
State Machine Mutation-based Testing Framework for Wireless
Communication Protocols

Syed Md Mukit Rashid
The Pennsylvania State University
University Park, PA, United States

szr5848@psu.edu

Tianwei Wu
The Pennsylvania State University
University Park, PA, United States

tvw5452@psu.edu

Kai Tu
The Pennsylvania State University
University Park, PA, United States

kjt5562@psu.edu

Abdullah Al Ishtiaq
The Pennsylvania State University
University Park, PA, United States

abdullah.ishtiaq@psu.edu

Ridwanul Hasan Tanvir
The Pennsylvania State University
University Park, PA, United States

rpt5409@psu.edu

Yilu Dong
The Pennsylvania State University
University Park, PA, United States

yiludong@psu.edu

Omar Chowdhury
Stony Brook University

Stony Brook, NY, United States
omar@cs.stonybrook.edu

Syed Ra�ul Hussain
The Pennsylvania State University
University Park, PA, United States

hussain1@psu.edu

ABSTRACT
This paper proposes Proteus, a protocol state machine, property-
guided, and budget-aware automated testing approach for discov-
ering logical vulnerabilities in wireless protocol implementations.
Proteus maintains its budget awareness by generating test cases
(i.e., each being a sequence of protocol messages) that are not only
meaningful (i.e., the test case mostly follows the desirable protocol
�ow except for some controlled deviations) but also have a high
probability of violating the desirable properties. To demonstrate
its e�ectiveness, we evaluated Proteus in two di�erent protocol
implementations, namely 4G LTE and BLE, across 23 consumer de-
vices (11 for 4G LTE and 12 for BLE). Proteus discovered 25 unique
issues, including 112 instances. A�ected vendors have positively
acknowledged 14 vulnerabilities through 5 CVEs.

CCS CONCEPTS
• Security and privacy!Mobile and wireless security.

KEYWORDS
Property Guided Testing, Finite State Machine, 4G LTE, Bluetooth

ACM Reference Format:
Syed Md Mukit Rashid, Tianwei Wu, Kai Tu, Abdullah Al Ishtiaq, Rid-
wanul Hasan Tanvir, Yilu Dong, Omar Chowdhury, and Syed Ra�ul Hus-
sain. 2024. State Machine Mutation-based Testing Framework for Wire-
less Communication Protocols. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3690312

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690312

1 INTRODUCTION
Due to the pervasiveness and broadcast-based over-the-air (OTA)
communication, wireless protocols (e.g., BLE, LTE, Wi-Fi) are at-
tractive targets for attackers, especially because vulnerabilities in
them can be used as a stepping stone by adversaries to launch at-
tacks against applications relying on them. Software testing has
proven to be the most e�ective and dominant approach for ensuring
the correctness of wireless protocol implementation by uncovering
bugs in the pre-deployment stages. This paper focuses on designing,
developing and evaluating an automated testing approach called
Proteus for uncovering logical/semantic vulnerabilities in wireless
protocol implementations [28, 30, 31, 56, 65, 68, 69]. The class of log-
ical bugs we focus on is only those that induce the implementation
to deviate from the intended design without necessarily causing a
crash. Such logical bugs are not only challenging to discover but
also often have severe security and privacy implications (e.g., au-
thentication bypass) and go undiscovered during pre-deployment
stage testing. These classes of bugs are the focus of this paper.

Any testing approaches focusing on discovering such logical
bugs in commercial-o�-the-shelf (COTS) wireless protocol imple-
mentations must be aware of the following salient aspects. ¨ COTS
implementations are typically closed-source and expose only their
input-output interfaces, making them only amenable to black-box
testing. ≠ Wireless protocols are often stateful. Consequently, trig-
gering a vulnerability amounts to injecting the right protocol packet
type and payload only when the protocol is in a speci�c internal
protocol state. In addition, driving the implementation to the bug-
triggering state may require a long sequence of protocol packets. Æ
When executing a test case, the target device’s protocol under test
has to be in the initial state. After running each test case, the device
thus has to be reset. This results in a very high and �xed amortized
cost of running a single test case over-the-air (e.g., ⇠1.5 minute for
BLE), limiting the number of test cases executable within a given
time budget. Given a �xed testing budget, it is therefore crucial
that the test cases used are not wasted and indeed meaningful,
that is, they have a high probability of exercising the bug-inducing
behavior in the implementations.

https://doi.org/10.1145/3658644.3690312
https://doi.org/10.1145/3658644.3690312

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Existing research e�orts that specialize in black-box testing of
wireless communication protocol implementations can be catego-
rized into the following high-level categories: (A) Manual analy-
sis or �xed test case-based approaches [10, 47, 60, 61]; (B) Reverse
engineering-based approaches [24, 26, 38, 43, 54, 66]; (C) State ma-
chine learning-based approaches [17, 23, 32, 36, 48]. Approaches in
categories (A) and (B) are either unscalable due to manual e�ort
or ine�ective in identifying intricate bugs in complex and stateful
protocols that require long execution packet traces to be exercised.
Category (C) approaches can address both aspects ¨ and ≠, but fail
to address Æ. Among the category (C) approaches the ones that rely
on automata learning [32, 36] need to run a large number of over-
the-air (OTA) queries to obtain the protocol state machine before
testing can commence, hence their testing-budget agnosticism.

Furthermore, many of the above approaches rely on di�erential
testing, in which diverse implementations-under-test (IUT) are used
as cross-checking test oracles to �nd logical vulnerabilities. However,
these oracles are inherently unfaithful as test oracles because they
all can su�er from the same logical vulnerability. Finally, most
fuzzing techniques [19, 22, 42] only implicitly consider a testing
budget. They aim to e�ectively use the given testing budget in
terms of the number of vulnerabilities discovered by attempting
to minimize the execution time of each test case while also taking
guidance from some rich forms of coverage information (e.g., code
coverage). However, in a testing setup like ours, where the cost
of running each test case cannot be substantially minimized and
the availability of coverage information is limited, the existing
philosophy of decreasing the execution time of each test case cannot
be e�ectively adopted. In summary, none of the current approaches
suit our testing setup and thus warrant a new testing philosophy.

Weaddress the above limitations by designing an adaptive testing-
budget-aware, stateful, black box testing approach called Proteus
for COTSwireless protocol implementations. Concretely, Proteus’s
testing philosophy takes advantage of the following three obser-
vations. ∂ Since COTS devices generally pass through a quality
assurance stage where they are tested for conformance and in-
teroperability, undiscovered bugs are more likely to occur when
implementations subtly deviate from rare but good protocol �ows.
As such, a test case is meaningful if it mostly adheres to a desired
protocol message sequence (e.g., sending protocol messages only
after the initial connection request message), except for some con-
trolled perturbations. ∑ Any testing-budget-aware approach will
be e�ective only if it reduces test case wastage by generating only
meaningful test cases that have a high probability of triggering
logical vulnerabilities within the given budget. ∏ The number of
possible meaningful test cases depends on the amount of perturba-
tion and the maximum length we allow. We can adapt an approach
to maximize vulnerability discovery within a given testing budget
if they can be explicitly controlled.

Proteus takes three inputs for generating test cases, namely,
a guiding protocol state machine M, a set of desirable security
and privacy properties � expressed in past-time linear temporal
logic formulae, and a testing budget V . Proteus relies onM, either
derived from the standard [7, 45] or extracted from an implemen-
tation [27, 62], to ensure that the generated test cases are indeed
meaningful. Proteus generates test cases through controlled per-
turbation overM, thus mostly capturing good protocol behavior

(realization of observation ∂). Similarly, any property i of the pro-
tocol under test guides Proteus to only generate test cases likely to
trigger violation of i (realization of observation ∑). The set of prop-
erties � serves not only as a faithful test oracle but also liberates
Proteus from needing to have access to diverse implementations
of the same protocol to test a single protocol implementation. Fur-
thermore, the number of test cases to be generated by Proteus is
explicitly controlled by the testing budget parameter V . It achieves
budget-awareness by controlling the maximum size of a test case
(i.e., the length of the message sequence) and the number of per-
turbations to be applied in a good protocol �ow for generating test
cases (realization of observation ∏). In addition, as discussed in
∂, the number of mutations one needs to consider (given by V)
need not be large. This observation is corroborated by our �ndings,
where most vulnerabilities are discovered by considering only 2
mutations ofM.

Conceptually, Proteus’ design is inspired by mutation-based
testing, where the guiding protocol state machine M is mutated to
obtain another state machineM⇤ such thatM⇤ violates i . If the
implementation under test is equivalent to M⇤, we can automati-
cally obtain the vulnerability’s root cause by tracking the mutation
applied to M for obtaining M⇤. Proteus realizes this conceptual
design through a novel three-stage approach. First, Proteus uses a
novel algorithm to automatically synthesize test case templates that
are guaranteed to violate i . Second, Proteus instantiates these
test case templates using a dynamic programming algorithm for
the given M, i and V (i.e., the maximum length of the message
sequence and the number of allowed mutations fromM). Finally,
Proteus e�ciently schedules, concretizes, and executes the instan-
tiated test cases OTA. Proteus analyzes the output generated by
the implementation to discover logical vulnerabilities.

To demonstrate the e�cacy of Proteus, we have tested several
protocol implementations of two popular wireless communication
protocols: 4G LTE cellular network and Bluetooth Low Energy
(BLE). For 4G LTE, we have tested 11 devices and identi�ed 10
issues, including 3 new ones. For BLE, we have tested 12 devices
and identi�ed 15 issues, including 7 new ones.

In summary, this paper makes the following contributions.
• We developed Proteus, which is an e�cient, a black box, proto-
col state machine and property-guided, budget-aware automated
testing approach for discovering logical vulnerabilities in wire-
less protocol implementations.

• We developed two novel algorithms that cooperatively generate
meaningful test case templates that are likely to violate a given
set of security properties under the guidance of a state machine.

• We developed an e�ective dispatcher that e�ciently schedules
test cases for maximizing the number of property violations
within the allocated testing budget, issues OTA test cases to the
devices and analyzes the output to �nd logical vulnerabilities.

• We evaluated Proteus on LTE and BLE to determine its e�cacy.
It identi�ed 3 new issues in 11 LTE implementations and 7 new
issues testing on 12 BLE implementations.

Responsible disclosure. We have responsibly reported all of our
new �ndings to the a�ected vendors. For BLE, the vendors ac-
knowledged 11 issues and assigned 3 CVEs; for LTE, the vendors
acknowledged 3 issues with 2 CVEs. The source code of Proteus
is available at [1].

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2 PRELIMINARIES AND NOTATIONS
Protocol statemachine (PSM).A protocol model or state machine
(PSM) M is a tuple hQ, ⌃,⇤,@8=8C ,Ri, in which Q is a non-empty
set of states, ⌃ is the non-empty �nite set of input symbols, ⇤ is
the non-empty �nite set of output symbols, @8=8C ✓ Q is the initial
state, and R is the transition relation R ✓ & ⇥ ⌃ ⇥ ⇤ ⇥ & . Given
a transition h@1,U,W,@2i 2 R, it signi�es that if the protocol is in
state @1 2 Q and receives the input symbol U , then it will transition
to state @2 and will generate the output symbol W . We consider this
reception of input U and generation of output W as the observation
of the transition from @1 to @2.

The input and output alphabets ⌃ and ⇤ in our description are
intentionally left to be abstract. In our context, ⌃ can be viewed
as the cross-product of all the input message types and predicates
over the input message �elds. Similarly, ⇤ can be de�ned as the
cross-product of all the output message types and predicates over
them. For example, the input symbol ��������_����_�������: ���������
== 1 � EIA == 1 � ��������_������ == 3 denotes the ��������_����_�������
message, with the predicate ��������� == 0 denoting the message is
not integrity protected, ��������_������ == 3 denoting the security
header �eld value of the message is set to 3, and EIA == 1 denoting
the EIA algorithm �eld is set to 1.
Trace.A trace c is a sequence of the form [U1/W1,U2/W2, . . . ,U:/W:]
whereU8 2 ⌃ andW8 2 ⇤. In our context, c signi�es a protocol execu-
tion in which the protocol implementation is fed the input symbols
[U1,U2, . . . ,U:], and it generates the output symbols [W1,W2, . . . ,W:].
For instance, consider the trace c⇤ in BLE [����_���/ ����_����, ���_���/
����_������, �������_���: ���_��==0/ �������_����, ����_���: ��==1/ ����_����,
���_�������� / ���_ ��������]. In c⇤, ����_��� has been �rst sent to
the IUT that responds with ����_����. Then, ����������_ ������ is
sent, to which the response is ����_������ (i.e., the IUT does not
generate an output). After that, the response to �������_������:���_��
== 0 is �������_������:���_�� == 0, and so on. The length of trace c
is denoted by |c |. The 8th element of c is denoted with c8 (where
0  8 < |c |). “·” represents the concatenation of two traces. As an
example, [U/W] · c1 denotes a trace obtained by prepending the
trace with a single observation U/W to trace c1.

3 MOTIVATION OF PROTEUS
We �rst review the unique challenges of testing COTS wireless pro-
tocol implementations and then use a running example to motivate
Proteus’s design choices.
Closed-source implementations. As COTS wireless devices tend
to be closed-source, any testing approach relying on some level of
access to the source code (white box or gray box) is inapplicable,
warranting a black box testing approach which Proteus follows.
Need for a faithful test oracle. Crashing behavior can serve as
a protocol-agnostic universal symptom for memory-related bugs.
In contrast, semantic or logical bugs require a faithful test oracle
to accurately adjudicate the correct behavior for a given test case.
Proteus uses a set of security properties collected from RFCs/spec-
i�cations as faithful oracles. If a property is violated, Proteus
directly concludes that it is a logical vulnerability.
Protocol statefulness. Statefulness of wireless protocols intro-
duces the following challenges: (1) Analysis mechanisms must be
aware of the underlying protocol state. (2) The protocol behavior

q0 q1 q2 q3 q4 q5040 00A

00?

0B< 0AB

083

03A

0B<

062

0BA 0

06A 0

002

Figure 1: A partial LTEprotocol statemachine used as guiding
PSM for running example. The transition labels are presented
in Table 1, with red transitions indicating mutations.

depends on both the current state and the current protocol packet.
(3) Triggering a bug may require driving the target protocol imple-
mentation in a particular protocol state. This may require sending a
long sequence of messages to the IUT (to reach the bug-triggering
state) before we can inject the bug-triggering packet. (4) Due to
2 and 3, the universe of test cases is potentially in�nite. A naive
sampling of this in�nite test case universe is unlikely to be e�ective
for a given testing budget. Proteus, therefore, uses guidance from
both the PSM and properties to e�ciently sample meaningful test
cases that will likely trigger a vulnerability.
High cost of running a test case. Because of protocol statefulness,
any previous test case may drive the protocol to an unknown state
for which the test oracle does not know the correct behavior. If a
protocol does not have a known homing sequence [63], one has to
reset the device’s state machine either using a sequence of OTA
messages or reboot the device. Also, after sending each protocol
message in a test case, the tester has to wait a certain time to check
whether the message induces a device crash. The resets and device
responsiveness checks substantially increase the amortized cost
of executing a single test case. As an example, it takes up to ⇠1.5
minutes in BLE and ⇠1 minute in LTE to run a test case containing
⇠6�8 messages. The high execution cost signi�cantly slows the
overall testing speed and allows testing only a limited number of test
cases within a given time budget. Failing to explore more protocol
behavior within a speci�c time results in fewer bug detections.
Testing budget awareness. Traditional fuzzing approaches for
general-purpose systems implicitly consider a testing budget. They
try to accelerate the discovery of security vulnerabilities through
di�erent mechanisms such as enhancing code coverage [14, 40, 72],
optimizing the search space of test messages [19], adopting e�-
cient scheduling mechanisms [42], increasing testing speed [70],
or improving discovery of execution paths [22]. However, these
approaches have no explicit mechanism to adapt their test case
generation according to the available testing budget. In contrast,
Proteus explicitly respects the testing budget. It leverages a guid-
ing PSM and input properties and explicitly controls the mutation
amount and length of the test cases to generate meaningful test
cases that can be executed within the available time budget.

3.1 Running Example
To justify the approach taken by Proteus, we consider a running
example using 4G LTE.
Guiding PSM. The partial PSM used in this example, as shown in
Figure 1, is extracted from the LTE NAS layer protocol speci�cation.
Table 1 explains the transition labels of the guiding PSM. Some
errors are introduced intentionally (red transitions) in guiding PSM.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 1: Transition labels (i.e., input and output symbols) in
the guiding PSM.
Symbol Description
040 ������_�1 / ������_������
00A ��������������_������ / ��������������_��������
0B< ��������_����_������� / ��������_����_��������
083 ��������_������: ��������� == 1 � ��������_���� == 1/ �����

����_��������
03A ������_������ / ������_������
0AB ���_��������_����_������� / ���_��������_����_��������
002 ������_������ / ������_��������
062 ����_������������_������� / ����_������������_��������
06A 0 ����_������������_�������: ������ == 1 / ����_������������_��������
0BA 0 ��������_����_�������: ������ == 1 / ��������_����_��������
00? ������_������: ��������� == 0 � ������ == 0 � ��������_ ������ _����

== 0/ ����_������
00?0 ������_������: ��������� == 0 � ������ == 0 � ��������_ ������ _����

== 4/ ������_��������

Table 2: Sequences (test traces) considered for the running
example in Figure 1.

ID Sequence
S0 040,00A ,0B<,083
S1 040,00A ,0B<,083 0083 0083 0

S2 040,00A ,0B<,03A03A03A ,002 ,062 ,06A 0
S3 040,00A ,0B<,0AB ,002 ,062 ,0BA 00BA 00BA 0 ,06A 006A 006A 0

Desirable property. The security property of interest in this ex-
ample is the following. q6 : “After successfully completing the at-
tach procedure, a replayed GUTI Reallocation Command message
should not be accepted.” This property prevents an attacker from per-
forming linkability attacks by violating the freshness of a device’s
ephemeral identity (i.e., GUTI). Violating this property enables an
adversary to launch an attack in which they send a previously cap-
tured ����_������������_������� message intended for the victim to
all devices in a cell. If the victim device violates the above property
and is present in that cell, it will respond positively, whereas others
will just respond with a rejection. In this way, the adversary can
test the presence of a victim in a cell.

3.2 Bene�t of Having PSM and Properties
Before explaining the advantage of having access to both a guiding
PSM and desirable security properties for generating meaningful
test cases within a testing budget, we �rst explainwhy any approach
having access to just one of these is unlikely to be as e�ective.
Why is guiding PSM not enough? Consider a PSM-guided test-
ing approach that mutates a trace adhering to the protocol �ow to
generate a test case. However, this approach does not guarantee
that the mutated test case will violate q6; wasting a test case. As
an example, consider a good protocol �ow sampled from the PSM
denoted as S0 in Table 2. Suppose we mutate S0 by adding a muta-
tion on the ��������_������ message to generate the test case S1 in
Table 2. S1 clearly does not violate the property as it does not even
include the ����_������������_������� message, let alone its replay.
Why are properties not enough? Access to properties, however,
ensures that such blatantly vacuous test cases like S1 are not gener-
ated. Considering the property q6 , one can automatically generate
test skeletons that are guaranteed to violate it. One such test skeleton
or template (expressed as a regular expression for ease of exposi-
tion) is f6 = (.)⇤a0A (.)⇤aB< (.)⇤a02 (.)⇤a62 (.)⇤a6A 0 where wildcard

Deviation
w.r.t Guiding PSM

Unresponsive

Specifications

TraceDispatcherGuiding PSM

Property Violation

RegexGenerator

Security
Properties

Trace
Skeletons

TraceBuilder

Test
Traces

Scheduler Adapter
OTA

Testing

Observer

Feedback
Selected

Trace

Figure 2: Overview of Proteus.

characters signify that they can be replaced with 0 or more occur-
rences of any input symbols, and still result in a q6-violating test.
f6 captures the necessary messages to violate q6 , with wildcard
characters allowing other protocol messages. Suppose we instan-
tiate f6 by replacing wildcard characters with arbitrary concrete
symbols. Without any knowledge of a typical good protocol �ow,
we may obtain instantiated test case S2 (see Table 2) which violates
q6 . However, any practical protocol implementation would most
likely reject this trace since 03A will discard the NAS security con-
text and the subsequent messages of S2 will be dropped. Also, a
successful RRC security context 0AB is not performed, preventing
the completion of the attach procedure. Such blind instantiations
of wildcard characters to generate a test case will likely result in
meaningless test cases that the IUT will reject, wasting test cases.
Advantage of Proteus’ approach. Proteus takes advantage of
the strengths of both PSM-guided and property-guided approaches.
The main insight Proteus uses is that after a trace skeleton like
f6 is created, it does not blindly instantiate the wildcard characters
and instead relies on the PSM for guidance on instantiating these
free choices. When instantiating these open choices, it does not
necessarily follow the PSM exactly but also includes controlled
deviations. For example, using the PSM, Proteus would instantiate
f6 and generate a test case S3, which not only violates q6 but also
have a higher chance of being accepted by a buggy implementation
as it closely follows a good protocol �ow.

4 DESIGN OVERVIEW AND CHALLENGES
4.1 Proteus Overview
Given a set of desired properties � = {q1,q2, . . . ,q=}, a (potentially,
standard-prescribed) guiding PSM M of a protocol % , a testing
budget V , and an implementationI% of the protocol % under test (i.e.,
IUT), Proteus aims to identify execution traces c2 of I% such that
it falsi�es one or more desired properties q8 2 � while receiving
guidance from M and � in time proportional to V . V is of the
form h_, `i in which _ denotes the maximum length budget (i.e.,
the number of input symbols in a test case) and ` represents the
mutation budget (i.e., the maximum number of places a test case
can deviate from a good protocol �ow). Figure 2 presents the high-
level overview of Proteus. The full pseudocode of Proteus’s test
generation is presented in our extended paper [53]. Conceptually,
for each property q8 2 �, Proteus carries out the following steps.

(1) Test skeleton generation. Proteus uses itsRegExGenerator
to generate a test skeleton denoted as a regular expression (RE) for
q8 . This test skeleton is an abstract execution/trace c0 of the proto-
col under test guaranteed to violate q8 . Some positions of c0 have
speci�c input symbols, whereas others have wildcard characters.

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

One can instantiate wildcards with input symbols and still violate
q8 . Based on V , Proteus will generate multiple such test skeletons.

(2) Instantiating test skeletons. In this step, Proteus instan-
tiates the abstract trace c0 , especially in unrestricted positions
(represented with wildcard characters) with speci�c input symbols
under the guidance ofM while respecting the budget V . Based on V ,
Proteus will generate multiple instantiated test cases c2 , contain-
ing input symbols in all positions with no wildcard characters, and
store them in TestTraceSet. Guidance fromM is crucial to ensure
that any generated instantiated trace is indeed meaningful.

(3) Dispatching test cases. Proteus then takes each instanti-
ated c2 , schedules it, and then prepares OTA protocol packets for
each input symbol. It then sends the resulting concrete protocol
packets contained in this concretized test case OTA to I% .

(4) Vulnerability detection and reporting. If I% accepts the
concretized test case executed OTA, then it signi�es a vulnerability.
In such a case, the test case is stored, and a vulnerability is reported.

4.2 Challenges and Insights
Realizing Proteus’ approach requires tackling the following chal-
lenges. We address the challenges with the outlined novel insights.
o Challenge C1: Synthesizing test skeletons from proper-
ties. Proteus takes the desired properties as past linear temporal
logic (PLTL) formulae. We, therefore, �rst require to generate test
skeletons that are guaranteed to violate a property. Also, we need
a succinct representation for test skeletons.
Insight I1. We use regular expressions (REs) as our succinct in-
termediate representation of a property-violating test skeleton. RE
is not only expressive enough to capture the temporal ordering in
a PLTL formula but also can represent logical dependencies. This
leads to the following research question: how does one generate c0

in regular expression format from a PLTL formula automatically?
To answer this, we observe that a PLTL expression contains

logical (e.g., AND operator) and temporal (e.g., SINCE operator) op-
erators. Logical operators of the PLTL formula express constraints
over its operands for any c0 expressing the violation of the PLTL
expression q . In contrast, temporal operators express constraints
over their operands in a range of positions in c0 . An abstract syntax
tree (AST) e�ectively expresses the relation between an operator
and its operands, and its leaves are propositions required to obtain
the input symbol or wildcard characters in c0 . Proteus parses
the AST of the PLTL formula and leverages the PLTL operator
semantics to non-deterministically generate a trace skeleton c0 .
o Challenge C2: Instantiating abstract test skeletons using
guiding PSM. The next challenge is to instantiate the abstract test
skeleton c0 to a test case c2 while taking guidance from the PSM.
We assume that the guiding PSM satis�es all security properties.
In contrast, property-violating traces will likely be present when
implementations subtly deviate from the standard. As such, we opt
to perform mutations on the guiding PSM and generate traces to
instantiate the abstract test skeleton.

However, if we perform too many mutations on the guiding PSM
M, we will generate traces that substantially deviate from the stan-
dard, which are unlikely to trigger any vulnerabilities. In contrast,
if we perform too few mutations, we may miss some vulnerabilities
that require more mutations to identify (e.g., generating a test trace

that detects the GUTI reallocation replay attack in LTE requires
two mutations). Thus, we need to vary the amount of mutation `
within a range of values.

Similarly, generating arbitrarily long traces negatively impacts
testing. Long traces likely repeat the same states and transitions,
making it unlikely to uncover new vulnerabilities. Even worse,
excessively long traces takes signi�cantly more time to test OTA,
ultimately wasting our testing budget. In contrast, we need our test
traces to be at least as long as the number of literals in the trace
skeleton c0 to generate a trace that satis�es c0 . We also require
a slightly longer trace to visit extra states and uncover potential
property violations. Thus, similar to mutations, we need to vary
the length of the generated traces _ within a range of values.

Finally, for a given test skeleton c0 , the challenge is to design an
automatic approach to generate instantiated traces c2 that would
(1) satisfy the abstract test skeleton c0 , (2) align with the guiding
PSM I% , (3) ensure that each generated instantiated trace c2 require
at most ` mutations onM, and (4) maintain a maximum length of _.
For example, consider the guiding PSM in Figure 1 and the property
q6 provided in Section 3. A trace skeleton that violates q6 is f6 ,
and S3 (shown in Table 2) is a test trace that satis�es f6 . S3 aligns
withM within 2 mutations (i.e., it would satisfy any requirement
of ` >= 2). The mutations are marked bold in Table 2. Also, S3 is
of length 8 and thus satis�es any length requirement of _ >= 8.
Insight I2.We observe that we can solve the problem of generating
test cases described above by combining overlapping subproblems
originating from destination states @= (@= 2 M) of the outgoing
transitions of a particular state @2 . The solution of the subprob-
lems will produce traces by using mutations wherever necessary
to satisfy some su�x of c0 starting from state @= . By prepending
an observation (depending on c0) to these traces, we can gener-
ate traces originating from @2 that satisfy c0 within the speci�ed
mutation and length budget. For example, in Figure 1 if we have
that trace c: = 00A0B<0B<0AB0020620B<006A 0 that satis�es f6 from
state @1, and append observation 040 (obtained from the transition
from @0 to @1) to this trace, we will obtain trace S3 shown in Table
2. S3 satis�es f6 from @0 and requires the same amount of mutation
but has one length more than c: . Also, consider two subproblems
involving two transitions with the same observation and destina-
tion state but di�erent source states. We want to satisfy the same
trace skeleton with the same budget. Then, any trace obtained from
the �rst subproblem will also be a solution for the second sub-
problem. Thus, the subproblems exhibit overlapping characteristics
and Proteus adopts a dynamic programming-based solution to
generate test cases.
o Challenge C3: Arbitrary mutations miss logical vulnerabil-
ities. As discussed in challenge C2, one must perform mutations
on the PSM to increase the chance of triggering security property
violations. To mutate a PSM, we must select a transition and alter
it, i.e., its input, output, or destination state. At any protocol state,
randomly selecting a transition to mutate is less likely to violate
the given property since it would not be property-driven. Similarly,
even after selecting a transition to mutate, randomly altering the
input message or output message of the transition at the bit/byte
level, like traditional fuzzers [4, 20], would also be ine�cient since
it does not consider the semantic meaning of the message �elds (i.e.,
byte o�set and boundary of each message �eld), the given security

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 3: Simple scheduling example for insight I4.
Test case

ID
Properties
Violated

Average States
Covered

No. of Deviations
Covered

Selection
Order

c1 q1 5 2 1
c2 q1 5 1 x
c3 q1 5 0 x
c4 q2 3 2 2

property, and the current protocol state. Although grammar-guided
fuzzers [5] o�er semantic meaning-aware mutations, they do not
consider the property being tested and the current state of the pro-
tocol while selecting a message to mutate. Such mutation schemes
are less likely to generate mutated messages that violate a given
security property. Therefore, an e�ective mutation scheme should
(i) consider the security property being tested while selecting a
transition and (ii) consider the semantic meaning of a message,
the given property, and the current protocol state while mutating
a selected message (i.e., have a clever choice to �ll the wildcard
characters of the test skeleton c0).
Insight I3. To address challenge C3, we consider selecting a tran-
sition to mutate M with a goal to generate traces satisfying test
skeleton c0 . Such a mutation scheme is property driven since we
aim to satisfy c0 , which signi�es the violation of its corresponding
security property. Also, while mutating any transition in M, we
consider mutating a transition’s observation or destination state.
Mutating the observation may uncover improper handling of pro-
hibited messages. In contrast, mutating the destination state may
uncover certain bypass attacks since these attacks represent skip-
ping certain intermediate states to reach a secure state in protocol
registration/authentication procedures. Moreover, to perform a mu-
tation over the input message, we consider performing operations
on it that are semantic aware (e.g., understanding �eld boundaries
of any message �eld), state aware (e.g., setting �eld values within
or outside a de�ned range according to the current protocol state)
and also property driven (e.g., creating a plaintext version of a mes-
sage to test at a security context established state, considering the
property that plaintext messages should be dropped at such a state).
Consequently, our mutation scheme is more likely to uncover a
violation of the given security property than other existing works.
o Challenge C4: Arbitrarily scheduling the properties and
test traces to test OTA will lead to ine�ciency. Once we gener-
ate the set of test traces for all given properties, one can randomly
schedule test traces to execute over-the-air (OTA). However, this
approach is ine�cient as it may fail to uncover vulnerabilities or
adequately explore the search space within the given testing budget.
Insight I4. To address challenge C4, Proteus adopts an e�cient
scheduling mechanism to uncover vulnerabilities faster. In each
testing iteration, Proteus �rst selects a property q from the prop-
erty set � to test and then a trace c2 to test q . Proteus prioritizes
scheduling the properties whose generated traces cover more states
in the guiding PSM, increasing the likelihood of vulnerability de-
tection. After selecting a property q , Proteus selects a trace c2 ,
prioritizing based on the frequency of use of c2 , the number of al-
ready identi�ed deviations c2 covers, and the number of instances
of c2 rendered the target unresponsive. To avoid testing redun-
dant traces, Proteus does not test any further traces of a property
whose violation has already been detected.

As a simple example of our scheduling scheme, consider four
traces, their corresponding property, the average number of states
covered by the traces associated with the property, the number
of already identi�ed deviations covered by the trace, and their
selection order in Table 3. Since traces associated with q1 cover
more states on average than q2, Proteus �rst selects q1 to test.
Among the three traces associated withq1, suppose all other factors
are the same, but trace c1 covers more transitions where Proteus
observed a deviation fromM in previous iterations. Proteus then
selects c1 to test OTA. Now suppose c1 identi�ed a violation of
property q1. Then, Proteus discards testing all traces associated
with q1 (i.e., c2 and c3), and in the next iteration selects c4 to test.

5 RegExGenerator: CONSTRUCTING TEST
SKELETONS FROM SECURITY PROPERTIES

Proteus �rst constructs test skeleton(s) for each property q 2 �
expressed in PLTL formula and uses the skeletons represented in
regular expressions to generate test cases. To automatically con-
struct test skeletons, we have developed RegExGenerator that takes
a PLTL (past linear temporal logic) formula as input and produces
REs violating the PLTL formula as output. To construct such an RE
f8 , RegExGenerator leverages the PLTL formula’s Abstract Syntax
Tree (AST) and traverses it in pre-order. Nodes in this AST corre-
spond to PLTL operators (e.g., Since (, Yesterday .), while leaves
represent observations (U/W). For instance, Figure 3 presents the
AST for the PLTL formula q = 0B< =) !083 0 (03A .

To create a violating regular expression for a PLTL formula q ,
at each internal (non-leaf) node =8 during AST traversal, Regex-
Generator needs to satisfy or negate the sub-formula q=8 rooted
at =8 based on the semantic meaning of the operators involved
in q=8 . For this, RegExGenerator recursively satis�es or negates
the expression at =8 ’s child nodes according to the semantic mean-
ing of the operator at =8 . While traversing a leaf node =; of the
AST, RegExGenerator places a literal or a kleene star element on f
according to the requirement (satisfaction or negation) at =; . For
example, if the operator is a “since” as in !083 0 (03A in Figure 3,
RegExGenerator attempts to �rst avoid satisfying the right subtree
03A by placing ¬(03A)⇤, and then violate the left subtree by plac-
ing 083 0 after ¬(03A)⇤. Thus it will �nd ¬(03A)⇤083 0 violating the
“since” operator. Again, for the “implies” operator, RegExGenerator
attempts to �rst satisfy the left subtree (obtaining RE (.)⇤0B<) and
then violate the right subtree (obtaining RE ¬(03A)⇤083 0). Finally,
to construct an RE representing the violation of the given PLTL
formula, the operator/operand at the root node of the AST must be
negated. The �nal RE fE violating q will be (.)⇤0B<¬(03A)⇤083 0 .
RegExGenerator generates multiple di�erent violating expressions.
It also checks if a previously generated RE already covers the ex-
pression. If so, it discards the new RE.

6 TraceBuilder: GENERATING TEST CASES
FROM TEST SKELETONS AND GUIDING PSM

Given a test skeleton c0 representing violations of a security prop-
erty q 2 �, Proteus uses a guiding PSM M and mutates M to
e�ciently generate meaningful test cases c2 with the shape of c0 .

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

H

)
0B< S

! 03A

0830

� (0B<) !0830(03A)

(.)⇤ 0B<¬ (03A)⇤ 0830

Figure 3: Example AST of a PLTL formula.

Note that the guiding PSM used by Proteus can be abstract com-
pared to PSMs extracted from target device implementations. As
such, they are substantially smaller than PSMs learned from com-
mercial devices (§8). One can also use PSMs directly obtained from
RFCs (e.g., [33]) as a guiding PSM. Since Proteus does not require
detailed PSMs, it alleviates the prohibitively high time required to
learn a detailed PSM from target implementations. We now dis-
cuss our PSM mutation strategies and then present our test case
generation mechanism.

6.1 Mutating a PSM
As discussed in challenge C2 in §4, since the guiding PSM is as-
sumed to satisfy all security properties, we need to mutate the
guiding PSM M to generate traces satisfying a test skeleton c0 ,
which signi�es the violation of a security property. Proteus selects
a transition R(@2 ,U,W,@=) to mutate while generating instantiated
traces satisfying a test skeleton c0 (described in §6.2). For muta-
tions, Proteus essentially performs two types of operations on a
selected transition R, as discussed below.
oMutation kindM1:Mutating the observation of a transition.
In this case, Proteus alters the observation U/W of R, i.e., alters
either the input U or the output W or both based on the input and
output in trace skeleton c0 when the execution reaches at @2 .

At any state @2 , if the trace skeleton c0 to satisfy requires input
U 0 and output W 0 but the guiding PSM M does not have U 0/W 0at
@2 , to ensure the generated trace conforms with c0 , we mutate the
transition with U 0 at @2 in M to obtain input U 0 and output W 0. For
example, in Figure 1, suppose at state @5 if we require output GUTI_
������������ _�������� for input GUTI_ ������������ _�������: R����� ==1
according to the test skeleton. However, since it is not prescribed
at state @5, we mutate the transition with observation 062 (with
input GUTI_ ������������ _�������) to obtain input GUTI_ ������������
�������: R����� == 1 and output GUTI ������������ _��������. This
mutation strategy is required to generate traces satisfying c0 .

On the other hand, if c0 has a wildcard character at state @2 ,
Proteus instantiates the wildcard character with a mutated ver-
sion of an input message U to detect any deviation from the PSM
that can lead to a security property violation. To increase the likeli-
hood of a mutated message being accepted by a practical protocol
implementation, Proteus considers the semantic meaning of the
input message. It performs one of the six semantic operations. We
summarize these operations with examples in Table 4. These oper-
ations consider the semantics of the message �elds, their de�ned
values and ranges according to the protocol speci�cation, and over-
all message semantics (e.g., plaintext or replayed version). As an

Table 4: List of possible semantic operations performed on an
input message for mutation typeM1. H�� is a 5-bit �eld in ����
�������_ ������ message in BLE whose value is de�ned to be
between 5 to 16 according to BLE speci�cations. ������_������
and ��������_����_������� are messages in 4G LTE.
Operation Description Example

OP1 Change value of a �eld to a de�ned value
in range ����������_ ������: H�� == 5

OP2 Change value of a �eld to prohibited val-
ue/value outside of de�ned range ����������_ ������: H�� == 20

OP3
Change value of a �eld to one of its
boundary values (i.e., setting all bits of
the �eld to 0 or 1)

����������_ ������: H�� == 31

OP4
Send the plaintext version of any in-
tegrity protected and/or ciphered mes-
sage

������_������: I�������� == 0� C�����
== 0

OP5 Combination of applying OP1, OP2, OP3
and OP4 multiple times

������_������: I�������� == 0� C�����
== 0 � S�������_H�����_T��� == 15

OP6 Replay a previously captured version of
the message ��������_����_�������: R����� == 1

example, in Figure 4(i), consider a mutation of the transition with
observation 00? (with input ������_ ������: ��������� == 0 � ������ == 0
� ��������_ ������ _ ���� == 0, marked blue) at state @1. If we perform
OP2 operation and change the value of the ��������_ ������ _ ����
�eld to a prohibited value 4, we obtain the mutated message 000?
with input ������_ ������: ��������� == 0 � ������ == 0 � ��������_ ������
_ ���� == 4. If the target accepts this mutated message, we obtain
������_�������� as a response, which deviates from the guiding PSM.

q0 q1 q2 q3 q4 q5040 00A

00?

0B< 0AB

083

03A

062

06A00?0

002

(i) Mutation kindM1

q0 q1 q2 q3 q4 q5040 00A

00?

0B< 0AB

083

03A

062

06A

00?

002

(ii) Mutation kindM2

Figure 4: Two kinds of mutations M1 and M2. The transition
labels are presented in Table 1.

o Mutation kindM2: Mutating the destination state of a tran-
sition. In this case, Proteus alters the destination state @= of a
selected transition R (@2 ,U,W,@=). The goal of this kind of mutation
is to test whether the input message U at state @2 leads to a state @<
di�erent than what is expected by the guiding PSM (in this case @=),
which in turn can lead to an observable deviation or security prop-
erty violation. This kind of mutation enables Proteus to identify
certain bypass attacks, e.g., detect whether any intermediate step
can be bypassed to reach a secure state. To illustrate, in Figure 4(ii),
suppose we perform mutation over the transition with observation
0020 at state @1 (marked blue). We can perform a mutation over
the next state @2 of the transition by changing the next state of
the transition to @5. This mutation would generate an instantiated
trace that tests whether the target incorrectly reaches state @5 if a
plaintext ������_������ is fed at @1.

6.2 Instantiated Trace Generation
Given a test skeleton c0 representing violation of a property q 2 �,
a guiding PSM M, a mutation budget ` and a length budget _, we
leverage insight I2 and solve the problem of generating instantiated
traces by combining the solutions of overlapping subproblems. For
this, we formulate a dynamic programming problem as follows.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

G(M, ca, qc, `, _): At any state q2 2 Q of a guiding PSMM, we
want to craft a set of instantiated traces T , where each instantiated
trace (i) satis�es the test skeleton c0 , (ii) is the outcome of a maximum
of ` mutations applied on any trace in the guiding PSMM and (iii)
is within a maximum length _.

Consider we are at state@8 of our guiding PSMM and we need to
satisfy the 9C⌘ observation ; 9 = (U 9/W 9) of c0 , i.e., the test skeleton
up to input symbol ; 9�1 has been satis�ed and the next wildcard
character in c0 is ;: . Also, at @8 , consider the remaining mutation
budget is `8 , and the remaining length budget is _8 . For this problem,
we consider the following four cases, formulating subproblems and
prepending suitable observations.

Case I. If there is a transition R(@8 ,U,W,@<) at state @8 whose
observation satis�es ; 9 , TraceBuilder can leverage solutions from
the destination state@< that satis�es c0 from observation ; 9+1, with
mutation budget `8 and length budget _8�1. TraceBuilder prepends
; 9 to the instantiated traces being generated from the subproblem.
Since it places an observation (; 9) in the instantiated trace, it uses
length budget _8�1 to formulate the subproblem.

Case II. If there is no transition at @8 satisfying ; 9 , TraceBuilder
can consume a mutation to mutate the transition for U 9 , the input
message of observation ; 9 . TraceBuilder places observation ; 9 in
the instantiated trace using mutation kindM1. Again, TraceBuilder
leverages traces from the destination state @< that satis�es c0
from observation ; 9+1, with length budget _8�1 but using mutation
budget `8�1 since it consumed a mutation to place ; 9 . TraceBuilder
prepends ; 9 to the obtained instantiated traces from the subproblem.

Case III. If there is a transition R(@8 ,U,W,@<) at state @8 whose
observation (U/W) satis�es wildcard character element ;: , Trace-
Builder leverages solutions from the destination state @< that sat-
is�es c0 from observation ; 9 with mutation budget `8 and length
budget _8�1. It prepends observation (U/W) to the obtained instan-
tiated traces from the subproblem.

Case IV. Finally, for any transition R(@8 ,U,W,@<) at state @8 ,
TraceBuilder can mutate the transition’s observation and place a
mutated observation (U/W)< usingmutation kindM1. TraceBuilder
can leverage solutions from the destination state @< that satis�es
c0 from observation ; 9 with length budget _8�1 and also mutation
budget `8�1 since we perform a mutation. It prepends the mutated
observation (U/W)< to the obtained instantiated traces from the
subproblem. Note that we only place amutation marker in this case.
This marker would be resolved later by TraceDispatcher (§7). Note
that we can generate multiple traces to test OTA by placing various
mutated messages in place of the mutation marker.

Furthermore, for each case, TraceBuilder may also consider mu-
tating the destination state of the selected transition (mutation kind
M2). In that case, TraceBuilder mutates the destination state to
another state @<DC and formulates the subproblem from state @<DC
with mutation budget `�1. TraceBuilder terminates if either c0 is
satis�ed or runs out of mutation or length budget.

7 TraceDispatcher: TEST EXECUTION AND
FLAW DETECTION

After TraceBuilder generates instantiated traces associated with
each property in its property set�, the TraceDispatcher component
of Proteus iteratively selects a property q and then an instantiated

test trace c2 generated from q to test OTA. TraceDispatcher runs
for C iterations, where C is proportional to V . TraceDispatcher con-
sists of three components: a scheduler, an adapter and an observer.
Scheduler. In each testing iteration, the scheduler of TraceDis-
patcher �rst chooses a property q 2 � to test using weighted
random sampling. The scheduler determines the weight of each
property by determining the average number of distinct states in the
guiding PSM covered by all instantiated traces of q . This scheme fa-
vors properties whose instantiated traces cover more states within
the guiding PSM and implicitly prioritizes traces more likely to
violate a security property within the input property set �.

Once a property q is selected, the scheduler chooses an instanti-
ated trace c2 to test from all traces associated with q . Note that an
instantiated trace may or may not have mutation markers (case IV
in §6.2). The scheduler prioritizes selecting instantiated traces with
mutation markers since they test mutated input messages, which
are more likely to trigger property violations. Furthermore, if the
scheduler chooses an instantiated trace with a mutation marker, it
�rst prioritizes scheduling traces that mutate messages that were
not mutated in previous iterations. Again, among the traces that
have messages not mutated previously, the scheduler selects an in-
stantiated trace based on three factors: (i) the frequency of selection
(5) of c2 ; (ii) the number of deviations covered by c2 (3); (iii) the
number of instances where c2 rendered the IUT I% unresponsive
(D). The scheduler selects the instantiated trace with the minimum
score (? = 5 � 3 + D), randomly choosing one in case of a tie. The
scheduler prioritizes instantiated traces that trigger known devia-
tions since they can lead I% to an inconsistent state where Proteus
is more likely to �nd property violations. Also, the scheduler is
less inclined to traces that rendered I% unresponsive since we can-
not �nd further property violations from an unresponsive I% . The
scheduler randomly performs one of the six operations de�ned in
Table 4 to mutate a message with a mutation marker and obtain a
mutated input message.
Adapter. The adapter takes an instantiated trace selected by the
scheduler to test OTA. It translates the abstract input symbols
into concrete messages and sends them to I% . Also, it records the
response from I% , converts it back into an abstract symbol, and
sends the response sequence back to the observer.
Observer. The observer analyzes the response from I% to an instan-
tiated trace and detects whether it violates any security properties.
If there is any deviation from the guiding PSM, the observer au-
tomatically checks for property violation by checking the trace
against the violating test skeletons (represented as REs) generated
from the security properties. Additionally, to determine unrespon-
siveness, the observer identi�es the �nal protocol state @5 according
to the guiding PSM for each test trace. It then executes a message
U 5 OTA expected to elicit a valid output message W5 . If I% does not
respond, it is deemed unresponsive.

8 EXPERIMENTS
We evaluate Proteus with the 4G LTE’s NAS and RRC layer pro-
tocols (e.g., mobility management procedures) and BLE’s SMP and
Link Layer protocols [6] based on the following research questions:
• RQ1. How e�ective is Proteus in �nding novel and known
issues in LTE and BLE implementations (§9)?

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• RQ2. How e�ective and e�cient Proteus is compared to exist-
ing works (§10)?

• RQ3. How does Proteus perform with respect to generating
test cases (§11)?

8.1 Experiment Setup For Testing
We combine LTE’s NAS and RRC layers’ protocols and construct
a single guiding PSM consisting of 7 states with 86 transitions in
total. For BLE, our guiding PSM has 15 states with 244 transitions in
total. Compared to PSMs learned from implementations [32, 36], the
guiding PSMs in Proteus are substantially smaller. For example,
an average-sized PSM learned from Pixel3A [32] reportedly had 21
states and 548 transitions, which is three times larger than Proteus
guiding PSM for 4G LTE.

For LTE, we set up a base station using srsRAN and a USRP
B210, and a core network using srsEPC. We run them using an Intel
i7-8665U processor with 16GB RAM. For BLE, we use nRF52840
acting as a central to test peripheral devices. We have tested 11
LTE and 12 BLE devices. Note that we updated all target devices
with the latest patches before performing testing. We provide a
background of 4G LTE and BLE, the details of our tested devices
(including SoC model, vendor, and baseband), and the identi�ed
issues in each device in our extended paper [53].

9 IDENTIFIED ISSUES
To answer RQ1, we have tested each device with 3000 OTA queries
using Proteus. Our evaluation reveals that Proteus identi�es 31
and 81 vulnerabilities in LTE and BLE, respectively, with 3 unique
new issues in LTE and 7 unique new issues in BLE implementations.
The identi�ed issues resulted in �ve new CVEs, two bug bounties,
and 9 acknowledgments from various vendors such as Google,
Samsung, Qualcomm, and Microchip.

Tables 5 and 6 summarize the identi�ed issues for 4G LTE and
BLE, respectively. The tables show the number of distinct devices
where each issue was identi�ed, the impact of each attack, and any
new CVE/acknowledgment obtained by Proteus for each attack.
We discuss in detail some of our identi�ed issues in 4G LTE and
BLE in §9.1 and §9.2, respectively.

9.1 Identi�ed Issues in LTE
Attackermodel. Similar to prior works [28, 39, 46], we assume that
a Dolev-Yao attacker [18] knows the victim’s Cell Radio Network
Temporary Identity (C-RNTI) using the victim’s phone number [29,
34, 58] and then send malformed messages to the victim device
using a fake base station (FBS) [31, 71]. For attacks L-E3 and L-E4,
the attacker requires an adversary in addition to a FBS to capture
and replay messages. The attacker can also use a Machine-in-the-
Middle (MitM) relay [28, 58] to exploit the vulnerabilities, as MitM
relays are more powerful than FBS.
L-E8: ��������������_������ with separation bit 0 causes fur-
ther security mode procedure failure. According to the 4G NAS
speci�cations (TS 24.301, clause 5.4.2.6), a UE should send an �������
��������_������� message with EMM cause # 26 upon receiving an
��������������_������ message with “separation bit” set to 0. How-
ever, after successful authentication, a�ected devices respond with
an ��������������_������� message with EMM cause #20 in response

UE eNBFBS

attach_req

auth_req

attach_req

auth_req

auth_resp auth_resp

sec_mode_command
sec_mode_reject

~6 minutes
attach_req

auth_failure
(EMM Cause 20)

auth_req
(Seperation bit 0)

Device
Unresponsive

(a) After authentication.

UE eNBFBS

attach_req

auth_req

attach_req

auth_req

auth_resp auth_resp

sec_mode_command
sec_mode_complete

auth_failure
(EMM Cause 20)

auth_req
(Seperation bit 0)

(b) Before authentication.

Figure 5: ��������������_������ with separation bit 0 causing
further security mode procedure failure.

to such a message. The device then moves to “unauthenticated”
state, leading to a subsequent failed security mode control. Fig-
ure 5(a) shows the attack steps where the attacker sends such a
malicious message to the victim UE using an FBS. Note that if the at-
tacker attempts to send a malformed ��������������_������ message
before a successful authentication, the attack does not succeed (see
Figure 5(b)). This signi�es the stateful nature of the vulnerability
that the existing works [39, 46] cannot detect.
Impact. Upon receiving the malformed message, Nexus 6P and
Samsung A71 remained unresponsive for over 6 minutes and then
attempted to reconnect. The attacker can repeat the attack steps,
leading to a prolonged denial-of-service (DoS) attack on the vic-
tim user. Qualcomm identi�ed the issue as medium severity and
assigned a CVE. Note that the DoS attacks identi�ed by Proteus
are di�erent in nature from spectrum jamming [41, 51], which are
easily detectable, expensive, and unreliable. In contrast, our identi-
�ed DoS attacks exploit logical vulnerabilities and allow targeting
a single device with only one software-de�ned radio (SDR) and
cannot be thwarted by jamming-speci�c defenses [35].
L-E9: Respond to ��������������_������ with header 3 with
��������_ ����_������. The a�ected devices incorrectly interpret a
malformed ��������������_������ with security header 3 before a
successful authentication as a ��������_����_�������, and respond
with ��������_����_������. However, in this scenario, the TS 24.301 [3]
clause 7.5.1 suggests returning a ���_������ message with cause #96
‘invalid mandatory information’.
Impact. Since a correctly implemented device would drop this
packet, an attacker can �ngerprint the victim device up to the
baseband manufacturer level and launch attacks by combining
other known vulnerabilities at the baseband-chipset level. Huawei
acknowledged this vulnerability as low severity.
L-E5: Accepts ���_ ��������_ ����_������� with EIA0 IE. The af-
fected devices respond with ���_��������_ ����_ �������� to the plain-
text ���_ ��������_ ����_������� with EIA0 message. This �aw leads
to a remote privilege escalation attack with no additional execution
privileges required. The attacker can bypass the RRC layer secu-
rity activation by exploiting this vulnerability. The victim UE then
accepts all plaintext RRC messages without integrity protection.
Proteus detected this vulnerability in Pixel7. Google assigned a
high-severity CVE to it. Although Rupprecht et al. [57] identi�ed

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

Table 5: Vulnerabilities identi�ed by Proteus for COTS LTE devices. NAS-SC: NAS security context establishment, AS-SC: AS
security context establishment. : known vulnerability found on devices previously con�rmed to have the attack, : known
vulnerability found on new device not previously reported to have the vulnerability, : previously unknown vulnerability.
E-Exploitable, I-Interoperability, O-Other issue.

Issue Description Category #Vuln.
Instance Impact Newly Obtained CVEs/ Acknowledge-

ments
L-E1 Accepts plaintext ��������_������ After NAS-SC [15, 32] 3 Location Tracking Marked as duplicate by Samsung 1

L-E2 Accepts plaintext ��������������_������ after NAS-SC [15, 32] 4 Location Tracking, DoS Marked as duplicate by Samsung
L-E3 Accepts replayed ��������_����_������� after NAS-SC [15, 32] 4 Location Tracking Marked as duplicate by Unisoc
L-E4 Accepts replayed ����_������������_������� after attach procedure [32] 2 Location Tracking Marked as duplicate by Unisoc
L-E5 Accepts ���_ ��������_ ����_������� with EIA0 IE after NAS-SC [32, 46, 57] 1 Security Bypass High Severity CVE from Google
L-E6 ���_ ��������_ ����_������� with EIA0 IE after NAS-SC causes unresponsiveness [32] 4 DoS -
L-E7 Accepts plaintext �������_����� before AS-SC [46] 4 Fingerprinting Marked as duplicate by Unisoc
L-E8 ��������������_������ with separation bit 0 cause further security mode procedure failure 4 DoS Medium Severity CVE from Qualcomm
L-E9 Respond to ��������������_������ with header 3 with ��������_ ����_������ 1 Fingerprinting Acknowledged by Huawei
L-O1 Respond to ��������_ ������ (TMSI) with ��������_ �������� (IMSI) before NAS-SC 4 Fingerprinting -

a similar issue in older devices, Proteus detected L-E5 in new
devices not previously reported to have the vulnerability.

9.2 Identi�ed Issues in BLE
Attacker model. We also assume the Dolev-Yao attacker model
for BLE. Similar to previous works [9, 36, 68], the attacker acts as a
malicious central and can intercept, replay, modify, or drop packets.
The attacker only knows the public information of the target periph-
eral (e.g., Bluetooth name, address, protocol version number, and
capabilities) and does not require knowledge regarding any secret
keys shared between the target peripheral and any other device.
For issues B-E1, B-E2, B-E4, B-I1, B-O1 to B-O3, the attacker
can directly establish a connection with the victim peripheral to
launch the attacks. For all the other issues, the attacker must inject
malicious tra�c to the target peripheral [13] when the target pairs
with another device for the �rst time.
B-E9: Accepts two continuous �������_������ leading to DoS.
The a�ected peripherals cannot complete the pairing procedure
when a malicious central sends two consecutive �������_������ mes-
sages. On the other hand, Microchip’s BLE device responds to both
�������_������ with �������_��������. For other devices not having
this vulnerability, the second �������_������ is ignored, and the
pairing procedure proceeds as usual.
Impact. This attack leads to DoS, where the victim cannot complete
the pairing process. If the central device does not have an auto-
reconnect feature, the pairing procedure needs to be manually
re-initiated, and even with auto-reconnect, the device needs to
restart the entire pairing procedure again. Also, the vulnerability
can be exploited to perform a manufacturer-level �ngerprinting of
vulnerable implementations. Microchip assigned a CVE with low
severity to this issue.
B-E1, B-E2, B-E6, B-E7, B-E10 and B-E11. To exploit these vul-
nerabilities, i.e., B-E6, B-E7, B-E9 to B-E11, the adversary assump-
tions are identical to those for B-E9. For B-E6, we observe that
before the pairing process starts, the a�ected devices will respond
to ������_������ with MaxRxOctets and MaxTxOctects �eld set to
1, and as a result, the subsequent pairing process cannot be com-
pleted. For B-E7, we observe that sending Data Physical Channel
PDUs, such as MTU_������, ������_������, �������_ ������, after ���
��������_������, can cause the peripheral to disconnect the link.
For B-E10, we observe that the a�ected devices cannot �nish pair-
ing if it receives a ���_�����_���_��������� after ������_���_��������.

For B-E11, an a�ected device disconnects after receiving a �����
���_���_������ with the unchanged Channel Map �eld. For B-E1
and B-E2, the device cannot recover by itself and requires manual
reboot. For the other identi�ed DoS attacks, the pairing procedure
needs manual re-initiation. Also, sending the packets repeatedly
can lead to prolonged DoS and battery depletion for each case.
B-E4: Accepts malformed ����������_ ������ with increased
data length �eld value. An implementation accepts ����������_
������ with an increased Data Length value. The ����������_ ������
is extended to 247 bytes when Data Length �eld value is increased.
Thus, after accepting this packet, the implementation may allocate
more memory than required.
Impact. Since the vulnerable device accepts L2CAP packets with
the wrong length, more bytes than expected are allocated in mem-
ory for an incorrectly implemented device. Sweyntooth [23] found
a similar vulnerability for �������_������ packet, leading to memory
leakage. Moreover, an attacker can �ngerprint the device at theman-
ufacturer’s level, which may be further exploited by abusing other
known �rmware-level vulnerabilities. Samsung acknowledged this
issue and provided a medium-severity CVE.
B-E3: Bypassing passkey-entry during legacy pairing. During
the passkey-entry association method, a malicious central can by-
pass the passkey entry step by sending a ��_������ message with a
temporary key set to 0. This bypasses all MitM protection mecha-
nisms inherent in the passkey entry method. BLEDi� [36] initially
identi�ed this issue in older devices. However, we identi�ed this is-
sue on several newer devices, including peripherals from Samsung,
Google, Hisense, and Motorola (listed in our extended paper [53]).
Samsung assigned a CVE with medium severity to this issue.
Other Issues. Proteus also identi�ed several issues, such as ac-
cepting malformed ����������_ ������ with a Hop �eld greater than
the de�ned range (B-O1), accepting �������_ ������ message mul-
tiple times (B-O2) and accepting ����������_������ with non-zero
EDIV and Rand �eld value (B-O3). The attacker can exploit these
to �ngerprint the a�ected device.

10 COMPARISONWITH EXISTINGWORKS
To address RQ2, we compare Proteus with existing LTE and BLE
testing frameworks. We �rst provide a qualitative comparison with
respect to di�erent metrics and then provide empirical comparisons
with respect to the number of vulnerabilities detected, coverage,
and cumulative vulnerability detection over time.

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 6: Vulnerabilities identi�ed by Proteus for COTS BLE devices. All interpretations are the same as for Table 5.

Issue Description Category #Vuln.
Instance Impact Newly Obtained CVEs/ Acknowledge-

ments
B-E1 Stops advertising if ����������_ ������ with Interval/channelMap �eld set to 0 is sent [23, 36] 3 Crash Acknowledged by MediaTek
B-E2 Stops advertising with plaintext ����������_�����_�������� [36] 2 Crash Acknowledged by MediaTek & Samsung
B-E3 Bypassing passkey entry in legacy pairing [36] 10 Privacy/ Null

Encryption Medium severity CVE from Samsung
B-E4 Accepts malformed ����������_ ������ message with increased length 8 Memory Leakage Medium severity CVE from Samsung
B-E5 Accepts ��_������� with wrong values [36] 1 DoS -
B-E6 ������_������ with MaxRxOctets and MaxTxOctets �elds set to 1 cause DoS 2 DoS Acknolwedged by MediaTek
B-E7 Unexpected Data Physical Channel PDU during encryption start procedure cause DoS 11 DoS Acknolwedged by Samsung
B-E8 ������_���_�������� in legacy pairing leading to DoS [23] 1 DoS Reported by Sweyntooth [23] and �xed in

newer version
B-E9 Two continuous �������_������ leading to DoS 2 DoS CVE from Microchip with low severity
B-E10 Plaintext ����������_�����_������ cause DoS 4 DoS Acknolwedged by MediaTek & Samsung
B-E11 �������_���_������ with unchanged channelMap �eld cause DoS 6 DoS -
B-I1 Issue with OOB Pairing Fails [36] 8 Fingerprinting -
B-O1 Accept ����������_ ������ with Hop �eld > de�ned range 9 Fingerprinting Acknowledged by MediaTek as a functional

bug
B-O2 Accept �������_ ������ multiple times [23] 2 Fingerprinting Acknowledged by Samsung
B-O3 Accept ����������_������ with non-zero EDIV and Rand [23] 12 Fingerprinting Acknowledged by MediaTek as a functional

bug

10.1 Qualitative Comparison
We compare Proteus with existing works with respect to di�erent
metrics as shown in Table 7. Among these works, DIKEUE [32],
DoLTEst [46], Contester [15], BaseComp [37], BLEDi� [36] and BLE
Blackbox Fuzzing [49] perform stateful testing. However, DIKEUE,
BaseComp, BLEDi�, and Blackbox Fuzzing do not consider any
speci�c properties corresponding to the protocols while generat-
ing queries. Although LTEFuzz [39], DoLTEst and Contester have
property-guided generation, LTEFuzz is not stateful, and DoLTEst
and Contester do not generate test cases dynamically. Also, Sweyn-
Tooth [23] does not consider the guidance of properties while gen-
erating test cases.

Further, DoLTEst, LTEFuzz, and SweynTooth do not perform
positive testing, and only DIKEUE, DoLTEst, Contester, BLEDi�,
and Blackbox Fuzzing have the capabilities to identify interoper-
ability issues. Finally, none of the works except Proteus consider
e�cient scheduling of test traces to maximize property violation
detection within a �xed testing budget. Only Proteus simultane-
ously covers all these aspects of testing. In addition, it is the only
dynamic framework that can provide control over the amount of
test traces being generated and, hence, can be tuned to satisfy a
time budget for testing.

Table 7: Comparison with existing testing approaches.

Approach Dynamic Stateful
Testing

Property
Focused
Testing

Positive
Test
Cases

Time Budget
Wise Tuning

Interoperability
Issue

Detection

DIKEUE [32] 3 3 7 3 7 3
LTEFuzz [39] 3 7 3 7 7 7
DoLTEst [46] 7 3 3 7 7 3
Contester [15] 7 3 3 3 7 3
Basecomp [37] 7 3 7 3 7 7
BLEDi� [36] 3 3 7 3 7 3
SweynTooth [23] 3 7 7 7 7 7
Blackbox Fuzzing [49] 3 3 7 3 7 3
Proteus 3 3 3 3 3 3

10.2 Total Number of Vulnerability Detection
We compare Proteus with DIKEUE [32], and DoLTEst [46] for
LTE, and BLEDi� [36] and Sweyntooth [23] for BLE, with respect
to the total number of identi�ed vulnerabilities without considering
any time budget. For each vulnerability, we determine whether the

Table 8: Detected vulnerability count by existing works.

Baseline #Vuln. both Proteus
and Baseline can Identify

#Vuln. only Proteus
can Identify

#Vuln. only Baseline
can Identify

DIKEUE 15 4 0
DoLTEst 25 5 1
BLEDi� 13 7 0

Sweyntooth 18 8 2

vulnerability is identi�able by– (i) only Proteus, (ii) only the base-
line work, or (iii) both works. For DIKEUE [32] and BLEDi� [36],
we used their provided alphabet.

We present the results in Table 8. Our analysis reveals that
Proteus can identify all vulnerabilities detected by the existing
works except for one identi�ed by DoLTEst [46]. To detect this par-
ticular vulnerability, DoLTEst manually crafts and sends two traces
to I% : one with an ��������_������ message using security header
12 and another using security header 15, observing any di�erences
in the target’s response. In contrast, Proteus can automatically
generate and reason about only one trace at a time, meaning it can
only check if a single trace violates any security properties at once.
Proteus is not designed to reason about hyper-properties which
require simultaneous consideration of multiple traces.

In contrast, even without considering a testing budget, DoLTEst
[46] cannot detect replay vulnerabilities (e.g., L-E3, L-E4) and also
stateful vulnerabilities where the vulnerability is triggered at a
state not de�ned by it. For example, issue L-E8 can only be trig-
gered after authentication and before NAS security activation, but
DoLTEst does not incorporate this state. Sweyntooth [23] cannot
detect logical vulnerabilities because it lacks a test oracle to identify
such issues. Furthermore, to detect all vulnerabilities identi�ed by
Proteus through an automata-based learning approach [32, 36],
we must incorporate a set of alphabet containing all symbols used
by Proteus, i.e., all messages, message �elds, and their mutations
during PSM learning. Using this alphabet in a 4G LTE environ-
ment (111 symbols) with DIKEUE [32] would require 87,246 unique
queries (⇠133 days if tested OTA) to learn the PSM of an imple-
mentation, taking over four months to detect all vulnerabilities
Proteus identi�ed with 3000 queries (2 days when tested OTA).

Additionally, as shown in Table 8, Proteus detects 4-5 new
vulnerabilities in LTE and 7-8 new vulnerabilities in BLE compared

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

to these prior works. Thus, Proteus is more e�ective in identifying
vulnerabilities in the tested protocols.

10.3 Vulnerability Count Growth
We demonstrate Proteus ’s e�ciency in detecting vulnerabilities
over time. This evaluation also demonstrates the quality of the
generated traces by Proteus to detect vulnerabilities. We compare
Proteus with the existing works in terms of cumulative vulnera-
bility count on 3 devices from BLE and 2 devices on LTE. Further,
since we focus on logical bugs, we consider the security properties
as an oracle to detect vulnerabilities. Note that we did not observe
any false positives (i.e., any reported property violation that does
not result in exploitable vulnerability). The default value of the
length budget parameter for TraceBuilder is ; + 1, where ; is the
number of observations in any test skeleton for properties. Also,
we set the default mutation budget to 2.
Cumulative vulnerability count on BLE devices. We compute
the cumulative vulnerability count obtained over time on three
BLE devices– Galaxy S6, Galaxy A22, and Oppo Reno7, with both
Proteus and BLEDi� [36]. We consider BLEDi� as our baseline.
However, BLEDi� learns the PSM of the target device �rst and then
performs di�erential testing. Thus, to make a fair comparison, we
consider the queries generated during learning as input queries to
detect vulnerabilities and use the security properties obtained for
Proteus as an oracle to determine whether any vulnerability is
detected. We run Proteus and BLEDi� for 24 hours and count the
number of detected vulnerabilities. We run the experiments for 3
iterations and present their average in Figure 6.

(a) Galaxy A22 (b) Galaxy S6 (c) Oppo Reno7

Figure 6: Cumulative vulnerability comparison in BLE.

Figure 6 shows that Proteus can detect more than 5 vulnerabili-
ties on average within 24 hours, whereas the learning queries from
BLEDi� can only detect a maximum of 2 vulnerabilities in the tested
devices. Although Proteus, at �rst, falls behind BLEDi� in speed
in S6, upon inspection, we �nd that the only vulnerability identi�ed
by BLEDi� is a trivial one, requiring a single message, and Proteus
later �nds more vulnerabilities, which BLEDi� cannot detect in
24 hours. In other cases, Proteus consistently performs better
than BLEDi�. This demonstrates that Proteus is more e�cient in
detecting vulnerabilities than BLEDi�’s automata learning-based
approach, suggesting a better quality of the generated traces.
Cumulative vulnerability count on LTE devices. For LTE, we
consider Pixel7 and Huawei P8 Lite and compute the cumulative
vulnerabilities detected over time by both Proteus and the baseline
works– DoLTEst [46], DIKEUE [32]. We run our experiment for ⇠
7 hours since all DoLTEst queries are executed within that period.
Again, we run each test for 3 iterations and report the average count
in Figure 7.

(a) Pixel 7 (b) Huawei P8 Lite

Figure 7: Cumulative vulnerability comparison in LTE.

Figure 7 shows that Proteus detects 3 and 2 vulnerabilities on
average within 7 hours in Pixel7 and Huawei P8lite, respectively,
whereas DoLTEst detects 2 and 1 on average. Moreover, the �g-
ure presents that Proteus detects those vulnerabilities faster than
DoLTEst and DIKEUE, representing its superior e�ciency.

10.4 Coverage Growth
This experiment aims to evaluate the e�cacy of the generated traces
with respect to coverage growth.

(a) BLE coverage (b) LTE coverage

Figure 8: Coverage growth over time.

Coverage growth in BLE devices. At �rst, we compare Proteus
against BLEDi� [36] with respect to the number of branches cov-
ered over time while testing BLE implementations. Similar to §10.3,
we consider the queries used for learning PSM of the target im-
plementation as inputs to BLEDi�. Using BTStack v1.5.6.3 [12] as
the target, we perform three 24-hour runs of both Proteus and
BLEDi� to determine average branch coverage.

We present the results in Figure 8 (a), which shows that Proteus
achieves ⇠ 10% more coverage 3 times faster than BLEDi�.
Coverage growth in LTE devices. For LTE, we compare Proteus
against DIKEUE [32] and DoLTEst [46]. We run each tool 3 times on
srsUE [2], with each run lasting 24 hours, and report their average
branch coverage over time. Figure 8(b) shows the coverage growth
in LTE devices, where it is evident that Proteus achieves more
branch coverage faster than both the baselines.

11 PERFORMANCE OF PROTEUS

E�ectiveness of considering both security property and guid-
ing PSM. We compare Proteus with two approaches described in
§3: (i) PSM only approach, where we sample traces from our guiding
PSM and performmutations without any guidance (ii) Property-only
approach, where we consider a RE representing the violation of the
security property, and instantiate the RE using arbitrary observa-
tions independent of any guidance from a PSM. We use an RE repre-
senting the acceptance of a replayed ����_������������_������� attack

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 9: Regular expression representing acceptance of a
replayed ����_������������_������� and ��������_����_�������

Property Expression
f6 (������_�1/ ������_������) (��������������_������/ ��������������_��������)

(.)⇤ (��������_����_�������/ ��������_���� _��������) (.)⇤ (���_ ��������_
����_�������/ ��� _ �������� _���� _��������) (.)⇤ (������_������/ ���
����_��������) (.)⇤ (����_������������_�������/ ���� _ ������������ _ ��������) (.)⇤
(����_������������_�������: ������ == 1/ ���� _ ������������ _ ��������)

fB (������_�1/ ������_������) (��������������_������/ ��������������_��������) (.)⇤
(��������_����_�������/ ��������_���� _��������) (.)⇤ (��������_����_�������:������
== 1/ ��������_���� _��������)

Table 10: No. of traces generated for varyingmutation budget.

Property Number of
Observations

Number of
Wildcards

Length
Budget Mutation Budget

1 2 3
fB 4 2 5 22 53 63
f6 7 5 8 49 121 166
f6 7 5 9 1441 5662 11560

after a successful registration procedure provided in Table 9. We
test a HiSense F50+ device to check the number of queries it takes
to detect the vulnerability using the two approaches and Proteus.
We observe that Proteus and the property-only approach take
366 and 1690 queries to detect the vulnerability, respectively. The
PSM-only approach cannot detect the vulnerability in 3000 queries.
This signi�es that combining the guidance from both PSM and a
security property assists in quickly discovering the vulnerability.
E�ect of varying mutation and length budget. We examine
how the number of generated instantiated traces varies accord-
ing to the length and mutation budget we set in TraceBuilder. We
consider the two regular expressions f6 and fB (Table 9), repre-
senting the acceptance of replayed ����_������������_������� and
��������_����_�������, respectively, as text skeletons.

To observe the e�ect of varying the length budget, we set the
mutation budget to 2 and varied the length budget from 4 to 10.
The number of unique instantiated traces generated for both the
test skeletons are presented in Table 11. We observe that the length
budget has to have a minimum length equal to at least the number
of literals present in the trace skeleton since, for a lower length
budget, no sequence would be able to satisfy the given skeleton.
On the other hand, the total number of unique traces generated
increases as the length budget increases.

To observe the e�ect of varying the mutation budget, we vary it
from 1 to 3 for both trace skeletons. We observe that if the length
budget is constrained, e.g., a length budget of 5 with 4 literals in
fB , then even with a higher mutation budget, we would not have
many more test cases since there would be no space to inject any
mutation. However, if the length budget is increased, the number of
traces generated increases with the increase of the mutation budget.
However, we empirically observed that a mutation budget of more
than 2 did not yield any extra vulnerabilities.
E�ciency of scheduling approach. We compare with a version
of Proteus that randomly schedules properties and instantiated
traces (denoted as Proteus w/o scheduling). The experimental
setup is the same as Proteus. Figure 8 and 7 show its coverage and
cumulative vulnerability count over time. We observe that with
our scheduling approach, we reach a higher coverage and detect
vulnerabilities faster.

Table 11: Number of unique traces generated with various
length budget values.
Property # Literals # Kleene Star Length Budget (No. Of Unique Traces)

4 5 6 7 8 9 10
fB 4 2 1 62 2638 >20000 >20000 >20000 >20000
f6 7 5 0 0 0 1 121 5662 >20000

12 DISCUSSIONS
Scope of Proteus. In addition to logical bugs, Proteus can concep-
tually cause crashes of the COTS device under test due to memory
bugs (e.g., use-after-free). As Proteus operates in a black box set-
ting, it cannot transparently observe inside the analyzed devices to
discern crash bugs. As such, we consider such crash-inducing bugs
to be outside Proteus’s scope.
Proteus’s reliance on statemachine and desired properties.As
discussed before, Proteus relies on having access to the protocol’s
state machine and its desired security and privacy properties to
generate meaningful test cases. One can consider this a limitation
since one has to obtain both the state machine and properties of
a protocol before testing of its implementation can commence.
In our evaluation, we, however, demonstrate that access to this
extra information is well worth the e�ort as it enables Proteus to
generate high-quality test cases within a given testing budget.

Prior works applied formal veri�cation techniques to evaluate
the security and privacy of di�erent protocol designs [28, 30], where
both protocol models and properties are manually constructed.
For protocols where such e�orts are underway, Proteus can take
advantage of the constructed models and properties. Another ap-
proach currently gaining traction is using natural language process-
ing (NLP) techniques and large language models to automatically
extract protocol state machines from the standard speci�cation
text [7, 45]. To evaluate the feasibility of applying such approaches,
we used one such tool, Hermes [7], to automatically extract the
protocol state machine of LTE from the standard speci�cation. After
comparing the extracted state machine with the hand-constructed
one we use for our evaluation, we observe that the extracted state
machine is missing a transition. Conceptually, Proteus can oper-
ate with a state machine that is not entirely accurate at the cost of
some spurious test cases. As a thought exercise, we decided to use
Proteus with the HERMES-extracted state machine to test using
Proteus with the same security properties and experimental setup.
We ran Proteus against Pixel 7 for 24 hours and identi�ed all 3 de-
tected issues identi�ed by Proteus using an entirely correct PSM.
Despite the missing transition in the automatically generated state
machine, we observed that Proteus was able to identify all the
vulnerabilities that it uncovered when using the hand-constructed
state machine. This corroborates our hypothesis of Proteus’s loose
reliance on the accuracy of the state machine.
Limitations of open-source adapter implementations impose
constraints on testing. Proteus’s capabilities are constrained by
the message types and predicates that we can implement in the
adapter (§7) with open-source protocol stacks, which may support
only a limited set of message types and predicates. Moreover, as a
black-box testing method, Proteus can only observe the output
messages of the IUT. Therefore, we only include transitions in
our guiding PSM, for which the implementation should provide
observable responses according to the speci�cations.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Syed Md Mukit Rashid et al.

13 RELATEDWORKS
Protocol testing. Prior works on testing protocol implementations
include mutation-based fuzzing approaches [50, 52, 59]. However,
they require signi�cant time to reach diverse code paths and identify
vulnerabilities. DY Fuzzing [8] mutates network packets consid-
ering a Dolev-Yao adversary in the communication channel and
combines domain knowledge for e�ective protocol testing. How-
ever, since the mutation scheme of these works does not consider
the security property being tested or the current protocol state,
they are ine�cient in �nding vulnerabilities compared to Proteus.
Fiterau-Brostean et al. [21] developed a method to �rst learn an
automaton from protocol implementations and then compare it
against a catalog of manually obtained bug patterns, represented
as deterministic �nite automata (DFA) to identify vulnerabilities.
However, this approach requires learning the state machine from
the implementation, which is costly (§8). It is also limited to identi-
fying only known vulnerabilities. The new bugs found in previously
untested targets are mostly instances of known bugs found in other
devices earlier. Further, another direction of work employs di�er-
ential testing to �nd exploitable and interoperability issues [48, 64].
Because of �xed sets of packets, they cannot explore vulnerabilities
that require diverse packet �elds and corresponding values.
Security testing of cellular protocols. Previous studies investi-
gating the security of LTE implementations have typically focused
on either OTA testing [32, 39, 46, 47, 61] or the analysis of base-
band �rmware [24, 37, 38, 43, 66]. Park et al. [46] have developed a
negative testing framework along with a set of extensive test cases
to detect vulnerabilities in UE devices. However, these test cases
are manually designed and statically generated instead of being
generated dynamically depending on the implementations. Kim
et al. [39] introduce a semi-automated approach for fuzzing the
LTE control plane, which relies on some basic security properties.
Researchers have also used NLP to generate test cases from cellular
speci�cations [15, 16].
Security testing of BLE protocols. Frankenstein [55] utilizes
advanced �rmware emulation techniques to fuzz �rmware dumps,
enabling the direct application of fuzzed input to a virtual modem.
FirmXRay [67] proposes static binary analysis tools to �nd the secu-
rity issues caused without running the �rmware. On the other hand,
ToothPicker [25] focuses on one platform, providing host fuzzing
techniques for this platform. However, these works do not per-
form stateful fuzzing. BLESA [68] utilizes ProVerif [11] to perform
formal veri�cation of BLE protocols. InternalBlue [44] performs
reverse engineering on multiple Bluetooth chipsets to test and �nd
vulnerabilities. BLEScope [73] identi�es miscon�gured devices by
analyzing the companion mobile apps. SweynTooth [46] o�ers a
systematic testing framework to fuzz BLE implementations. How-
ever, none of these works consider stateful and property-focused
testing. BLEDi� [36] develops an automated black-box protocol
noncompliance testing framework that can uncover noncompliant
behaviors in BLE implementations. However, their approach can-
not control the number of test cases generated and be carried out
within a time budget C .

14 CONCLUSION AND FUTUREWORK
Wedesign Proteus, a black box, protocol statemachine and property-
guided, and budget-aware automated testing approach for discov-
ering logical vulnerabilities in wireless protocol implementations.
Proteus leverages guidance from a PSM and also security proper-
ties to e�ciently generate traces that can detect more vulnerabilities
using much less amount of OTA queries than existing works. In the
future, we will use Proteus to analyze other wireless protocols.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and the shepherd for their feed-
back and suggestions. We also thank the vendors for cooperating
with us during the responsible disclosure. This work has been sup-
ported by the NSF under grants 2145631, 2215017, and 2226447, the
Defense Advanced Research Projects Agency (DARPA) under con-
tract number D22AP00148, State University of New York’s Empire
Innovation Program, and the NSF and O�ce of the Under Secre-
tary of Defense– Research and Engineering, ITE 2326898, as part
of the NSF Convergence Accelerator Track G: Securely Operating
Through 5G Infrastructure Program.

REFERENCES
[1] [n. d.]. Proteus. https://github.com/SyNSec-den/Proteus
[2] [n. d.]. srsRAN. https://github.com/srsran/srsRAN_4G
[3] [n. d.]. Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-Access-

Stratum (NAS) Protocol for Evolved Packet System (EPS); Stage 3 (3GPP TS 24.301
version 16.8.0 Release 16).

[4] 2013. American FUzzy Lop. https://github.com/google/AFL.
[5] 2016. boofuzz: Network Protocol Fuzzing for Humans. https://github.com/

jtpereyda/boofuzz
[6] 2021. Bluetooth Special Interest Group, Core Speci�cation 5.3. https://www.

bluetooth.com/speci�cations/specs/core-speci�cation-5-3/
[7] A. Al Ishtiaq, S. S. S. Das, S. M. M. Rashid, A. Ranjbar, K. Tu, T. Wu, Z. Song, W.

Wang, M. Akon, R. Zhang, and S. R. Hussain. 2024. Hermes: Unlocking Security
Analysis of Cellular Network Protocols by Synthesizing Finite State Machines
from Natural Language Speci�cations. In 33rd USENIX Security Symposium.

[8] M. Ammann, L. Hirschi, and S. Kremer. 2023. DY Fuzzing: Formal Dolev-Yao
Models Meet Cryptographic Protocol Fuzz Testing. Cryptology ePrint Archive.

[9] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen. 2020. Bias: Bluetooth Imper-
sonation Attacks. In IEEE symposium on security and privacy.

[10] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer. 2022. BLURtooth:
Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth
Low Energy. InACM on Asia conference on computer and communications security.

[11] B. Blanchet et al. 2001. An E�cient Cryptographic Protocol Veri�er Based on
Prolog Rules.. In csfw, Vol. 1.

[12] BlueKitchen. [n. d.]. BTstack: Dual-mode Bluetooth Stack, with Small Memory
Footprint. https://github.com/bluekitchen/btstack

[13] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche, and G. Marconato. 2021.
InjectaBLE: Injecting Malicious Tra�c into Established Bluetooth Low Energy
connections. In 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks.

[14] Peng Chen and Hao Chen. 2018. Angora: E�cient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.

[15] Y. Chen, D. Tang, Y. Yao, M. Zha, X. Wang, X. Liu, H. Tang, and B. Liu. 2023. Sher-
lock on Specs: Building LTE Conformance Tests through Automated Reasoning.
In 32nd USENIX Security Symposium.

[16] Y. Chen, Y. Yao, X. Wang, D. Xu, C. Yue, X. Liu, K. Chen, H. Tang, and B. Liu.
2021. Bookworm Game: Automatic Discovery of LTE Vulnerabilities through
Documentation Analysis. In IEEE Symposium on Security and Privacy.

[17] M. Chlosta, D. Rupprecht, and T. Holz. 2021. On The Challenges of Automata
Reconstruction in LTE Networks. In 14th ACM Conference on Security and Privacy
in Wireless and Mobile Networks.

[18] D. Dolev and A. Yao. 1983. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory 29 (1983).

[19] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xiang. 2021.
Snipuzz: Black-box fuzzing of IoT Firmware via Message Snippet Inference. In
ACM SIGSAC conference on computer and communications security.

[20] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. 2020. AFL++: Combining In-
cremental Steps of Fuzzing Research. In 14th USENIX Workshop on O�ensive

https://github.com/SyNSec-den/Proteus
https://github.com/srsran/srsRAN_4G
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://github.com/bluekitchen/btstack

State Machine Mutation-based Testing Framework for Wireless Communication Protocols CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Technologies.
[21] P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Tåquist. 2023. Automata-Based

Automated Detection of State Machine Bugs in Protocol Implementations. In
Network and Distributed Systems Security Symposium.

[22] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. 2018. Colla�: Path
Sensitive Fuzzing. In 2018 IEEE Symposium on Security and Privacy.

[23] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurniawan. 2020.
SweynTooth: Unleashing Mayhem over Bluetooth Low Energy. In 2020 USENIX
Annual Technical Conference.

[24] N. Golde and D. Komaromy. 2016. Breaking Band: Reverse Engineering and
Exploiting the Shannon Baseband. Recon (2016).

[25] D. Heinze, J. Classen, and M. Hollick. 2020. ToothPicker: Apple Picking in the
iOS Bluetooth Stack. In 14th USENIX Workshop on O�ensive Technologies.

[26] G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park, T. Scharnowski, T.
Tucker, P. Traynor, and K. Butler. 2022. FIRMWIRE: Transparent Dynamic
Analysis for Cellular Baseband Firmware. In Network and Distributed Systems
Security Symposium.

[27] E. Hoque, O. Chowdhury, S. Y. Chau, C. Nita-Rotaru, and N. Li. 2017. Analyzing
Operational Behavior of Stateful Protocol Implementations for Detecting Seman-
tic Bugs. In 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks.

[28] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. 2018. LTEInspector: A Sys-
tematic Approach for Adversarial Testing of 4G LTE. In Network and Distributed
Systems Security.

[29] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino. 2019. Pri-
vacy Attacks to the 4G and 5G Cellular Paging Protocols using Side Channel
Information. In Network and Distributed Systems Security Symposium.

[30] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino. 2019.
5GReasoner: A Property-Directed Security and Privacy Analysis Framework
for 5G Cellular Network Protocol. In ACM SIGSAC Conference on Computer and
Communications Security.

[31] S. R. Hussain, M. Echeverria, A. Singla, O. Chowdhury, and E. Bertino. 2019.
Insecure Connection Bootstrapping in Cellular Networks: The Root of All Evil.
In 12th Conference on Security and Privacy in Wireless and Mobile Networks.

[32] S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino. 2021. Noncom-
pliance as Deviant Behavior: An Automated Black-box Noncompliance Checker
for 4G LTE Cellular Devices. In ACM SIGSAC Conference on Computer and Com-
munications Security.

[33] IETF. 2022. RFC 9293: Transmission Control Protocol (TCP). https://datatracker.
ietf.org/doc/html/rfc9293

[34] R. P. Jover. 2016. LTE Security, Protocol Exploits and Location Tracking Ex-
perimentation with Low-cost Software Radio. (2016). arXiv:1607.05171 [cs.CR]
https://arxiv.org/abs/1607.05171

[35] R. P. Jover, J. Lackey, and A. Raghavan. 2014. Enhancing the Security of LTE
Networks Against Jamming Attacks. EURASIP (2014).

[36] I. Karim, A. Al Ishtiaq, S. R. Hussain, and E. Bertino. 2023. BLEDi�: Scalable and
Property-Agnostic Noncompliance Checking for BLE Implementations. In IEEE
Symposium on Security and Privacy. IEEE.

[37] E. Kim, M. W. Baek, C. Park, D. Kim, Y. Kim, and I. Yun. 2023. BASECOMP: A
Comparative Analysis for Integrity Protection in Cellular Baseband Software. In
32nd USENIX Security Symposium.

[38] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim. 2021. BaseSpec: Comparative Analysis
of Baseband Software and Cellular Speci�cations for L3 Protocols. In Network
and Distributed Systems Security Symposium.

[39] H. Kim, J. Lee, E. Lee, and Y. Kim. 2019. Touching the Untouchables: Dynamic
Security Analysis of the LTE Control Plane. In IEEE Symposium on Security and
Privacy.

[40] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering. 475–485.

[41] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and J. H. Reed. 2016.
LTE/LTE-A Jamming, Spoo�ng, and Sni�ng: Threat Assessment and Mitigation.
IEEE Communications Magazine (2016).

[42] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah. 2019. MOPT:
Optimized Mutation Scheduling for Fuzzers. In 28th USENIX Security Symposium.

[43] D. Maier, L. Seidel, and S. Park. 2020. BaseSAFE: Baseband Sanitized Fuzzing
through Emulation. In 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks.

[44] D. Mantz, J. Classen, M. Schulz, and M. Hollick. 2019. InternalBlue-Bluetooth
Binary Patching and Experimentation Framework. In 17th Annual International
Conference on Mobile Systems, Applications, and Services.

[45] M. L. Pacheco, M. von Hippel, B. Weintraub, D. Goldwasser, and C. Nita-Rotaru.
2022. Automated Attack Synthesis by Extracting Finite State Machines from
Protocol Speci�cation Documents. In IEEE Symposium on Security and Privacy.

[46] C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim. 2022. DoLTEst: In-depth
Downlink Negative Testing Framework for LTE Devices. In 31st USENIX Security
Symposium.

[47] S. Park, A. Shaik, R. Borgaonkar, and J. Seifert. 2016. White Rabbit in Mobile:
E�ect of Unsecured Clock Source in Smartphones. In 6th Workshop on Security
and Privacy in Smartphones and Mobile Devices.

[48] A. Pferscher and B. K. Aichernig. 2021. Fingerprinting Bluetooth Low Energy
Devices via Active Automata Learning. In Formal Methods: 24th International
Symposium. Springer-Verlag, Berlin, Heidelberg.

[49] A. Pferscher and B. K. Aichernig. 2022. Stateful Black-Box Fuzzing of Bluetooth
Devices Using Automata Learning. In NASA Formal Methods, J. V. Deshmukh,
K. Havelund, and I. Perez (Eds.). Springer International Publishing.

[50] V.-T. Pham,M. Böhme, and A. Roychoudhury. 2020. AFLNet: A Greybox Fuzzer for
Network Protocols. In 13th International Conference on Software Testing, Validation
and Veri�cation.

[51] H. Pirayesh and H. Zeng. 2022. Jamming Attacks and Anti-jamming Strategies
in Wireless Networks: A Comprehensive Survey. IEEE communications surveys &
tutorials (2022).

[52] NCC Group Plc. [n. d.]. fuzzowski. https://github.com/nccgroup/fuzzowski
[53] SyedMdMukit Rashid, TianweiWu, Kai Tu, Abdullah Al Ishtiaq, Ridwanul Hasan

Tanvir, Yilu Dong, Omar Chowdhury, and Syed Ra�ul Hussain. 2024. State Ma-
chine Mutation-based Testing Framework forWireless Communication Protocols.
(2024). arXiv:2409.02905 [cs.CR] https://arxiv.org/abs/2409.02905

[54] J. Ruge, J. Classen, F. Gringoli, and M. Hollick. 2020. Frankenstein: Advanced
Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. In 29th USENIX
Security Symposium.

[55] J. Ruge, J. Classen, F. Gringoli, and M. Hollick. 2020. Frankenstein: Advanced
Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. In 29th USENIX
Security Symposium.

[56] D. Rupprecht, A. Dabrowski, T. Holz, E. Weippl, and C. Pöpper. 2018. On Security
Research Towards Future Mobile Network Generations. IEEE Communications
Surveys & Tutorials 20 (2018).

[57] D. Rupprecht, K. Jansen, and C. Pöpper. 2016. Putting LTE Security Functions to
the Test: A Framework to Evaluate Implementation Correctness. In 10th USENIX
Workshop on O�ensive Technologies.

[58] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper. 2019. Breaking LTE on Layer
Two. In IEEE Symposium on Security and Privacy.

[59] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz. 2022. Nyx-net:
Network Fuzzing with Incremental Snapshots. In 17th European Conference on
Computer Systems.

[60] B. Seri and G. Vishnepolsky. 2017. Blueborne: The Dangers of Bluetooth Implemen-
tations: Unveiling Zero Day Vulnerabilities and Security Flaws in Modern Bluetooth
Stacks. Tech. Rep. Department of Computer Science, Michigan State University.

[61] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert. 2016. Practical
Attacks Against Privacy and Availability in 4G/LTE Mobile Communication
Systems. In Network and Distributed System Security Symposium.

[62] Q. Shi, X. Xu, and X. Zhang. 2023. Extracting Protocol Format as State Machine
via Controlled Static Loop Analysis. In 32nd USENIX Security Symposium.

[63] A. Stulman. 2009. Searching for Optimal Homing Sequences for Testing Timed
Communication Protocols. J. Networks 4, 5 (2009), 315–323.

[64] A. Walz and A. Sikora. 2017. Exploiting Dissent: Towards Fuzzing-based Di�eren-
tial Black-box Testing of TLS Implementations. IEEE Transactions on Dependable
and Secure Computing (2017).

[65] F. Wang, J. Wu, Y. Nan, Y. Aafer, X. Zhang, D. Xu, and M. Payer. 2022. ProFactory:
Improving IoT Security via Formalized Protocol Customization. In 31st USENIX
Security Symposium.

[66] R.-P. Weinmann. 2012. Baseband Attacks: Remote Exploitation of Memory
Corruptions in Cellular Protocol Stacks. In 6th USENIX Conference on O�ensive
Technologies.

[67] H.Wen, Z. Lin, and Y. Zhang. 2020. Firmxray: Detecting Bluetooth Link Layer Vul-
nerabilities from Bare-Metal Firmware. In ACM SIGSAC Conference on Computer
and Communications Security.

[68] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and D. Xu. 2020.
BLESA: Spoo�ng Attacks Against Reconnections in Bluetooth Low Energy. In
14th USENIX Workshop on O�ensive Technologies.

[69] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi. 2022. Formal Model-driven
Discovery of Bluetooth Protocol Design Vulnerabilities. In IEEE Symposium on
Security and Privacy.

[70] W. Xu, S. Kashyap, C. Min, and T. Kim. 2017. Designing NewOperating Primitives
to Improve Fuzzing Performance. In ACM SIGSAC conference on computer and
communications security.

[71] H. Yang, S. Bae, M. Son, H. Kim, S. M. Kim, and Y. Kim. 2019. Hiding in Plain
Signal: Physical Signal Overshadowing Attack on LTE. In 28th USENIX Security
Symposium.

[72] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. 2020. Zeror: Speed
up fuzzing with coverage-sensitive tracing and scheduling. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
858–870.

[73] C. Zuo, H. Wen, Z. Lin, and Y. Zhang. 2019. Automatic Fingerprinting of Vul-
nerable BLE IoT Devices with Static UUIDs from Mobile Apps. In ACM SIGSAC
Conference on Computer and Communications Security.

https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://arxiv.org/abs/1607.05171
https://arxiv.org/abs/1607.05171
https://github.com/nccgroup/fuzzowski
https://arxiv.org/abs/2409.02905
https://arxiv.org/abs/2409.02905

	Abstract
	1 Introduction
	2 Preliminaries and Notations
	3 Motivation of PROTEUS
	3.1 Running Example
	3.2 Benefit of Having PSM and Properties

	4 Design Overview and Challenges
	4.1 Proteus Overview
	4.2 Challenges and Insights

	5 RegExGenerator: Constructing Test Skeletons From Security Properties
	6 TraceBuilder: Generating Test Cases from Test Skeletons and Guiding PSM
	6.1 Mutating a PSM
	6.2 Instantiated Trace Generation

	7 TraceDispatcher: Test Execution and Flaw Detection
	8 Experiments
	8.1 Experiment Setup For Testing

	9 Identified Issues
	9.1 Identified Issues in LTE
	9.2 Identified Issues in BLE

	10 Comparison with Existing Works
	10.1 Qualitative Comparison
	10.2 Total Number of Vulnerability Detection
	10.3 Vulnerability Count Growth
	10.4 Coverage Growth

	11 Performance of Proteus
	12 Discussions
	13 Related Works
	14 Conclusion and Future Work
	References

