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Abstract—This paper presents a technique for achieving
spatially targeted neural stimulation with suppression of
driver nonideality-induced common-mode (CM) artifact in low-
latency closed-loop neuromodulation applications. The proposed
approach utilizes computationally guided concurrent stimulation
across multiple electrodes to achieve spatial selectivity in stim-
ulation. The proposed architecture supports flexible storage of
multiple, precomputed vector stimulation patterns in integrated
memory. A selected stimulation pattern can be quickly accessed
and administered in response to decoded neural activity. Addi-
tionally, a combination of the stimulator circuit architecture and
mixed-signal current imbalance compensation techniques effec-
tively suppress CM artifacts to below 50 mV. These techniques
are demonstrated in a 180 nm HV CMOS test-chip containing
46 stimulation drivers of 26 V compliance and validated through
a combination of bench, saline, and in vivo tests.

Index Terms—Electrocorticography (ECoG), closed-loop neu-
romodulation, BCI, stimulator, targeted stimulation, vector
stimulation, concurrent multichannel stimulation, artifact, high
voltage (HV), digital-to-analog converter (DAC), current imbal-
ance compensation.

I. INTRODUCTION

ADAPTIVE neuromodulation has emerged as a ground-
breaking approach in medical therapy, revolutionizing

the treatment of neurological and neuropsychiatric disorders
[1], [2], [3]. Unlike traditional open-loop systems, adaptive
neuromodulation incorporates real-time feedback from the
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Fig. 1. Conceptual diagram of an adaptive neuromodulation system which
includes neural recording, real-time digital signal processing with biomarker
detection, and stimulation. Requirements on the stimulator for the next-
generation neuromodulation system are underlined.

patient’s neural activity to dynamically modulate and optimize
the stimulation parameters. By directly interfacing with the
nervous system, adaptive neuromodulation has the potential to
provide significant therapeutic benefits for Parkinson’s disease,
epilepsy, chronic pain, and psychiatric disorders [4]. Further-
more, adaptive neuromodulation offers a deeper understanding
of the underlying neural mechanisms involved in various
disorders [5].

Fig. 1 depicts an instance of next-generation adaptive neu-
romodulation using a high-density microelectrode array. While
large-scale, low-latency adaptive neuromodulation offers sub-
stantial therapeutic benefits, it introduces stringent demands
on recording, processing, and stimulation components. The
need for stable, low-latency control has heightened the
need for continuous, uninterrupted neural recording, free of
stimulation-induced artifacts. In conventional low channel-
count stimulation systems, the recording front-end is typically
“blanked” (disabled) during stimulation to prevent stimulation
artifacts from saturating the recording front end [6]. However,
high channel-count systems that look to stimulate different
neuronal populations in response to recorded activity may
experience a higher frequency of stimulation events. Mitigat-
ing the effect of increasingly frequent stimulation artifacts
involves either more extensive blanking (resulting in blind
spots) across recording channels, or a linearity degradation
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in the recording channels. Consequently, next-generation neu-
romodulation requires stimulation with artifact mitigation.

Latency requirements in adaptive neuromodulation – from
neural sensing to stimulus delivery– typically lie in the range
of within tens of ms [1], [7]. This loop delay is further
burdened by increasingly complex signal processing, classi-
fication, and control algorithms that continue to be developed.
Thus, it becomes necessary to facilitate the rapid selection and
deployment of stimulus waveforms.

It is highly desirable that the stimulator activate only the
desired regions of interest (ROIs) in neural tissue and suppress
stimulation in unintended areas [8], [9]. Previous studies
in neuroscience proposed the use of concurrent stimulation
on multiple electrodes to achieve this spatial localization.
However, only a limited number of prior stimulator circuits
have demonstrated this benefit of multi-electrode stimulation.
Valente et al. [10] were the first to demonstrate a 3-channel
stimulator IC to achieve limited electric field shaping. More
recently, [11] explored stimulation across a limited number
of configurations of 8 electrodes to inhibit or evoke specific
responses. However, a mathematical framework to systemati-
cally select the stimulus current amplitudes based on a desired
stimulation target is lacking, and there continues to be a need
for spatially localized stimulation. Previous stimulator circuits
[12], [13], [14], [15], [16], [17], [18], [19] also lack the
capability to rapidly recall and administer specific patterns
while suppressing artifacts. To the best of our knowledge,
our work presented in [20] is the first IC demonstration of
ROI-targeted stimulation using both, algorithmic and circuit
techniques. We define simultaneous stimulation of a large
number of electrode channels, guided by a computational
method, as vector stimulation.

Building on our prior work in [20], this paper focuses
on addressing the requirements of next-generation preclinical
adaptive neuromodulation research platforms utilizing local-
ized stimulation. Here, we detail the following contributions:
1) Delivery of spatially selective stimulation using multi-
channel current delivery and a computational framework;
2) Active mitigation of stimulator driver mismatch which
impacts CM artifact amplitude and stimulation localization;
3) Low-latency selection and delivery of stimulus waveform
by leveraging on-chip SRAM memory. These techniques are
demonstrated and validated using an IC containing 46 stimu-
lation drivers.

This paper is organized as follows: In Section II we discuss
the system overview and architecture. The implementation of
spatial targeting of neural tissue is explained in Section III.
Section IV describes the details of the fabricated test-chip.
Bench, in vitro, and in vivo measurements are presented in
Section V. The limitations of the proposed stimulator are
addressed in Section VI. Finally, we discuss the conclusions
of this work in Section VII.

II. PROPOSED STIMULATOR OVERVIEW

A. Spatially Targeted Current Mode Vector Stimulation

Concurrent stimulation has been shown to achieve a targeted
spatial activation profile [8], [9]. The spatial profile of the

Fig. 2. Spatial voltage profile, that targets a ROI, arises from a combination
of basis current vectors (right). The intrinsic voltage spread from an example
basis current vector which consists of a source-sink pair is shown on the
left. The scaling factors, sm, of the basis vectors are determined by solving
an optimization problem. A 4 × 4 rectangular electrode array is used for
illustration. The number of electrodes is N and the number of basis current
vectors is M.

stimulation current shapes the electric field in the neural tissue.
This electric field can thus be manipulated to evoke activity
in the ROI while suppressing it elsewhere, as shown in Fig. 2.
The current vector (iSTIM = [i0, i1, . . . , iN]T , where N is number
of stimulation electrodes), the collection of stimulus current
assignment to each electrode, is determined by solving an
optimization problem outlined in Section III.

Despite its potential to realize targeted stimulation, vector
stimulation imposes additional challenges and requirements on
the stimulator. These challenges, that arise at both the circuit
and system level, are described in the following subsections.

B. Vector Stimulator Circuit Architecture

Vector stimulation requires the simultaneous delivery of
source and sink currents across different electrodes. Hence, the
proposed stimulator is equipped with 46 stimulation current
drivers (shown in Fig. 3), each capable of delivering bipolar
stimulation currents (source and sink). The amount of stimulus
current (ISTIM) delivered by each driver is programmed by
adjusting the current-DAC (IDAC) code at different time
instants.

The optimization problem gives us a vector that achieves
spatial localization. The end-user then scales this vector at
different time values to form the stimulus waveforms. The
timestamp and ISTIM value pairs are stored the integrated
SRAM, which is partitioned to allow concurrent access by
each stimulator channel. The architecture also offers flexibility
in storing multiple stimulation waveforms. A digital controller
allows for subsequent rapid recall of the ISTIM waveforms
from the memory. The ability to generate arbitrary waveform
shapes by storing timestamp and value pairs offers adaptability
to meet the needs of various applications, such as achieving
greater stimulation efficacy and energy efficiency [21], [22],
[23].

C. Net-Zero Stimulus Current Delivery

It is crucial to ensure a net zero sum of applied stimulus cur-
rents at any given time (Σin(t) = 0 ∀t). Henceforth we define
this constraint as current neutrality. This prevents current flow
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Fig. 3. Architecture of the proposed vector stimulator. The human body
is modeled as a resistor connected in parallel with a parasitic coupling
capacitance. An AC source is included to represent the effect of environmental
noise coupling into the body relative to the earth ground.

through the ground electrode and prohibits undesired neural
activation. However, previous spatially targeted stimulation
implementations [8], [24], [25], [26], [27] have not maintained
this neutrality of the stimulus currents. Achieving net-zero
stimulus current delivery is particularly challenging in multi-
channel stimulation setups.

In this work, we propose to satisfy the neutrality constraint
by expressing the required current vector as a linear combina-
tion of basis current vectors, each ensuring net-zero current
delivery. Fig. 2 illustrates how the combination of various
source-sink pairs, used as basis vectors, can yield the desired
voltage spread in neural tissue.

D. Artifact Free Stimulation

Any stimulation of neural tissue creates artifacts that inter-
fere with the recording of the desired neural activity. We can
classify the generated artifacts in two components: intrinsic
and extrinsic. We refer to the artifact created by the voltage
distribution in the tissue due to stimulus current flow as
intrinsic artifact. The amplitude of this artifact is determined
by the magnitude of the stimulation current and the relative
distance and orientation of sense and stimulation electrodes.
Meanwhile, the magnitude and waveform of extrinsic stim-
ulation artifacts are influenced by the architecture of the
stimulator circuit. Since this extrinsic artifact is seen by all
sensing channels, we also define it as CM artifact. In this
section we describe the mechanism that generates artifacts in
vector stimulation and subsequently discuss how our proposed
stimulator circuit mitigates this artifact.

The vector stimulation applies ISTIM concurrently across
multiple electrodes. However, absence of any stimulus current
neutrality constraint and on-chip variation across the IDACs
and drivers results in an imbalance between the aggregate
source and sink current being delivered at any given time.
To mitigate the impact of this aggregate current imbalance, we
introduce a low-impedance connection between the mid-rail of
the supply (VCM) and the brain using a dedicated electrode to
provide a low-impedance path for ISTIM imbalance currents,
shown in Fig. 4. Such a configuration sets the VSS voltage

Fig. 4. Impact of current imbalance in vector stimulation. (Left) The aggregate
source-sink imbalance current pushes one of the supply rails toward the
brain/body potential. Consequently, this excursion appears as CM artifact at
the input of a recording front-end which shares its ground with the stimulator.
(Bottom) The proposed basis vector based stimulation approach, combined
with imbalance compensation, significantly reduces the CM artifact level. Note
that the supply rail (VDDH, VSS) potentials are referenced with respect to the
brain/body potential.

to −VDDH/2 (−14 V) which influences design of driver and
comparator circuits, but is necessary in the absence of a deep
N-well technology option. This anchor connection is similar
in principle to the use of a reference electrode in [12], [28],
and [29] where a deep N-Well was available.

When the imbalance current IX flows through the anchor
electrode of impedance ZE, the worst-case supply excursion
will be IXZE. This excursion manifests as a CM artifact seen
by the recording front-end, as illustrated in Fig. 4. This artifact
affects the sensing capabilities of the recording analog front-
end (AFE) in several ways: 1) The artifact amplitude can
exceed the input CM range; 2) Sensing electrode impedance
mismatches coupled with low input impedance of capacitively
coupled AFE at high frequencies translates the CM artifact to
a differential-mode (DM) voltage.

In the absence of the neutrality constraint, simulations show
that IX reaches the order of mA, leading to CM excur-
sion levels as high as several volts. The proposed targeted
stimulation approach, based on basis current vectors, ensures
neutrality in DAC code assignments to the drivers, reducing
CM excursion levels by nearly 10× (Fig. 4). The remaining
CM excursion is primarily limited by the nonlinearity in the
driver. If the metal encasement is used as the anchor electrode,
its large surface area can further minimize the voltage excur-
sion and the resulting artifact amplitude. However, additional
VCM excursion suppression mechanisms that do not depend
on the geometry of the anchor electrode are well motivated
to improve robustness. Therefore, the proposed stimulator
architecture incorporates two additional current drivers for IX
compensation.
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Fig. 5. Application of a stimulus current, i over a neural channel creates an
electric field. The resulting spatial second derivative of extracellular voltage
along the axon direction is considered as a metric for neural activation.

III. SPATIALLY TARGETED STIMULATION
IMPLEMENTATION

A. Background Theory

The mechanism of electrical stimulation in neurons has been
extensively studied [30], [31]. Applying a stimulus current
vector (i) to neural tissue generates an electric field that
can activate or inhibit neurons, depending on their location.
The activating function (AF) describes the direct stimulating
influence of the extracellular potential (Ve) on a neuron fiber,
induced by the application of i. For a long straight fiber
with constant diameter, the AF is proportional to the second
derivative of Ve along the fiber direction [30]. Fig. 5 illustrates
this process behind neural activation. To approximate neural
activation in a tissue volume, we define a scaled activating
function (Hu) at location r as an inner product (quadratic form)
of the Hessian matrix (∇2Ve), H, and the unit vector, u, along
the direction of the axon fiber [8]. Thus, the approximate AF
is written as

Hu(r) =
∂2Ve

∂r2 = u(r)T H(r)u(r). (1)

AF based neural activation has been extensively investigated
for deep brain stimulation (DBS) [8], [24], [25], [26], [27].
These studies explored formulating optimization problems (as
functions of AF) to determine the electrode current settings
that will achieve the desired neural activation patterns. They
have mainly utilized electrode arrays with a single com-
mon return path. The computational models presented did
not ensure net-zero current delivery through the stimulation
electrodes. As a result, the previous approaches would induce
significant voltage drops across the return electrode and create
prominent CM artifacts in the recorded signals. To ensure
the current-neutrality constraint, we propose to represent the
stimulus current vector as a linear combination of basis current
vectors, each of which constitutes net-zero current.

B. Selection of Optimal ISTIM

The ISTIM assignments are obtained by solving an opti-
mization problem which is adapted from [8]. Here, we define
the scaled activating function (SAF) that results from the
application of the stimulus current vector as

S AF = Hub · ib, (2)

where Hub is the Hessian projection matrix of the medium
and ib presents the coefficients of the basis current vectors. The
Hub matrix is partitioned into two distinct parts, corresponding
to the target and the avoidance region. Thus, eq. 2 can be
rewritten as �

S AFtarg
S AFavoid

�
=

�
Hub,targ
Hub,avoid

�
· ib. (3)

A convex optimization problem is formulated to maximize
the average value of SAF (S AFavg) in the ROI, while ensuring
that SAF remains below the sensitivity threshold in the avoid-
ance volume. Formally, the convex optimization problem is
defined as

Maximize S AFtarg,avg, s.t. S AFavoid < α (4)

The solution to the problem provides the coefficients for the
basis current vector, and subsequently the individual electrode
currents are computed.

To solve the optimization problem outlined above, we first
estimate the Hub matrix. When ib is an identity matrix, SAF
equals Hub. Using the superposition principle for the applied
basis current vectors, the evaluated SAF for a basis vector
corresponds to each column in the Hub matrix. We calculate
SAF by observing the voltage profile in the 3D tissue volume
and taking the Hessian projection along the direction of the
axon.1 Fig. 6 illustrates this process of formulating Hub.

Due to the unavailability of an FEM model of the neuron,
we employed a 3D resistive mesh to emulate an isotropic
conductive tissue. In this emulation, we assume that the target
axon is oriented in a specific direction within a defined region.

Use of (linearly independent) basis current vectors mini-
mizes the size of the Hessian projection matrix. Since any
non-adjacent source-sink pair can be expressed as the sum of
neighboring source-sink pairs, the chosen unique set of basis
vectors is composed of neighboring source-sink pairs. Note
that the choice of the basis vector will also vary depending on
the geometry of the electrode array.

IV. CIRCUIT IMPLEMENTATION

A. Memory Architecture & Controller

Fig. 7 depicts the SRAM architecture and the associated
controllers. The SRAM cache stores the pre-computed ISTIM
waveforms to facilitate rapid retrieval and application by the
controllers. The collection of current waveforms required for
a specific activation is defined as a stimulation recipe. A
complete stimulation trace/waveform is characterized by the
following parameters: timestamp, DAC code, output current
direction, and passive regeneration enable logic. Each stimula-
tion phase is followed by a passive regeneration phase, which
serves to discharge any residual electrode voltage resulting
from cathodic-anodic imbalance. The 14-bit timestamp allows
for the generation of a 16 ms long trace with a 1 MHz system
clock.

The integrated memory is partitioned into 6 segments,
each with a capacity of 828 Bytes. Each SRAM segment is
dedicated to storing the stimulation recipes for 8 channels. The
memory architecture supports a maximum stimulus waveform
length of 90 time-steps. To accommodate variable waveform
lengths for each channel, the corresponding cache segments
are addressed by separate scan-chain programmable Begin and
End address pointers.

A recipe look-up table (LUT) stores the location information
of the cache segment responsible for storing the specific

1This operation is analogous to channel estimation that is performed in
communication systems.
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Fig. 6. The spatial second derivative of the generated voltage profile along the axon direction (X axis in this example) in response to different basis current
vectors. The Hessian projection associated with a basis vector corresponds to each column in the Hub matrix. Hessian values are normalized. The number of
unique basis vectors is M.

Fig. 7. Architecture of the memory and associated digital controllers.

stimulation recipes corresponding to each channel. This LUT
organization enabled rapid switching between different stimu-
lation recipes, enabling neuroscientists to efficiently explore
various stimulation parameters and adapt them to specific
experimental requirements.

A memory controller retrieves the traces from the mem-
ory with a single clock-cycle latency. Subsequently, a DAC
controller is responsible for transmitting the appropriate DAC
code and current direction to the stimulation driver at the
designated time.

In typical neural stimulation applications, a single stimu-
lation cycle often lasts several seconds. However, memory
limitations restrict trace lengths to 16 ms. A central controller
is incorporated to introduce additional delay between each
stimulation event and allow low-frequency stimulation. This
controller also enables the delivery of the current waveform
in a free-running manner or for a finite number of cycles as
defined by the user.

B. Imbalance Compensation Controller

To suppress the imbalance current (IX in Fig. 8) in vector
stimulation and mitigate the associated stimulation artifact,
as well as prevent electrode charge accumulation, our pro-
posed approach combines two novel techniques: concurrent

imbalance compensation (CIC) and residual imbalance com-
pensation (RIC). The compensation DAC code, computed
by the CIC and RIC controllers, is subsequently fed to
two dedicated stimulation drivers. Fig. 8 provides a visual
representation of how these techniques effectively reduce IX
and discharge the resulting residual electrode charge.

Both techniques require the AC voltage across the CM
anchor electrode – resulting from IX flow – to be fed back
for compensation. This voltage drop can also be inferred
by observing the difference between VCM and sensed brain
potential (VCM SEN) which is obtained using another dedicated
electrode adjacent to the CM anchor electrode. To ensure
compatibility with HV inputs, the comparator inputs undergo
capacitive division and are reduced below 5 V before sampling
by a strong-arm latch [32]. A differential divider is used for
symmetry. However, this capacitive division floats the latch
inputs, requiring a periodic reset to a common bias voltage
(VBIAS prior to performing any imbalance compensation. The
capacitor division ratio used is 100fF: n 100fF, where n is
programmable between 1 to 7. The kT/C noise introduced
due to the reset switch is less than 0.15 mV. Simulations of
the comparator indicate a mismatch-induced offset (1σ) of 5
mV, and an input-referred thermal noise less than 1 mV.

1) Concurrent Imbalance Compensation (CIC): The objec-
tive of CIC is to generate a compensation current (ICIC) with a
waveform opposite to that of the imbalance current (IX). ICIC
waveform is unique to each recipe and, therefore, needs to be
determined only once during initial stimulation. Afterwards,
the ICIC waveform is stored in an on-chip register file and
delivered together with the stimulation recipe.

The ICIC waveform is designed to compensate for any
changes in IX resulting from magnitude changes in ISTIM
waveforms. The potentially nonuniform time interval between
successive changes in IX is defined as a time-slice. The
controller performs a successive approximation register (SAR)
based search to determine the 5-bit DAC code for the CIC
driver at each successive time-slice (Fig. 8(b)). In the first
stimulation cycle, the polarity of the imbalance during the
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Fig. 8. (a) Implementation of the current imbalance compensation scheme. A capacitively coupled clocked comparator is used to sense the polarity of the
AC voltage across the CM anchor electrode, which represents the imbalance current flow direction. (b) Concurrent imbalance compensation (CIC) in action.
The required ICIC for each time-slice is computed consecutively. The shaded pulses in the IX waveform indicates the associated time-slice (Tm) for which
CIC is active (c) Residual imbalance compensation (RIC) transient waveforms.

first time-slice is sensed and half of the maximum allowable
ICIC with the correct polarity is applied. The remainder of the
stimulation trace continues without any further adjustment. In
subsequent stimulation cycles, the ICIC update step size (Is)
is halved and ICIC is adjusted based on the feedback from
the comparator. This process continues for the current time-
slice until the CIC step size reaches unity. Subsequently, the
following time-slices are compensated in the same manner.
The following equations summarizes this SAR-based search
for the required CIC DAC code:

ICIC,Ti[n] = ICIC,Ti[n − 1] + Is[n] sign(IX[n]) f or i = m, (5)
Is[n] = 0.5 Is[n − 1], (6)

ICIC,Ti[n] = ICIC,Ti[n − 1] f or i , m, (7)

where, ICIC,Ti is the CIC DAC code at Ti time-slice, m is
the time-slice index for which CIC is taking place, n is the
stimulation cycle index during ongoing CIC for Tm slice and
it varies up to the CIC DAC bit-width. CIC results in IX
cancellation up to the CIC DAC resolution limit. Improved
resolution can be achieved by scaling the CIC driver reference
current.

Due to memory size constraints, the CIC is limited to
defining compensation current waveform with a 5-bit reso-
lution for up to 32 time-slices. The worst-case CIC waveform
computation latency is therefore 32 × 5/ fstim, where fstim is
the stimulation frequency.

2) Residual Imbalance Compensation (RIC): The sub-LSB
(least significant bit) residual imbalance current waveform may
not be charge neutral, accumulating charge on the CM anchor
electrode interface capacitor. RIC is introduced to address
this challenge. The modest residual charge is allowed to
accumulate over a user-programmable number of stimulation
events before a compensatory charge is provided through the
residual imbalance compensation current (IRIC).

IRIC injection is initiated between two consecutive stimu-
lation cycles and passive regeneration is disabled until the
RIC process is complete. The initial scan-programmable IRIC
pulse discharges the residue using polarity feedback from the

Fig. 9. Schematic of the stimulation current driver with internal IDAC.

comparator. The pulse continues until this polarity reverses.
However, electrode I-R drop introduces an error in the
sensed voltage resulting in under-compensation. Therefore,
subsequent discharge operations are performed, each with
successively halved IRIC pulse magnitude (Fig. 8(c)). Thus,
RIC presents an effective way to discharge any residual charge.

C. Stimulation Driver

Fig. 9 shows the schematic of the stimulation driver. Each
stimulation driver incorporates a 7-bit binary weighted nMOS
current DAC (IDAC). The output current from the DAC is
directed to the source and sink drivers. To conserve power,
the IDAC and its output mirror are implemented using 5
V devices. The source and sink current drivers utilize HV
LDMOS transistors, and the mirror ratio for both is set at
1:5. To maximize driver compliance and maintain an output
impedance of at least 4MΩ, a wide-swing cascode current
mirror is employed. The maximum deliverable ISTIM is 2.5mA,
and it can be adjusted by tuning the bias current of the IDAC.
With the stimulator supply voltage set at 28 V, the dropout
voltage at maximum output current is limited to 1 V to lower
per-channel area usage.
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Fig. 10. (a) Schematic of the passive regeneration switch with switching
waveforms; (b) passive regeneration current flow direction in a vector stimu-
lation.

The cascode bias voltages (Vbn2 and Vbp2) are shared among
the drivers and generated using an on-chip bias generation
circuit. To minimize area usage, the driver control switches
SRC and SINK are located in the 5 V domain. The output
impedance of the HV devices degrades at high drain-source
voltages. To reduce the voltage stress on the HV nMOS stack
in the bias leg of the source current mirror, a series of diode-
connected transistors are inserted there.

Each stimulation driver also includes a passive regeneration
switch. The schematic of this switch is shown in Fig. 10.
The switch connects the stimulator output to the VCM node
through the electrode-tissue interface, discharging any residual
charge in the electrode capacitance. All passive regeneration
switches in the drivers are enabled together when no channel
is delivering stimulation current. Accumulation of residual
voltages is inevitable as a result of the inherent impedance
mismatch of the electrode. By shorting all electrodes together
through the anchor electrode, this residual voltage is sig-
nificantly lowered. The path of current flow during passive
regeneration is illustrated in Fig. 10(b).

The core of the switch consists of a HV transmission gate
(Fig. 10(a)). Since the rated gate-to-source voltage of the HV
devices is limited to 5 V, the gate voltages the transmission
gate devices must be elevated relative to VCM depending on
the 5 V control logic, REGEN, which is referred to the chip
VSS. To achieve this level shift, we employ a bootstrapping
technique utilizing two metal-oxide-metal capacitors. Two p-
n junction diodes are placed in the current flow path of
the transmission gate to prevent undesired conduction current
flow arising from the polarity of the voltage difference across
the stimulator output and VCM. Under typical stimulation
intervals and pulse-widths, the diodes discharge electrodes
with adequate effectiveness, bringing their potential to below
150mV.

Fig. 11. Microphotograph of stimulator test-chip.

V. MEASUREMENT RESULTS

The prototype stimulator chip is fabricated using the TSMC
HV 180 nm 1P6M BCD process. The die microphotograph is
shown in Fig. 11. Each current driver has an area of 0.12 mm2.
The total silicon area is 4.3 mm ×3.3 mm. The chip features
3 voltage domains: the digital logic and SRAM operates at 1.8
V, the biasing circuit and IDACs are supplied by 5 V, and the
HV supply of the drivers can go up to 28 V.

As the proposed stimulator operates in a floating configu-
ration relative to the brain/earth-ground potential, all internal
power supplies are derived from a 5 V Li-ion battery bank.
The required HV supplies (14 V, 28 V) are generated using
two DC-DC boost converters, while lower voltage levels are
generated using off-the-shelf, low dropout (LDO) regulators.

The boundary scan of the chip, managed by a PC, requires
consideration for signals referenced to the earth-ground inter-
facing to a chip whose substrate is held at VDD. A digital
isolation circuit (Si862x) is integrated on the PCB to provide
galvanic ground isolation between the chip’s boundary scan
and the data acquisition system connected with the PC.

Several experiments are conducted with various electrode
configurations to validate the performance of the stimulator.
Measurement results from these experiments are described
below.

A. Measurements With Passive Electrodes

The test-PCB incorporates passive electrodes constructed
with discrete resistors and capacitors to emulate the tissue-
electrode interface. For these emulated electrodes, the resis-
tance can be chosen between 560 Ω, 4.7 kΩ, and 10 kΩ.
A combination of 10 nF or 22 nF capacitors emulates
the double-layer capacitance of the electrode-tissue interface.
Additionally, a 5 GΩ resistance is connected in parallel with
the capacitors to represent the charge transfer resistance.

Fig. 12 shows demonstrative current waveforms that can
be generated on four source-sink pairs. These waveforms
exemplify the ability to deliver various types of stimulation
waveforms, such as sinusoidal, exponential, rectangular, or
even arbitrary shapes. The stimulator output currents are mea-
sured by looking at the voltage difference across the resistive
electrodes.

We observe significant variation across the output current of
the 46 stimulation drivers associated with the same DAC code.
Fig. 13(a) presents the histogram of the average LSB current
observed in each stimulation driver. The standard deviation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 07,2025 at 04:19:56 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

Fig. 12. Arbitrary stimulus current waveforms between four source-sink pairs.
Resistive electrodes (4.7 kΩ) were used for this measurement.

Fig. 13. (a) Variation of the average LSB current in each stimulation driver
(consisting both source and sink driver) across the chip. The X-axis is
normalized with respect to the overall average of all drivers’ LSB current
(IAG). (b) Post-calibration INL of all drivers based on the overall average
LSB current.

Fig. 14. Measurement results for CIC techniques in action.

from the average LSB current, denoted IAG, is measured to
be 15.4%. We employ a calibration technique to address this
variation across all 46 channels and improve the accuracy
of the stimulation current. This calibration process involves
sweeping the scan settings programmed by an FPGA to
cover the entire range of DAC codes. A calibration table is
generated based on the measured output DC currents. The
post-calibration integral non-linearity (INL) of the stimulation
drivers with respect to IAG is depicted in Fig. 13(b). The INL
is observed to be bound within +/ − 1.5 LSB except a few
outliers. As a result of the calibration, the allowable DAC
settings are restricted to 84, reducing the effective number of
bits to 6.4.

Transient waveforms corresponding to the proposed imbal-
ance compensation techniques are shown in Fig. 14, for an
arbitrarily shaped two-channel stimulation. In this experiment,

Fig. 15. Measurement results for RIC technique in action.

Fig. 16. Test setup for measurements in saline bath.

the power supplies of the stimulator are floated, and the
“tissue” side of all electrodes is connected to a single node
representing the pseudo-brain. The pseudo-brain node is con-
nected to the earth ground through a 10 MΩ discrete resistor.

An imbalance between the source and sink current is
introduced for demonstration. When CIC enabled, current
imbalance is compensated for each time slice using ICIC,
causing the residual voltage at the CM anchor electrode goes
below 50 mV (Fig. 14). Since the current through the CIC and
VCM electrode is not charge neutral, passive regeneration was
enabled after each stimulation cycle to discharge the residual
voltage.

In Fig. 15, the residual voltage on the electrode capacitance
is intentionally increased by reducing the duration of passive
regeneration for demonstration purposes. Once the VCM poten-
tial reaches −0.32 V, the RIC activates and, at the end, the VCM
residue goes below 50 mV.

The average power consumption of the digital circuit during
typical low-frequency (10 - 100 Hz) biphasic stimulation is
measured to be less than 20 µW/channel.

B. Measurements in Saline Bath

The ability of the proposed architecture to suppress stim-
ulation artifacts and deliver localized stimulation is evaluated
through experiments in a saline bath. The test setup is
illustrated in Fig. 16. The dimension of the electrode tip is
0.5 mm ×0.3 mm and they are arranged in a 10 × 10 grid
at at a pitch of 2.54 mm. One of the corner electrodes in the
array was chosen as the anchor. A separate wire is used to
connect the solution to the earth-ground.

1) Stimulation Artifact Reduction: A 200 µA bipolar,
biphasic stimulation (post-calibration) over 200 µs duration
is applied to the saline bath using an arbitrarily chosen source
and sink pair (with relative distance of 4 electrodes). The
voltage measurements of interest are VCM, measured relative
to earth- ground and the voltage at a nearby recording site
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Fig. 17. Potential (with relative to VCM) seen at a recording electrode site in
the saline bath. After CIC is applied with the anchor electrode providing a
CM connection, the artifact is significantly reduced.

(VSEN) with respect to VCM. The latter represents the voltage
seen by a recording front-end whose ground supply, VSSR, is
shared with VCM.

By introducing an electrode to anchor the tissue/saline
potential to VCM, the VCM excursion is limited to IXZE –
approximately 200 mV in this experiment. The artifact ampli-
tude seen by the recording system also reduces to 130 mV. The
application of the imbalance compensation further reduces this
imbalance-induced CM artifact to less than 50 mV.

2) Spatially Targeted Stimulation: To demonstrate the capa-
bility of delivering localized stimulation, we have chosen four
sites between electrodes where fictitious axons are located and
their positions are marked in Fig. 18. They are also assumed
to lie along the X-axis without loss of generality.

It is essential to achieve good confidence between the
emulated 3D volume resistive mesh and the saline before
computing the required stimulus currents. Because saline is an
isotropic conductive medium, resistors can be used to model
the behavior of this medium. However, it is necessary to
determine the size of the mesh volume and the relative scaling
between the electrode interface impedance and the mesh resis-
tance. Initially, a few dipole currents are applied to both the
SPICE model and the saline bath. The resulting voltages at the
other electrode sites are observed and compared. The model
parameters, including the mesh size and resistance scaling,
are adjusted iteratively until a high correlation confidence
exceeding 0.99 is achieved. Using the optimization process
described in Section III, the SPICE model is used to compute
the ISTIM required at each site to achieve the desired localized

Fig. 18. Activation of four target ROIs in the plane of the electrode tips
using computational vector stimulation versus a conventional naive approach.
The stimulus currents are normalized with respect to the maximum current in
the computational stimulation. Please note that the actual Hessian projections
are not shown, instead a certain threshold (required for neural activation) is
applied to designate the regions of activation.

Fig. 19. (a) Trend of normalized voltages observed at non-stimulating sites
in simulation versus measurements (b) Histogram of error in the measured
voltages.

stimulation. A Python-based convex optimization solver [33]
is utilized to solve the optimization problem.

Since it is not feasible to continuously measure the acti-
vating function across the entire physical electrode array,
a cross-validation approach is adopted. The measurements
obtained at the non-stimulating electrode sites are compared
with the associated locations in the SPICE simulation. Fig. 19
compares this simulation result and the measurement data.
An R2 correlation score of 0.994 indicates a high level of
confidence between the simulations and the measurement data.
It is therefore reasonable to conclude that the same locations in
saline would achieve neural activation when stimulated using
the computed currents.

The activation achieved by the proposed technique is con-
trasted with a conventional approach in which stimulation
currents are applied at nearby electrode sites and their ampli-
tude is increased until the desired activation is observed. From
Fig. 18 it is evident that the conventional approach results in
a large volume of undesired activation outside of the target
ROIs. Because current flows through all channels, the total
stimulator power consumption in vector stimulation is 3.1×
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Fig. 20. In vivo measurements: (a) stimulation and recording system inter-
facing implanted electrodes in the spinal cord and triceps muscle through a
headstage (b) evoked action potential in the triceps muscle.

higher than a conventional approach that achieves excitation
in the region of interest (among other undesired locations).
However, the stimulus current amplitude required by the con-
ventional approach to activate the intended locations is 2.8×
higher than that using vector stimulation. The difference in
ISTIM amplitudes is of significant importance when considering
driver and electrode current limits.

C. In Vivo Stimulation

In the in vivo experiment depicted in Fig. 20(a), the
designed stimulator is interfaced with implanted electrodes in
the cervical spinal cord of a rat through a head-stage. Biphasic
stimulus pulses with an amplitude of 210 µA and a width of
200 µs are applied at a frequency of 0.5 Hz. Motor-evoked
potentials are recorded in the ipsilateral triceps muscle using
an Intan RHD2000 IC mounted on Neurochip [34] and are
shown in Fig. 20(b). The recording circuit ground was shared
with the stimulator IC to emulate a low complexity closed-
loop system [35]. The sensed response is determined to be
an evoked potential for three reasons: 1) it was observed
only after the stimulus current amplitude crosses a threshold,
typical of evoked motor response; 2) the shape is consistent
with an action potential; 3) visual twitch of the rat’s forelimb.
Successful recruitment of neural pathways in the spinal cord
demonstrates the suitability of the proposed stimulator with
the CM anchor electrode for in vivo experiments.

D. Comparison With State-of-the-Art

Table I provides a summary of specifications along with
a comparison with state-of-the-art stimulator circuits [12],
[13], [14], [17], [29]. Although the IC in [14] employs 64
stimulators, they are not used for concurrent multichannel
stimulation, and therefore do not address issues due to aggre-
gate source-sink imbalance. Additionally, the stimulator in

TABLE I
STIMULATOR COMPARISON TABLE

[14] does not support low-latency reconfiguration. Pu et al.
[29] demonstrates 2mV residual electrode voltage along with
HV compliance. However, the presented charge balancing
technique requires measuring the electrode impedance. Our
work showcases competitive stimulus current drive and voltage
compliance within a compact Si footprint. Notably, in contrast
with previous work, this IC marks the first demonstration
of spatial localization using a large channel count vector
stimulation combined with low-latency delivery of arbitrarily
shaped stimuli and output driver nonideality-induced CM
artifact suppression by mixed-signal imbalance compensation
techniques.

VI. DISCUSSION

This section explores important considerations and limita-
tions, both of the test-chip and the proposed stimulator system.

A. Targeted Stimulation Away From Electrodes

In this work spatial location is presented for a plane
situated just below the electrode array. However, when the
objective is to target deeper volumes within the tissue, it
becomes necessary to utilize penetrating electrodes or consider
alternative objective functions. The proposed approach, which
emphasizes net-zero current delivery to minimize stimulation-
induced artifacts, can be extended to accommodate other
objective functions as required by specific applications.

B. Selection of Basis Current Vectors

Each basis current vector must maintain a net zero current
delivery. Apart from this constraint, the selection of the basis
current vectors is also determined by the geometry of the elec-
trode array and its ability to generate various combinations of
stimulus currents. Depending on the geometry of the electrode
array (e.g. planar or cylindrical), the lead arrangement can be
rectangular or hexagonal [36], [37]. For a hexagonal electrode
arrangement, the basis vectors may consist of adjacent source-
sink pairs at Euclidean distance of one electrode.
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C. Impact of Electrode Imperfections and Driver
Nonlinearity

When employing a recording front-end to detect neural
activity using a point electrode while stimulation is ongo-
ing, the amplitude of artifacts is determined by the voltage
distribution within the conductive tissue. The presence of
imperfections in the electrode can lead to the occurrence of
circulating currents among non-stimulating electrodes. If such
an electrode is used for recording purposes, it may result in
the observation of artifacts with higher amplitudes [38]. These
imperfections in the electrode can also exhibit time-dependent
variations. This phenomenon has been observed saline bath
experiments and that is one of the reasons behind the deviation
of recorded voltages from that predicted by SPICE simula-
tions. Another source of this deviation is driver nonlinearity,
which alters the electrode current from its intended value. The
off-chip calibration required to compensate for variation across
stimulation drivers takes several hours, motivating integrated
auto-calibration to support channel scalability. Notably, the
integrated SRAM in the design can be used to enable parallel
auto-calibration.

D. Limitation of the CIC and RIC Techniques

RIC and CIC techniques relax the anchor electrode’s
impedance requirement for a given CM artifact. Specifically,
a 10 µA I-DAC driver LSB and a 10 mV CM excursion
limit will allow for an anchor electrode resistance up to 1
kΩ. The number of stimulation cycles between applications
of RIC is configured by the user based on the increase in the
VCM after each stimulation cycle and the allowed CM limit.
Such an approach assumes either the ability to observe VCM
to determine this interval count, or a good estimate of the
electrode capacitance. However, triggering RIC using closed
closed-loop control is more advisable for an implant.

RIC introduces a significantly large compensation current
into the tissue to rapidly remove any residual VCM. However,
this action introduces a significant artifact that requires the
recording to be paused during RIC. In our experiments using
typical neural implant electrodes, this “blank-out” duration
was found to be brief. (256 µs seen in Fig. 15). User-
programmable IRIC pulse amplitude should be maintained
below the stimulation threshold. RIC and passive regeneration
offer complementary capabilities for residual charge removal
on the anchor electrode. RIC enables faster and more con-
trolled charge removal compared to passive regeneration. The
latter performs charge balancing across each electrode while
RIC balances aggregate charge to suppress VCM buildup.

In the proposed stimulator architecture, the worst-case
stimulation-induced artifact is ideally determined by the resid-
ual imbalance current after compensation and the anchor
electrode impedance. However, in our measurements, the arti-
fact is primarily limited by the ambient noise coupling on the
floating system. The dominant contributor to the ambient noise
is the 60Hz power-line noise. The PCB traces corresponding
to VCM and sensed brain potential were unequal in length
since VCM is to be routed along with the stimulator power
supplies. Therefore, the ambient noise appears differentially to

the feedback comparator and limits our capability to further
reduce the VCM excursion.

State-of-the-art AFEs [14], [39], [40] have demonstrated
input dynamic range exceeding 100 mV and rapid recovery
from artifact pulses. Based on these factors, the observed
VCM excursion of 50 mV is within permissible limit. In addi-
tion, much smaller trace lengths and footprints anticipated in
implanted neural interfaces are expected to minimize the CM
artifact amplitude. On-chip power management is anticipated
provide further relief. Under these circumstances, we expect
worst-case artifacts to be dominated by differences in electrode
lead lengths.

E. Per-Channel Charge Balancing

The safety window for residual electrode voltage to prevent
electrode and tissue damage is reported in [41] and [42] to
be 0.6 V. Per-channel charge balancing is required to keep
the electrode voltage below this limit. Existing stimulator
circuits have demonstrated various methods for active charge
balancing of individual stimulation electrodes: 1) adjusting
the pulse duration of anodic phase [17]; 2) applying a series
of compensating pulses [28], [29], [43]; 3) adjusting the
amplitude of stimulus current [28], [43], [44]. Although these
techniques can achieve minimal residual electrode voltage,
they do not scale well with the number of channels and often
require knowledge of electrode impedance value. Additionally,
not all of these works support arbitrary waveform shapes.

Our stimulator relies on passive regeneration (Fig. 10) for
individual-electrode charge balancing. Bench measurements
show that the residual voltage at the stimulating electrodes
remains below 150 mV, well within the safety window.
Additionally, calibrating the stimulation currents within 1.5
LSB helps reduce the regeneration current amplitude, ensuring
safe operation. This amplitude can be further suppressed by
adjusting the anodic phase duration. RIC can be extended to
support per-channel charge-balancing based on a comparison
of the driver output of each channel with VCM.

VII. CONCLUSION

This work demonstrates the effectiveness of vector stim-
ulation and integrated memory in enabling spatially local-
ized low-latency adaptive neuromodulation. Computationally
guided vector stimulation of a large number of electrodes
improves spatial targeting but exacerbates current imbalance.
Consequently, the presented circuit architecture, coupled with
mixed-signal imbalance compensation techniques, effectively
mitigates both current imbalances and their associated CM
artifacts. The demonstrated suppression of CM artifacts is
substantial, making them compatible with state-of-the-art
recording front-ends.
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[27] A. P. Buccino, T. Stöber, S. Næss, G. Cauwenberghs, and P. Häfliger,
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