C. Ogbogu et al.

Fig. 1. (a) Overview of GNN training on ReRAM-based PIM accelerator with large monolithic graph par-

titioned into subgraphs and mapped to PEs, alongside GNN weights, and activations. (b) Pipeline stages

during GNN training; each stage is a GNN layer. (c) Pipelined execution of GNN training with K input sub-

graphs on ReRAM-based accelertors. After each subgraph is processed, crossbar write (cw) operations occur

in the form of weights update, intermidate activations storage, and adjacency matrix storage.

Fig. 2. (a) Overview of training the MLP-based Binary Graph Classification Model. (b) Online GNN training

on the ReRAM-based PIM accelerator using the pre-trained BGC model. The training of the MLP-based BGC

model is performed offline on a CP U/GP U platform. At the 5 th epoch during GNN training, the inference

pass of pretrained BGC is performed on the host CP U/GP U device to make decisions about which subgraphs

should be pruned. The remaining subgraphs are loaded on the ReRAM-based PIM accelerator for online GNN

training.

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:7

c

D

a

f

f

i

f

f

E

t

c

f

a

p

c

R

e

v

h

t

i

G

s

o

m

o

t

c

(

v

(

t

h

t

A GNN consists of L neural layers, where each layer performs forward- and backward-phase
omputations. The forward-phase computations are described as follows:

Forward - propagation:

GNN layer l:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

H
l = X

l ×W
l (1)

H
l+1 = A × H

l (2)

X
l+1 = ReLU

(
H
l
)

(3)

uring the forward phase, an MVM operation is performed between the input feature vector (X
l)

nd the GNN model weights (W
l) for a given GNN layer (l) as shown in Equation (1). The updated

eature vector (H
l) is multiplied with the subgraph adjacency matrix (A) to perform the node-

eature aggregation of neighboring nodes to produce an output embedding (H
l+1). This embedding

s passed through a non-linear ReLU activation function to produce the input activations (X
l+1)

or the next GNN layer (l + 1) shown in Equation (3). The backward phase can be expressed as
ollows:

Backward - propagation:

GNN layer l:

{

err l = (W
l−1)

T
× δ l−1 · ReLU

′ (X
l−1) (4)

δ l = A × er r l (5)

quations (4) and (5) represent the error calculation in the back-propagation phase during GNN
raining. As shown in Equation (4), the activations of the preceding layer (X

l−1) are needed for the
omputation of the error (er r l) of layer l . Here, ReL U

′ represents the derivative of the activation
unction. In Equation (5), this error vector is multiplied with the adjacency matrix to obtain the
ccumulated error vector (δ l), which is then used to compute gradients for the weight update
rocess.

3.1.1 GNN Training on ReRAM-based PIM Architectures. ReRAMs enable parallel and effi-
ient in-memory Matrix-Vector-Multiplication (MVM) operations. To enable GNN training on
eRAM-based PIM accelerators, the GNN weights are mapped to ReRAM cells in each processing
lement (PE) following [6] and [19]. The graph adjacency matrix of subgraphs, as well as the acti-
ations (intermediate output of each GNN layer) are mapped to separate PEs. Figure 1 (a) illustrates
ow the GNN weights, adjacency matrix, and activations are mapped to the ReRAM crossbars. In
he forward propagation (Equations (1)–(3)), an MVM operation is performed on ReRAM crossbars
n PEs storing the weights between the GNN weights, and the output activations of the previous
NN layer (X

l −1). This step is referred to as the ‘combination phase’ of the forward propagation, as
hown in Equation (1). Next, in the ‘aggregation phase’ during the forward propagation, an MVM
peration is performed between the output of the combination phase and the graph adjacency
atrix (Equation (2)). To implement these MVM operations on the ReRAM crossbar, one of the
perands must be written to the ReRAM cells, while the other operand is fed as an input. In Equa-
ions (1) and (2), the weights (W) and the adjacency matrices (A) respectively are written on to the
rossbars. Each tile is equipped with a non-linear activation unit to perform the ReLU operation
Equation (3)) following prior work [7 , 31]. In the backward propagation, the intermediate acti-
ations stored in separate PEs during the forward phase are used to compute the error gradients
 er r l). As shown in Equations (4) and (5) above, this operation is simply a MVM operation between

he intermediate activations (δ l), and the transpose of the weights ((W
l−1)

T
). Figure 1 illustrates

ow the GNN weights (W
l), activations (X

l+1), and subgraph adjacency matrices (A) are mapped
o the ReRAM-based accelerator.
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:8 C. Ogbogu et al.

P

(

t

t

t

s

a

G

i

F

l

a

t

e

t

c

o

p

t

s

1

u

g

s

o

l

(

E

f

d

w

o

M

w

s

m

f

i

3

A

a

A

As mentioned earlier, to enable GNN training of large graphs on the ReRAM-based
IM architecture, the large monolithic graph is partitioned into multiple smaller subgraphs
 { S G 1 , S G 2 , . . . , S G K }) using a graph partitioning algorithm [32]. Hence, this allows us to pipeline
he GNN training process such that each input subgraph (SG) is analogous to an input image
o the pipeline as in traditional DNN architectures. Figure 1 (b) and Figure 1 (c) shows an illus-
ration of the overall pipelined GNN training process. In Figure 1 (c), each input subgraph is sent
equentially as input to the pipeline, while Figure 1 (b) shows the end-to-end pipeline for training
 L-layer deep GNN for one input subgraph. This deep pipelining strategy allows all layers of the
NN to be computed in parallel. As a result, this speeds up the entire GNN training process, and
mproves throughput and energy-efficiency compared to its unpipelined version. In Figure 1 (b),
 L i and B L i denote the forward- and backward- propagation computation respectively of the lth
ayer of the GNN during training. The worst-case delay associated with a pipeline stage is denoted
s t s taд e . Following prior work, we assume each GNN layer as one pipeline stage [33]. The training
ime is determined by the longest latency among all the layers (as shown in Figure 1 (b)), and the
nd-to-end pipeline depth (D) given by:

D = 2 L + K − 1 (6)

Where K is the total number of input subgraphs, and L is number of GNN layers. During GNN
raining, the overall execution consists of computation (i.e., MVM operations) on ReRAM-based
rossbars and inter-PE communication (the data of one layer must be sent to the next layer). The
verall execution time is determined by the end-to-end pipeline depth (D) and the delay of each
ipeline stage (t s taд e). The overall execution time is given by: D × t s taд e . To improve the execution
ime, we must reduce the pipeline depth, which is governed by the input dataset, i.e., number of
ubgraphs (K) used for training.
However, it is well known that multiple writes to the ReRAM cells can lead to device failure [9 ,

1 , 34]. Specifically, during GNN training, ReRAM cell write operations (cw) occur due to weights
pdates, intermediate activation storage, and subgraph adjacency matrix storage after each sub-
raph is processed, as shown in Figure 1 (c). Moreover, for very large graphs partitioned into many
ubgraphs (i.e., large K), and for deep GNNs with many layers (i.e., large L), the number of write
perations, overall pipeline depth, and end-to-end training latency increases significantly as il-
ustrated in Figure 1 (c). Consequently, this leads to severe degradation in the ReRAM reliability
i.e., due to limited write endurance), and incurs significant training performance penalty. From
quation (6) and Figures 1 (a)–(c), we can see that reducing the number of subgraph partitions (K),
or example, by creating fewer partitions, but larger subgraphs will lead to a reduction in pipeline
epth (D) and number of ReRAM cell write operations (cw). However, creating larger subgraphs
ith high storage requirements for pipelined GNN training on ReRAM-based PIM accelerators is
ften not desirable. This is due to the small memory footprint of ReRAM-based PIM architectures.
oreover, training GNNs with large subgraphs leads to significant accuracy loss as shown in prior
ork [33]. Therefore, it is desirable to choose a higher number of partitions with smaller subgraph
izes that can fit within the on-chip memory. However, the high number of write operations due to
ore subgraphs still leads to reliability issues. Hence, in this work, we propose a unique method
or subgraph pruning to reduce all types of write operations to the ReRAM crossbars, thereby
mproving reliability and the overall training execution time without compromising accuracy.

.2 Binary Graph Classifier (BGC) for Subgraph Pruning

s discussed earlier, the overall training time and the number of ReRAM crossbar write operations
re directly related to the number of input subgraphs for a given graph dataset used for training
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:9

G

r

d

s

t

G

(

g

b

t

r

s

i

b

T

i

a

i

t

u

t

w

e

g

t

d

(

s

w

k

p

s

s

1

fi

p

h

o

p

G

o

i

p

o

a

c
NN models. Consequently, the number of subgraphs has a direct impact on the performance,
eliability, and predictive accuracy of GNN model for a given GNN training workload (model and
ataset) executed on the ReRAM based manycore platform. The key challenge is to prune the input
ubgraphs for GNN training on the ReRAM-based PIM architecture, such that the performance in
erms of execution time, and reliability is improved without any significant loss in accuracy of the
NN model. To address this challenge, we propose an algorithm to train a binary graph classifier
BGC) for pruning subgraphs on unseen graph data.
We formulate the subgraph pruning problem as a graph classification task. Given a set of sub-
raphs { S G 1 , S G 2 , . . . , S G K } for a graph dataset G, a trained subgraph classifier will predict a
inary label for a given subgraph (S G i): 0 means that the subgraph should be pruned and 1 means
hat the subgraph should be retained for training the given GNN model. We employ the subgraph
epresentation from a trained GNN model and use a simple MLP classifier on top of this learned
ubgraph representation, which is obtained by aggregating the node features of the subgraph us-
ng a graph-level pooling function [30]. The trained subgraph pruning classifier (BGC) produces a
inary output prediction ˆ y i (0 means to prune and 1 to mean not prune) for a given subgraph S G i .
he key insight behind pruning the subgraphs is to exploit the inherent redundancy of information
n the graph including nodes with similar features, labels, and neighborhood. Additionally, with
 small number of training iterations, it is possible to use the GNN model to score the subgraphs
n terms of their usefulness for further training [33 , 35]: a high score for a subgraph means that
he GNN model can make accurate predictions (node/edge classification) and additional training
sing such subgraphs will not improve the predictive accuracy of the GNN model. We leverage
hese insights to design an effective algorithm to train such subgraph pruning classifiers. Note that
e perform subgraph pruning using this trained classifier after a small number of initial training
pochs. We demonstrate later that pruning subgraphs after five training epochs gives consistently
ood results on diverse training/testing splits over a set of GNN training workloads. There are
wo key challenges in creating an effective binary classifier for subgraph pruning on unseen graph
ata: (1) How to create supervised training data of subgraphs and binary pruning decision pairs?
2) How to train a binary classifier on a given imbalanced training dataset where the number of
ubgraphs with ‘prune’ labels will be higher than those with ‘not prune’ labels. In what follows,
e provide algorithmic solutions to answer these two questions.
Creation of Supervised Binary Classification Data. We assume the availability of a set of
nown GNN training workloads (i.e., GNN model and graph data pairs: { дn n i , G i }) for this pur-
ose. Suppose we use a fixed early training epoch E (say 5th iteration) at which we will perform
ubgraph pruning for any given GNN training workload. For a given graph G i there can be many
ubsets of subgraphs that can preserve the GNN model accuracy after training epoch E. Algorithm
 describes the overall supervised binary classification data generation process. Ideally, we want to
nd the smallest subset of accuracy preserving subgraphs ({ S G 1 , . . . , S G C }) and the corresponding
runing labels ({ y 1 , y 2 , . . . , y C }) because it aligns with our overall goal. However, this leads to a
ard combinatorial optimization problem (search over subsets of different sizes in the decreasing
rder and performing GNN training with each candidate subset). Additionally, there can be multi-
le different subsets with the same minimum size and selecting one of them arbitrarily for different
NN training workloads can create inconsistent training data for subgraph pruning classifier. To
vercome these challenges, we leverage recent work on DNN model-based importance scoring of
nput examples for data pruning [35] and generalize this to subgraph pruning for a pre-specified
runing percentage. The importance score assigned to each subgraph corresponds to the likelihood
f the subgraph can be pruned: a low score means the corresponding subgraph can be pruned with
 high probability (lines 5–9 of Algorithm 1). The key idea behind our approach is to create binary
lassification data as follows. First, we use these importance scores to sort the subgraphs. Second,
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:10 C. Ogbogu et al.

w

i

s

w

c

G

o

i

f

w

i

i

c
[

h

i

d

g

S

t

p

i

t

r

v

A

e train the GNN model by pruning the top k percent subgraphs for different values of k in an
ncreasing order to find k such that the accuracy is preserved with respect to the ideal setting (no
ubgraphs are pruned). By gradually increasing the value of k (in discrete intervals, say 10) until
e see loss in accuracy (line 10 of Algorithm 1), we identify the maximum subset of subgraphs that
an be pruned in a sound manner. Since this experiment with each value of k involves training the
NN model, we perform a discrete search to efficiently identify the maximum value of k as part
f a one-time offline process. Importantly, sorting the subgraphs based on their importance scores
njects inductive bias to avoid the generation of inconsistent binary classification data across dif-
erent GNN training workloads. We aggregate the binary classification data over all GNN training
orkloads to form our overall training set for the binary subgraph classifier.
Model-based Importance Scoring: We score each subgraph (S G j) in the set of subgraphs, as shown

n Equation (7) and line 5 of Algorithm 1 . This formulation, described by Equation (7), scores the
mportance of each subgraph (S G j) by its expected loss gradient norm, which bounds (up to a
onstant) the expected change in loss for an arbitrary subgraph example caused by removing S G j

 35]. In other words, subgraphs with low scores are expected to have a limited influence on learning
ow to make predictions (based on their structure) for the rest of the training subgraphs. The
mportance of each subgraph in the coreset (S G j) is determined by a scoring function (s core (S G j))
escribed below:

s core (S G j) =
∑

| δ l (S G j)ΔW l | (7)

We have conducted experiments where the above scoring function was used to rank all sub-
raphs based on the magnitude of the product of the gradient with respect to the input subgraph
 G j (i . e ., δ

l (S G j)) and the change in the weights in GNN layers (ΔW l) [33]. This score indicates
he contribution of each subgraph (S G j) to the change in the overall training loss function. The

arameter δ l is the gradient update, like the one used earlier in Equation (5). We normalize the
mportance score associated with each subgraph S G j to a continuous value ranging from 0 . 0 –1 . 0
o account for variability across different GNN training workloads. Hence, to generate the cor-
esponding labels of each subgraph ({ y 1 , y 2 , . . . , y C }), we quantize the score values to be binary
alues (0 or 1) by identifying the maximum top k % subgraphs from the sorted list based on the
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:11

i

d

t

p

b

G

l

p

h

t

g

b

i

t

w

p

i

a

t

c

d

e

f

p

(

t

o

b

I

b

s

f

a

b

c

P

w

l

l

B
mportance scores that can be pruned without any loss in accuracy. This is done by searching over
iscrete values of k and performing GNN training with top- k% pruned subgraphs. In this work,
he value of k was chosen to be 10, consistent with prior work [33].
Training Binary Subgraph Classifier from Imbalanced Data. It is conceivable, and em-
irically observed in both prior work and current work, that the number of subgraphs that can
e pruned are higher (majority class) than those that cannot be pruned (minority class) for each
NN training workload, even though the specific imbalance ratio varies from one training work-
oad to another. Additionally, the accuracy of the trained subgraph pruning classifiers can impact
erformance, power, reliability, and model accuracy when the GNN is trained on a ReRAM-based
ardware platform. For example, if we prune important subgraphs (determined by Equation (7)),
hen we can potentially lose GNN model accuracy. Similarly, if we do not prune unimportant sub-
raphs, then we incur penalties in terms of performance, power consumption, and reliability.
A naïve approach of using standard classification training data will result in a classifier that will
e biased to predict the majority class; however, this approach potentially leads to a significant loss
n predictive accuracy. To overcome this challenge, we propose to use a cost-sensitive classifier
raining approach that assigns higher importance weight to examples from the minority class as
e do not want to make mistakes on those examples. Algorithm 2 demonstrates the overall training
rocess of the MLP-based BGC using a weighted binary cross entropy loss function (L w д ht) shown
n Equation (8), and line 5 of Algorithm 2 . A weighted cross entropy loss function is used to prevent
ny bias in the BGC model that may arise due to class imbalance in the overall binary classification
raining data. The weighted binary cross entropy loss is given by:

L w д ht = −
1

C

C ∑
j= 1

[
w p · y j . log

(
ˆ y j
)
+
(
1 − y j

)
. log

(
1 − ˆ y j

)]
(8)

The weighted cross entropy loss applies a rescaling parameter (w p) to the conventional binary
ross entropy loss [36], allowing us to penalize false positives or false negatives appropriately
epending on the needs of the application at hand. This cost-sensitive learning (CSL) process
nsures that the BGC model pays more attention to the minority class, thus improving its per-
ormance in cases when the training set is imbalanced. Here, y j and ˆ y j are the binary label and
rediction from the MLP-based binary classifier (f MLP) model, respectively, of a given subgraph
 S G j) in the BGC training set (line 4 of Algorithm 2), and C is the total number of subgraphs in the
raining set. As we show later in our experiments, we automatically select the value of w p based
n the performance on a small validation data set such that the BGC model is trained to make un-
iased predictions when used for the online training process on a ReRAM-based PIM accelerator.
n summary, using the training subgraphs ({ S G 1 , S G 2 , . . . , S G C }) as training data for the MLP-
ased BGC model, we have described how a classifier can be trained to accurately predict if a new
ubgraph should be pruned or not for an unseen GNN training workload. We refer to this overall
ramework as the Binary graph classifier (BGC), where the MLP-based model is pre-trained offline
nd used to prune subgraphs of any given dataset during online GNN training on the ReRAM-
ased PIM accelerator. In this context, ‘offline’ refers to any training process that is carried out on
onventional hardware platforms, while ‘online’ refers to training executed on the ReRAM-based
IM accelerator.
The BGC model is a light-weight MLP-based neural network (consisting of only few layers),
hich is pre-trained to reliably perform the subgraph pruning task for unseen GNN training work-
oads. The goal of training the BGC model is to learn the subgraph network structure, and not to
earn subgraph node-level representation as in the actual GNN training task. Hence, to train the
GC model we employ the aggregate set of subgraphs ({ S G 1 , . . . , S G C }) from the known GNN
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:12 C. Ogbogu et al.

t

t

t

t

C

t

3

I

t

s

i

d

d

o

a

i

u

e

G

fi

s

n

w

h

g

o

w

t

s

A

raining workloads along with their binary labels. Note that subgraphs ({ S G
U
1 , . . . , S G

U
K
}) refer

o an unknown GNN training workload and will be used for the online GNN training process on
he ReRAM-based PIM accelerator. Moreover, the training of the MLP-based BGC model using the
raining subgraphs is a one-time event performed offline on conventional architectures (such as
P U/GP U). The pre-trained BGC model can be used multiple times to prune subgraphs for GNN
raining with any given graph dataset on the ReRAM-based PIM accelerator.

.3 GNN Training with Unseen Graphs on ReRAM-based Accelerators using Subgraph

Pruning Classifier

n Figure 2 , we present a high-level illustration of how the BGC model is pre-trained offline, and
hen used for online GNN training with an unseen data graph on the PIM architecture. In this
ubsection, we explain how the pre-trained MLP-based BGC model is used for subgraph prun-
ng during the online GNN training process on the ReRAM-based PIM architecture. Algorithm 3
escribes the online subgraph pruning process, for new or unseen graph datasets. It has been
emonstrated in recent work that redundant examples can be pruned very early in training, with-
ut significant degradation in the final test accuracy [13 , 35]. Hence, in this work, we propose to
pply the pre-trained BGC model to prune training examples (subgraphs in this case) very early
n the GNN training process (within a few epochs). In other words, the pre-trained BGC model is
sed to prune the input training samples. For our analysis, we consider a scenario where the BGC-
nabled subgraph pruning is applied before the start of training (E = 0), and very early during the
NN training process (E = 5). As we show in our experimental results, pruning subgraphs at the
fth epoch (line 3 of Algorithm 3) is sufficient to accelerate the GNN training process, and yield
ignificant improvement in reliability and performance of the ReRAM-based PIM accelerator with
egligible loss in accuracy. The pretrained BGC model is a light-weight MLP-based neural net-
ork consisting of only a few layers and parameters. It is being executed offline on the CP U/GP U
ost as shown in Figure 2 (a). Hence, executing the pretrained BGC model to prune input sub-
raphs during training is a simple inference pass of the MLP layers, which has a negligible timing
verhead. Moreover, this process is performed only once very early during a given GNN training
orkload instance. Consequently, as shown in Figure 2 (b), P subgraphs have been predicted by
he BGC model as unimportant and are pruned (line 5 of Algorithm 3). The remaining important
ubgraphs ({ S G

U
1 , . . . , S G

U }) of the new/unseen dataset are used for online GNN training on the

K−P

CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:13

Table 1. BGC Model and Dataset Specs

Layer Type #Layers # parameters Size Lr Epochs
FC (2),
ReLU (1)

3 66K 0.13MB 0.01 50

R

(

E

s

w

p

f

a

R

4

I

t

4

D

e

v

g

(

s

T

i

g

R

i

e

w

t

f
eRAM-based architecture. Instead of training on K subgraphs, the GNN model now trains only on
 K − P) subgraphs. Consequently, this reduces the pipeline depth as illustrated in Figure 1 (b) and
quation (6), which automatically speeds up training as there are fewer input subgraphs (hence
maller end-to-end pipeline depth (D)). As we show later, this process leads to trained GNN models
ith little to no test accuracy loss when compared to training with all subgraphs (no subgraph
runing setting). In Section 4 , we show the predictive performance of the BGC-enabled pruning
or GNN models at different early epochs during the online training process. Overall, this leads to
 reduction in ReRAM crossbar cell write operations, thus enabling reliable GNN training on the
eRAM-based PIM architecture.

 EXPERIMENTAL RESULTS AND ANALYSIS

n this section, we evaluate the performance of the proposed subgraph pruning framework for
raining diverse GNN models with large real-world graphs on ReRAM-based PIM architectures.

.1 Experimental Setup

atasets and GNN models (Workloads): We consider three types of state-of-the-art GNN mod-
ls to demonstrate generality of our proposed subgraph pruning approach, namely: Graph Con-

olution Network (GCN), Graph Attention Networks (GAT) , and Graph Sample and Ag-

regate (SAGE) . The proposed BGC technique leverages a simple MLP-based Neural Network
also known as a feed-forward network) for pruning subgraphs during GNN training. Table 1
hows the BGC model based on a multilayer perceptron network and its training configuration.
he BGC model is trained offline on the host machine (CP U/GP U) for 50 epochs, with a learn-
ng rate of 0.01. In this work we evaluate the performance of the BGC technique on a total of six
raphs ranging from different application domains like: medicine (PPI), social-networks (FlickR,
eddit and Yelp), e-commerce (Amazon2M), and a citation dataset (ogbl-citations2). The datasets
nclude small- (consisting of < 100K nodes and edges) to large-scale (consisting of > 1M nodes and
dges) graph datasets in this work [29]. Hence, they are representative of a wide range of real-
orld applications of predictive graph analytics specifically suitable for edge AI applications. In
his paper, we have shown that the BGC method can be used to make pruning decisions for dif-
erent datasets (small to large). This demonstrates the scalability and transferability of the BGC
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:14 C. Ogbogu et al.

Table 2. GNN Configuration

Model
#layers

(L)
lr Epochs

GCN 4 0.01 200
SAGE 4 0.01 200
GAT 4 0.005 200

Table 3. Graph Dataset Statistics

Dataset #Nodes #Edges Classes
Node
degree

K

PPI 56K 818K 121 15 50
Reddit 233K 11.2M 41 50.5 150
Amazon2M 2.45M 61.9M 47 10 1000
FlickR 89K 899K 7 10 75
Yelp 716K 13.9M 100 10 500
Ogbl-citation2 2.9M 30.5M 6 20.7 1500

Gray shaded datasets are used for training the BGC.

f

a

r

i

a

e

h

a

p

l

b

o

R

u

f

M

o

T

t

t

e

t

w

t

a

p

A

ramework to larger graph workloads from diverse application domains without requiring any
dditional training . Tables 2 and 3 provide the details of the GNN models and the graph datasets
espectively used in this work. All GNN models considered here utilize mini-batch based train-
ng, which uses multiple smaller subgraphs created by using a graph partitioning algorithm from
 large monolithic graph. Different graph partitioning algorithms have already been previously
xplored extensively in the literature, such as Random Edge-cut algorithm, METIS, Degree-based
ashing (DBH) , and edge partitioning via Neighborhood heuristic (NH) [37 , 38]. A recent
blation study on partition algorithms for GNN training showed that METIS achieves superior
erformance in terms of accuracy compared to other partitioning algorithms [38]. Moreover, un-
ike the other methods, METIS creates graph partitions such that each subgraph can be bounded
y a controlled size, so that a batch of a fixed number of subgraphs can always fit within the
n-chip memory [32 , 37]. This makes METIS amenable to resource constrained platforms such as
eRAM-based Processing-in-Memory (PIM) architectures. Hence, in this paper, we specifically
se the METIS graph partitioning algorithm. However, it is worth noting that the proposed BGC
ramework in this work can be used with other graph partitioning algorithms.
Moreover, this enables pipelined training of GNNs [19]. For graph partitioning, we employ
ETIS, which is a fast and scalable graph clustering algorithm [32]. The graph clustering algorithm
nly takes a small portion of preprocessing time and allows us to train GNNs with large datasets.
he graph partitions (subgraphs) are loaded from main memory onto the ReRAM architecture for
he online training process. As shown in Table 2 , each GNN model is trained for 200 epochs (one
raining instance) with suitable learning rates (lr) and appropriate number of GNN layers (L) to
nsure their convergence without overfitting. The number of input subgraphs (K) obtained using
he METIS graph partitioning algorithm for each dataset is shown in Table 3 . Following prior work,
e chose the number of subgraph partitions (K) appropriately for each graph dataset to achieve
he best possible trade-off between the GNN accuracy and performance [15 , 33].
ReRAM-based PIM Architecture: The PIM architecture considered (without loss of gener-

lity) in this work consists of 36 ReRAM-based processing elements (PEs) distributed over four
lanar tiers connected using through silicon via (TSV)-based vertical links. Table 4 presents the
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:15

Table 4. Hardware Specifications

Offline Preprocessing Hardware:
OS: Linux CentOS. GPU: NVIDIA V100, 32GB. CPU: Intel Xeon Gold 5222 @

3.8GHz, 16 cores, 32K L1 cache and 1024K L2 cache.

Online in-field Training Hardware:
ReRAM-based 3D PIM architecture: 4 planar tiers, 9 PEs per tier, 4 ReRAM

tiles per PE.

ReRAM Tile:
96-ADCs (8-bits), 12 × 128 × 8 DACs (1-bit), 96 crossbars, 96 SRUs, 128 ×
128 center crossbar size, 10MHz, 2-bit/cell resolution, 0.34W, 0.38 mm

2 [7].

d

l

i

b

G

s

r

b

H

t

h

i

v

m

m

h

t

4

I

i

o

c

d

c

A

d

e

B

s

W

l

p

G

(

d

t

w

t
etails of the ReRAM-based PIM architecture used in this work. We model the area, energy, and
atency of all on-chip buffers, peripheral circuits, number of writes to ReRAM cells, and GNN train-
ng accuracy using the NeuroSim v2.1 simulator [31]. We incorporate a Python wrapper function
ased on PyTorch API into NeuroSIM to obtain the GNN model test accuracies for the different
NN models and datasets considered in this work. The GNN model weights and activations are
tored using 16-bit fixed point precision on the ReRAM crossbar of size 128 × 128, and 2-bit/cell
esolution as it provides the best performance-area-energy trade-off [19]. The adjacency matrix is
inary (‘1’ indicates the presence of an edge between two nodes and ‘0’ indicates no connection).
ence, it is stored with 1-bit/cell. We incorporate stochastic rounding units (SRUs) in each tile
o reduce the accuracy drop due to the use of 16-bit precision [39]. Stochastic rounding enables
igh accuracy even at lower precision settings [40]. The implementation of the stochastic round-
ng unit introduces less than 1% area and energy overhead. GNN training generates an enormous
olume of traffic, which can be a bottleneck performance [6 , 19]. In this architecture, we utilize a
ulticast-enabled 3D mesh network on chip (NoC) as the interconnection backbone for com-
unicating between the processing elements during GNN training [39]. The NoC performance
as been modeled using Garnet, and NeuroSim was used to calculate the injection rate needed for
he cycle-accurate NoC simulator [41].

.2 Accuracy of the BGC

n this subsection, we discuss the performance of the MLP-based BGC for pruning subgraphs dur-
ng GNN training. As shown in Table 1 , the BGC model is a light-weight model (only 0.13 MB
f storage). In comparison, a GCN model considered in this work trained with the PPI dataset
onsists of ∼13 M parameters and requires 49.9 MB of storage. Hence, the MLP-based BGC intro-
uces negligible overhead in terms of storage and training time cost as we show later. The BGC
omprises of only two fully connected (FC) layers, and one ReLU non-linear activation layer.
s discussed earlier, we train the BGC model with a core set of subgraphs ({ S G 1 , S G 2 , . . . , S G C })
rawn from two known graph datasets (G 1 and G 2 as an example). Subgraphs drawn from differ-
nt known graph datasets usually differ in input feature dimensions. Hence, to enable training the
GC with these coreset of subgraphs, we pad the input feature vectors of subgraphs in the core
et ({ S G 1 , S G 2 , . . . , S G C }) to match the input dimension of the first FC layer of the BGC model.
e then use the trained BGC model to prune subgraphs for new (or unseen) datasets during on-

ine GNN training on the ReRAM-based PIM architecture. However, we must first evaluate the
erformance of the BGC in terms of its classification accuracy before it is deployed for in-field
NN training scenarios with new datasets. Hence, we use the leave-one-out cross-validation
LOOCV) procedure to estimate the performance of the BGC model when it is used to make pre-
ictions on graph datasets not used to train the model. Here, we consider a third dataset (G 3) as
he validation graph dataset used in the LOOCV procedure. We then perform LOOCV experiments
ith the BGC using G 1 , G 2 , and G 3 . The LOOCV experiments yield three cases where the BGC is
rained with: (i) G 1 and G 2 , and validated with G 3 , (ii) G 2 and G 3 , and validated with G 1 , and (iii) G 1
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:16 C. Ogbogu et al.

Fig. 3. (a) Leave-one-out cross-validation (LOOCV) experiments for the BGC using Reddit, Amazon2M, and

PPI. The BGC is trained with dataset in parentheses, and used for subgraph pruning during GNN training on

the validation dataset. We compare GNN training with the unpruned data graph, with the BGC enabled sub-

graph pruning, and the BGC trained using a weighted loss function. (b) An illustration of True Positive (TP),

True Negative(TN), False Postive (FP), and False Negative (FN) rates for the trained BGC making predictions

on the PPI dataset.

a

n

t

t

d

c

u

a

t

R

H

u

F

p

v

r

t

i

w

r

B

w

a

w

w

n

r

u

w

A

nd G 3 , and validated with G 1 . LOOCV experiments tend to be computationally expensive as the
umber of datapoints increase [42]. Hence, in this work, we limit the number of datapoints used
o only three datasets (G 1 , G 2 , and G 3). The overall performance of the BGC model is estimated in
erms of accuracy when used to make pruning predictions during GNN training on the validation
ataset as demonstrated in the LOOCV experiments.
In Figure 3 (a), we present the results of the LOOCV experiments performed on the BGC. We

onsider PPI Reddit, and Amazon2M as the representative datasets (G 1 , G 2 , and G 3) used in eval-
ating the BGC model. Note, however, that the BGC method is general, and can be applied to
ny other graph datasets. The datasets used to train the BGC in each case are shown in paren-
heses, followed by the dataset used for validation. For example, when the BGC is trained with
eddit and PPI, and validated using Amazon2M, we denote this as “(Reddit, PPI) Amazon2M”.
ere, for each case in the LOOCV experiment, we train the BGC with two datasets, and use then
se it for making pruning predictions on the validation dataset during GNN training. As shown in
igure 3 (a), we compare the accuracy of a GNN trained using the entire validation dataset (un-
runed), with the accuracy of the GNN trained with the BGC-enabled subgraph pruning on the
alidation dataset (BGC). For the LOOCV experiments, we consider the GCN model as the rep-
esentative GNN trained with the validation dataset in each case. Our results demonstrate that
he GCN can be trained with BGC-enabled data pruning with an average accuracy loss of ∼4.0%
n all three scenarios as shown in Figure 3 (a). Note that we observe a similar accuracy loss trend
hen the LOOCV experiments are performed using other GNN models (GAT and SAGE). This
elatively high average accuracy loss of 4.0% can be attributed to the false predictions made by the
GC model. Hence, we quantify the false positive (FP) and false negative (FN) prediction rates
hen PPI (as an example) is used as the validation dataset (i.e., the (Amazon2M, Reddit) PPI case),
s shown in Figure 3 (b). In this context, an FN prediction means pruning an important subgraph
ith a high score that should otherwise be kept, and an FP prediction implies keeping a subgraph
ith a low score that should otherwise be pruned. On the other hand, true positive (TP) and true
egative (TN) rates denote the accurate subgraph pruning predictions by the BGC. We observe
elatively high FP and FN prediction rates of 0.41 and 0.42 respectively for the BGC when it is
sed to prune the PPI dataset. This implies that the BGC is making subgraph pruning predictions
ith a high degree of uncertainty. As a result, this can potentially have negative effects on the
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:17

Fig. 4. (a) Ablation experiments used to chose the value of importance weighting parameter w p to train

the BGC model using a cost-sensitive training approach (CSL). Here, the BGC is trained using Amazon2M

and Reddit dataset, and tested with the PPI dataset. (b) An illustration of True positive (TP), True negative

(TN), False postive (FP) and False negative (FN) rates for the improved BGC trained using the weighted loss

function, and used to make predictions on PPI.

p

o

a

t

F

f

w

e

B

p

p

r

fi

d

A

p

a

w

i

i

n

t

F

0

w

b

a

t

G

erformance and reliability of the ReRAM-based PIM architecture. This also impacts the accuracy
f the GNN model. The goal of the BGC model is to prune unimportant subgraphs with low scores
nd keep important subgraphs with high scores as shown in Figure 3 (b). Hence, this implies that
he BGC model should have high true positive (TP) and true negative (TN) rates, and low FN and
P rates, which is not the case as shown in Figure 3 (b). Hence, we address this challenge of high
alse prediction rates by proposing a cost-sensitive learning (CSL) method for the BGC using a
eighted loss function, as introduced in Section 3 .
Training the BGC model using weighted loss: To address the accuracy loss of the BGC-

nabled pruning due to its high FP and FN rates (shown in Figure 3 (b)), we propose to train the
GC using a cost-sensitive learning approach discussed earlier. This cost sensitive learning ap-
roach uses a weighted binary cross entropy loss function (bc e w д ht) to train the BGC model while
enalizing false positives or false negatives significantly. This is achieved by using a rescaling pa-
ameter w p as shown in Equation (8). We perform ablation experiments shown in Figure 4 (a) to
nd a suitable value for w p . In Figure 4 (a), the BGC is trained with the Amazon2M and Reddit
atasets using the cost-sensitive loss (L w д ht) in Equation (8) and is validated on the PPI dataset.
s shown in Figure 4 (a), our experiments demonstrate that a w p = 3 . 0 is sufficient to improve the
erformance of the BGC in-terms of accuracy when used to prune the validation dataset. However,
lthough Figure 4 (a) shows the (Reddit, Amazon2M) PPI case, we generally observe that a w p = 3 . 0
orks well in other scenarios (i.e., (Reddit, PPI) Amazon2M) and (Amazon2M, PPI) Reddit). Hence,
n our LOOCV experiments shown in Figure 4 (a), we fix the w p = 3 . 0 , and train the BGC us-
ng the cost-sensitive learning approach (BGC +CSL) as discussed in Section 3 . Consequently, we
ow observe a GNN average accuracy loss of only 2.1% compared to GNN training with the en-
ire dataset (unpruned). In Figure 4 (b), we also observe a corresponding reduction in the FP and
N rates to 0.25 and 0.19 respectively, and an improvement in the TP and TN rates to 0.81 and
.75 respectively for PPI. Note that we also observe a similar trend with Reddit, and Amazon2M
hen they are also used as the validation dataset. Overall, our LOOCV experiments have given a
etter insight to evaluating the performance of the BGC model. For the rest of our experiments and
nalysis, we use a the BGC trained with Reddit on PPI dataset (highlighted in gray in Table 3). We
hen carry out our performance, reliability, and accuracy trade-off analysis for the BGC-enabled
NN training on the ReRAM based PIM architectures using other datasets (or new datasets).
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:18 C. Ogbogu et al.

Fig. 5. (a)–(c) Test accuracy of of the unpruned (UP) GNN model for Amazon2M (A2M), Flickr (FLK), Yelp

(YLP), and ogbl-citation2 (OC2) compared to BGC enabled subgraph pruning applied; before training (E0),

at epoch 2 (E2), and at epoch 5 (E5) for GCN, SAGE, and GAT models.

4

S

g

f

f

c

g

t

u

G

s

a

w

t

s

d

r

f

s

i

p

a

fi

t

b

t

o

B

l

∼

o

c

c

A

.3 BGC-enabled Subgraph Pruning for GNN Training

o far, we have introduced the BGC model, and demonstrated its ability to prune subgraphs of a
raph dataset during GNN training. In this subsection, we present the results of executing the BGC
or subgraph pruning during GNN training with new or unseen datasets. To do this, we employ
our datasets as shown in Table 3 , namely Amazon2M, Flickr, Yelp, and ogbl-citation2. The datasets
onsidered here were not used in training the BGC, hence they are referred to as new or unseen
raph datasets. We consider PPI and Reddit as ‘known’ datasets because they were used to train
he BGC. Hence, for the rest of our analysis, we evaluate the performance of the BGC only on the
nseen graph datasets: Amazon2M, Flickr, Yelp and ogbl-citation2. During the execution of the
NN training on the ReRAM-based PIM architecture, the pre-trained BGC is used to perform the
ubgraph pruning. When the BGC model is executed, it predicts P subgraphs to be unimportant,
nd then prunes them. As a result, this leaves behind K − P subgraphs (i.e., { S G 1 , . . . , S G K−P }),
hich are then used for the GNN training process. The remaining or unpruned subgraphs are
hen loaded on the ReRAM-based architecture and used for the rest of the GNN training process.
However, determining when to prune remains crucial to enabling reliable GNN training with

ignificant performance speedup. For example, pruning datasets early (within few initial epochs)
uring training reduces the total number of write operations to the ReRAM crossbar cells. As a
esult, this potentially allows more training instances to be executed on the ReRAM crossbar be-
ore it reaches its endurance limit. In addition, reducing the number of subgraphs used for training
hortens the pipeline depth (D), thereby leading to performance speed-up of the entire GNN train-
ng process. Recent work has shown that input data can be pruned very early during the training
rocess, without significant accuracy loss [13]. In Figures 5 (a)–(c), we present the final GNN test
ccuracy when the BGC-enabled subgraph pruning is applied at different points within the first
ve epochs. Here, the unpruned case refers to the GNN training on the ReRAM-based architec-
ure using all subgraphs without the BGC-enabled pruning. We apply the BGC subgraph pruning
efore the start of training (E0), at the second epoch (E2), and at the fifth epoch (E5). We perform
hese experiments on the GCN, SAGE, and GAT models and on the Amazon2M, Flickr, Yelp, and
gbl-citation2 graph datasets. As shown in Figures 5 (a)–(c), our results demonstrate that when the
GC-enabled subgraph pruning is performed at the fifth epoch, this leads to a minimal accuracy
oss of compared to at other epochs. For example, in GCN, applying the BGC at Epoch 5 leads to
2% accuracy loss on average across all datasets. Meanwhile, applying the BGC before the start
f training (E0), and at epoch 2 (E2) leads to ∼17% and 9% accuracy loss on average respectively
ompared to the unpruned case. Applying the BGC subgraph pruning too early (for example, at E0)
an potentially lead to significant accuracy loss, as the model suffers from information loss during
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:19

Table 5. Data Pruning Percentage (p) Achieved with Different GNN Models and Datasets at Epoch 5

Dataset Amazon2M FlickR Yelp Ogbl-citation2
Pruning Method BGC SDP BGC SDP BGC SDP BGC SDP
GCN 43.2% 45.0% 24.50% 26.00% 33.2% 36.0% 40.31% 45.0%

SAGE 41.0% 44.0% 29.5% 32.0% 30.5% 35.0% 39.50% 40.0%

GAT 45.1% 44.0% 30.2% 33.3% 31.51% 35.0% 38.33% 40.0%

t

d

i

t

p

s

a

e

(

(

i

c

A

c

u

a

m

t

r

h

t

B

t

s

p

o

t

e

t

B

a

f

t

o

t

o
c
o

m
raining. Hence, we propose to apply the BGC-enabled subgraph pruning at the fifth epoch (E5)
uring GNN training in a one-shot manner. Importantly, the training data to create BGC model
s generated in a consistent manner for E5. The remaining unpruned subgraphs are then used for
he rest of the GNN training process, hence leading to an improvement in the overall training
erformance speed-up without a significant loss in the GNN test accuracy. Overall, we observe a
imilar trend with the SAGE and GAT models in Figure 5 (b) and Figure 5 (c) respectively across
ll datasets. In Table 5 , we show the percentage of data pruning achieved by the BGC at the fifth
poch. As discussed in the previous subsection, when P subgraphs are pruned, the percentage

 p) of subgraph pruning achieved is; p = (K−P)
K

× 100% , where K is the total number of subgraphs
as shown in Table 3). To benchmark the performance of the proposed BGC classifier in terms of
ts achievable pruning percentage, we compare the pruning percentage (p) of the BGC with a re-
ently proposed score-based data pruning (SDP) approach as a baseline (shown in Table 5) [33].
s shown in Table 5 , we observe that the SDP approach achieves a slightly higher pruning per-
entage of 3.5% on average for each dataset. The SDP method initially trains the GNN model on the
nseen dataset to directly find unimportant input subgraphs using the GNN training loss function
nd prunes them. However, as we show later in our experimental results, this approach requires
ultiple training rounds to find the appropriate pruning percentage, which significantly raises the
raining time cost. Moreover, this approach is not generalizable to unseen graph datasets without
equiring prior training on each new graph dataset. The aim of the BGC method is to also achieve
igh pruning percentages similar to the SDP approach, without prior GNN training iterations with
he unseen graph to find important subgraphs. As we show in the next sub-section, the pretrained
GC method requires no prior, hence outperforms the SDP approach in-terms of overall training
ime cost. We observe that large graphs with higher number of nodes, edges, and subgraphs (K)
uch as Amazon2M and Ogbl-citation2 (as shown in Table 3) tend to achieve a higher amount of
runing relative to FlickR and Yelp as we see in Table 5 . This can be attributed to the higher amount
f redundant information present in larger graphs. Hence, they can be pruned more during GNN
raining without incurring significant accuracy loss.
Training time speedup: As discussed above, pruning subgraphs using the BGC at the fifth

poch (E5) leads to less accuracy loss compared to earlier epochs. Hence, in this work, we compare
he GNN training performance speedup achieved on the full dataset (unpruned) with our proposed
GC-enabled subgraph pruning applied at the fifth epoch (E5) during GNN. Figure 6 (a), Figure 7 (b),
nd Figure 7 (c) show the performance speedup achieved by the BGC-enabled subgraph pruning
or GCN, SAGE, and GAT, respectively. The BGC is a light-weight MLP model consisting of only
hree layers. Hence, a forward pass on the pretrained BGC takes less than 1% timing overhead
f the overall training execution time. This negligible time overhead (1%) required for the pre-
rained BGC forward pass is taken into consideration in all of our performance analyses. Overall,
ur results demonstrate that the BGC enabled subgraph pruning achieves speedups of up to 1.6 ×
ompared to the unpruned case in Amazon2M and Ogbl-Citation2, and average speedup of 1.25 ×
n Flickr and Yelp across GCN, SAGE, and GAT. BGC-enabled subgraph pruning leads to perfor-
ance speedup during GNN training as the number of input subgraphs processed during training
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:20 C. Ogbogu et al.

Fig. 6. (a)-(c) GNN training performance speedup of unpruned GNN model for Amazon2M (A2M), Flickr

(FLK), Yelp (YLP) and Ogbl-citation2 (OC2) compared to BGC enabled subgraph pruning applied at epoch 5

for GCN, SAGE and GAT models.

Fig. 7. Total worst-case number of writes for Amazon2M, Flickr, Yelp, and Ogbl-citation2 normalized w.r.t.

to their respective enduracnce-unware baseline.

r

e

a

d

4

I

t

T

i

c

l

d

fi

i

i

c

w

w

A

educes. As a result, this reduces the overall pipeline depth, reduces the end-to-end latency, and
xtends the lifespan of ReRAM-crossbars due to fewer cell write operations. Moreover, the power
nd performance can be improved further by synergistically combining the proposed BGC-enabled
ata pruning method with other techniques such as weight pruning and/or quantization [33].

.4 Reliability Improvement due to Subgraph Pruning

n this sub-section, we discuss the benefits in terms of the possible number of GNN training tasks
hat can be executed on ReRAM crossbars enabled by the BGC-enabled subgraph pruning method.
he BGC-enabled data pruning technique reduces the number of ReRAM cell writes during train-
ng. Consequently, this extends the lifespan of the ReRAM crossbar, as more training instances
an be performed on it before it reaches its endurance limit. Hence, subgraph pruning enables re-
iable GNN training on ReRAM-based PIM architectures especially for workloads with large graphs
atasets.
To adequately evaluate the improvement in reliability due to the BGC-enabled pruning, we
rst quantify the worst-case number of write operations on a ReRAM cell during a GNN training
nstance. We then compare this to the number of ReRAM crossbar cell writes for a GNN training
nstance with the entire graph dataset (all subgraphs). For our analysis, we look at the ReRAM
rossbar write distributions, and consider the maximum crossbar cell write count. This gives the
orst-case number of writes for the ReRAM crossbar. The ReRAM cell with the maximum or
orst-case number of writes will reach the endurance limit and fail first. The failure of a single
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:21

Table 6. Increase in Number of GNN Training Instances for the

ReRAM-based PIM Architecture

Amazon2M Flickr Yelp Ogbl-citation2
SGS +RM 1.25 × 1.20 × 1.33 × 1.36 ×
BGC 1.64 × 1.31 × 1.48 × 1.62 ×

R

w

d

t

S

c

i

n

t

t

d

o

n

(

t

c

c

o

t

w

o

I

v

i

l

n

d

a

w

H

i

T

b

p

w

t

i

i

r

p
eRAM cell results in the outcome that the whole crossbar array produces incorrect results. Here,
e consider an endurance limit of 10 6 write operations, as this is in line with fabricated ReRAM
evices [9 , 43].
As discussed in Section 2 above, a recent endurance aware training technique known as struc-

ured gradient sparsification (SGS) has been proposed for ReRAM-based PIM architectures.
GS performs gradient accumulation, and prunes gradients based on their magnitude, or in a sto-
hastic fashion thereby reducing the frequency of weight updates [23]. In addition, SGS also takes
nto account the shape of the crossbar array and incorporates row remapping (RM) to reduce the
umber of writes to the ReRAM crossbar and balance out the write across crossbars. Consequently,
his improves the reliability of ReRAM-based PIM architectures. Figure 7 shows the worst-case to-
al number of write operations on to a ReRAM cell during a GCN training instance for all the four
atasets: Amazon2M Reddit, Yelp, and Ogbl-citation2. Here, the maximum (or worst-case) number
f writes per ReRAM-cell for each endurance-aware training method (SGS, SGS +RM and BGC) is
ormalized with respect to the endurance-unaware training baseline. We train each GNN model
GCN, SAGE and GAT) for the same number of training iterations (200 epochs), while keeping
he number of subgraphs consistent across all the GNN models. As shown in Figure 7 , the Ogbl-
itation2 dataset has the highest number of write operations (over 200K writes in the baseline
ase) for a GNN training instance. This is attributed to the large size of the graph and high number
f input training subgraphs. Meanwhile, Flickr has the lowest worst-case number of write opera-
ions on to the ReRAM crossbar cells due to its small size and small number of subgraphs. In this
ork, we compare our proposed BGC approach with SGS in terms of the total number of write
perations, and the improvement in possible number of training instances as shown in Figure 7 .
n addition to SGS, we incorporate a remapping-based (RM) technique that remaps weights, acti-
ations, and adjacency matrices to even-out the write operations across crossbars [23]. As shown
n Figure 7 , the standalone SGS technique has the same worst-case number of writes as the base-
ine case without any endurance-aware training. This happens as despite its advantages, SGS is
ot well suited for GNN training, as it focuses solely on reducing the number of write operations
ue to weight updates and does not account for ReRAM cell writes due to activations and graph
djacency matrix storage. As a result, this only improves the reliability of ReRAM cells storing the
eights. Meanwhile, cells storing activations and the adjacency matrices are not impacted by SGS.
ence, these cells will fail early due to repeated writes, thereby jeopardizing the whole GNN train-
ng process. Moreover, SGS results in performance degradation due to frequent row remapping.
his is due to the additional timing overhead incurred by the top- k gradient selection that must
e performed for pruning and row remapping at run-time. However, when remapping is incor-
orated with SGS (SGS +RM) to balance out the number of writes across crossbars, it reduces the
orst-case number of writes compared to the baseline. In Table 6 , we show the improvement in
he number of possible training instances for SGS +RM, and the proposed BGC enabled GNN train-
ng with respect to the baseline method. The SGS +RM method can enable up to a ∼1.4 × increase
n the number of training instances before failing, as shown in Table 6 . However, the SGS +RM
eliability improvement method incurs significant on-chip area and energy overhead for remap-
ing workloads at runtime to achieve even write distribution, and achieve lower number of writes
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:22 C. Ogbogu et al.

Fig. 8. Normalized training time required using the BGC, GraphDiet, and UGS data pruning method for

Amazon2M, Flickr, Yelp, and Ogbl-citation2 datasets. Each method is normalized with respect to the time

required for training the GNN on the unpruned dataset.

[

e

R

a

t

4

T

m

4

i

o

i

a

r

i

k

G

a

o

a

t

d

t

l

f

t

s

d

c

t

B

(

A

 23 , 24 , 44]. Unlike this method, the proposed BGC-enabled pruning framework is a simple yet
ffective method that effectively reduces the worst-case total number of write operations to the
eRAM, thereby achieving up to a 1.6 × improvement in the number of possible training instances
s shown in Table 6 . Hence, this leads to more reliable training on ReRAM-enabled PIM accelera-
ors without incurring any additional hardware area and energy cost.

.5 Training Cost, Reliability, and Performance Trade-offs

raining Cost: As discussed in Section 2 on related prior work, data pruning is a well-known
ethod to reduce the amount of computation performed during training of neural networks [31 ,
5]. As discussed in Section 1 , we specifically define the training cost as the amount of train-
ng time required to find the maximally pruned dataset that can be trained with the GNN with-
ut any accuracy loss. However, most existing data pruning techniques usually incur high train-
ng cost, as they require multiple rounds of training to maximally prune the dataset [3]. For ex-
mple, as discussed in Section 2 , existing LTH-based pruning methods require multiple training
ounds/instances to prune input graphs such as the UGS method. Also, a score-based data prun-

ng (SDP) approach that relies on few initial training epochs to prune subgraphs for GNN training
nown as ‘GraphDiet’ was recently proposed in [33]. This method also prunes subgraphs during
NN training. However, it requires initial training on the new datasets (Amazon2M, Flickr, Yelp,
nd Ogbl-citation2) to identify important and unimportant subgraphs based on a score. More-
ver, GraphDiet chooses the pruning percentage (p) by repeating the training process to find the
ppropriate pruning percentage for a new dataset. As a result, this makes it difficult to transfer
he GraphDiet mechanism to unseen or new datasets without prior training with the new graph
ataset. Unlike GraphDiet, BGC offers a one-time predictive pruning approach that is transferrable
o new or unseen graph datasets. The BGC relies on a one-time supervised learning approach to
earn the patterns of subgraph structures in terms of node features/labels and their connectivity
or subgraphs that can pruned, and subgraphs that are important for subsequent training. Hence,
his generalized knowledge can be transferred to new or unseen datasets as demonstrated by our
trong experimental results across diverse unseen graph datasets.
For our analysis, we compare the overall cost in terms of training time required for existing
ata pruning approaches with our proposed BGC-enabled subgraph pruning. Figure 8 shows a
omparison between UGS, GraphDiet, and the proposed BGC-based graph pruning methods in
erms of the total training time cost. Here, all three methods considered (UGS, GraphDiet, and
GC) are normalized with respect to the time required for GNN training on the unpruned datasets
Amazon2M Flickr, Yelp, and Ogbl-citation2). We incorporate the training time required for the
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:23

Fig. 9. (a) and (b): Improvement in reliability and performance speedup vs. training cost for BGC, GraphDiet,

and UGS graph pruning methods used on the Amazon2M and Yelp datasets. Each method is normalized with

respect to the unpruned version of the dataset.

M

l

M

p

R

w

i

s

O

t

s
m

h

a

p

(

t

a

s

t

o

r

t

t

i

e

i

r

r

i

H
LP-based BGC classifier. Given that the BGC is an MLP based model with only two feed-forward
ayers and a ReLU layer, its training time is very small compared to the training of an entire GNN.
oreover, existing methods require some form of training on the new dataset before it can be
runed. The proposed BGC model is trained only once with selected known datasets (PPI and
eddit). As a result, the one-time training and transferability of the BGC-enabled pruning frame-
ork to new or unseen graph dataset and amortizes its training cost over multiple GNN training
nstances with new datasets, as no extra training is required for a new or unseen graph dataset. As
hown in Figure 8 , the cost of training required to prune new datasets (Amazon2M, Flickr Yelp, and
gbl-citation2) is quantified. The UGS method requires up to 100 × more training time compared
o a training scenario without any data pruning (unpruned) for Amazon2M as an example. We ob-
erve a similar trend across other datasets and models. Meanwhile, GraphDiet requires about 8.5 ×
ore training time on average for all datasets as shown in Figure 8 . This additional timing over-
ead is required for the initial training epochs on the new dataset before it can be pruned without
ny accuracy loss. For a fair comparison of UGS and GraphDiet with our proposed BGC-enabled
runing approach, we ensure that UGS and GraphDiet achieves the same percentage of pruning
 p) with BGC in each dataset.
Reliability, Speedup, and Training Cost Trade-off: We also perform a trade-off analysis of

he reliability, speedup, and training cost for the three data pruning methods (BGC, GraphDiet,
nd UGS). In Figure 9 (a) and Figure 9 (b), we show the key figure of merits (reliability, performance
peedup, and training cost) together, and show the trade-off for the Amazon2M and Yelp datasets
rained with the GCN and SAGE GNN models, respectively. Note that we see a similar trend in
ur trade-off analysis with the Flickr and Ogbl-citation2 datasets, and the GAT model. Here, the
eliability, and performance speedup, for BGC, UGS, and GraphDiet, are normalized with respect
o the unpruned case for each dataset under consideration. As shown in Figure 9 (a) and Figure 9 (b),
he normalized training cost increases exponentially for UGS, while there is a low improvement
n reliability and performance speedup of less than 1.2 ×. This is because UGS only prunes graph
dges on the entire monolithic graph. Hence, when the pruned monolithic graph is partitioned
nto subgraphs, each individual subgraph is sparse, but the total number of subgraphs (K) still
emains the same. As a result, this still leads to high number of ReRAM cell writes and thus low
eliability as the unpruned case. The slight improvement in performance speed-up observed in UGS
s attributed to a reduced number of MVM operations performed due to model and graph pruning.
owever, this has little to no impact on the reliability of the ReRAM-based PIM accelerator and
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:24 C. Ogbogu et al.

G

f

F

o

t

t

t

l

N

i

d

o

d

c

O

t

4

I

a

p

c

a

a

t

D

a

s

c

h

i

p

o

d

e

R

R

e

p

b

o

R

n

t

M

R

r

A

NN training speedup. We observe a higher improvement in performance speedup and reliability
or the BGC and GraphDiet as shown in Figure 9 (a) and Figure 9 (b). For the Amazon2M dataset in
igure 9 (a), GraphDiet achieves slightly improved performance in terms of speedup and reliability
ver BGC, while it is slightly lower for the Yelp dataset. However, Graph Diet has a training cost
hat is 10 ×more than the BGC in Amazon2M, and 8.8 ×more than the BGC in Yelp. This is because
he GraphDiet pruning percentage (p = 48 . 0%) for the Amazon2M dataset with GCN is 5% higher
han BGC’s pruning percentage (p = 43 . 1%). Meanwhile, GraphDiet technique achieves a slightly
ower pruning percentage of 28%, while BGC prunes up to 30.5% for the Yelp dataset with SAGE.
onetheless, the GraphDiet method still incurs significantly more training time cost than BGC
n both cases (Figure 9 (a) and Figure 9 (b)), as the first GNN needs to be trained on the unseen
ataset before it can be pruned. Unlike UGS and GraphDiet, our proposed BGC-enabled pruning
nly relies on a light-weight model trained once on known datasets and can be transferred to new
atasets without requiring prior GNN training. In addition, the BGC incurs the least training time
ost, as it relies on simple MLP network trained only once, that can be transferred to new datasets.
verall, the BGC method achieves the best performance speedup, reliability, and training time cost
rade-off when compared to UGS and GraphDiet.

.6 Performance Analysis of BGC-enabled GNN Training on ReRAM-based PIM

Architecture

n this subsection, we present a thorough performance evaluation of the ReRAM-based 3D PIM
rchitecture outlined in Table 4 by incorporating the proposed BGC framework. We compare the
erformance of the PIM architecture with BGC with respect to other existing PIM-enabled many-
ore architectures for GNN training. For this comparison, we consider two other ReRAM-based
rchitectures DARe and ReMaGN, which were designed for GNN training [6 , 19]. The ReMaGN
rchitecture uses low-precision with stochastic rounding to improve the performance of GNN
raining on ReRAM-based architectures. Meanwhile, the DARe framework, leverages dropout and
ropEdge to improve the computation and communication efficiency of ReMaGN. Hence, DARe
chieves better performance and energy-efficiency compared to ReMaGN. We consider overall
peedup, energy-delay-product (EDP) , and resource utilization as the relevant metrics in this
omparative performance evaluation. Here, we define the resource utilization as the amount of
ardware resources (number of ReRAM crossbars) required for training the same GNN model us-
ng the three frameworks under consideration (ReMaGN, DARe, and BGC). For this comparative
erformance evaluation, we consider three datasets, viz., PPI, Reddit and Amazon2M for the sake
f brevity. However, we observe a similar trend in speedup and EDP improvement across the other
atasets (Flickr, Yelp and Ogbl-citation2). Figure 10 (a) and Figure 10 (b) show the speedup, and en-
rgy delay product (EDP) respectively of the proposed BGC framework compared to DARe, and
eMaGN and a conventional GPU-baseline (Nvidia V100 in this case). It is evident that all the
eRAM-based architectures outperform the GPU as shown in Figure 10 (a) and Figure 10 (b). How-
ver, among all the ReRAM-based architectures BGC achieves the best performance. Overall, our
roposed BGC framework achieves on an average speedup improvement over ReMaGN and DARe
y 1.6 × and 1.3 ×, respectively. Similarly, we also observe on an average EDP improvement in BGC
f 5.2 × and 2.5 ×with respect to ReMaGN and DARe, respectively. In Figure 10 (c), we compare the
eRAM utilization (i.e., number of ReRAM crossbars required for training) for the BGC framework
ormalized with respect to ReMaGN and DARe. It should be noted that DARe utilizes a software
echnique (viz., Dropout and DropEdge-based regularization) to improve the performance of Re-
aGN. Hence, DARe and ReMaGN have exactly similar hardware utilization. BGC utilizes 35% less
eRAM crossbars on an average compared to DARe and ReMaGN as it prunes subgraphs, thereby
educing the storage requirement for graph adjacency matrices.
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:25

Fig. 10. (a) Performance Speedup, and (b) EDP improvement of BGC compared to ReMaGN, and DARe,

all normalized with respect to GPU. (c) ReRAM utilization (i.e., number of ReRAM crossbars required for

training) for the BGC framework normalized with respect to ReMaGN and DARe. (d) Allowable accuracy

loss threshold vs graph pruning percentage.

d

o

p

v

t

r

u

(

2

t

i

a

o

i

m

s

s

s

c

B
Graph pruning vs accuracy-loss trade-off: We have also performed ablation experiments to
etermine the corresponding graph pruning percentage of BGC for various accuracy loss thresh-
lds of 1%, 2% and 3%. To perform this ablation study, we set these accuracy thresholds in the
rocess of generating the supervised binary classification data (i.e., Algorithm 1). The maximum
alue of k for each accuracy threshold is chosen such that removing k % of subgraphs does not lead
o an accuracy loss beyond the set threshold. Figure 10 (d) shows the accuracy loss and the cor-
esponding graph pruning percentage of the Amazon2M, Flickr, Yelp, and Ogbl-citation2 datasets
sing different accuracy thresholds. As shown in Figure 10 (d), for an accuracy loss of less than 1%
 < 1%), 2% (< 2%), and 3% (< 3%), we obtain a corresponding average graph pruning percentage of
3.75%, 40.75% and 47% respectively across all four datasets. As observed, the amount of pruning
hat can be achieved in each dataset is directly proportional to the corresponding accuracy loss,
.e., more pruning leads to more accuracy loss. Hence, the achievable improvement in performance
nd reliability is limited due to significant accuracy loss penalty. As a result, there exists a trade-
ff between the allowable accuracy loss and percentage of graph pruning both of which have an
mpact on the overall performance, and reliability of the ReRAM-based PIM architecture. Pruning
ore subgraphs is desirable from a design perspective, as this leads to significant improvement in
peedup and reliability (due to fewer write operations). However, certain GNN applications have
tringent accuracy requirements which limit the amount of pruning that the BGC can achieve as
hown in Figure 10 (d). Therefore, depending on the GNN application under consideration, the BGC
an achieve different levels of speed-up and improvement in reliability. The user can choose the
GC setting based on the desired trade-off between performance, reliability and accuracy. Here,
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

72:26 C. Ogbogu et al.

Fig. 11. Overview of the write-verify scheme [48].

Table 7. Max. Number of Writes, and Increase in Number of GNN Training Instances

with and without Write-Verify (WV)

Dataset
No. of writes
without WV

No. of writes
with WV

No. of possible
training instances

without WV

No. of possible
training instances

with WV

Amazon2M 360K 931K ∼290 times ∼107 times

Amazon2M +BGC 203K 542K ∼500 times ∼184 times

w

a

4

P

t

l

n

g

(

E

w

t

w

t

b

s

P

R

a

d

m

t

e

e

A

e do not show graph pruning percentages for accuracy loss beyond 3% (in Figure 10 (d)), as such
ccuracy loss in many real world GNN applications may not be permissible.

.7 Endurance of BGC-enabled GNN Training Accelerator

rior work has reported ReRAM endurance that ranges from 10 6 to 10 12 writes [11 , 21]. However,
he number of times a GNN model can be trained before the ReRAM devices reach the endurance
imit depends on the graph dataset under consideration. A single training epoch requires a certain
umber of ReRAM crossbar writes which is directly proportional to the number of input sub-
raphs (K), and one training process (or instance) is typically made-up of multiple training epochs
 E). Hence, the total number of write operations during the training process is proportional to
 × K . For example, with an average case endurance of 10 8 writes, a GNN model can be trained
ith the Amazon2M dataset (consisting of 1,000 subgraphs) for approximately five hundred (∼500)
imes using the BGC framework before the ReRAM cells begin to fail. However, considering the
rite variation problems, i.e., a single write operation makes it difficult to tune the ReRAM device
o the target resistance value, the available training times of the ReRAM-based architecture may
e less than 500 times. Hence, we need to consider the write variation problem in ReRAM, i.e., a
ingle write operation makes it difficult to tune the ReRAM device to the target resistance value.
rior work has proposed the write verify technique to address the write variation problems of
eRAM devices and ensure robust training on ReRAM-based platforms [46 , 47]. Figure 11 shows
n overview of the write verify technique [48]. However, incorporating the write-verify technique
uring GNN training increases the number of crossbar cell write operations during each program-
ing phase, due to repetitive application of a write voltage for the SET/RESET operation. Hence,
his limits the number of training instances that can be performed before the device reaches its
ndurance limit.
In this work, we have adopted a simple write-verify technique proposed in [48] into our BGC-

nabled GNN training framework. In Table 7 , we show the total number of writes, and the number
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:27

o

s

A

n

a

T

t

n

b

w

t

t

i

t

B

t

a

[

f

5

R

a

R

t

P

W

(

t

B

g

R

R

c

t

g

R

f training instances that can be performed with and without the incorporation of a write-verify
cheme. Here, we consider an endurance limit of 10 8 , for both the unpruned and BGC-pruned
mazon2M (Amazon2M +BGC) dataset trained with the GCN model as an example. However,
ote that the write-verify scheme is model- and dataset-agnostic, hence a similar trend is observed
cross other datasets (Flickr, Yelp and ogbl-citation2) and models (SAGE and GAT). As shown in
able 7 , we can observe that with the write-verify scheme incorporated during GNN training, the
otal number of writes during training increases by over ∼2.5 × on average. Hence, this limits the
umber of possible training instances that can be executed on the ReRAM-based PIM platform
efore the ReRAM cell with the worst-case number of writes reaches its endurance limit of 10 8

rites and fails first. As shown in Table 7 , the Amazon2M dataset can be trained for about 500
imes without write-verify, and 184 times with the write-verify technique. Also, we observe that
he BGC enabled GNN training on the ReRAM-based PIM architecture consistently achieves an
mprovement of over ∼1.6 × in the number of training instances compared to its unpruned coun-
erpart with and without the write-verify scheme. Hence, this demonstrates that our proposed
GC method is compatible with the write-verify technique, and still enhances the possible GNN
raining instances compared to the unpruned version. In summary, the BGC enabled data pruning
pproach is orthogonal to the write-verify scheme, as well as other write optimization algorithms
 11 , 49], hence they can be incorporated with BGC to improve the available GNN training instances
or ReRAM-based PIM architectures.

 CONCLUSION

eRAM-based non-volatile memories enable the design of high-performance and energy-efficient
rchitectures for accelerating GNN training [19 , 50]. However, the limited write endurance of
eRAM crossbar cells decreases their reliability for GNN training. Moreover, the end-to-end execu-
ion time for GNN training, and the number of write operations to crossbar cells in ReRAM-based
IM architectures is determined by the number of subgraphs (size of input data graph workload).
e have presented a novel subgraph pruning framework based on Binary Graph Classification

BGC) to reduce the number of input subgraphs without sacrificing the GNN model accuracy
o improve the performance and reliability of GNN training on ReRAM-based architectures. The
GC model leverages a pre-trained MLP Neural Network to perform pruning predictions on sub-
raphs very early during the GNN training process to improve the performance and reliability of
eRAM-based PIM architectures. The BGC-enabled pruning framework improves the reliability of
eRAM-based architectures and accelerates GNN training by up to 1.6 × compared to its unpruned
ounterpart without any significant model accuracy on ReRAM-based PIM architectures. Overall,
he proposed method reduces the overall training cost by up to 100 × compared to state-of-the-art
raph pruning techniques.

EFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. 2018. Graph convolutional neural networks

for web-scale recommender systems. In ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing , London.

[2] T. Kipf and M. Welling. 2017. Semi-supervised classification with graph convolutional networks. In International

Conference on Learning Representations (ICLR) .

[3] A. Liu et al. 2023. Comprehensive graph gradual pruning for sparse training in graph neural networks. IEEE Trans-

actions on Neural Networks and Learning Systems (2023).

[4] W. Fan et al. 2019. Graph neural networks for social recommendation. In The World Wide Web Conference , San Fran-

cisco, CA.

[5] D. Xu et al. 2020. Edge Intelligence: Architectures, Challenges, and Applications. http://arxiv.org/abs/2003.12172

[6] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty. 2021. DARe: DropLayer-aware manycore ReRAM

architecture for training graph neural networks. In International Conference on Computer-Aided Design (ICCAD) .
ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

http://arxiv.org/abs/2003.12172

72:28 C. Ogbogu et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[7] A. Shafiee et al. 2016. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars.

In International Symposium on Computer Architecture (ISCA) .

[8] P. Chi et al. 2016. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-

based main memory. In International Symposium on Computer Architecture (ISCA) .

[9] K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal. 2020. In-memory computing in emerging memory tech-

nologies for machine learning: An overview. In IEEE Design Automation Conference (DAC) .

10] S. Resch et al. 2023. On endurance of processing in (nonvolatile) memory. In Proceedings - International Symposium

on Computer Architecture (ISCA) .

11] W. Wen, Y. Zhang, and J. Yang. 2019. ReNEW: Enhancing lifetime for ReRAM crossbar based neural network accel-

erators. In IEEE International Conference on Computer Design (ICCD) .

12] T. Chen et al. 2021. A unified lottery ticket hypothesis for graph neural networks. In International Conference on

Machine Learning (ICML) .

13] H. You, Z. Lu, Z. Zhou, Y. Fu, and Y. Lin. 2022. Early-bird GCNs: Graph-network co-optimization towards more effi-

cient GCN training and inference via drawing early-bird lottery tickets. In AAAI Conference on Artificial Intelligence .

14] J. Frankle and M. Carbin. 2019. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In Interna-

tional Conference on Learning Representations (ICLR) .

15] C. Ogbogu et al. 2022. Accelerating large-scale graph neural network training on crossbar diet. In IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems .

16] P. Veličković et al. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903.

17] W. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive representation learning on large graphs. In Advances in Neural

Information Processing Systems 30.

18] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty. 2021. ReGraphX: NoC-enabled 3D heteroge-

neous ReRAM architecture for training graph neural networks. In Design, Automation & Test in Europe Conference &

Exhibition (DATE) .

19] A. I. Arka, B. K. Joardar, J. R. Doppa, P. P. Pande, and K. Chakrabarty. 2021. Performance and accuracy tradeoffs for

training graph neural networks on ReRAM-based architectures. In IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 29, 10 (2021), 1743-1756.

20] L. Chen et al. 2017. Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar.

In Design, Automation & Test in Europe Conference & Exhibition (DATE) .

21] W. Wen, Y. Zhang, and J. Yang. 2018. Wear leveling for crossbar resistive memory. In ACM /IEEE Design Automation

Conference (DAC) .

22] X. Yang et al. 2022. ESSENCE: Exploiting structured stochastic gradient pruning for endurance-aware ReRAM-based

in-memory training systems. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems .

23] Y. Cai et al. 2018. Long live TIME: Improving lifetime for training-in-memory engines by structured gradient sparsi-

fication. In Proceedings - Design Automation Conference (DAC) .

24] L. Xia et al. 2017. Fault-tolerant training enabled by on-line fault detection for RRAM-based neural computing sys-

tems. In IEEE Design Automation Conference (DAC) .

25] V. Sadhanala, Y. X. Wang, and R. Tibshirani. 2016. Graph sparsification approaches for Laplacian smoothing. Artificial

Intelligence and Statistics . PMLR.

26] D. Calandriello et al. 2018. Improved large-scale graph learning through ridge spectral sparsification. International

Conference on Machine Learning. PMLR.

27] Z. Cheng et al. 2020. Robust graph representation learning via neural sparsification. International Conference on Ma-

chine Learning. PMLR.

28] W. Chiang et al. 2019. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks.

In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining .

29] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. 2020. Open graph benchmark: Datasets

for machine learning on graphs. In 34th Conference on Neural Information Processing Systems (NeurIPS) , Vancouver,

Canada.

30] K. Xu et al. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826.

31] X. Peng et al. 2020. DNN +NeuroSim V2.0: An end-to-end benchmarking framework for compute-in-memory accel-

erators for on-chip training. arXiv:2003.06471.

32] G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM

Journal on Scientific Computing .

33] C. O. Ogbogu et al. 2023. Accelerating graph neural network training on ReRAM-based PIM architectures via graph

and model pruning. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 (2023), 2703–

2716.
CM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

Data Pruning-enabled High Performance and Reliable Graph Neural Network Training 72:29

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

34] B. K. Joardar et al. 2021. Learning to train CNNs on faulty ReRAM-based manycore accelerators. ACM Transactions

on Embedded Computing Systems (2021), 1–23.

35] M. Paul, S. Ganguli, and G. K. Dziugaite. 2021. Deep learning on a data diet: Finding important examples early in

training. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

36] T. H. Phan and K. Yamamoto. 2020. Resolving class imbalance in object detection with weighted cross entropy losses.

arXiv preprint arXiv:2006.01413.

37] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, 2017. Graph edge partitioning via neighborhood heuristic. In KDD .

38] K. Cao et. al. 2023. Learning large graph property prediction via graph segment training. [Online]. Available: https:

//arxiv.org/abs/2305.12322

39] B. K. Joardar et al. 2020. AccuReD: High accuracy training of CNNs on ReRAM/GPU heterogeneous 3D architecture.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems .

40] S. Gupta, A. Agrawal, P. Narayanan, and K. Gopalakrishnan. 2015. Deep learning with limited numerical precision.

In International Conference on Machine Learning (ICML) .

41] N. Agarwal, T. Krishna, L. Peh, and N. Jha. 2009. GARNET: A detailed on-chip network model inside a full-system

simulator. In International Symposium on Performance Analysis of Systems and Software (ISPASS) .

42] T.-T. Wong. 2015. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation.

Pattern Recognition (2015), 2839–2846.

43] L. Yavits et al. 2020. WoLFRaM: Enhancing wear-leveling and fault tolerance in resistive memories using pro-

grammable address decoders. In IEEE 38th International Conference on Computer Design (ICCD) .

44] Y. Xiaoxuan et al. 2022. ESSENCE: Exploiting structured stochastic gradient pruning for endurance-aware ReRAM-

based in-memory training systems. IEEE TCAD .

45] M. Hwang, Y. Jeong, and W. Sung. 2020. Data distribution search to select core-set for machine learning. In Interna-

tional Conference on Smart Media and Applications .

46] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie. 2013. Understanding the trade-offs in multi-level cell

ReRAM memory design. In 50th ACM/EDAC/IEEE Design Automation Conference (DAC) , Austin, TX.

47] W. Shim, S. Jae-sun, and S. Yu. 2020. Two-step write–verify scheme and impact of the read noise in multilevel RRAM-

based inference engine. Semiconductor Science and Technology (2020) 35.

48] Y. Zhang, L. Zhu, L. Zhang, and Z. Wang. 2019. A write-verification method for non-volatile memory. In International

Conference on IC Design and Technology (ICICDT) .

49] J. Zhang et al. 2023. Realizing extreme endurance through fault-aware wear leveling and improved tolerance. In 2023

IEEE International Symposium on High-Performance Computer Architecture (HPCA) .

50] A. Auten, M. Tomei, and R. Kumar. 2020. Hardware acceleration of graph neural networks. In IEEE Design & Automa-

tion Conference (DAC) .
eceived 2 November 2023; revised 13 March 2024; accepted 23 March 2024

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 5, Article 72. Publication date: August 2024.

https://arxiv.org/abs/2305.12322
https://arxiv.org/abs/2305.12322

	1 INTRODUCTION
	2 RELATED PRIOR WORK
	3 METHODOLOGY
	3.1 Preliminaries
	3.2 Binary Graph Classifier (BGC) for Subgraph Pruning
	3.3 GNN Training with Unseen Graphs on ReRAM-based Accelerators using Subgraph Pruning Classifier

	4 EXPERIMENTAL RESULTS AND ANALYSIS
	4.1 Experimental Setup
	4.2 Accuracy of the BGC
	4.3 BGC-enabled Subgraph Pruning for GNN Training
	4.4 Reliability Improvement due to Subgraph Pruning
	4.5 Training Cost, Reliability, and Performance Trade-offs
	4.6 Performance Analysis of BGC-enabled GNN Training on ReRAM-based PIM Architecture
	4.7 Endurance of BGC-enabled GNN Training Accelerator

	5 CONCLUSION
	REFERENCESendgraf

