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Abstract—While free/libre and open source software (FLOSS)
is critical to global computing infrastructure, the maintenance
of widely-adopted FLOSS packages is dependent on volunteer
developers who select their own tasks. Risk of failure due
to the misalignment of engineering supply and demand —
known as underproduction — has led to code base decay and
subsequent cybersecurity incidents such as the Heartbleed and
Log4Shell vulnerabilities. FLOSS projects are self-organizing but
can often expand into larger, more formal efforts. Although some
prior work suggests that becoming a more formal organization
decreases project risk, other work suggests that formalization
may increase the likelihood of project abandonment. We evaluate
the relationship between underproduction and formality, focusing
on formal structure, developer responsibility, and work process
management. We analyze 182 packages written in Python and
made available via the Debian GNU/Linux distribution. We find
that although more formal structures are associated with higher
risk of underproduction, more elevated developer responsibility
is associated with less underproduction, and the relationship
between formal work process management and underproduction
is not statistically significant. Our analysis suggests that a FLOSS
organization’s transformation into a more formal structure may
face unintended consequences which must be carefully managed.

I. INTRODUCTION

Across global computing infrastructures, free/libre open

source software (FLOSS) packages underpin the successful

operation of widely used technical systems [1]. Yet this

crucial software is often “underproduced” — that is, not as

well-maintained as we might expect, given its importance

[2]. Underproduction can be consequential, leading to dis-

ruption across global networks. Two notorious such failures

are the FLOSS security defects known as Heartbleed and

Log4Shell. The Heartbleed vulnerability impacted the widely-

used OpenSSL library. At the time the vulnerability was

announced, OpenSSL was decaying from community aban-

donment, with no full time developers and only $2000 in

annual donations. Heartbleed was eventually remediated by

large-scale, formally organized developer engagement — the

very kind which OpenSSL had previously lacked [3]. The

Log4j library is maintained by The Apache Software Founda-

tion and a dedicated development team. In 2021, researchers

identified the zero-day Log4Shell vulnerability, which enables

attackers to inject malicious code into already-running Java

programs [4]. While the Log4j team was able to respond

quickly with a series of patches, the long-undetected nature

of this vulnerability suggests that like OpenSSL, Log4j was

underproduced.

With 96% of software in the ‘critical infrastructure sector’

containing FLOSS code, the United States Cybersecurity and

Infrastructure Security Agency (CISA) established an “Open

Source Software Security Roadmap” in September 2023 [5]

highlighting the need to study the social and technical an-

tecedents of FLOSS software failure. This national attention

is timely: security research firm Sonatype found in their 2023

State of the Software Supply Chain Report that across four

major engineering ecosystems (NPM, Maven, PyPi, nugent)

only 11% of projects were actively maintained [6]. Heightened

scrutiny of FLOSS engineering practices as well as escalating

warning signs of underproduction make examining the causes

of underproduction all the more urgent.

A promising direction to diagnose both causes of and

remediation strategies for underproduction is examining a

structure commonly employed in FLOSS projects: commons

based peer production (CBPP) [7]. Benkler defines CBPP as

a production model reliant on decentralized individuals who

self-select tasks, motivated by a range of factors [8]. Yet

Benkler also writes that in the face of “knowledge intensive,

creative, and complex” problems, projects must organize to

“[elicit] diverse pro-social motivations” from contributors [9].

Said simply, although CBPP is an extremely valuable way

of collaborating, FLOSS organizations may find it difficult to

ameliorate underproduction because requisite yet undesirable

tasks may lay neglected when contributors work according to

their own interests.

In this paper, we make three contributions: we offer em-

pirical assessments of the relationship between (1) underpro-

duction and overall governance formality, (2) underproduction

and the concentration of developer responsibility, and (3)

underproduction and the management of work products. We

place our work in the context of previous work in §II and

describe our analysis in §III before presenting results of our

analysis in §IV. We discuss the implications of this work in

§V with limitations noted in §VI before concluding in §VII.

II. BACKGROUND

A. Governance in CBPP

Governance refers to the totality of the systems in an

organization which incorporate decision making, operational

control, and incentives [10]. Thus, as an organization matures,

institutionalization in governance can be understood as “the



processes by which the social processes obligations, or actual-

ities come to take a rulelike status in social thought or action”

across subunit actors (in the case of FLOSS project engineer-

ing, software developers) [11]. In CBPP governance, project

institutionalization entrenches either formality or informality

in decision-making processes [12].

The influential work of Ostrom on governing commons-

based resources notes that communities prefer internally devel-

oped governance practices, which naturally leads to variations

in the resulting governance arrangements [13]. For example,

an analysis by Hwang and Shaw of CBPP governance on

Wikipedia found that communities with shared goals, techni-

cal infrastructures, organizational structures, and institutional

trajectories end up producing diverging rule sets and deliber-

ating at length over shared rules [14]. At times, how CBPP

communities self-govern can lead to counter-intuitive patterns

of institutionalization that introduce bureaucratization and hi-

erarchies and create later barriers to participation, following

Robert Michel’s “iron law of oligarchy.” [15]. The full extent

of the productive repercussions of the variety of approaches

to CBPP remains unclear.

B. Governance of FLOSS Engineering

Similar to other CBPP communities, FLOSS projects adhere

to a wide range of organizational forms; the management of

functional processes (leadership elections, funding allocation,

onboarding, conflict resolution) is often internally defined with

governance documents such as project constitutions and char-

ters [16], [17]. Core to FLOSS governance is the allocation

of developer labor and permissions (i.e., code integration, and

how work products are released). For example, in centralized

projects, formal project leadership may retain engineering

management power, exemplified by Linus Torvald’s sole con-

trol of code merging into the Linux kernel [18].

Code merge patterns—who gets their work merged, and

who decides—are a key indicators of how a project is being

governed. Even in technically flat communities, Onoue et al.

frame participant engagement in FLOSS projects as a hierar-

chy, with differences in who can enact development actions

such as commits, pull requests, comments, and issue events

[19]. Thus, users who have the requisite permissions to merge

code from peripheral forks into the primary development

branch are empowered in project governance over those who

simply commit to derivative branches. Tamburri et al. and van

Meijel use the hierarchy of merge permissions as evidence

of project hierarchy [20]–[22]. De Stefano et al. adopt this

approach to conclude that formality in internal engineering

governance structures is associated with diminished commu-

nity contribution to project code bases [23].

Tools like project progress trackers also give insight into

FLOSS development. The management of such work products

are often disputed within project communities; Crowston et al.

observes that that there is no common patterns to how FLOSS

projects employ public releases [1]. GitHub “milestones” are

indicators to mark the current state of a project, and are

used by communities to track progress on collections of tasks

such as issues or pull requests1. While the milestone feature

is platform-specific, GitHub remains the preeminent platform

for FLOSS project hosting [24]. Zhang et al. found a strong

positive correlation between milestone usage and the count

of other engineering measures, like commits and releases, in

part due to the fact that older projects are more likely to use

milestones than younger projects [25].

C. Governance and Underproduction

Yin et al. observe that in canonical software engineering

literature, the success of FLOSS software is primarily defined

in two ways: functional development processes or community

cohesion [26]. Functional development processes include the

management of project risk. In these terms, underproduction

is a metric which considers potential for risk (developer

neglect), its impact (user adoption), and the likelihood of risk

resolution (code quality, bug resolution speed.) Champion and

Hill identify underproduction by evaluating whether project

quality is aligned with its importance when compared to

a theoretical baseline of alignment, where importance and

quality are aligned if their non-parametric rankings are the

same [2]. For a set of packages from the Debian GNU/Linux

distribution, Champion and Hill represent project importance

through installation count and project quality as the average

time to bug resolution (controlling for bug severity).

Prior work examining FLOSS governance formalization

vary in their measures of success and subsequent conclusions;

Crowston and Howison even suggest that informality itself

may be a metric of project success [27]. For critical FLOSS

systems, Tamburri et al. defines success as “24/7 availability

in (a) fault-tolerant system” [20]. Yin et al. uses the advance-

ment metrics of the Apache Software Foundation’s incubator

program to represent project success [28]. De Stefano et al.

focus on the frequency of product commits as a metric of

community engagement and project success [23]. As such,

Tamburri observes that as formality within software projects

increases, projects may experience friction in the processes of

developer engagement [20]; Yin et al. conclude that isomor-

phic reproduction of formal governance structure may lead to

project success [28]; lastly, De Stefano et al. conclude that the

more constrained a project’s processes around merging are, the

less engineering engagement it might receive [23].

Observations that formalizing FLOSS governance may lead

to both project abandonment and project success are not con-

tradictory but warrant further empirical study. Overall, these

findings suggest that projects with higher levels of formality

are more likely to be underproduced. Due to the observations

of De Stefano et al. [23] and Tamburri et al. [21], we propose:

HA: projects with higher formality are more likely to

be underproduced. Moreover, considering the findings from

prior work on merge processes, we propose that HB: projects

with less concentrated developer responsibility are more

likely to be underproduced. Given the argument in Yin et al.

1https://docs.github.com/en/issues/using-labels-and-milestones-to-track-
work/about-milestones



that the governance of project work assists the development

process [28], we propose HC: projects with formal work

process management are less likely to be underproduced.

III. METHODS

A. Empirical Setting

GNU/Linux distributions, includingDebian in particular,

have a substantial history as settings for understanding soft-

ware engineering communities [29], including their effective

governance [30], [31] and lifecycles [32]. We examine a

collection of projects packaged via the Debian GNU/Linux

distribution, which is also a packaging source for Ubuntu and

several other distributions. All projects were tagged by Debian

developers as being implemented in the Python language, and

all have repositories on GitHub. Therefore, these packages are

part of one of the most widely-used GNU/Linux operating

systems worldwide, with an upstream language and source

code management platform in common.

B. Data

Our unit of analysis is the software project, n = 182. All

projects meet three criteria: they are in the Debian GNU/Linux

distribution, included in the dataset published by Champion

and Hill [2], and tagged by Debian maintainers as being

written in Python. Due to the manual identification of upstream

repositories, our data set was constrained to Debian packages

written in the Python language; further research is necessary

to study the Debian package ecosystem writ large. The median

project in this dataset was 13 years old, with 44 members in

their developer communities.
To identify the upstream repository of each package that

was the same as the one used by Debian, we first examined

Debian metadata: in the Ultimate Debian Database [33], on the

Debian package website2, and inside the package as stored in

Debian’s GitLab instance3. If no upstream repository location

was identified, we examined the files associated with the

package (README.txt if available, and the documentation

and license files if not).We then collected package commit and

milestone history using the CHAOSS GrimoireLab Perceval

tool [34] and the public GitHub API, respectively. We bounded

our data collection within the range of 2/8/2008 - 11/09/2023;

February 8, 2008 was the date of GitHub’s founding.4

C. Measures

We operationalize project governance formality (HA) using

Tamburri et al.’s YOSHI formality score [20], one of six

metrics addressing project governance (alongside community

structure, geodispersion, longevity, engagement, and cohe-

sion). YOSHI has been used extensively in prior empirical

studies of FLOSS governance [21]–[23], [35], [36].

Formality Score =
MMT

MS/LS
(1)

2https://packages.debian.org/
3https://salsa.debian.org/
4Our data and code are available on the Harvard Dataverse:

https://doi.org/10.7910/DVN/WENTBH

This measure considers developer responsibility, work pro-

cesses, and age as component variables to calculate overall

project formality, shown in Equation 1. Mean Membership

Type (MMT) represents developer responsibility. This is fur-

ther explained below with Equation 3. MS refers to work

processes, in our case GitHub milestone count, while LS refers

to project lifespan in days. The potential range of scores

is between 0 and 10,000. However, because this definition

would filter out projects who do not use milestones entirely—a

substantial portion of our sample— we develop an augmented

calculation of the formality score where the MMT is divided

by whether or not the project employs milestones (repre-

sented by a binary 1:2 classification) (MSE) per the project’s

age grouping (AG), which is included as a control variable

given age may generally impact formalization. Projects were

grouped in bins of (1) 0-9 years old (n=44), (2) 9-12 years

old (n=44), (3) 12-15 years old (n=49), and (4) 15-16 years

old (n=64). The breaks were selected to create bins of similar

sizes. Each project was coded with a corresponding group label

of one to four. This augmented formality measure is shown in

Equation 2 and the resulting metric ranges between 0 and 10.

Augmented Formality Score =
MMT

MSE/AG
(2)

To evaluate concentration of developer responsibility (HB),

we draw on a measure used in the overall formality score

mentioned above: MMT, which represents the share of project

developers who hold more responsibilities via their privileged

roles in the engineering process, such as merge permissions.

As seen in Equation 3, this metric is a weighted average

of collaborators in a given FLOSS community, with the

community defined as all individuals whose committed edits

to project files have been accepted in the main branch [20],

[21]. Collaborators are developers who have authored a merge

into the primary code branch and thus have the requisite

permissions to do so, contributors are commit authors who

have never merged into the primary code branch [22]. Higher

MMT averages may suggest flatter organizational structure,

since it indicates widely diffused merge activities [37].

MMT =
1

|M |

∑

m∈M

{

2 If m is a collaborator.

1 If m is a contributor.
(3)

We measure formal work process management (HC) via

projects’ use of GitHub milestones [20], again drawing on

the formality score. However, some projects in our dataset are

hosted on platforms which lack the milestone metric or do

not use it entirely, with prior work indicating only around

20% of projects on GitHub used the milestone tool [25].

Thus, we employed two metrics of milestone usage. One

was the numeric count of milestones that a given project

was using; the other was a binary classification of whether

or not a project used milestones. Around 25% of packages

studied in this data set used milestones. To measure the

underproduction factor of a FLOSS project, we use the mean

underproduction factor estimates published in Champion and



Hill [2]. As previously described in II, the underproduction

metric measures a project’s engineering activity against the

project’s importance.

D. Analytic Plan

Linear regression is an established approach of identifying

associative relationships between two continuous variables.

In our evaluation of the continuous measures of HA (for-

mality score), HB (responsibility concentration), HC(work

processes), and project age, we used linear regression models

to evaluate the relationship with the project’s underproduction

factor and evaluate significance at the p < .05 level.

Given our constrained data sample, we also employed a

statistical power analysis to evaluate the impact of data sample

size on our results when relevant (HA, HC).

IV. RESULTS

TABLE I
THIS TABLE DISPLAYS THE RELATIONSHIPS BETWEEN

UNDERPRODUCTION AND THREE PROJECT METRICS: FORMALITY, MMT,
AND MILESTONES. MODELS FOR HB AND HC INCLUDE A CONTROL FOR

AGE WITH FACTOR VARIABLES; 0 TO 9 YEARS OLD IS THE BASELINE

CATEGORY.

(HA) formality (HB) MMT (HC ) milestones
(Intercept) −0.78∗ 1.65∗ −0.89∗

[−1.27;−0.29] [0.06; 3.25] [−1.32;−0.45]
Augmented formality 0.17∗

[0.05; 0.29]
MMT −1.38∗

[−2.21;−0.54]
Age 9-12y 0.07 0.27

[−0.53; 0.67] [−0.33; 0.88]
Age 12-15y 0.60∗ 0.79∗

[0.01; 1.18] [0.20; 1.38]
Age 15-16y 1.15∗ 1.53∗

[0.55; 1.74] [0.96; 2.11]
Milestone count 0.01

[−0.13; 0.15]
R2 0.04 0.22 0.17
Adj. R2 0.04 0.20 0.15
Num. obs. 182 182 182
∗ Null hypothesis value outside the confidence interval.

A. HA: Formality Score

We found a statistically significant relationship between

a project’s score and underproduction factor (p < .005).

However, the relationship between formality score and un-

derproduction was relatively small, where a unit increase in

formality score was associated with only a 0.17 increase in

underproduction factor. This result is evidence in favor of our

hypothesis HA, higher formality is associated with increased

risk of underproduction.

The analysis reported in Table I uses the augmented for-

mality calculation in Equation 2, which enabled us to include

projects who did not use GitHub milestones, giving us a larger

sample size (n=182).

Using the original formulation of the formality score in

Equation 1 would have limited our analysis to projects whose

milestone counts are greater than zero; the sample size for this

model was 44. Testing HA using this alternate metric found

no statistically significant relationship between the score and a

project’s underproduction factor. Given our small sample, we

conducted a power analysis to assess the impact of sample

size in detecting an effect size of at least β = 0.00017

(this is the significant effect size of the augmented formality

score, but scaled commensurately with the original score’s

range.) To simulate our data, we assumed that the formality

score encapsulated other metrics such as MMT, milestones,

and age and that formality score data follow a beta(α:1,

β:3) distribution. After running 1000 simulations on data sets

of size 75, we are able to reject the null hypothesis. The

power analysis provides evidence that, to the extent that this

simulated pilot data is representative of the population, our

sample size is insufficient to conclude the original formality

score’s relationship to underproduction, and lends validity

to our decision to use the augmented formality calculation

displayed in Equation 2.

B. HB: Concentration of Developer Responsibility

A linear regression model fit with MMT values indicated

strong statistical significance for a negative relationship be-

tween MMT and mean underproduction values, suggesting that

as the share of project developers who assume privileged roles

(MMT) increases, the factor of underproduction decreases.

The results are statistically significant (p < .002), where a unit

increase in MMT is associated with a 1.38 point decrease in

underproduction risk. This result is contrary to our hypothesis

HB , and instead provides evidence that increasing dispersion

of responsibility is associated with lower underproduction risk,

rather than higher. The effect size (-1.38) is relatively large,

given that underproduction scores for our data only range

between -5.05 and 2.81, suggesting that this association is

also practically significant. Figure 1 displays the relationship

between projects’ MMT and mean underproduction factor.

C. HC: Formal Work Process Management

A linear regression model fit with projects’ mean under-

production scores and project usage of GitHub milestones did

not point to a statistically significant relationship between the

two measures (p = 0.09). However, as with formality score,

a lack of significance may be due to our relatively small

sample size (n = 182). Thus we conducted a power analysis

simulation to assess whether we had sufficient observations

to detect an effect size of at least β = 0.40; a 5% impact

in underproduction factor within our data set. To simulate

our data, we transposed MMT into a 0-1 range, modeled the

measure’s established relationship of -1.38 units of underpro-

duction factor, and assumed MMT data follow a beta (α:5,

β:1) distribution. From initial analysis of collected data, we

also assumed that milestone data follow a binomial distribution

with probability 0.247. Running 1000 simulations of data sets

of n=300 we were able to reject the null hypothesis. This

provides evidence that, to the extent that our pilot data and

simulation are representative of the population, our sample
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