Engineering Formality and Software Risk in Debian
Python Packages

Matthew Gaughan
Northwestern University
Email: gaughan@u.northwestern.edu

Abstract—While free/libre and open source software (FLOSS)
is critical to global computing infrastructure, the maintenance
of widely-adopted FLOSS packages is dependent on volunteer
developers who select their own tasks. Risk of failure due
to the misalignment of engineering supply and demand —
known as underproduction — has led to code base decay and
subsequent cybersecurity incidents such as the Heartbleed and
Log4Shell vulnerabilities. FLOSS projects are self-organizing but
can often expand into larger, more formal efforts. Although some
prior work suggests that becoming a more formal organization
decreases project risk, other work suggests that formalization
may increase the likelihood of project abandonment. We evaluate
the relationship between underproduction and formality, focusing
on formal structure, developer responsibility, and work process
management. We analyze 182 packages written in Python and
made available via the Debian GNU/Linux distribution. We find
that although more formal structures are associated with higher
risk of underproduction, more elevated developer responsibility
is associated with less underproduction, and the relationship
between formal work process management and underproduction
is not statistically significant. Qur analysis suggests that a FLOSS
organization’s transformation into a more formal structure may
face unintended consequences which must be carefully managed.

I. INTRODUCTION

Across global computing infrastructures, free/libre open
source software (FLOSS) packages underpin the successful
operation of widely used technical systems [1]. Yet this
crucial software is often “underproduced” — that is, not as
well-maintained as we might expect, given its importance
[2]. Underproduction can be consequential, leading to dis-
ruption across global networks. Two notorious such failures
are the FLOSS security defects known as Heartbleed and
Log4Shell. The Heartbleed vulnerability impacted the widely-
used OpenSSL library. At the time the vulnerability was
announced, OpenSSL was decaying from community aban-
donment, with no full time developers and only $2000 in
annual donations. Heartbleed was eventually remediated by
large-scale, formally organized developer engagement — the
very kind which OpenSSL had previously lacked [3]. The
Log4j library is maintained by The Apache Software Founda-
tion and a dedicated development team. In 2021, researchers
identified the zero-day Log4Shell vulnerability, which enables
attackers to inject malicious code into already-running Java
programs [4]. While the Log4j team was able to respond
quickly with a series of patches, the long-undetected nature
of this vulnerability suggests that like OpenSSL, Log4j was
underproduced.

Kaylea Champion
University of Washington
Email: kaylea@uw.edu

Sohyeon Hwang
Northwestern University
Email: sohyeonhwang @u.northwestern.edu

With 96% of software in the ‘critical infrastructure sector’
containing FLOSS code, the United States Cybersecurity and
Infrastructure Security Agency (CISA) established an “Open
Source Software Security Roadmap” in September 2023 [5]
highlighting the need to study the social and technical an-
tecedents of FLOSS software failure. This national attention
is timely: security research firm Sonatype found in their 2023
State of the Software Supply Chain Report that across four
major engineering ecosystems (NPM, Maven, PyPi, nugent)
only 11% of projects were actively maintained [6]. Heightened
scrutiny of FLOSS engineering practices as well as escalating
warning signs of underproduction make examining the causes
of underproduction all the more urgent.

A promising direction to diagnose both causes of and
remediation strategies for underproduction is examining a
structure commonly employed in FLOSS projects: commons
based peer production (CBPP) [7]. Benkler defines CBPP as
a production model reliant on decentralized individuals who
self-select tasks, motivated by a range of factors [8]. Yet
Benkler also writes that in the face of “knowledge intensive,
creative, and complex” problems, projects must organize to
“[elicit] diverse pro-social motivations” from contributors [9].
Said simply, although CBPP is an extremely valuable way
of collaborating, FLOSS organizations may find it difficult to
ameliorate underproduction because requisite yet undesirable
tasks may lay neglected when contributors work according to
their own interests.

In this paper, we make three contributions: we offer em-
pirical assessments of the relationship between (1) underpro-
duction and overall governance formality, (2) underproduction
and the concentration of developer responsibility, and (3)
underproduction and the management of work products. We
place our work in the context of previous work in §II and
describe our analysis in §III before presenting results of our
analysis in §IV. We discuss the implications of this work in
§V with limitations noted in §VI before concluding in §VII.

II. BACKGROUND

A. Governance in CBPP

Governance refers to the totality of the systems in an
organization which incorporate decision making, operational
control, and incentives [10]. Thus, as an organization matures,
institutionalization in governance can be understood as “the

processes by which the social processes obligations, or actual-
ities come to take a rulelike status in social thought or action”
across subunit actors (in the case of FLOSS project engineer-
ing, software developers) [11]. In CBPP governance, project
institutionalization entrenches either formality or informality
in decision-making processes [12].

The influential work of Ostrom on governing commons-
based resources notes that communities prefer internally devel-
oped governance practices, which naturally leads to variations
in the resulting governance arrangements [13]. For example,
an analysis by Hwang and Shaw of CBPP governance on
Wikipedia found that communities with shared goals, techni-
cal infrastructures, organizational structures, and institutional
trajectories end up producing diverging rule sets and deliber-
ating at length over shared rules [14]. At times, how CBPP
communities self-govern can lead to counter-intuitive patterns
of institutionalization that introduce bureaucratization and hi-
erarchies and create later barriers to participation, following
Robert Michel’s “iron law of oligarchy.” [15]. The full extent
of the productive repercussions of the variety of approaches
to CBPP remains unclear.

B. Governance of FLOSS Engineering

Similar to other CBPP communities, FLOSS projects adhere
to a wide range of organizational forms; the management of
functional processes (leadership elections, funding allocation,
onboarding, conflict resolution) is often internally defined with
governance documents such as project constitutions and char-
ters [16], [17]. Core to FLOSS governance is the allocation
of developer labor and permissions (i.e., code integration, and
how work products are released). For example, in centralized
projects, formal project leadership may retain engineering
management power, exemplified by Linus Torvald’s sole con-
trol of code merging into the Linux kernel [18].

Code merge patterns—who gets their work merged, and
who decides—are a key indicators of how a project is being
governed. Even in technically flat communities, Onoue et al.
frame participant engagement in FLOSS projects as a hierar-
chy, with differences in who can enact development actions
such as commits, pull requests, comments, and issue events
[19]. Thus, users who have the requisite permissions to merge
code from peripheral forks into the primary development
branch are empowered in project governance over those who
simply commit to derivative branches. Tamburri et al. and van
Meijel use the hierarchy of merge permissions as evidence
of project hierarchy [20]-[22]. De Stefano et al. adopt this
approach to conclude that formality in internal engineering
governance structures is associated with diminished commu-
nity contribution to project code bases [23].

Tools like project progress trackers also give insight into
FLOSS development. The management of such work products
are often disputed within project communities; Crowston et al.
observes that that there is no common patterns to how FLOSS
projects employ public releases [1]. GitHub “milestones” are
indicators to mark the current state of a project, and are
used by communities to track progress on collections of tasks

such as issues or pull requests'. While the milestone feature
is platform-specific, GitHub remains the preeminent platform
for FLOSS project hosting [24]. Zhang et al. found a strong
positive correlation between milestone usage and the count
of other engineering measures, like commits and releases, in
part due to the fact that older projects are more likely to use
milestones than younger projects [25].

C. Governance and Underproduction

Yin et al. observe that in canonical software engineering
literature, the success of FLOSS software is primarily defined
in two ways: functional development processes or community
cohesion [26]. Functional development processes include the
management of project risk. In these terms, underproduction
is a metric which considers potential for risk (developer
neglect), its impact (user adoption), and the likelihood of risk
resolution (code quality, bug resolution speed.) Champion and
Hill identify underproduction by evaluating whether project
quality is aligned with its importance when compared to
a theoretical baseline of alignment, where importance and
quality are aligned if their non-parametric rankings are the
same [2]. For a set of packages from the Debian GNU/Linux
distribution, Champion and Hill represent project importance
through installation count and project quality as the average
time to bug resolution (controlling for bug severity).

Prior work examining FLOSS governance formalization
vary in their measures of success and subsequent conclusions;
Crowston and Howison even suggest that informality itself
may be a metric of project success [27]. For critical FLOSS
systems, Tamburri et al. defines success as “24/7 availability
in (a) fault-tolerant system” [20]. Yin et al. uses the advance-
ment metrics of the Apache Software Foundation’s incubator
program to represent project success [28]. De Stefano et al.
focus on the frequency of product commits as a metric of
community engagement and project success [23]. As such,
Tamburri observes that as formality within software projects
increases, projects may experience friction in the processes of
developer engagement [20]; Yin et al. conclude that isomor-
phic reproduction of formal governance structure may lead to
project success [28]; lastly, De Stefano et al. conclude that the
more constrained a project’s processes around merging are, the
less engineering engagement it might receive [23].

Observations that formalizing FLOSS governance may lead
to both project abandonment and project success are not con-
tradictory but warrant further empirical study. Overall, these
findings suggest that projects with higher levels of formality
are more likely to be underproduced. Due to the observations
of De Stefano et al. [23] and Tamburri et al. [21], we propose:
Ha: projects with higher formality are more likely to
be underproduced. Moreover, considering the findings from
prior work on merge processes, we propose that Hg: projects
with less concentrated developer responsibility are more
likely to be underproduced. Given the argument in Yin et al.

Uhttps://docs.github.com/en/issues/using-labels-and-milestones-to-track-
work/about-milestones

that the governance of project work assists the development
process [28], we propose Hc: projects with formal work
process management are less likely to be underproduced.

III. METHODS
A. Empirical Setting

GNU/Linux distributions, includingDebian in particular,
have a substantial history as settings for understanding soft-
ware engineering communities [29], including their effective
governance [30], [31] and lifecycles [32]. We examine a
collection of projects packaged via the Debian GNU/Linux
distribution, which is also a packaging source for Ubuntu and
several other distributions. All projects were tagged by Debian
developers as being implemented in the Python language, and
all have repositories on GitHub. Therefore, these packages are
part of one of the most widely-used GNU/Linux operating
systems worldwide, with an upstream language and source
code management platform in common.

B. Data

Our unit of analysis is the software project, n = 182. All
projects meet three criteria: they are in the Debian GNU/Linux
distribution, included in the dataset published by Champion
and Hill [2], and tagged by Debian maintainers as being
written in Python. Due to the manual identification of upstream
repositories, our data set was constrained to Debian packages
written in the Python language; further research is necessary
to study the Debian package ecosystem writ large. The median
project in this dataset was 13 years old, with 44 members in
their developer communities.

To identify the upstream repository of each package that
was the same as the one used by Debian, we first examined
Debian metadata: in the Ultimate Debian Database [33], on the
Debian package website?, and inside the package as stored in
Debian’s GitLab instance®. If no upstream repository location
was identified, we examined the files associated with the
package (README.txt if available, and the documentation
and license files if not).We then collected package commit and
milestone history using the CHAOSS GrimoireLab Perceval
tool [34] and the public GitHub API, respectively. We bounded
our data collection within the range of 2/8/2008 - 11/09/2023;
February 8, 2008 was the date of GitHub’s founding.*

C. Measures

We operationalize project governance formality (H 4) using
Tamburri et al’s YOSHI formality score [20], one of six
metrics addressing project governance (alongside community
structure, geodispersion, longevity, engagement, and cohe-
sion). YOSHI has been used extensively in prior empirical
studies of FLOSS governance [21]-[23], [35], [36].

MMT

Formality Score = W/LS

(D

Zhttps://packages.debian.org/
3https://salsa.debian.org/

4Our data and code are available on the
https://doi.org/10.7910/DVN/WENTBH

Harvard Dataverse:

This measure considers developer responsibility, work pro-
cesses, and age as component variables to calculate overall
project formality, shown in Equation 1. Mean Membership
Type (MMT) represents developer responsibility. This is fur-
ther explained below with Equation 3. MS refers to work
processes, in our case GitHub milestone count, while LS refers
to project lifespan in days. The potential range of scores
is between 0 and 10,000. However, because this definition
would filter out projects who do not use milestones entirely—a
substantial portion of our sample— we develop an augmented
calculation of the formality score where the MMT is divided
by whether or not the project employs milestones (repre-
sented by a binary 1:2 classification) (MSE) per the project’s
age grouping (AG), which is included as a control variable
given age may generally impact formalization. Projects were
grouped in bins of (1) 0-9 years old (n=44), (2) 9-12 years
old (n=44), (3) 12-15 years old (n=49), and (4) 15-16 years
old (n=64). The breaks were selected to create bins of similar
sizes. Each project was coded with a corresponding group label
of one to four. This augmented formality measure is shown in
Equation 2 and the resulting metric ranges between 0 and 10.

MMT
MSEJAG

To evaluate concentration of developer responsibility (Hp),
we draw on a measure used in the overall formality score
mentioned above: MMT, which represents the share of project
developers who hold more responsibilities via their privileged
roles in the engineering process, such as merge permissions.
As seen in Equation 3, this metric is a weighted average
of collaborators in a given FLOSS community, with the
community defined as all individuals whose committed edits
to project files have been accepted in the main branch [20],
[21]. Collaborators are developers who have authored a merge
into the primary code branch and thus have the requisite
permissions to do so, contributors are commit authors who
have never merged into the primary code branch [22]. Higher
MMT averages may suggest flatter organizational structure,
since it indicates widely diffused merge activities [37].

Augmented Formality Score =

2

1 2 If m is a collaborator.
MMT = M ;/[{ 1 If m is a contributor.

We measure formal work process management (Hco) via
projects’ use of GitHub milestones [20], again drawing on
the formality score. However, some projects in our dataset are
hosted on platforms which lack the milestone metric or do
not use it entirely, with prior work indicating only around
20% of projects on GitHub used the milestone tool [25].
Thus, we employed two metrics of milestone usage. One
was the numeric count of milestones that a given project
was using; the other was a binary classification of whether
or not a project used milestones. Around 25% of packages
studied in this data set used milestones. To measure the
underproduction factor of a FLOSS project, we use the mean
underproduction factor estimates published in Champion and

3)

Hill [2]. As previously described in II, the underproduction
metric measures a project’s engineering activity against the
project’s importance.

D. Analytic Plan

Linear regression is an established approach of identifying
associative relationships between two continuous variables.
In our evaluation of the continuous measures of H (for-
mality score), Hp (responsibility concentration), Hc(work
processes), and project age, we used linear regression models
to evaluate the relationship with the project’s underproduction
factor and evaluate significance at the p < .05 level.

Given our constrained data sample, we also employed a
statistical power analysis to evaluate the impact of data sample
size on our results when relevant (H 4, He).

IV. RESULTS

TABLE 1
THIS TABLE DISPLAYS THE RELATIONSHIPS BETWEEN
UNDERPRODUCTION AND THREE PROJECT METRICS: FORMALITY, MMT,
AND MILESTONES. MODELS FOR Hp AND H¢c INCLUDE A CONTROL FOR
AGE WITH FACTOR VARIABLES; 0 TO 9 YEARS OLD IS THE BASELINE

CATEGORY.
(H 4) formality (Hp) MMT (H) milestones
(Intercept) —0.78* 1.65* —0.89*
[-1.27;-0.29] [0.06;3.25] [—1.32;—0.45]
Augmented formality 0.17*
[0.05; 0.29]
MMT —1.38*
[—2.21; —0.54]
Age 9-12y 0.07 0.27
[-0.53;0.67] [—0.33;0.88]
Age 12-15y 0.60* 0.79*
[0.01;1.18] [0.20;1.38]
Age 15-16y 1.15* 1.53*
[0.55;1.74] [0.96;2.11]
Milestone count 0.01
[—0.13;0.15]
R? 0.04 0.22 0.17
Adj. R? 0.04 0.20 0.15
Num. obs. 182 182 182

* Null hypothesis value outside the confidence interval.

A. Hy: Formality Score

We found a statistically significant relationship between
a project’s score and underproduction factor (p < .005).
However, the relationship between formality score and un-
derproduction was relatively small, where a unit increase in
formality score was associated with only a 0.17 increase in
underproduction factor. This result is evidence in favor of our
hypothesis H 4, higher formality is associated with increased
risk of underproduction.

The analysis reported in Table I uses the augmented for-
mality calculation in Equation 2, which enabled us to include
projects who did not use GitHub milestones, giving us a larger
sample size (n=182).

Using the original formulation of the formality score in
Equation 1 would have limited our analysis to projects whose
milestone counts are greater than zero; the sample size for this
model was 44. Testing H 4 using this alternate metric found

no statistically significant relationship between the score and a
project’s underproduction factor. Given our small sample, we
conducted a power analysis to assess the impact of sample
size in detecting an effect size of at least S = 0.00017
(this is the significant effect size of the augmented formality
score, but scaled commensurately with the original score’s
range.) To simulate our data, we assumed that the formality
score encapsulated other metrics such as MMT, milestones,
and age and that formality score data follow a beta(a:l,
(:3) distribution. After running 1000 simulations on data sets
of size 75, we are able to reject the null hypothesis. The
power analysis provides evidence that, to the extent that this
simulated pilot data is representative of the population, our
sample size is insufficient to conclude the original formality
score’s relationship to underproduction, and lends validity
to our decision to use the augmented formality calculation
displayed in Equation 2.

B. Hp: Concentration of Developer Responsibility

A linear regression model fit with MMT values indicated
strong statistical significance for a negative relationship be-
tween MMT and mean underproduction values, suggesting that
as the share of project developers who assume privileged roles
(MMT) increases, the factor of underproduction decreases.
The results are statistically significant (p < .002), where a unit
increase in MMT is associated with a 1.38 point decrease in
underproduction risk. This result is contrary to our hypothesis
Hp, and instead provides evidence that increasing dispersion
of responsibility is associated with lower underproduction risk,
rather than higher. The effect size (-1.38) is relatively large,
given that underproduction scores for our data only range
between -5.05 and 2.81, suggesting that this association is
also practically significant. Figure 1 displays the relationship
between projects’ MMT and mean underproduction factor.

C. Hg: Formal Work Process Management

A linear regression model fit with projects’ mean under-
production scores and project usage of GitHub milestones did
not point to a statistically significant relationship between the
two measures (p = 0.09). However, as with formality score,
a lack of significance may be due to our relatively small
sample size (n = 182). Thus we conducted a power analysis
simulation to assess whether we had sufficient observations
to detect an effect size of at least 5 = 0.40; a 5% impact
in underproduction factor within our data set. To simulate
our data, we transposed MMT into a 0-1 range, modeled the
measure’s established relationship of -1.38 units of underpro-
duction factor, and assumed MMT data follow a beta («:5,
(:1) distribution. From initial analysis of collected data, we
also assumed that milestone data follow a binomial distribution
with probability 0.247. Running 1000 simulations of data sets
of n=300 we were able to reject the null hypothesis. This
provides evidence that, to the extent that our pilot data and
simulation are representative of the population, our sample

Mean Underproduction Factor

Project Age Group L

0-9y ®e
9-12y

/ 12-15y

/ 15-16y

1.25 1.50 1.75 2.00

MMT

Fig. 1. Plot showing the relationship between projects’ MMT and mean
underproduction factor. Plotted lines are drawn from the results of our model
for Hp.

size is insufficient to conclude there is no meaningful rela-
tionship between formal work process management (GitHub
milestones) and underproduction.

V. DISCUSSION

Overall, our results paint a nuanced picture of the relation-
ship between formalization and underproduction in FLOSS
projects. Our analysis of formal structure (I 4) using the
augmented formality score showed that overall, more formal
structures were associated with a minor increase in underpro-
duction risk. These results support arguments from prior work
from Tamburri et al. [20] and De Stefano et al. [23] that formal
governance concentration is related to increased project risk.

However, our analysis of the distribution of privileged roles
across developers (Hp, using MMT) showed that an increase
in project developers with privileged roles is associated with
decreased underproduction risk. Examining the relationship
in Figure 1 suggests that this effect occurs when MMT is
especially high, given the relatively flat relationship when
MMT ranges between 0-1.75. One reason higher MMT may
be associated with lower underproduction risk may be that the
diffusion of privileged roles across more developers may in-
dicate higher commitment to the project overall. For example,
cursory analysis of project age shows a small positive relation-
ship between age and a project’s risk of underproduction. As a
package ages, not only is there a higher likelihood of software

adoption, there is also a higher likelihood of community
abandonment. While we cannot make any causal claims, our
results suggest the diffusion of project responsibility may
help reduce risk of community abandonment and thus, risk
of underproduction.

Finally, our analysis of formal work processes as captured
by project milestone usage did not yield statistically significant
results. However, our power analysis suggests that this was
due to sample size, and we believe this is a valuable direction
future work to better understand the effects of formalization.

VI. LIMITATIONS AND FUTURE WORK

In this project, we only examine Python projects which
are within the Debian distribution and for which an under-
production factor measure was available. Our analysis was
further limited to projects which are hosted on platforms
supporting our data collection approach (GitHub/GitLab);
while these platforms are widely used hosting platforms for
FLOSS projects, these limitations restricted our sample size
(n=182). Although our work offers insight into risk around
the widely-used Debian distribution, expanding this sample is
an important direction of future work. Moreover, the metrics
we employ do not account for longitudinal changes in project
governance; this remains a topic of further research.

VII. CONCLUSION

FLOSS organizations face numerous challenges as they
seek to mobilize volunteers to produce secure, high-quality
software. We examined three hypotheses about the impact
of formality on underproduction risk, finding that project
formality may be a relevant indicator of higher software risk,
that the diffusion of engineering responsibility was associ-
ated with lower risk, and that work product management is
an uncertain predictor. Taken together, these results suggest
governance informality and broader sharing of responsibility
are beneficial to FLOSS projects. Given the importance of
FLOSS across software ecosystems, unlocking the complex
relationship between FLOSS governance and underproduction
offers a new avenue for addressing the cybersecurity risks
facing digital infrastructure.

ACKNOWLEDGMENT

This work is indebted to the volunteer developers producing
FLOSS who have made their work available for inspection.
We also gratefully acknowledge support from the Sloan Foun-
dation through the Ford/Sloan Digital Infrastructure Initiative
(Sloan Award 2018-113560 and the National Science Foun-
dation (Grant 11S-2045055). This work was conducted using
research computing resources at Northwestern University.

REFERENCES

[1] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-
source software development: What we know and what we do not know,”
ACM Computing Surveys, vol. 44, no. 2, pp. 1-35, Feb. 2012.

[2] K. Champion and B. M. Hill, “Underproduction: An approach for
measuring risk in open source software,” in 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER). Honolulu, HI, USA: IEEE, Mar. 2021, pp. 388-399.
[Online]. Available: https://ieeexplore.ieee.org/document/9426043/

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

J. Walden, “The Impact of a Major Security Event on an Open Source
Project: The Case of OpenSSL,” in [7th International Conference
on Mining Software Repositories, ser. MSR ’20. New York, NY,
USA: Association for Computing Machinery, Jun. 2020, pp. 409—419.
[Online]. Available: http://doi.org/10.1145/3379597.3387465
“Log4Shell 10 days later: Enterprises halfway through patching,” Dec.
2021, publication Title: wiz.io. [Online]. Available: https:/www.wiz.io/
blog/10-days-later-enterprises- halfway-through-patching-log4shell
“CISA Open Source Software Security Roadmap,” Sep. 2023.
[Online]. Available: https://www.cisa.gov/resources-tools/resources/
cisa-open-source-software-security-roadmap

P. Krill, “Report finds few open source
projects actively maintained,” InfoWorld, Oct. 2023.
[Online]. Available: https://www.infoworld.com/article/3708630/
report- finds-few-open-source-projects-actively-maintained.html

Y. Benkler, The wealth of networks: How social production transforms
markets and freedom. New Haven, CT: Yale University Press, 2006.
——, “Coase’s penguin, or, Linux and the nature of the firm,” Yale
Law Journal, vol. 112, no. 3, pp. 369-446, 2002. [Online]. Available:
http://www.jstor.org/stable/1562247

——, “Peer production, the commons, and the future of the firm,”
Strategic Organization, vol. 15, no. 2, pp. 264-274, May 2017.
[Online]. Available: https://doi.org/10.1177/1476127016652606

X. Yin and E. J. Zajac, “The strategy/governance structure fit
relationship: theory and evidence in franchising arrangements,” Strategic
Management Journal, vol. 25, no. 4, pp. 365-383, 2004. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smj.389

J. W. Meyer and B. Rowan, “Institutionalized organizations: Formal
structure as myth and ceremony,” American Journal of Sociology,

vol. 83, no. 2, pp. 340-363, Sep. 1977. [Online]. Available:
http://www.jstor.org/stable/2778293

K. Healy and A. Schussman, “The Ecology
of Open-Source Software Development,” 2003.
[Online]. Available: https://www.semanticscholar.org/paper/

The-Ecology- of-Open- Source- Software- Development- Healy- Schussman/
9abecf8dfccfa2 1b20bb931fc63c161752b50181

E. Ostrom, Governing the Commons: The Evolution
Institutions for Collective Action, ser. Canto Classics. Cam-
bridge: Cambridge University Press, 2015. [Online]. Avail-
able: https://www.cambridge.org/core/books/governing-the-commons/
A8BB63BC4A1433A50A3FB92EDBBB97D5

S. Hwang and A. Shaw, “Rules and Rule-Making in the Five Largest
Wikipedias,” Proceedings of the International AAAI Conference on
Web and Social Media, vol. 16, pp. 347-357, May 2022. [Online].
Available: https://ojs.aaai.org/index.php/ICWSM/article/view/19297

A. Shaw and B. M. Hill, “Laboratories of oligarchy? How the
iron law extends to peer production,” Journal of Communication,
vol. 64, no. 2, pp. 215-238, 2014. [Online]. Available: http:
/lonlinelibrary.wiley.com/doi/10.1111/jcom.12082/abstract

P. Tourani, B. Adams, and A. Serebrenik, “Code of conduct in open
source projects,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb. 2017,
pp. 24-33. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/7884606

P. B. de Laat, “Governance of open source software: state of the art,”
Journal of Management & Governance, vol. 11, no. 2, pp. 165-177,
May 2007, tex.ids= noauthor_notitle_nodate-1. [Online]. Available:
https://doi.org/10.1007/s10997-007-9022-9

Y. Jiang, B. Adams, and D. M. German, “Will my patch make
it? And how fast? Case study on the Linux kernel,” in 2013
10th Working Conference on Mining Software Repositories (MSR),
May 2013, pp. 101-110, iSSN: 2160-1860. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6624016

S. Onoue, H. Hata, and K. Matsumoto, “Software population pyramids:
the current and the future of OSS development communities,” in
Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’14.
New York, NY, USA: Association for Computing Machinery, Sep. 2014,
pp. 1-4. [Online]. Available: https://doi.org/10.1145/2652524.2652565
D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational social
structures for software engineering,” ACM Computing Surveys,
vol. 46, no. 1, pp. 3:1-3:35, Jul. 2013. [Online]. Available:
https://dl.acm.org/doi/10.1145/2522968.2522971

of

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]

[37]

D. A. A. Tamburri, F. Palomba, and R. Kazman, “Exploring Community
Smells in Open-Source: An Automated Approach,” IEEE Transactions
on Software Engineering, pp. 1-1, 2019.

J. van Meijel, “On the Relations Between Community Patterns and
Smells in Open-Source: A Taxonomic and Empirical Analysis,” Master’s
thesis, Eindhoven University of Technology, Eindhoven, NL, Oct. 2021.
M. De Stefano, E. Iannone, F. Pecorelli, and D. A. Tamburri, “Impacts
of software community patterns on process and product: An empirical
study,” Science of Computer Programming, vol. 214, p. 102731,
Feb. 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167642321001246

K. Finley, “For Open Source, It’s All About GitHub Now,”
Wired, Apr. 2019. [Online]. Available: https://www.wired.com/story/
open-source-all-about- github-now/

Y. Zhang, H. Wang, Y. Wu, D. Hu, and T. Wang, “GitHub’s milestone
tool: A mixed-methods analysis on its use,” Journal of Software:
Evolution and Process, vol. 32, no. 4, p. €2229, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2229

L. Yin, Z. Chen, Q. Xuan, and V. Filkov, “Sustainability forecasting
for Apache incubator projects,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE 2021. New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 1056-1067. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3468264.3468563

K. Crowston and J. Howison, “Assessing the health of open source
communities,” IEEE Computer, vol. 39, no. 5, pp. 89-91, 2006.

L. Yin, M. Chakraborti, Y. Yan, C. Schweik, S. Frey, and V. Filkov,
“Open Source Software Sustainability: Combining Institutional Analysis
and Socio-Technical Networks,” Proceedings of the ACM on Human-
Computer Interaction, vol. 6, no. CSCW2, pp. 1-23, Nov. 2022.
[Online]. Available: https://dl.acm.org/doi/10.1145/3555129

S. Spaeth, M. Stuermer, S. Haefliger, and G. von Krogh, “Sampling in
Open Source Software Development: The Case for Using the Debian
GNU/Linux Distribution,” in 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07). Waikoloa, HI: IEEE, Jan.
2007.

M. O’Neil, Cyberchiefs: autonomy and authority in online tribes.
London ; New York : New York: Pluto Press ; Distributed in the United
States of America exclusively by Palgrave Macmillan, 2009.

B. M. Sadowski, G. Sadowski-Rasters, and G. Duysters, “Transition of
governance in a mature open software source community: Evidence from
the Debian case,” Information Economics and Policy, vol. 20, no. 4, pp.
323-332, Dec. 2008.

R. Nguyen and R. Holt, “Life and death of software packages: An
evolutionary study of Debian,” in Proceedings of the 2012 Conference
of the Center for Advanced Studies on Collaborative Research, ser.
CASCON ’12. Toronto, Ontario, Canada: IBM Corp., Nov. 2012, pp.
192-204.

L. Nussbaum and S. Zacchiroli, “The Ultimate Debian Database: Con-
solidating bazaar metadata for Quality Assurance and data mining,” in
2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). Cape Town, South Africa: IEEE, May 2010, pp. 52-61.
S. Dueiias, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona,
“Perceval: software project data at your will,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. Gothenburg Sweden: ACM, May 2018, pp. 1-4.
[Online]. Available: https://dl.acm.org/doi/10.1145/3183440.3183475

G. Catolino, F. Palomba, and D. A. Tamburri, “The Secret Life of
Software Communities: What we know and What we Don’t know,”
Proceedings of the 18th Belgium-Netherlands Software Evolution Work-
shop,, 2019.

W. Mauerer, M. Joblin, D. A. Tamburri, C. Paradis, R. Kazman, and
S. Apel, “In Search of Socio-Technical Congruence: A Large-Scale
Longitudinal Study,” IEEE Transactions on Software Engineering,
vol. 48, no. 8, pp. 3159-3184, Aug. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9436025/

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: Association for Computing
Machinery, May 2014, pp. 345-355. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2568225.2568260

