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ABSTRACT

This paper proposes Proteus, a protocol state machine, property-
guided, and budget-aware automated testing approach for discov-
ering logical vulnerabilities in wireless protocol implementations.
Proteus maintains its budget awareness by generating test cases
(i.e., each being a sequence of protocol messages) that are not only
meaningful (i.e., the test case mostly follows the desirable protocol
flow except for some controlled deviations) but also have a high
probability of violating the desirable properties. To demonstrate
its effectiveness, we evaluated Proteus in two different protocol
implementations, namely 4G LTE and BLE, across 23 consumer de-
vices (11 for 4G LTE and 12 for BLE). Proteus discovered 25 unique
issues, including 112 instances. Affected vendors have positively
acknowledged 14 vulnerabilities through 5 CVEs.
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1 INTRODUCTION

Due to the pervasiveness and broadcast-based over-the-air (OTA)
communication, wireless protocols (e.g., BLE, LTE, Wi-Fi) are at-
tractive targets for attackers, especially because vulnerabilities in
them can be used as a stepping stone by adversaries to launch at-
tacks against applications relying on them. Software testing has
proven to be the most effective and dominant approach for ensuring
the correctness of wireless protocol implementation by uncovering
bugs in the pre-deployment stages. This paper focuses on designing,
developing and evaluating an automated testing approach called
Proteus for uncovering logical/semantic vulnerabilities in wireless
protocol implementations [28, 30, 31, 56, 65, 68, 69]. The class of log-
ical bugs we focus on is only those that induce the implementation
to deviate from the intended design without necessarily causing a
crash. Such logical bugs are not only challenging to discover but
also often have severe security and privacy implications (e.g., au-
thentication bypass) and go undiscovered during pre-deployment
stage testing. These classes of bugs are the focus of this paper.

Any testing approaches focusing on discovering such logical
bugs in commercial-off-the-shelf (COTS) wireless protocol imple-
mentations must be aware of the following salient aspects. @ COTS
implementations are typically closed-source and expose only their
input-output interfaces, making them only amenable to black-box
testing. @ Wireless protocols are often stateful. Consequently, trig-
gering a vulnerability amounts to injecting the right protocol packet
type and payload only when the protocol is in a specific internal
protocol state. In addition, driving the implementation to the bug-
triggering state may require a long sequence of protocol packets. ®
When executing a test case, the target device’s protocol under test
has to be in the initial state. After running each test case, the device
thus has to be reset. This results in a very high and fixed amortized
cost of running a single test case over-the-air (e.g., ~1.5 minute for
BLE), limiting the number of test cases executable within a given
time budget. Given a fixed testing budget, it is therefore crucial
that the test cases used are not wasted and indeed meaningful,
that is, they have a high probability of exercising the bug-inducing
behavior in the implementations.
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Existing research efforts that specialize in black-box testing of
wireless communication protocol implementations can be catego-
rized into the following high-level categories: (A) Manual analy-
sis or fixed test case-based approaches [10, 47, 60, 61]; (B) Reverse
engineering-based approaches [24, 26, 38, 43, 54, 66]; (C) State ma-
chine learning-based approaches [17, 23, 32, 36, 48]. Approaches in
categories (A) and (B) are either unscalable due to manual effort
or ineffective in identifying intricate bugs in complex and stateful
protocols that require long execution packet traces to be exercised.
Category (C) approaches can address both aspects @ and @, but fail
to address ®. Among the category (C) approaches the ones that rely
on automata learning [32, 36] need to run a large number of over-
the-air (OTA) queries to obtain the protocol state machine before
testing can commence, hence their testing-budget agnosticism.

Furthermore, many of the above approaches rely on differential
testing, in which diverse implementations-under-test (IUT) are used
as cross-checking test oracles to find logical vulnerabilities. However,
these oracles are inherently unfaithful as test oracles because they
all can suffer from the same logical vulnerability. Finally, most
fuzzing techniques [19, 22, 42] only implicitly consider a testing
budget. They aim to effectively use the given testing budget in
terms of the number of vulnerabilities discovered by attempting
to minimize the execution time of each test case while also taking
guidance from some rich forms of coverage information (e.g., code
coverage). However, in a testing setup like ours, where the cost
of running each test case cannot be substantially minimized and
the availability of coverage information is limited, the existing
philosophy of decreasing the execution time of each test case cannot
be effectively adopted. In summary, none of the current approaches
suit our testing setup and thus warrant a new testing philosophy.

We address the above limitations by designing an adaptive testing-
budget-aware, stateful, black box testing approach called Proteus
for COTS wireless protocol implementations. Concretely, Proteus’s
testing philosophy takes advantage of the following three obser-
vations. @ Since COTS devices generally pass through a quality
assurance stage where they are tested for conformance and in-
teroperability, undiscovered bugs are more likely to occur when
implementations subtly deviate from rare but good protocol flows.
As such, a test case is meaningful if it mostly adheres to a desired
protocol message sequence (e.g., sending protocol messages only
after the initial connection request message), except for some con-
trolled perturbations. @ Any testing-budget-aware approach will
be effective only if it reduces test case wastage by generating only
meaningful test cases that have a high probability of triggering
logical vulnerabilities within the given budget. ® The number of
possible meaningful test cases depends on the amount of perturba-
tion and the maximum length we allow. We can adapt an approach
to maximize vulnerability discovery within a given testing budget
if they can be explicitly controlled.

Proteus takes three inputs for generating test cases, namely,
a guiding protocol state machine M, a set of desirable security
and privacy properties ® expressed in past-time linear temporal
logic formulae, and a testing budget . Proteus relies on M, either
derived from the standard [7, 45] or extracted from an implemen-
tation [27, 62], to ensure that the generated test cases are indeed
meaningful. Proteus generates test cases through controlled per-
turbation over M, thus mostly capturing good protocol behavior
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(realization of observation @). Similarly, any property ¢ of the pro-
tocol under test guides Proteus to only generate test cases likely to
trigger violation of ¢ (realization of observation ®). The set of prop-
erties @ serves not only as a faithful test oracle but also liberates
Proteus from needing to have access to diverse implementations
of the same protocol to test a single protocol implementation. Fur-
thermore, the number of test cases to be generated by Proteus is
explicitly controlled by the testing budget parameter f. It achieves
budget-awareness by controlling the maximum size of a test case
(i.e., the length of the message sequence) and the number of per-
turbations to be applied in a good protocol flow for generating test
cases (realization of observation @). In addition, as discussed in
0, the number of mutations one needs to consider (given by f)
need not be large. This observation is corroborated by our findings,
where most vulnerabilities are discovered by considering only 2
mutations of M.

Conceptually, Proteus’ design is inspired by mutation-based
testing, where the guiding protocol state machine M is mutated to
obtain another state machine M* such that M* violates ¢. If the
implementation under test is equivalent to M*, we can automati-
cally obtain the vulnerability’s root cause by tracking the mutation
applied to M for obtaining M*. Proteus realizes this conceptual
design through a novel three-stage approach. First, Proteus uses a
novel algorithm to automatically synthesize test case templates that
are guaranteed to violate ¢. Second, Proteus instantiates these
test case templates using a dynamic programming algorithm for
the given M, ¢ and f (i.e., the maximum length of the message
sequence and the number of allowed mutations from M). Finally,
Proteus efficiently schedules, concretizes, and executes the instan-
tiated test cases OTA. Proteus analyzes the output generated by
the implementation to discover logical vulnerabilities.

To demonstrate the efficacy of Proteus, we have tested several
protocol implementations of two popular wireless communication
protocols: 4G LTE cellular network and Bluetooth Low Energy
(BLE). For 4G LTE, we have tested 11 devices and identified 10
issues, including 3 new ones. For BLE, we have tested 12 devices
and identified 15 issues, including 7 new ones.

In summary, this paper makes the following contributions.

e We developed Proteus, which is an efficient, a black box, proto-
col state machine and property-guided, budget-aware automated
testing approach for discovering logical vulnerabilities in wire-
less protocol implementations.

o We developed two novel algorithms that cooperatively generate
meaningful test case templates that are likely to violate a given
set of security properties under the guidance of a state machine.

o We developed an effective dispatcher that efficiently schedules
test cases for maximizing the number of property violations
within the allocated testing budget, issues OTA test cases to the
devices and analyzes the output to find logical vulnerabilities.

o We evaluated Proteus on LTE and BLE to determine its efficacy.
It identified 3 new issues in 11 LTE implementations and 7 new
issues testing on 12 BLE implementations.

Responsible disclosure. We have responsibly reported all of our
new findings to the affected vendors. For BLE, the vendors ac-
knowledged 11 issues and assigned 3 CVEs; for LTE, the vendors
acknowledged 3 issues with 2 CVEs. The source code of Proteus
is available at [1].
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2 PRELIMINARIES AND NOTATIONS

Protocol state machine (PSM). A protocol model or state machine
(PSM) M is a tuple (Q, 2, A, ginir, R), in which Q is a non-empty
set of states, X is the non-empty finite set of input symbols, A is
the non-empty finite set of output symbols, qini; C Q is the initial
state, and R is the transition relation R € Q X X X A X Q. Given
a transition (q1, &, y,q2) € R, it signifies that if the protocol is in
state g1 € Q and receives the input symbol «, then it will transition
to state g2 and will generate the output symbol y. We consider this
reception of input « and generation of output y as the observation
of the transition from ¢ to g2.

The input and output alphabets ¥ and A in our description are
intentionally left to be abstract. In our context, ¥ can be viewed
as the cross-product of all the input message types and predicates
over the input message fields. Similarly, A can be defined as the
cross-product of all the output message types and predicates over
them. For example, the input symbol SECURITY_MODE_COMMAND: INTEGRITY
==1¢& EIA == 1 & sEcURITY_HEADER == 3 denotes the security Mobe_commanD
message, with the predicate ivtrcriTy == 0 denoting the message is
not integrity protected, security_neaper == 3 denoting the security
header field value of the message is set to 3, and EIA == 1 denoting
the EIA algorithm field is set to 1.

Trace. A trace 7 is a sequence of the form [a1/y1, @2/y2, . . ., ox /vi]
where a; € X andy; € A.Inour context,  signifies a protocol execu-
tion in which the protocol implementation is fed the input symbols
[a1, a, ..., ar], and it generates the output symbols [y1, y2, - . ., Y& ]-
For instance, consider the trace 7 in BLE [scaN_REQ/ SCAN_RESP, CON_REQ/
NULL_ACTION, VERSION_REQ: EXT_LL==0/ VERSION_RESP, PAIR_REQ: SC==1/ PAIR_RESP,
KEY_EXCHANGE / KEY_ REsPoNsE]. In 7%, scan_reg has been first sent to
the IUT that responds with scan_rese. Then, connecTION_ REQUEST 1S
sent, to which the response is nuiL_action (i.e., the IUT does not
generate an output). After that, the response to version_reQuEsT:EXT 1L
== 0 1S VERSION_REQUEST:EXT_LL == 0, and so on. The length of trace 7
is denoted by |7|. The ith element of 7 is denoted with x; (where
0 < i < |x|). “” represents the concatenation of two traces. As an
example, [a/y] - =! denotes a trace obtained by prepending the

trace with a single observation a/y to trace !

3 MOTIVATION OF PROTEUS

We first review the unique challenges of testing COTS wireless pro-
tocol implementations and then use a running example to motivate
Proteus’s design choices.

Closed-source implementations. As COTS wireless devices tend
to be closed-source, any testing approach relying on some level of
access to the source code (white box or gray box) is inapplicable,
warranting a black box testing approach which Proteus follows.

Need for a faithful test oracle. Crashing behavior can serve as
a protocol-agnostic universal symptom for memory-related bugs.
In contrast, semantic or logical bugs require a faithful test oracle
to accurately adjudicate the correct behavior for a given test case.
Proteus uses a set of security properties collected from RFCs/spec-
ifications as faithful oracles. If a property is violated, Proteus
directly concludes that it is a logical vulnerability.

Protocol statefulness. Statefulness of wireless protocols intro-
duces the following challenges: (1) Analysis mechanisms must be
aware of the underlying protocol state. (2) The protocol behavior
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Figure 1: A partial LTE protocol state machine used as guiding
PSM for running example. The transition labels are presented
in Table 1, with red transitions indicating mutations.

depends on both the current state and the current protocol packet.
(3) Triggering a bug may require driving the target protocol imple-
mentation in a particular protocol state. This may require sending a
long sequence of messages to the IUT (to reach the bug-triggering
state) before we can inject the bug-triggering packet. (4) Due to
2 and 3, the universe of test cases is potentially infinite. A naive
sampling of this infinite test case universe is unlikely to be effective
for a given testing budget. Proteus, therefore, uses guidance from
both the PSM and properties to efficiently sample meaningful test
cases that will likely trigger a vulnerability.

High cost of running a test case. Because of protocol statefulness,
any previous test case may drive the protocol to an unknown state
for which the test oracle does not know the correct behavior. If a
protocol does not have a known homing sequence [63], one has to
reset the device’s state machine either using a sequence of OTA
messages or reboot the device. Also, after sending each protocol
message in a test case, the tester has to wait a certain time to check
whether the message induces a device crash. The resets and device
responsiveness checks substantially increase the amortized cost
of executing a single test case. As an example, it takes up to ~1.5
minutes in BLE and ~1 minute in LTE to run a test case containing
~6—8 messages. The high execution cost significantly slows the
overall testing speed and allows testing only a limited number of test
cases within a given time budget. Failing to explore more protocol
behavior within a specific time results in fewer bug detections.
Testing budget awareness. Traditional fuzzing approaches for
general-purpose systems implicitly consider a testing budget. They
try to accelerate the discovery of security vulnerabilities through
different mechanisms such as enhancing code coverage [14, 40, 72],
optimizing the search space of test messages [19], adopting effi-
cient scheduling mechanisms [42], increasing testing speed [70],
or improving discovery of execution paths [22]. However, these
approaches have no explicit mechanism to adapt their test case
generation according to the available testing budget. In contrast,
Proteus explicitly respects the testing budget. It leverages a guid-
ing PSM and input properties and explicitly controls the mutation
amount and length of the test cases to generate meaningful test
cases that can be executed within the available time budget.

3.1 Running Example

To justify the approach taken by Proteus, we consider a running
example using 4G LTE.

Guiding PSM. The partial PSM used in this example, as shown in
Figure 1, is extracted from the LTE NAS layer protocol specification.
Table 1 explains the transition labels of the guiding PSM. Some
errors are introduced intentionally (red transitions) in guiding PSM.
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Table 1: Transition labels (i.e., input and output symbols) in

the guiding PSM.

Symbol | Description

Aea ENABLE_S1/ ATTACH_REQUEST

aar AUTHENTICATION_REQUEST / AUTHENTICATION _RESPONSE

asm SECURITY_MODE_COMMAND / SECURITY_MODE_COMPLETE

ajq IDENTITY_REQUEST: INTEGRITY == 1 & IDENTITY_TYPE == 1/ IDEN-
TITY_RESPONSE

aqy DETACH_REQUEST / DETACH_ACCEPT

ars RRC_SECURITY_MODE_COMMAND / RRC_SECURITY_MODE_COMPLETE

Age ATTACH_ACCEPT / ATTACH_COMPLETE

age GUTI_REALLOCATION_COMMAND / GUTI_REALLOCATION_COMPLETE

agr' GUTI_REALLOCATION_COMMAND: REPLAY == 1 / GUTI_REALLOCATION_COMPLETE

aspr SECURITY_MODE_COMMAND: REPLAY == 1 / SECURITY_MODE_COMPLETE

aap ATTACH_ACCEPT: INTEGRITY == 0 & CIPHER == 0 & SECURITY_ HEADER _TYPE
== 0/ NULL_ACTION

aqp ATTACH_ACCEPT: INTEGRITY == 0 & CIPHER == 0 & SECURITY_ HEADER _TYPE
== 4/ ATTACH_COMPLETE

Table 2: Sequences (test traces) considered for the running
example in Figure 1.

ID |Sequence

S0 | aeq, aar, asm, aig

S1|acq, aar, asm. Gigr

S2|deq, aar, asm, Ady, dac; dgc, dgr’

S3 |dea; aar; asm, ars, dac; dgc, Asr’, Agr’

Desirable property. The security property of interest in this ex-
ample is the following. ¢g : “After successfully completing the at-
tach procedure, a replayed GUTI Reallocation Command message
should not be accepted.” This property prevents an attacker from per-
forming linkability attacks by violating the freshness of a device’s
ephemeral identity (i.e., GUTI). Violating this property enables an
adversary to launch an attack in which they send a previously cap-
tured curi_rearrocarion_commanp message intended for the victim to
all devices in a cell. If the victim device violates the above property
and is present in that cell, it will respond positively, whereas others
will just respond with a rejection. In this way, the adversary can
test the presence of a victim in a cell.

3.2 Benefit of Having PSM and Properties

Before explaining the advantage of having access to both a guiding
PSM and desirable security properties for generating meaningful
test cases within a testing budget, we first explain why any approach
having access to just one of these is unlikely to be as effective.

Why is guiding PSM not enough? Consider a PSM-guided test-
ing approach that mutates a trace adhering to the protocol flow to
generate a test case. However, this approach does not guarantee
that the mutated test case will violate ¢y; wasting a test case. As
an example, consider a good protocol flow sampled from the PSM
denoted as SO in Table 2. Suppose we mutate SO by adding a muta-
tion on the mentiTy_rEQuEsT message to generate the test case S1 in
Table 2. $1 clearly does not violate the property as it does not even
include the curi_rREaLLOCATION COMMAND message, let alone its replay.
Why are properties not enough? Access to properties, however,
ensures that such blatantly vacuous test cases like S1 are not gener-
ated. Considering the property ¢y, one can automatically generate
test skeletons that are guaranteed to violate it. One such test skeleton
or template (expressed as a regular expression for ease of exposi-
tion) is o5 = (.)*aar(.)*asm(.)*agc(.)*age () *agr where wildcard
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Figure 2: Overview of Proteus.

characters signify that they can be replaced with 0 or more occur-
rences of any input symbols, and still result in a ¢4-violating test.
o4 captures the necessary messages to violate ¢4, with wildcard
characters allowing other protocol messages. Suppose we instan-
tiate o4 by replacing wildcard characters with arbitrary concrete
symbols. Without any knowledge of a typical good protocol flow,
we may obtain instantiated test case S2 (see Table 2) which violates
¢g. However, any practical protocol implementation would most
likely reject this trace since ag, will discard the NAS security con-
text and the subsequent messages of S$2 will be dropped. Also, a
successful RRC security context a,s is not performed, preventing
the completion of the attach procedure. Such blind instantiations
of wildcard characters to generate a test case will likely result in
meaningless test cases that the IUT will reject, wasting test cases.
Advantage of Proteus’ approach. Proteus takes advantage of
the strengths of both PSM-guided and property-guided approaches.
The main insight Proteus uses is that after a trace skeleton like
oy is created, it does not blindly instantiate the wildcard characters
and instead relies on the PSM for guidance on instantiating these
free choices. When instantiating these open choices, it does not
necessarily follow the PSM exactly but also includes controlled
deviations. For example, using the PSM, Proteus would instantiate
o4 and generate a test case 83, which not only violates ¢ but also
have a higher chance of being accepted by a buggy implementation
as it closely follows a good protocol flow.

4 DESIGN OVERVIEW AND CHALLENGES

4.1 Proteus Overview

Given a set of desired properties ® = {¢1, $2, . .., Pn}, a (potentially,
standard-prescribed) guiding PSM M of a protocol P, a testing
budget 5, and an implementation Zp of the protocol P under test (i.e.,
IUT), Proteus aims to identify execution traces 7€ of Zp such that
it falsifies one or more desired properties ¢; € ® while receiving
guidance from M and ® in time proportional to S. f is of the
form (A, p) in which A denotes the maximum length budget (i.e.,
the number of input symbols in a test case) and p represents the
mutation budget (i.e., the maximum number of places a test case
can deviate from a good protocol flow). Figure 2 presents the high-
level overview of Proteus. The full pseudocode of Proteus’s test
generation is presented in our extended paper [53]. Conceptually,
for each property ¢; € @, Proteus carries out the following steps.
(1) Test skeleton generation. Proteus uses its RegExGenerator
to generate a test skeleton denoted as a regular expression (RE) for
¢i. This test skeleton is an abstract execution/trace 7% of the proto-
col under test guaranteed to violate ¢;. Some positions of 7% have
specific input symbols, whereas others have wildcard characters.
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One can instantiate wildcards with input symbols and still violate
¢i. Based on f3, Proteus will generate multiple such test skeletons.

(2) Instantiating test skeletons. In this step, Proteus instan-
tiates the abstract trace 7%, especially in unrestricted positions
(represented with wildcard characters) with specific input symbols
under the guidance of M while respecting the budget . Based on S,
Proteus will generate multiple instantiated test cases 7€, contain-
ing input symbols in all positions with no wildcard characters, and
store them in TestTraceSet. Guidance from M is crucial to ensure
that any generated instantiated trace is indeed meaningful.

(3) Dispatching test cases. Proteus then takes each instanti-
ated 7€, schedules it, and then prepares OTA protocol packets for
each input symbol. It then sends the resulting concrete protocol
packets contained in this concretized test case OTA to Zp.

(4) Vulnerability detection and reporting. If 7p accepts the
concretized test case executed OTA, then it signifies a vulnerability.
In such a case, the test case is stored, and a vulnerability is reported.

4.2 Challenges and Insights

Realizing Proteus’ approach requires tackling the following chal-
lenges. We address the challenges with the outlined novel insights.
4 Challenge C1: Synthesizing test skeletons from proper-
ties. Proteus takes the desired properties as past linear temporal
logic (PLTL) formulae. We, therefore, first require to generate test
skeletons that are guaranteed to violate a property. Also, we need
a succinct representation for test skeletons.

Insight I1. We use regular expressions (REs) as our succinct in-
termediate representation of a property-violating test skeleton. RE
is not only expressive enough to capture the temporal ordering in
a PLTL formula but also can represent logical dependencies. This
leads to the following research question: how does one generate
in regular expression format from a PLTL formula automatically?

To answer this, we observe that a PLTL expression contains
logical (e.g., AND operator) and temporal (e.g., SINCE operator) op-
erators. Logical operators of the PLTL formula express constraints
over its operands for any 7% expressing the violation of the PLTL
expression ¢. In contrast, temporal operators express constraints
over their operands in a range of positions in 7%. An abstract syntax
tree (AST) effectively expresses the relation between an operator
and its operands, and its leaves are propositions required to obtain
the input symbol or wildcard characters in n%. Proteus parses
the AST of the PLTL formula and leverages the PLTL operator
semantics to non-deterministically generate a trace skeleton 4.
1 Challenge C2: Instantiating abstract test skeletons using
guiding PSM. The next challenge is to instantiate the abstract test
skeleton 7¢ to a test case z¢ while taking guidance from the PSM.
We assume that the guiding PSM satisfies all security properties.
In contrast, property-violating traces will likely be present when
implementations subtly deviate from the standard. As such, we opt
to perform mutations on the guiding PSM and generate traces to
instantiate the abstract test skeleton.

However, if we perform too many mutations on the guiding PSM
M, we will generate traces that substantially deviate from the stan-
dard, which are unlikely to trigger any vulnerabilities. In contrast,
if we perform too few mutations, we may miss some vulnerabilities
that require more mutations to identify (e.g., generating a test trace
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that detects the GUTI reallocation replay attack in LTE requires
two mutations). Thus, we need to vary the amount of mutation
within a range of values.

Similarly, generating arbitrarily long traces negatively impacts
testing. Long traces likely repeat the same states and transitions,
making it unlikely to uncover new vulnerabilities. Even worse,
excessively long traces takes significantly more time to test OTA,
ultimately wasting our testing budget. In contrast, we need our test
traces to be at least as long as the number of literals in the trace
skeleton 7% to generate a trace that satisfies 7%. We also require
a slightly longer trace to visit extra states and uncover potential
property violations. Thus, similar to mutations, we need to vary
the length of the generated traces A within a range of values.

Finally, for a given test skeleton 7¢, the challenge is to design an
automatic approach to generate instantiated traces 7¢ that would
(1) satisfy the abstract test skeleton 7%, (2) align with the guiding
PSM Ip, (3) ensure that each generated instantiated trace 7€ require
at most y mutations on M, and (4) maintain a maximum length of 1.
For example, consider the guiding PSM in Figure 1 and the property
¢g provided in Section 3. A trace skeleton that violates ¢y is ay,
and 83 (shown in Table 2) is a test trace that satisfies 0. $3 aligns
with M within 2 mutations (i.e., it would satisfy any requirement
of y1 >= 2). The mutations are marked bold in Table 2. Also, S$3 is
of length 8 and thus satisfies any length requirement of A >= 8.
Insight I2. We observe that we can solve the problem of generating
test cases described above by combining overlapping subproblems
originating from destination states qn (g, € M) of the outgoing
transitions of a particular state g.. The solution of the subprob-
lems will produce traces by using mutations wherever necessary
to satisfy some suffix of 7 starting from state q,. By prepending
an observation (depending on 7%) to these traces, we can gener-
ate traces originating from g, that satisfy 7% within the specified
mutation and length budget. For example, in Figure 1 if we have
that trace 7 = agrasmasmarsaacageasm agr that satisfies oy from
state g1, and append observation ae, (obtained from the transition
from qo to q1) to this trace, we will obtain trace $3 shown in Table
2. 83 satisfies o4 from qg and requires the same amount of mutation
but has one length more than 7. Also, consider two subproblems
involving two transitions with the same observation and destina-
tion state but different source states. We want to satisfy the same
trace skeleton with the same budget. Then, any trace obtained from
the first subproblem will also be a solution for the second sub-
problem. Thus, the subproblems exhibit overlapping characteristics
and Proteus adopts a dynamic programming-based solution to
generate test cases.

(d Challenge C3: Arbitrary mutations miss logical vulnerabil-
ities. As discussed in challenge C2, one must perform mutations
on the PSM to increase the chance of triggering security property
violations. To mutate a PSM, we must select a transition and alter
it, i.e., its input, output, or destination state. At any protocol state,
randomly selecting a transition to mutate is less likely to violate
the given property since it would not be property-driven. Similarly,
even after selecting a transition to mutate, randomly altering the
input message or output message of the transition at the bit/byte
level, like traditional fuzzers [4, 20], would also be inefficient since
it does not consider the semantic meaning of the message fields (i.e.,
byte offset and boundary of each message field), the given security
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Table 3: Simple scheduling example for insight 14.

Test case | Properties| Average States | No. of Deviations |Selection
1D Violated Covered Covered Order

al 1 5 2 1
s o1 5 1 X
Is $1 5 0 X
e $2 3 2 2

property, and the current protocol state. Although grammar-guided
fuzzers [5] offer semantic meaning-aware mutations, they do not
consider the property being tested and the current state of the pro-
tocol while selecting a message to mutate. Such mutation schemes
are less likely to generate mutated messages that violate a given
security property. Therefore, an effective mutation scheme should
(i) consider the security property being tested while selecting a
transition and (ii) consider the semantic meaning of a message,
the given property, and the current protocol state while mutating
a selected message (i.e., have a clever choice to fill the wildcard
characters of the test skeleton 7).

Insight I3. To address challenge C3, we consider selecting a tran-
sition to mutate M with a goal to generate traces satisfying test
skeleton 7%. Such a mutation scheme is property driven since we
aim to satisfy 7%, which signifies the violation of its corresponding
security property. Also, while mutating any transition in M, we
consider mutating a transition’s observation or destination state.
Mutating the observation may uncover improper handling of pro-
hibited messages. In contrast, mutating the destination state may
uncover certain bypass attacks since these attacks represent skip-
ping certain intermediate states to reach a secure state in protocol
registration/authentication procedures. Moreover, to perform a mu-
tation over the input message, we consider performing operations
on it that are semantic aware (e.g., understanding field boundaries
of any message field), state aware (e.g., setting field values within
or outside a defined range according to the current protocol state)
and also property driven (e.g., creating a plaintext version of a mes-
sage to test at a security context established state, considering the
property that plaintext messages should be dropped at such a state).
Consequently, our mutation scheme is more likely to uncover a
violation of the given security property than other existing works.
d Challenge C4: Arbitrarily scheduling the properties and
test traces to test OTA will lead to inefficiency. Once we gener-
ate the set of test traces for all given properties, one can randomly
schedule test traces to execute over-the-air (OTA). However, this
approach is inefficient as it may fail to uncover vulnerabilities or
adequately explore the search space within the given testing budget.
Insight I4. To address challenge C4, Proteus adopts an efficient
scheduling mechanism to uncover vulnerabilities faster. In each
testing iteration, Proteus first selects a property ¢ from the prop-
erty set @ to test and then a trace 7€ to test §. Proteus prioritizes
scheduling the properties whose generated traces cover more states
in the guiding PSM, increasing the likelihood of vulnerability de-
tection. After selecting a property @, Proteus selects a trace ¢,
prioritizing based on the frequency of use of 7€, the number of al-
ready identified deviations 7€ covers, and the number of instances
of 7€ rendered the target unresponsive. To avoid testing redun-
dant traces, Proteus does not test any further traces of a property
whose violation has already been detected.
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As a simple example of our scheduling scheme, consider four
traces, their corresponding property, the average number of states
covered by the traces associated with the property, the number
of already identified deviations covered by the trace, and their
selection order in Table 3. Since traces associated with ¢; cover
more states on average than ¢,, Proteus first selects ¢ to test.
Among the three traces associated with ¢1, suppose all other factors
are the same, but trace 7! covers more transitions where Proteus
observed a deviation from M in previous iterations. Proteus then
selects 7! to test OTA. Now suppose 7! identified a violation of
property ¢1. Then, Proteus discards testing all traces associated
with @1 (i.e., 2 and 7r3), and in the next iteration selects 72 to test.

5 RegExGenerator: CONSTRUCTING TEST
SKELETONS FROM SECURITY PROPERTIES

Proteus first constructs test skeleton(s) for each property ¢ € ®
expressed in PLTL formula and uses the skeletons represented in
regular expressions to generate test cases. To automatically con-
struct test skeletons, we have developed RegExGenerator that takes
a PLTL (past linear temporal logic) formula as input and produces
REs violating the PLTL formula as output. To construct such an RE
oi, RegExGenerator leverages the PLTL formula’s Abstract Syntax
Tree (AST) and traverses it in pre-order. Nodes in this AST corre-
spond to PLTL operators (e.g., Since S, Yesterday Y), while leaves
represent observations (a/y). For instance, Figure 3 presents the
AST for the PLTL formula ¢ :‘ asm ='a;q S agy ‘

To create a violating regular expression for a PLTL formula ¢,
at each internal (non-leaf) node n; during AST traversal, Regex-
Generator needs to satisfy or negate the sub-formula ¢™ rooted
at n; based on the semantic meaning of the operators involved
in ¢™. For this, RegExGenerator recursively satisfies or negates
the expression at n;’s child nodes according to the semantic mean-
ing of the operator at n;. While traversing a leaf node n; of the
AST, RegExGenerator places a literal or a kleene star element on o
according to the requirement (satisfaction or negation) at n;. For

example, if the operator is a “since” as in | la;q S ag4, |in Figure 3,
RegExGenerator attempts to first avoid satisfying the right subtree
ag, by placing —(ag,)*, and then violate the left subtree by plac-
ing a;y after =(ag,)*. Thus it will find —(ay,)*a;4 violating the
“since” operator. Again, for the “implies” operator, RegExGenerator
attempts to first satisfy the left subtree (obtaining RE (.)*asp,) and
then violate the right subtree (obtaining RE —(ag,)*a;4). Finally,
to construct an RE representing the violation of the given PLTL
formula, the operator/operand at the root node of the AST must be

negated. The final RE o, violating ¢ will be | (.)*asm=(ag,)*a;q |

RegExGenerator generates multiple different violating expressions.
It also checks if a previously generated RE already covers the ex-
pression. If so, it discards the new RE.

6 TraceBuilder: GENERATING TEST CASES
FROM TEST SKELETONS AND GUIDING PSM
Given a test skeleton 7¢ representing violations of a security prop-

erty ¢ € @, Proteus uses a guiding PSM M and mutates M to
efficiently generate meaningful test cases 7€ with the shape of 7.
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H(asm = 'aia S aay)

()" asm= (aar)” @iz

Figure 3: Example AST of a PLTL formula.

Note that the guiding PSM used by Proteus can be abstract com-
pared to PSMs extracted from target device implementations. As
such, they are substantially smaller than PSMs learned from com-
mercial devices (§8). One can also use PSMs directly obtained from
RFCs (e.g., [33]) as a guiding PSM. Since Proteus does not require
detailed PSMs, it alleviates the prohibitively high time required to
learn a detailed PSM from target implementations. We now dis-
cuss our PSM mutation strategies and then present our test case
generation mechanism.

6.1 Mutating a PSM

As discussed in challenge C2 in §4, since the guiding PSM is as-
sumed to satisfy all security properties, we need to mutate the
guiding PSM M to generate traces satisfying a test skeleton 74,
which signifies the violation of a security property. Proteus selects
a transition R(qe, @, ¥, qn) to mutate while generating instantiated
traces satisfying a test skeleton 7¢ (described in §6.2). For muta-
tions, Proteus essentially performs two types of operations on a
selected transition R, as discussed below.

[d Mutation kind M1: Mutating the observation of a transition.
In this case, Proteus alters the observation a/y of R, i.e., alters
either the input « or the output y or both based on the input and
output in trace skeleton 7¢ when the execution reaches at g..

At any state g, if the trace skeleton 7¢ to satisfy requires input
«’ and output y’ but the guiding PSM M does not have o’ /y’at
qc, to ensure the generated trace conforms with 7%, we mutate the
transition with o’ at g, in M to obtain input &’ and output y’. For
example, in Figure 1, suppose at state gs if we require output GUTL
REALLOCATION _COMPLETE for input GUTI_ REALLOCATION _COMMAND: REPLAY ==
according to the test skeleton. However, since it is not prescribed
at state g5, we mutate the transition with observation agc (with
input GUTI_ reariocation _commanp) to obtain input GUTI rRearLocaTioN
_COMMAND: REPLAY == 1 and output GUTI_ REALLOCATION _COMPLETE. This
mutation strategy is required to generate traces satisfying 7%.

On the other hand, if 7¢ has a wildcard character at state g,
Proteus instantiates the wildcard character with a mutated ver-
sion of an input message « to detect any deviation from the PSM
that can lead to a security property violation. To increase the likeli-
hood of a mutated message being accepted by a practical protocol
implementation, Proteus considers the semantic meaning of the
input message. It performs one of the six semantic operations. We
summarize these operations with examples in Table 4. These oper-
ations consider the semantics of the message fields, their defined
values and ranges according to the protocol specification, and over-
all message semantics (e.g., plaintext or replayed version). As an
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Table 4: List of possible semantic operations performed on an
input message for mutation type M1. Hor is a 5-bit field in con-
NEcTIoN_ REQUEsT message in BLE whose value is defined to be
between 5 to 16 according to BLE specifications. artacu_acceer
and securiTy_mopE_commanp are messages in 4G LTE.

Operation|[Description

OP1 Change value of a field to a defined value
in range
OP2 Change value of a field to prohibited val-
ue/value outside of defined range
Change value of a field to one of its
OoP3 boundary values (i.e., setting all bits of | coNNECTION_ REQUEST: HOP == 31
the field to 0 or 1)
Send the plaintext version of any in-[rracn_accepr: INTEGRITY == 0 & CreHER
OP4  |tegrity protected and/or ciphered mes- -
sage
Cogmbination of applying OP1, OP2, OP3 | ATTACH_ACCEPT: INTEGRITY == 0 & CIPHER
and OP4 multiple times
Replay a previously captured version of
the message

Example

CONNECTION_ REQUEST: Hop == 5

CONNECTION_ REQUEST: HoP == 20

==0

OP5
== (0 & SECURITY_HEADER_TYPE == 15

oP6 SECURITY_MODE_COMMAND: REPLAY == 1

example, in Figure 4(i), consider a mutation of the transition with
observation Aap (with input ArTacH_ ACCEPT: INTEGRITY == 0 ¢ CIPHER == 0
¢& sEcURITY_ HEADER _ TveE == 0, marked blue) at state g;. If we perform
oPr2 operation and Change the value of the SECURITY_ HEADER _ TYPE
field to a prohibited value 4, we obtain the mutated message a’ap
with input ATTACH_ ACCEPT: INTEGRITY == 0 & CIPHER == 0 & SECURITY_ HEADER
_1yee == 4. If the target accepts this mutated message, we obtain
ATTACH_coMPLETE a8 a response, which deviates from the guiding PSM.

(i) Mutation kind M1

(ii) Mutation kind M2

Figure 4: Two kinds of mutations M1 and M2. The transition
labels are presented in Table 1.

(d Mutation kind M2: Mutating the destination state of a tran-
sition. In this case, Proteus alters the destination state g, of a
selected transition R (g, @, ¥, gn). The goal of this kind of mutation
is to test whether the input message « at state g, leads to a state g,
different than what is expected by the guiding PSM (in this case g5,),
which in turn can lead to an observable deviation or security prop-
erty violation. This kind of mutation enables Proteus to identify
certain bypass attacks, e.g., detect whether any intermediate step
can be bypassed to reach a secure state. To illustrate, in Figure 4(ii),
suppose we perform mutation over the transition with observation
age at state q; (marked blue). We can perform a mutation over
the next state gy of the transition by changing the next state of
the transition to gs. This mutation would generate an instantiated
trace that tests whether the target incorrectly reaches state gs if a
plaintext arracu_acceer is fed at ;.

6.2 Instantiated Trace Generation

Given a test skeleton 7 representing violation of a property ¢ € @,
a guiding PSM M, a mutation budget y and a length budget A, we
leverage insight I2 and solve the problem of generating instantiated
traces by combining the solutions of overlapping subproblems. For
this, we formulate a dynamic programming problem as follows.
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G(M, 7%, qc, , A): At any state qc € Q of a guiding PSM M, we
want to craft a set of instantiated traces T, where each instantiated
trace (i) satisfies the test skeleton 7%, (ii) is the outcome of a maximum
of u mutations applied on any trace in the guiding PSM M and (iii)
is within a maximum length A.

Consider we are at state g; of our guiding PSM M and we need to
satisfy the jt" observation lj = (aj/yj) of m%, ie., the test skeleton
up to input symbol [;—1 has been satisfied and the next wildcard
character in 7¢ is .. Also, at g;, consider the remaining mutation
budget is y;, and the remaining length budget is ;. For this problem,
we consider the following four cases, formulating subproblems and
prepending suitable observations.

Case L. If there is a transition R(q;, @, y, qm) at state g; whose
observation satisfies I}, TraceBuilder can leverage solutions from
the destination state gy, that satisfies 7% from observation 1, with
mutation budget y; and length budget A;—1. TraceBuilder prepends
[; to the instantiated traces being generated from the subproblem.
Since it places an observation (/) in the instantiated trace, it uses
length budget A;—1 to formulate the subproblem.

Case IL. If there is no transition at g; satisfying [;, TraceBuilder
can consume a mutation to mutate the transition for a;, the input
message of observation ;. TraceBuilder places observation [ in
the instantiated trace using mutation kind M1. Again, TraceBuilder
leverages traces from the destination state g, that satisfies 7%
from observation /.1, with length budget A;—1 but using mutation
budget p;—1 since it consumed a mutation to place /;. TraceBuilder
prepends [; to the obtained instantiated traces from the subproblem.

Case IIL. If there is a transition R(q;, @, y, gm) at state g; whose
observation (a/y) satisfies wildcard character element I, Trace-
Builder leverages solutions from the destination state g, that sat-
isfies 7¢ from observation /; with mutation budget y; and length
budget A; —1. It prepends observation («/y) to the obtained instan-
tiated traces from the subproblem.

Case IV. Finally, for any transition R(q;, .y, qm) at state g;,
TraceBuilder can mutate the transition’s observation and place a
mutated observation (@/y)m using mutation kind M1. TraceBuilder
can leverage solutions from the destination state gy, that satisfies
7% from observation /; with length budget A; —1 and also mutation
budget y1;—1 since we perform a mutation. It prepends the mutated
observation (a/y)m to the obtained instantiated traces from the
subproblem. Note that we only place a mutation marker in this case.
This marker would be resolved later by TraceDispatcher (§7). Note
that we can generate multiple traces to test OTA by placing various
mutated messages in place of the mutation marker.

Furthermore, for each case, TraceBuilder may also consider mu-
tating the destination state of the selected transition (mutation kind
M2). In that case, TraceBuilder mutates the destination state to
another state ¢p,,,; and formulates the subproblem from state gy,
with mutation budget y—1. TraceBuilder terminates if either 7¢ is
satisfied or runs out of mutation or length budget.

7 TraceDispatcher: TEST EXECUTION AND
FLAW DETECTION
After TraceBuilder generates instantiated traces associated with

each property in its property set ®, the TraceDispatcher component
of Proteus iteratively selects a property ¢ and then an instantiated
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test trace ¢ generated from ¢ to test OTA. TraceDispatcher runs
for t iterations, where ¢ is proportional to f. TraceDispatcher con-
sists of three components: a scheduler, an adapter and an observer.
Scheduler. In each testing iteration, the scheduler of TraceDis-
patcher first chooses a property ¢ € @ to test using weighted
random sampling. The scheduler determines the weight of each
property by determining the average number of distinct states in the
guiding PSM covered by all instantiated traces of ¢. This scheme fa-
vors properties whose instantiated traces cover more states within
the guiding PSM and implicitly prioritizes traces more likely to
violate a security property within the input property set .

Once a property ¢ is selected, the scheduler chooses an instanti-
ated trace 7€ to test from all traces associated with ¢. Note that an
instantiated trace may or may not have mutation markers (case IV
in §6.2). The scheduler prioritizes selecting instantiated traces with
mutation markers since they test mutated input messages, which
are more likely to trigger property violations. Furthermore, if the
scheduler chooses an instantiated trace with a mutation marker, it
first prioritizes scheduling traces that mutate messages that were
not mutated in previous iterations. Again, among the traces that
have messages not mutated previously, the scheduler selects an in-
stantiated trace based on three factors: (i) the frequency of selection
(f) of 7% (ii) the number of deviations covered by 7€ (d); (iii) the
number of instances where 7¢ rendered the IUT Zp unresponsive
(u). The scheduler selects the instantiated trace with the minimum
score (p = f —d + u), randomly choosing one in case of a tie. The
scheduler prioritizes instantiated traces that trigger known devia-
tions since they can lead Zp to an inconsistent state where Proteus
is more likely to find property violations. Also, the scheduler is
less inclined to traces that rendered Jp unresponsive since we can-
not find further property violations from an unresponsive Zp. The
scheduler randomly performs one of the six operations defined in
Table 4 to mutate a message with a mutation marker and obtain a
mutated input message.

Adapter. The adapter takes an instantiated trace selected by the
scheduler to test OTA. It translates the abstract input symbols
into concrete messages and sends them to Zp. Also, it records the
response from JIp, converts it back into an abstract symbol, and
sends the response sequence back to the observer.

Observer. The observer analyzes the response from Zp to an instan-
tiated trace and detects whether it violates any security properties.
If there is any deviation from the guiding PSM, the observer au-
tomatically checks for property violation by checking the trace
against the violating test skeletons (represented as REs) generated
from the security properties. Additionally, to determine unrespon-
siveness, the observer identifies the final protocol state g ¢ according
to the guiding PSM for each test trace. It then executes a message
ay OTA expected to elicit a valid output message yy. If Zp does not
respond, it is deemed unresponsive.

8 EXPERIMENTS

We evaluate Proteus with the 4G LTE’s NAS and RRC layer pro-

tocols (e.g., mobility management procedures) and BLE's SMP and

Link Layer protocols [6] based on the following research questions:

o RQ1. How effective is Proteus in finding novel and known
issues in LTE and BLE implementations (§9)?
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e RQ2. How effective and efficient Proteus is compared to exist-
ing works (§10)?

e RQ3. How does Proteus perform with respect to generating
test cases (§11)?

8.1 Experiment Setup For Testing

We combine LTE’s NAS and RRC layers’ protocols and construct
a single guiding PSM consisting of 7 states with 86 transitions in
total. For BLE, our guiding PSM has 15 states with 244 transitions in
total. Compared to PSMs learned from implementations [32, 36], the
guiding PSMs in Proteus are substantially smaller. For example,
an average-sized PSM learned from Pixel3A [32] reportedly had 21
states and 548 transitions, which is three times larger than Proteus
guiding PSM for 4G LTE.

For LTE, we set up a base station using srsSRAN and a USRP
B210, and a core network using srsSEPC. We run them using an Intel
17-8665U processor with 16GB RAM. For BLE, we use nRF52840
acting as a central to test peripheral devices. We have tested 11
LTE and 12 BLE devices. Note that we updated all target devices
with the latest patches before performing testing. We provide a
background of 4G LTE and BLE, the details of our tested devices
(including SoC model, vendor, and baseband), and the identified
issues in each device in our extended paper [53].

9 IDENTIFIED ISSUES

To answer RQ1, we have tested each device with 3000 OTA queries
using Proteus. Our evaluation reveals that Proteus identifies 31
and 81 vulnerabilities in LTE and BLE, respectively, with 3 unique
new issues in LTE and 7 unique new issues in BLE implementations.
The identified issues resulted in five new CVEs, two bug bounties,
and 9 acknowledgments from various vendors such as Google,
Samsung, Qualcomm, and Microchip.

Tables 5 and 6 summarize the identified issues for 4G LTE and
BLE, respectively. The tables show the number of distinct devices
where each issue was identified, the impact of each attack, and any
new CVE/acknowledgment obtained by Proteus for each attack.
We discuss in detail some of our identified issues in 4G LTE and
BLE in §9.1 and §9.2, respectively.

9.1 Identified Issues in LTE

Attacker model. Similar to prior works [28, 39, 46], we assume that
a Dolev-Yao attacker [18] knows the victim’s Cell Radio Network
Temporary Identity (C-RNTI) using the victim’s phone number [29,
34, 58] and then send malformed messages to the victim device
using a fake base station (FBS) [31, 71]. For attacks L-E3 and L-E4,
the attacker requires an adversary in addition to a FBS to capture
and replay messages. The attacker can also use a Machine-in-the-
Middle (MitM) relay [28, 58] to exploit the vulnerabilities, as MitM
relays are more powerful than FBS.

L-E8: aurnenTIcATION_REQUEsT With separation bit 0 causes fur-
ther security mode procedure failure. According to the 4G NAS
specifications (TS 24.301, clause 5.4.2.6), a UE should send an avruen-
TicaTIoN_FarLure message with EMM cause # 26 upon receiving an
AUTHENTICATION_REQUEST Iessage with “separation bit” set to 0. How-
ever, after successful authentication, affected devices respond with
an AUTHENTICATION_FAILURE Imessage with EMM cause #20 in response
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Figure 5: aurnenTicaTioN_rEQUEsT With separation bit 0 causing
further security mode procedure failure.

to such a message. The device then moves to “unauthenticated”
state, leading to a subsequent failed security mode control. Fig-
ure 5(a) shows the attack steps where the attacker sends such a
malicious message to the victim UE using an FBS. Note that if the at-
tacker attempts to send a malformed avrnenTICATION REQUEST meESSage
before a successful authentication, the attack does not succeed (see
Figure 5(b)). This signifies the stateful nature of the vulnerability
that the existing works [39, 46] cannot detect.

Impact. Upon receiving the malformed message, Nexus 6P and
Samsung A71 remained unresponsive for over 6 minutes and then
attempted to reconnect. The attacker can repeat the attack steps,
leading to a prolonged denial-of-service (DoS) attack on the vic-
tim user. Qualcomm identified the issue as medium severity and
assigned a CVE. Note that the DoS attacks identified by Proteus
are different in nature from spectrum jamming [41, 51], which are
easily detectable, expensive, and unreliable. In contrast, our identi-
fied DoS attacks exploit logical vulnerabilities and allow targeting
a single device with only one software-defined radio (SDR) and
cannot be thwarted by jamming-specific defenses [35].

L-E9: Respond to auvrnentication_reouest with header 3 with
securitY_mope_reject. The affected devices incorrectly interpret a
malformed avuruenTiCATION_REQUEST With security header 3 before a
successful authentication as a securiry_mopEe_commanp, and respond
with securrry_mope_rejecr. However, in this scenario, the TS 24.301 [3]
clause 7.5.1 suggests returning a emm_status message with cause #96
‘invalid mandatory information’.

Impact. Since a correctly implemented device would drop this
packet, an attacker can fingerprint the victim device up to the
baseband manufacturer level and launch attacks by combining
other known vulnerabilities at the baseband-chipset level. Huawei
acknowledged this vulnerability as low severity.

L-E5: Accepts rrc_security_Mope_commanp with EIAO IE. The af-
fected devices respond with rrc_security_mope_ comprete to the plain-
text rrc_ securiTy_ MopE_commanp with EIAO message. This flaw leads
to a remote privilege escalation attack with no additional execution
privileges required. The attacker can bypass the RRC layer secu-
rity activation by exploiting this vulnerability. The victim UE then
accepts all plaintext RRC messages without integrity protection.
Proteus detected this vulnerability in Pixel7. Google assigned a
high-severity CVE to it. Although Rupprecht et al. [57] identified
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Table 5: Vulnerabilities identified by Proteus for COTS LTE devices. NAS-SC: NAS security context establishment, AS-SC: AS
security context establishment. O : known vulnerability found on devices previously confirmed to have the attack, D : known
vulnerability found on new device not previously reported to have the vulnerability, @ : previously unknown vulnerability.

E-Exploitable, I-Interoperability, O-Other issue.

#Vuln. Newly Obtained CVEs/ Acknowledge-

Issue | Description Category I Impact

nstance ments
L-E1 | Accepts plaintext ipentiTy_request After NAS-SC [15, 32] [ 3 Location Tracking Marked as duplicate by Samsung !
L-E2 | Accepts plaintext autHENTICATION_REQUEST after NAS-SC [15, 32] [ 4 Location Tracking, DoS |Marked as duplicate by Samsung
L-E3 | Accepts replayed security_mone_commanp after NAS-SC [15, 32] [OI) 4 Location Tracking Marked as duplicate by Unisoc
L-E4 | Accepts replayed curr_rearrocarion_comman after attach procedure [32] [ 2 Location Tracking Marked as duplicate by Unisoc
L-E5 | Accepts Rrc_ sEcURITY_ MODE_comMmaND with EIAQ IE after NAS-SC [32, 46, 57] [ 1 Security Bypass High Severity CVE from Google
L-E6 | rrc_ securiTY_ MODE_commanD with EIAO IE after NAS-SC causes unresponsiveness [32] [0 4 DoS -
L-E7 | Accepts plaintext counter_cueck before AS-SC [46] [ 4 Fingerprinting Marked as duplicate by Unisoc
L-E8 | auTHENTICATION_REQUEST With separation bit 0 cause further security mode procedure failure [ ] 4 DoS Medium Severity CVE from Qualcomm
L-E9 |Respond to autaENTICATION_REQUEST With header 3 with securrTy_ MoDE_RrEjECT o 1 Fingerprinting Acknowledged by Huawei
L-01 |Respond to meNTITY_ REQUEST (TMSI) With pENTITY_ RESPONSE (IMSI) before NAS-SC o 4 Fingerprinting -

a similar issue in older devices, Proteus detected L-E5 in new
devices not previously reported to have the vulnerability.

9.2 Identified Issues in BLE

Attacker model. We also assume the Dolev-Yao attacker model
for BLE. Similar to previous works [9, 36, 68], the attacker acts as a
malicious central and can intercept, replay, modify, or drop packets.
The attacker only knows the public information of the target periph-
eral (e.g., Bluetooth name, address, protocol version number, and
capabilities) and does not require knowledge regarding any secret
keys shared between the target peripheral and any other device.
For issues B-E1, B-E2, B-E4, B-I1, B-O1 to B-03, the attacker
can directly establish a connection with the victim peripheral to
launch the attacks. For all the other issues, the attacker must inject
malicious traffic to the target peripheral [13] when the target pairs
with another device for the first time.

B-E9: Accepts two continuous parrine_reouest leading to DoS.
The affected peripherals cannot complete the pairing procedure
when a malicious central sends two consecutive pairING_REQUEST meS-
sages. On the other hand, Microchip’s BLE device responds to both
PAIRING_REQUEST With parrine_response. For other devices not having
this vulnerability, the second rairinc_reguest is ignored, and the
pairing procedure proceeds as usual.

Impact. This attack leads to DoS, where the victim cannot complete
the pairing process. If the central device does not have an auto-
reconnect feature, the pairing procedure needs to be manually
re-initiated, and even with auto-reconnect, the device needs to
restart the entire pairing procedure again. Also, the vulnerability
can be exploited to perform a manufacturer-level fingerprinting of
vulnerable implementations. Microchip assigned a CVE with low
severity to this issue.

B-E1, B-E2, B-E6, B-E7, B-E10 and B-E11. To exploit these vul-
nerabilities, i.e., B-E6, B-E7, B-E9 to B-E11, the adversary assump-
tions are identical to those for B-E9. For B-E6, we observe that
before the pairing process starts, the affected devices will respond
to Lenera_reouest with MaxRxOctets and MaxTxOctects field set to
1, and as a result, the subsequent pairing process cannot be com-
pleted. For B-E7, we observe that sending Data Physical Channel
PDUs, such as MTU_REQUEST, LENGTH_REQUEST, VERSION_ REQUEST, after en-
CRYPTION_REQUEST, can cause the peripheral to disconnect the link.
For B-E10, we observe that the affected devices cannot finish pair-

ing if it receives a exc_pause_reQ_pLAINTEXT after puBLIC_KEY EXCHANGE.

For B-E11, an affected device disconnects after receiving a cuan-
ner_map_reouest With the unchanged Channel Map field. For B-E1
and B-E2, the device cannot recover by itself and requires manual
reboot. For the other identified DoS attacks, the pairing procedure
needs manual re-initiation. Also, sending the packets repeatedly
can lead to prolonged DoS and battery depletion for each case.
B-E4: Accepts malformed connection_reQUEsT With increased
data length field value. An implementation accepts connecTIoN_
requesT With an increased Data Length value. The connection_ REQUEST
is extended to 247 bytes when Data Length field value is increased.
Thus, after accepting this packet, the implementation may allocate
more memory than required.

Impact. Since the vulnerable device accepts LZCAP packets with
the wrong length, more bytes than expected are allocated in mem-
ory for an incorrectly implemented device. Sweyntooth [23] found
a similar vulnerability for rarine_reouest packet, leading to memory
leakage. Moreover, an attacker can fingerprint the device at the man-
ufacturer’s level, which may be further exploited by abusing other
known firmware-level vulnerabilities. Samsung acknowledged this
issue and provided a medium-severity CVE.

B-E3: Bypassing passkey-entry during legacy pairing. During
the passkey-entry association method, a malicious central can by-
pass the passkey entry step by sending a sm_ranpom message with a
temporary key set to 0. This bypasses all MitM protection mecha-
nisms inherent in the passkey entry method. BLEDIff [36] initially
identified this issue in older devices. However, we identified this is-
sue on several newer devices, including peripherals from Samsung,
Google, Hisense, and Motorola (listed in our extended paper [53]).
Samsung assigned a CVE with medium severity to this issue.
Other Issues. Proteus also identified several issues, such as ac-
cepting malformed connecrion_ reouest with a Hop field greater than
the defined range (B-01), accepting versrton_ ReQuesT message mul-
tiple times (B-OZ) and accepting ENCRYPTION_REQUEST with non-zero
EDIV and Rand field value (B-O3). The attacker can exploit these
to fingerprint the affected device.

10 COMPARISON WITH EXISTING WORKS

To address RQ2, we compare Proteus with existing LTE and BLE
testing frameworks. We first provide a qualitative comparison with
respect to different metrics and then provide empirical comparisons
with respect to the number of vulnerabilities detected, coverage,
and cumulative vulnerability detection over time.
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Table 6: Vulnerabilities identified by Proteus for COTS BLE devices. All interpretations are the same as for Table 5.

#Vuln. Newly Obtained CVEs/ Acknowledge-

Issue | Description Category I Impact
nstance ments
B-E1 |Stops advertising if connection_ REQuEsT with Interval/channelMap field set to 0 is sent [23, 36] [0]¢] 3 Crash Acknowledged by MediaTek
B-E2 | Stops advertising with plaintext ENCRYPTION_PAUSE_RESPONSE [36] [ 2 Crash Acknowledged by MediaTek & Samsung
B-E3 | Bypassing passkey entry in legacy pairing [36] o 10 Pégg?lp/tgiu Medium severity CVE from Samsung
B-E4 | Accepts malformed connecTiON_ REQUEST message with increased length [ ] 8 Memory Leakage [Medium severity CVE from Samsung
B-E5 | Accepts sm_conrirm with wrong values [36] O 1 DoS -
B-E6 [rLencTH_REQUEST With MaxRxOctets and MaxTxOctets fields set to 1 cause DoS [ ) 2 DoS Acknolwedged by MediaTek
B-E7 |Unexpected Data Physical Channel PDU during encryption start procedure cause DoS [ ] 11 DoS Acknolwedged by Samsung
B-E8 |rusLic_KEY_EXCHANGE in legacy pairing leading to DoS [23] O 1 DoS Reported by Sweyntooth [23] and fixed in
newer version
B-E9 | Two continuous paIrING_REQUEsT leading to DoS [ ) 2 DoS CVE from Microchip with low severity
B-E10 | Plaintext ENCRYPTION_PAUSE_REQUEST cause DoS [ ) 4 DoS Acknolwedged by MediaTek & Samsung
B-E11 | cuanneL_mar_request with unchanged channelMap field cause DoS [ ) 6 DoS -
B-I1 |Issue with OOB Pairing Fails [36] [ 8 Fingerprinting |-
B-O1 | Accept connection_ requesT with Hop field > defined range [ ] 9 Fingerprinting bALfgnowledged by MediaTek as a functional
B-02 | Accept version_ ReQuesT multiple times [23] [ 2 Fingerprinting | Acknowledged by Samsung
B-03 | Accept encrypTION_REQUEST With non-zero EDIV and Rand [23] (] 12 Fingerprinting ?SgnOWIEdged by MediaTek as a functional
10.1 Qualitative Comparison Table 8: Detected vulnerability count by existing works.
We compare Proteus with existing works with respect to different Baseline | #Vuln.both Proteus | #Vuln. only Proteus #Vuln. only Baseline
i i can Identify can Identify
. . and Baseline can Identify
metrics as shown in Table 7. Among these works, DIKEUE [32], DIKETE 5 1 0
DoLTEst [46], Contester [15], BaseComp [37], BLEDIff [36] and BLE DoLTEst 25 5 1
Blackbox Fuzzing [49] perform stateful testing. However, DIKEUE, BLEDiff 13 7 0
Sweyntooth 18 8 2

BaseComp, BLEDIff, and Blackbox Fuzzing do not consider any
specific properties corresponding to the protocols while generat-
ing queries. Although LTEFuzz [39], DoLTEst and Contester have
property-guided generation, LTEFuzz is not stateful, and DoLTEst
and Contester do not generate test cases dynamically. Also, Sweyn-
Tooth [23] does not consider the guidance of properties while gen-
erating test cases.

Further, DoLTEst, LTEFuzz, and SweynTooth do not perform
positive testing, and only DIKEUE, DoLTEst, Contester, BLEDIff,
and Blackbox Fuzzing have the capabilities to identify interoper-
ability issues. Finally, none of the works except Proteus consider
efficient scheduling of test traces to maximize property violation
detection within a fixed testing budget. Only Proteus simultane-
ously covers all these aspects of testing. In addition, it is the only
dynamic framework that can provide control over the amount of
test traces being generated and, hence, can be tuned to satisfy a
time budget for testing.

Table 7: Comparison with existing testing approaches.

Property Positive im. Interoperability
R
DIKEUE [32] v v X v X 4
LTEFuzz [39] v X v X X X
DoLTEst [46] X 4 v X X 4
Contester [15] X 4 v v X 4
Basecomp [37] X 4 X v X X
BLEDIfF [36] v v X v X v
SweynTooth [23] v X X X X X
Blackbox Fuzzing [49] v/ v X v X v
Proteus v v v v v v

10.2 Total Number of Vulnerability Detection

We compare Proteus with DIKEUE [32], and DoLTEst [46] for
LTE, and BLEDIff [36] and Sweyntooth [23] for BLE, with respect
to the total number of identified vulnerabilities without considering
any time budget. For each vulnerability, we determine whether the

vulnerability is identifiable by- (i) only Proteus, (ii) only the base-
line work, or (iii) both works. For DIKEUE [32] and BLEDIff [36],
we used their provided alphabet.

We present the results in Table 8. Our analysis reveals that
Proteus can identify all vulnerabilities detected by the existing
works except for one identified by DoLTEst [46]. To detect this par-
ticular vulnerability, DoLTEst manually crafts and sends two traces
to Zp: one with an menTiTy_reouEsT message using security header
12 and another using security header 15, observing any differences
in the target’s response. In contrast, Proteus can automatically
generate and reason about only one trace at a time, meaning it can
only check if a single trace violates any security properties at once.
Proteus is not designed to reason about hyper-properties which
require simultaneous consideration of multiple traces.

In contrast, even without considering a testing budget, DoLTEst
[46] cannot detect replay vulnerabilities (e.g., L-E3, L-E4) and also
stateful vulnerabilities where the vulnerability is triggered at a
state not defined by it. For example, issue L-E8 can only be trig-
gered after authentication and before NAS security activation, but
DoLTEst does not incorporate this state. Sweyntooth [23] cannot
detect logical vulnerabilities because it lacks a test oracle to identify
such issues. Furthermore, to detect all vulnerabilities identified by
Proteus through an automata-based learning approach [32, 36],
we must incorporate a set of alphabet containing all symbols used
by Proteus, i.e., all messages, message fields, and their mutations
during PSM learning. Using this alphabet in a 4G LTE environ-
ment (111 symbols) with DIKEUE [32] would require 87,246 unique
queries (~133 days if tested OTA) to learn the PSM of an imple-
mentation, taking over four months to detect all vulnerabilities
Proteus identified with 3000 queries (2 days when tested OTA).

Additionally, as shown in Table 8, Proteus detects 4-5 new
vulnerabilities in LTE and 7-8 new vulnerabilities in BLE compared



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

to these prior works. Thus, Proteus is more effective in identifying
vulnerabilities in the tested protocols.

10.3 Vulnerability Count Growth

We demonstrate Proteus ’s efficiency in detecting vulnerabilities
over time. This evaluation also demonstrates the quality of the
generated traces by Proteus to detect vulnerabilities. We compare
Proteus with the existing works in terms of cumulative vulnera-
bility count on 3 devices from BLE and 2 devices on LTE. Further,
since we focus on logical bugs, we consider the security properties
as an oracle to detect vulnerabilities. Note that we did not observe
any false positives (i.e., any reported property violation that does
not result in exploitable vulnerability). The default value of the
length budget parameter for TraceBuilder is [ + 1, where [ is the
number of observations in any test skeleton for properties. Also,
we set the default mutation budget to 2.

Cumulative vulnerability count on BLE devices. We compute
the cumulative vulnerability count obtained over time on three
BLE devices— Galaxy S6, Galaxy A22, and Oppo Reno7, with both
Proteus and BLEDIff [36]. We consider BLEDIff as our baseline.
However, BLEDIff learns the PSM of the target device first and then
performs differential testing. Thus, to make a fair comparison, we
consider the queries generated during learning as input queries to
detect vulnerabilities and use the security properties obtained for
Proteus as an oracle to determine whether any vulnerability is
detected. We run Proteus and BLEDIff for 24 hours and count the
number of detected vulnerabilities. We run the experiments for 3
iterations and present their average in Figure 6.
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Figure 6: Cumulative vulnerability comparison in BLE.

Figure 6 shows that Proteus can detect more than 5 vulnerabili-
ties on average within 24 hours, whereas the learning queries from
BLEDIff can only detect a maximum of 2 vulnerabilities in the tested
devices. Although Proteus, at first, falls behind BLEDIff in speed
in S6, upon inspection, we find that the only vulnerability identified
by BLEDiff is a trivial one, requiring a single message, and Proteus
later finds more vulnerabilities, which BLEDIff cannot detect in
24 hours. In other cases, Proteus consistently performs better
than BLEDIff. This demonstrates that Proteus is more efficient in
detecting vulnerabilities than BLEDIff s automata learning-based
approach, suggesting a better quality of the generated traces.
Cumulative vulnerability count on LTE devices. For LTE, we
consider Pixel7 and Huawei P8 Lite and compute the cumulative
vulnerabilities detected over time by both Proteus and the baseline
works— DoLTEst [46], DIKEUE [32]. We run our experiment for ~
7 hours since all DoLTEst queries are executed within that period.
Again, we run each test for 3 iterations and report the average count
in Figure 7.
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Figure 7: Cumulative vulnerability comparison in LTE.

Figure 7 shows that Proteus detects 3 and 2 vulnerabilities on
average within 7 hours in Pixel7 and Huawei P8lite, respectively,
whereas DoLTEst detects 2 and 1 on average. Moreover, the fig-
ure presents that Proteus detects those vulnerabilities faster than
DoLTEst and DIKEUE, representing its superior efficiency.

10.4 Coverage Growth

This experiment aims to evaluate the efficacy of the generated traces
with respect to coverage growth.
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Figure 8: Coverage growth over time.

Coverage growth in BLE devices. At first, we compare Proteus
against BLEDIff [36] with respect to the number of branches cov-
ered over time while testing BLE implementations. Similar to §10.3,
we consider the queries used for learning PSM of the target im-
plementation as inputs to BLEDiff. Using BTStack v1.5.6.3 [12] as
the target, we perform three 24-hour runs of both Proteus and
BLEDIff to determine average branch coverage.

We present the results in Figure 8 (a), which shows that Proteus
achieves ~ 10% more coverage 3 times faster than BLEDIff.
Coverage growth in LTE devices. For LTE, we compare Proteus
against DIKEUE [32] and DoLTEst [46]. We run each tool 3 times on
stsUE [2], with each run lasting 24 hours, and report their average
branch coverage over time. Figure 8(b) shows the coverage growth
in LTE devices, where it is evident that Proteus achieves more
branch coverage faster than both the baselines.

11 PERFORMANCE OF PROTEUS

Effectiveness of considering both security property and guid-
ing PSM. We compare Proteus with two approaches described in
§3: (i) PSM only approach, where we sample traces from our guiding
PSM and perform mutations without any guidance (ii) Property-only
approach, where we consider a RE representing the violation of the
security property, and instantiate the RE using arbitrary observa-
tions independent of any guidance from a PSM. We use an RE repre-
senting the acceptance of a replayed curr_rearrocarion_commano attack
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Table 9: Regular expression representing acceptance of a

replayed GUTI_REALLOCATION_COMMAND and SECURITY_MODE_COMMAND

Property | Expression

ag (ENABLE_S1/ ~ ATTACH_REQUEST) (AUTHENTICATION_REQUEST/ ~AUTHENTICATION_RESPONSE)

(.)* (SECURlTYiNK)DEi(.‘ON“\’KAND/ SECURITY_MODE 7(:01\’“’1,]51'}:) (,)* (RRC7 SECURITY_
I\’KOD57CO!\1MAND/ RRC _  SECURITY _MODE 7(‘UMPLETE) (.)* (/\TT/\CHiA('CEPT/ AT-|
tacH_compreTE) (.)* (GUTI_REALLOCATION_COMMAND/ GUTI _ REALLOCATION _ compLETE) (.)*

(GUTI_REALLOCATION_COMMAND: REPLAY == 1/ GUTI _ REALLOCATION _ COMPLETE)

[ (ENABLE_S1/ ATTACH_REQUEST) (AUTHENTICATION_REQUEST/ AUTHENTICATION_RESPONSE) (.)*

*
(SECURITY_MODE_COMMAND/ SECURITY_MODE _cOMPLETE) (.)" (SECURITY_MODE_COMMAND:REPLAY

== 1/ SECURITY_MODE _COMPLETE)

Table 10: No. of traces generated for varying mutation budget.

Property‘ Number of |Number of || Length Mutation Budget
Observations | Wildcards || Budget
1 2 3
o5 4 2 5 22 | 53 63
g 7 5 8 49 [121] 166
ag 7 5 9 1441|5662 | 11560

after a successful registration procedure provided in Table 9. We
test a HiSense F50+ device to check the number of queries it takes
to detect the vulnerability using the two approaches and Proteus.
We observe that Proteus and the property-only approach take
366 and 1690 queries to detect the vulnerability, respectively. The
PSM-only approach cannot detect the vulnerability in 3000 queries.
This signifies that combining the guidance from both PSM and a
security property assists in quickly discovering the vulnerability.
Effect of varying mutation and length budget. We examine
how the number of generated instantiated traces varies accord-
ing to the length and mutation budget we set in TraceBuilder. We
consider the two regular expressions o4 and o (Table 9), repre-
senting the acceptance of replayed curr_reariocarion_commano and
SECURITY_MODE_COMMAND, respectively, as text skeletons.

To observe the effect of varying the length budget, we set the
mutation budget to 2 and varied the length budget from 4 to 10.
The number of unique instantiated traces generated for both the
test skeletons are presented in Table 11. We observe that the length
budget has to have a minimum length equal to at least the number
of literals present in the trace skeleton since, for a lower length
budget, no sequence would be able to satisfy the given skeleton.
On the other hand, the total number of unique traces generated
increases as the length budget increases.

To observe the effect of varying the mutation budget, we vary it

from 1 to 3 for both trace skeletons. We observe that if the length
budget is constrained, e.g., a length budget of 5 with 4 literals in
o5, then even with a higher mutation budget, we would not have
many more test cases since there would be no space to inject any
mutation. However, if the length budget is increased, the number of
traces generated increases with the increase of the mutation budget.
However, we empirically observed that a mutation budget of more
than 2 did not yield any extra vulnerabilities.
Efficiency of scheduling approach. We compare with a version
of Proteus that randomly schedules properties and instantiated
traces (denoted as Proteus w/o scheduling). The experimental
setup is the same as Proteus. Figure 8 and 7 show its coverage and
cumulative vulnerability count over time. We observe that with
our scheduling approach, we reach a higher coverage and detect
vulnerabilities faster.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 11: Number of unique traces generated with various
length budget values.

Property | # Literals [# Kleene Star [[ Length Budget (No. Of Unique Traces)
6 7 8 9

15 10
o [ 4] P 1[62] 2638 >20000 | >20000 | >20000 | >20000
5 17 | 5 0[0[ 0 | 1 121 | 5662 |>20000

12 DISCUSSIONS

Scope of Proteus. In addition to logical bugs, Proteus can concep-
tually cause crashes of the COTS device under test due to memory
bugs (e.g., use-after-free). As Proteus operates in a black box set-
ting, it cannot transparently observe inside the analyzed devices to
discern crash bugs. As such, we consider such crash-inducing bugs
to be outside Proteus’s scope.
Proteus’s reliance on state machine and desired properties. As
discussed before, Proteus relies on having access to the protocol’s
state machine and its desired security and privacy properties to
generate meaningful test cases. One can consider this a limitation
since one has to obtain both the state machine and properties of
a protocol before testing of its implementation can commence.
In our evaluation, we, however, demonstrate that access to this
extra information is well worth the effort as it enables Proteus to
generate high-quality test cases within a given testing budget.
Prior works applied formal verification techniques to evaluate
the security and privacy of different protocol designs [28, 30], where
both protocol models and properties are manually constructed.
For protocols where such efforts are underway, Proteus can take
advantage of the constructed models and properties. Another ap-
proach currently gaining traction is using natural language process-
ing (NLP) techniques and large language models to automatically
extract protocol state machines from the standard specification
text [7, 45]. To evaluate the feasibility of applying such approaches,
we used one such tool, Hermes [7], to automatically extract the
protocol state machine of LTE from the standard specification. After
comparing the extracted state machine with the hand-constructed
one we use for our evaluation, we observe that the extracted state
machine is missing a transition. Conceptually, Proteus can oper-
ate with a state machine that is not entirely accurate at the cost of
some spurious test cases. As a thought exercise, we decided to use
Proteus with the HERMES-extracted state machine to test using
Proteus with the same security properties and experimental setup.
We ran Proteus against Pixel 7 for 24 hours and identified all 3 de-
tected issues identified by Proteus using an entirely correct PSM.
Despite the missing transition in the automatically generated state
machine, we observed that Proteus was able to identify all the
vulnerabilities that it uncovered when using the hand-constructed
state machine. This corroborates our hypothesis of Proteus’s loose
reliance on the accuracy of the state machine.
Limitations of open-source adapter implementations impose
constraints on testing. Proteus’s capabilities are constrained by
the message types and predicates that we can implement in the
adapter (§7) with open-source protocol stacks, which may support
only a limited set of message types and predicates. Moreover, as a
black-box testing method, Proteus can only observe the output
messages of the IUT. Therefore, we only include transitions in
our guiding PSM, for which the implementation should provide
observable responses according to the specifications.
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13 RELATED WORKS

Protocol testing. Prior works on testing protocol implementations
include mutation-based fuzzing approaches [50, 52, 59]. However,
they require significant time to reach diverse code paths and identify
vulnerabilities. DY Fuzzing [8] mutates network packets consid-
ering a Dolev-Yao adversary in the communication channel and
combines domain knowledge for effective protocol testing. How-
ever, since the mutation scheme of these works does not consider
the security property being tested or the current protocol state,
they are inefficient in finding vulnerabilities compared to Proteus.
Fiterau-Brostean et al. [21] developed a method to first learn an
automaton from protocol implementations and then compare it
against a catalog of manually obtained bug patterns, represented
as deterministic finite automata (DFA) to identify vulnerabilities.
However, this approach requires learning the state machine from
the implementation, which is costly (§8). It is also limited to identi-
fying only known vulnerabilities. The new bugs found in previously
untested targets are mostly instances of known bugs found in other
devices earlier. Further, another direction of work employs differ-
ential testing to find exploitable and interoperability issues [48, 64].
Because of fixed sets of packets, they cannot explore vulnerabilities
that require diverse packet fields and corresponding values.
Security testing of cellular protocols. Previous studies investi-
gating the security of LTE implementations have typically focused
on either OTA testing [32, 39, 46, 47, 61] or the analysis of base-
band firmware [24, 37, 38, 43, 66]. Park et al. [46] have developed a
negative testing framework along with a set of extensive test cases
to detect vulnerabilities in UE devices. However, these test cases
are manually designed and statically generated instead of being
generated dynamically depending on the implementations. Kim
et al. [39] introduce a semi-automated approach for fuzzing the
LTE control plane, which relies on some basic security properties.
Researchers have also used NLP to generate test cases from cellular
specifications [15, 16].

Security testing of BLE protocols. Frankenstein [55] utilizes
advanced firmware emulation techniques to fuzz firmware dumps,
enabling the direct application of fuzzed input to a virtual modem.
FirmXRay [67] proposes static binary analysis tools to find the secu-
rity issues caused without running the firmware. On the other hand,
ToothPicker [25] focuses on one platform, providing host fuzzing
techniques for this platform. However, these works do not per-
form stateful fuzzing. BLESA [68] utilizes ProVerif [11] to perform
formal verification of BLE protocols. InternalBlue [44] performs
reverse engineering on multiple Bluetooth chipsets to test and find
vulnerabilities. BLEScope [73] identifies misconfigured devices by
analyzing the companion mobile apps. SweynTooth [46] offers a
systematic testing framework to fuzz BLE implementations. How-
ever, none of these works consider stateful and property-focused
testing. BLEDIff [36] develops an automated black-box protocol
noncompliance testing framework that can uncover noncompliant
behaviors in BLE implementations. However, their approach can-
not control the number of test cases generated and be carried out
within a time budget ¢.
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14 CONCLUSION AND FUTURE WORK

We design Proteus, a black box, protocol state machine and property-
guided, and budget-aware automated testing approach for discov-
ering logical vulnerabilities in wireless protocol implementations.
Proteus leverages guidance from a PSM and also security proper-
ties to efficiently generate traces that can detect more vulnerabilities
using much less amount of OTA queries than existing works. In the
future, we will use Proteus to analyze other wireless protocols.
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