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ABSTRACT: The moisture content of pharmaceutical powders
can significantly impact the physical and chemical properties of drug

3x10° -
formulations, solubility, flowability, and stability. However, current -
technologies for measuring moisture content in pharmaceutical 12
materials require extensive calibration processes, leading to poor =~ 2x10° 11 @
3 13
consistency and a lack of speed. To address this challenge, this ~ '8
study explores the feasibility of using impedance spectroscopy to sl 2

enable accurate, rapid testing of moisture content of pharmaceutical
materials with minimal to zero calibration. By utilizing electro-
chemical impedance spectroscopy (EIS) signals, we identify a
strong correlation between the electrical properties of the materials - - pr
and varying moisture contents in pharmaceutical samples. Frequency (kHz)

Equivalent circuit modeling is employed to unravel the underlying

mechanism, providing valuable insights into the sensitivity of impedance spectroscopy to moisture content variations. Furthermore,
the study incorporates deep learning techniques utilizing a 1D convolutional neural network (IDCNN) model to effectively process
the complex spectroscopy data. The proposed model achieved a notable predictive accuracy with an average error of just 0.69% in
moisture content estimation. This method serves as a pioneering study in using deep learning to provide a reliable solution for real-
time moisture content monitoring, with potential applications extending from pharmaceuticals to the food, energy, environmental,
and healthcare sectors.

KEYWORDS: electrochemical impedance spectroscopy, moisture sensing, equivalent circuit modeling, 1D convolutional neural network,
pharmaceutical industry

In the pharmaceutical industry, precise moisture monitoring et al. utilized equivalent circuit analysis and other methods to
in raw materials is essential for both quality assurance and interpret the relationship between impedance spectra and the
patient safety, ensuring streamlined production and significant drying conditions of the sample.”*™>” Cheng et al. conducted
cost efficiencies.'™ Therefore, monitoring the raw materials of dielectric measurements on pharmaceutical drugs with varying
pharmaceutical drugs is a crucial step in the production concentrations and discovered that the dielectric constant
process.”” However, the methods available for real-time could potentially serve as an indicator for monitoring the
moisture content monitoring are highly limited.* " Common dosage of the drug.30 However, most of these similar studies
techniques for moisture content detection possess various have been primarily focused on demonstrating the feasibility of
limitations, making in-line water content monitoring extremely using impedance/dielectric spectroscopy as a method for
challenging." ' For instance, near-infrared (NIR) spectros- monitoring sample moisture content with limited discussions

copy requires calibration for different materials, which adds
complexity and time-consuming steps to the process.'*”'°
Moreover, NIR measurements are not sufficiently accurate in
determining the water content. Karl Fischer titration, while
accurate for detecting water content in pharmaceuticals, poses
a significant time requirement and is unsuitable for
implementation on a production line. As a result, much of
the research focuses on streamlining the testing process to
reduce time consumption.'”~'” Impedance spectroscopy serves
as a potent sensing technique suitable for real-time, non-
invasive process parameter control, thus finding application in
monitoring the status of various samples, such as pharmaceut-
icals, soils, crops, and food products.zo_25 For instance, Ando

on the development of models to determine sample moisture
content based on test data in a concise manner. Furthermore,
there is a notable lack of research specifically addressing
. R, 3133 o -
pharmaceutical raw materials in this context. This gap in
research underscores the need for comprehensive models and
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tailored approaches, especially considering the critical role of
moisture content in determining the quality, efficacy, and
safety of pharmaceutical products.”*~**

Therefore, this study aims to provide an accurate and
efficient method for real-time moisture content monitoring in
pharmaceuticals with minimal to zero calibration. We utilized
electrochemical impedance spectroscopy (EIS) to measure the
electrical properties of pharmaceutical materials under various
moisture conditions. EIS effectively discerns the physical
properties from electrical characteristics, revealing the intricate
relationship between signal behavior and real-time physical
characteristics of the samples.””~** Initially, a statistical analysis
explored the correlation between EIS signals and moisture
content. Additionally, electrochemical simulation sheds light
on the underlying mechanism of moisture monitoring via EIS
signals. To enhance the accuracy and effectiveness of moisture
content monitoring, we propose the utilization of big data*>**
and deep learning techniques,*”****~* 1D convolutional
neural network (1IDCNN) for si%nal processing, and the
development of a predictive model.”” Due to the prevalence of
Al technologies, deep learning has proven to make outstanding
contributions across different disciplines.*”~>* The choice of
IDCNN is driven by its excellence in handling time-series data
and extracting key features from complex signals, ideal for EIS
data interpretation. In the deep learning process, we introduce
an innovative concept called the baseline mechanism, which
enables the model to learn the chemical, physical, and electrical
information contained in the signals. By incorporation of these
multiple dimensions of information, the model can accurately
predict the moisture content of pharmaceutical samples,
offering a calibration-free, direct measurement that adapts to
various sample types and conditions.

B EXPERIMENTAL PROGRAM

Sample Preparation. In the experimental project, we selected
four common pharmaceutical raw material powders for testing,
including MCC (microcrystalline cellulose from AVICEL PH-200),
ASP (aspirin, from Sigma-Aldrich), PVA (PVA, Mw 89,000—98,000,
99+% hydrolyzed, from Sigma-Aldrich), and MA (mannitol,
PEARLITOL 160 C mannitol, from Roquette). To alter the moisture
content of these materials, the samples were mixed with deionized
water and then placed in separate chambers under different humidity
conditions. The humidity levels varied over a substantial range from 0
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to 15%. Once the samples were adequately prepared, they were
subjected to further testing under varying humidity conditions.

Moisture Sensing Setup and Validation. In our experimental
setup, moisture content and electrical responses of pharmaceutical
samples were measured using the Keysight Technologies E4990A
impedance analyzer with commercial interdigitated gold electrodes on
a custom 3D-printed holder, ensuring precise signal acquisition.
Concurrently, the moisture content was validated using the Mettler
Toledo HE73 moisture analyzer. The samples were contacted to the
analyzer via interdigitated gold electrodes, which have proven to be
highly compatible with pharmaceutical and biomedical materials.***®
These configurations are illustrated in Figure 1. More detailed
information on testing setup can be found in the Supporting
Information, S1.

Signal Processing. After the electrical signal and moisture
content data of the samples were collected, a statistical approach was
employed to assess the variations in the electrical signals at different
moisture levels compared to the signals obtained under dry
conditions. The root-mean-square deviation (RMSD)**** was utilized
as a statistical index for this comparison, specifically to calculate the
difference from the baseline spectra. The equation of the RMSD
sensing index is shown below in eq 1

Zf\il (Gi - Gbl)2
¥ (Gy) (1)

where G; is the spectra of samples of various moisture levels, Gy is the
baseline spectra obtained at the dry stage, and N is the data points in
the spectra, respectively.

In addition to the statistical analysis, the study also employed EIS
and equivalent circuit modeling to analyze the signals. The equivalent
circuit consisted of a series resistor (R;), a parallel resistor (R,), and a
r(}l_w),, , Q is the
magnitude of the CPE, w is the angular frequency, j is the unit of
imaginary numbers, « is the phase constant, with its value ranging
between 0 and 1). After the fitting process, EIS indices, R_index
(represents the resistance parameter derived from the parallel resistor
in the equivalent circuit model fitting, herein referred to as R_index),
Q_index (corresponds to the charge parameter from the CPE, herein
referred to as Q_index), and a_index (denotes the phase parameter
of the CPE component, herein referred to as «_index) were
calculated based on the equivalent circuit parameters obtained from
the model. Thus, the measured signal can be expressed by the eq 2

RMSD (%) =

parallel constant phase element (CPE, Z pp =

1

zZ=7Z+7'=R,+ ————
(I/Rp) + Zcpg

2)
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Figure 2. Schematic of the proposed deep learning framework for data-driven moisture content sensing.

where Z’ is the real part of the spectroscopy and Z” is the imaginary
part of the spectroscopy. The calculated EIS indices were then utilized
to establish a correlation with the moisture content of pharmaceutical
samples, aiming to elucidate the mechanism by which EIS signals can
sense the moisture content.

Moisture Content Sensing Model Development. We
introduce the innovative approach proposed in this study, which
utilizes a IDCNN model to establish a moisture content evaluation
model, as illustrated in Figure 2 schematic of the proposed deep
learning framework for data-driven moisture content sensing. The
1DCNN model has been widely used for processing spectrum-type
signals and has shown promising results in various signal analysis
tasks.”*® The data processing includes frequency selection, circuit
fitting, and data construction from four commonly used pharmaceut-
ical materials (MCC, ASP, PVA, and MA) recommended by our
industry partner for pilot testing. The model’s robustness is evaluated
using two different data splitting methods and compared with several
baseline machine learning models and data processing techniques.
Additionally, the physical and chemical properties of the powders are
incorporated as additional features into the 1IDCNN structure to
enhance the model’s accuracy in moisture content prediction.
Detailed information regarding the model's parameters, training
process, and comparative analysis of model performance is available in
Supporting Document S2.

B RESULTS AND DISCUSSION

Impedance Spectroscopy Analysis. Figure 3a demon-
strates the changes in electrical signals of the MCC powder as
a representative material in response to varying moisture
contents. An observable trend is observed where the real part
of the EIS signal increases with an augmentation in moisture
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content. This phenomenon indicates that the electrical
properties of the material system within the sample are
significantly influenced by changes in moisture content, which
is clearly reflected in the EIS measurements. Figure 3b presents
the changes in the imaginary part of the EIS signal,
demonstrating a distinct response corresponding to the
variation in the moisture content. The alterations in both the
real and imaginary components of the EIS signal affirm that the
spectroscopy of the pharmaceutical material can be effectively
employed to track and monitor changes in the moisture
content of the samples. The observed sensitivity of the EIS
signals to changes in moisture content highlights its potential
as an accurate and rapid method for real-time moisture content
monitoring in pharmaceutical production processes.

To quantitatively characterize the relationship between
signal changes and moisture content, the RMSD index (from
eq 1) is employed to assess how the electrical signals of the
pharmaceutical material perform under varying moisture
content conditions compared to the signals observed under
dry conditions. Figure 3¢ displays the RMSD index calculated
within the frequency range 100—1000 kHz, demonstrating a
gradual increase in the index as the moisture content rises. This
observation signifies that the RMSD index effectively captures
the differences in the electrical signals corresponding to
different moisture content levels. The RMSD index sensing
performance for the rest of the pharmaceutical materials is
displayed in the supporting document, Figure S1. Furthermore,
the RMSD index exhibits a positive correlation with the actual
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Figure 3. (a) Real part impedance spectroscopy of the representative sample; (b) imaginary part impedance spectroscopy of representative sample;
(c) RMSD sensing index vs moisture content at the frequency of 100—1000 kHz; and (d) principal component analysis (PCA) plot using the first
principal components (PC_1) of the real and imaginary parts of the impedance spectra, colored by moisture content. (e) Heat map of the
correlation coefficient between moisture content and the spectroscopy at different frequencies.

moisture content of the samples, with a correlation coefficient
of 0.9. This strong correlation highlights the capability of the
RMSD index to accurately represent and quantify the
variations in moisture content within the pharmaceutical
samples. In addition, we have adopted principal component
analysis (PCA) to better illustrate the relationship between the
impedance spectrum and the pharmaceutical’s corresponding
moisture content. By visualizing the dimensionally reduced
spectrum information, as shown in Figure 3d, we can observe
that the pharmaceutical samples with different levels of
moisture content can be separated into two distinct zones.
This signifies the sensitivity of the impedance spectrum to the
moisture content. However, some data points are located in
different areas, which might be attributed to other sample
characteristics such as particle size.

In Figure 3e, a comparative analysis of the correlation
coeflicients between the moisture content and the RMSD
index for different sample materials is presented across various
frequency ranges. Remarkably, the frequency range of 100—
1000 kHz consistently exhibits a stable and robust capacity to
describe the changes in moisture content within the samples. It
can be observed that frequencies above 10 kHz exhibit a more
significant relationship between the signal and moisture
content. The utilization of the RMSD index provides a
quantitative means to evaluate the relationship between
electrical signals and moisture content accurately. The strong
correlation observed between the RMSD index, and the actual
moisture content supports its potential as a key parameter for
the development of the predictive model using deep learning
techniques.
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Equivalent Circuit Modeling. After performing statistical
analysis, equivalent circuit fitting was employed to elucidate
the relationship between changes in electrical signals and the
moisture content. The purpose of equivalent circuit fitting is to
utilize electrochemical impedance to reflect the molecular
structure and chemical composition of materials through an
electrical model.’” The mechanism of electrochemical
detection, similar to existing studies,””*® relies on the
interaction between the electrical properties of the sample
and its moisture content. The capacitive and resistive elements
of the system are influenced by the level of moisture, which
affects the impedance measurements. This method is
particularly effective because the presence of moisture changes
the dielectric properties of the material, which, in turn, affects
the impedance.

In this context, the sensor and the pharmaceutical materials
can be regarded as resistors within the circuit, while the air
between the powder particles and the varying moisture content
can be considered as capacitors capable of accumulating
charge. Due to the presence of different interfaces, the constant
phase element (CPE) was selected as a replacement for the
traditional capacitor in the circuit simulation. We discovered
that the modeling parameters Q_index and a_index from the
CPE demonstrate a strong correlation with the moisture
content in pharmaceutical samples. Under dry conditions, the
electrical response of the sample resembles an equivalent
circuit composed of a capacitor and resistor with the a_index
exponent of the CPE component approaching 1. As moisture is
introduced, a portion of the sample containing water and air
can be represented by an imperfect capacitor using the CPE

https://doi.org/10.1021/acssensors.4c01180
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when the baseline is employed.

element. This process is depicted in Figure 4. To establish a
relationship between the electrical signals and moisture
content, this study proposes the use of an equivalent circuit,
as illustrated in Figure 4, to fit the Nyquist plot data and reveal
the mechanism of electrical signal sensing for the moisture
content. Figure Sa,b compares the fitted data with experimental
data using MCC powder as a representative example,
demonstrating that the fitted data accurately represents the
variations in moisture content within the samples. This proves
that the fitted data can still track the moisture content variation
as the real experimental data. To further validate the fitting
performance, we selected one of the representative samples,
MCC, at 7.33% moisture content, as shown in Figure Sc,
demonstrating good agreement between the real and fitted
data. This indicates that the proposed equivalent circuit model
effectively characterizes the electrical behavior of pharmaceut-
ical samples under different moisture content conditions. The
fitting performance for the other three types of samples is
illustrated in the supporting document, Figures S2 and S3.

It is observed that the Q_index (a parameter representing
the accumulation of charge during the testing process) and
a_index (a parameter representing the difference between
CPE behavior and a regular capacitor) exhibit high correlation
coefficients with the moisture content of the samples.
Specifically, the Q_index can be considered to reflect the
amount of accumulated charge during the testing process. As
the moisture content increases, the presence of water, which
can accumulate more charge than air, leads to higher Q-index
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values, thereby reflecting the moisture content of the samples.
On the other hand, the a_index indicates the deviation of the
CPE element from a regular capacitor. As the moisture content
increases, the CPE behaves less like a normal capacitor,
resulting in a decrease in the _index. The moisture content
sensing performance for four types of pharmaceutical materials
can be found in the supporting document, Figure S4. By
analyzing the Q_index and o_index derived from the
equivalent circuit fitting, it becomes possible to estimate the
moisture content in pharmaceutical materials based on their
electrical responses. The high correlation observed between
these indices and the moisture content further validates the
effectiveness of the proposed calibration-free approach for real-
time moisture content monitoring in pharmaceutical produc-
tion processes.

Deep-Learning-Based Moisture Content Sensing
Model. Despite the high correlation coefficients observed
between moisture content and the indices derived from
statistical analysis and equivalent circuit fitting, these methods
have shown limitations in adaptability across different sample
types and sensitivity changes upon sensor replacement. We
have also identified that the different particles have varying
particle sizes, and this physical property will also affect the
electrical performance of the sample and, consequently, the
sensing performance. Detailed particle size analysis can be
found in the supporting document, Section S3 and Figure SS.
As illustrated in Figure S6, the correlation coefficient heat map
when data from various sample types and sensors are
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combined shows that the highest correlation coefficient
observed is around 0.8. This is significantly lower compared
to the nearly 0.95 correlation coefficient achieved with single
sample data. This discrepancy highlights the need for a more
sophisticated signal processing method and a robust data-
driven approach. By leveraging a IDCNN, we aim to process
complex data sets more effectively, enabling calibration-free
moisture content sensing that enhances consistency and speeds
up analysis in pharmaceutical materials. The detailed
installation of the input features can be found in Section 2
of the Supporting Document. Our preliminary analysis of the
input features, which is elaborated upon in Sections 3 and 4 of
the Supporting Documents, uncovered that some of the
selected features exhibit a good correlation with the moisture
content, with correlation coefficients ranging from 0.6 to 0.8.
This range indicates a substantial relationship, affirming the
relevance of our feature selection. Nonetheless, it was apparent
that the adoption of a more sophisticated processing technique
could reveal deeper insights and potentially enhance the
predictive accuracy.

The data set used in the training process consisted of EIS
signals from four different pharmaceutical materials with
varying particle sizes and moisture contents. Prior to training,
the data set was divided into training and validation sets to
ensure robust model performance. The 1DCNN model
initially separates the baseline signal (corresponding to the
sample under dry conditions) and the real-time signals
(corresponding to the sample under different humidity
conditions) into two layers and feeds them into convolutional
layers. Through the convolution, pooling, and flattening
processes, the signals are processed and then combined with
the physical information on the samples in the fully connected
layer. This integration of electrical and physical information
enables the model to capture the complex relationship between
the input signals and the moisture content. During the training
process, the model gradually converged after approximately
100 epochs, as shown in Figure S7 from the Supporting
Information. The convolutional and pooling layers play crucial
roles in extracting relevant information and reducing the
dimensionality of the high-dimensional EIS signals. This allows
for effective fusion of the high-dimensional signals with other
physical information, providing a conducive environment for
the model to better understand the input information and to
evaluate the moisture content accurately. Figure 6a,b illustrates
the performance of the trained model on the full training set
and the validation set, respectively, including all different types
of samples. The model achieves an error of 0.69% on the
validation data set. This demonstrates the potential of using
deep learning techniques to predict moisture content based on
material’s electrochemical signals. In future studies, the
inclusion of more data and further model adjustments will
further enhance the reliability of the model. By integrating
both the electrical and physical information in the model, the
proposed approach significantly enhances the accuracy of
moisture content prediction. The trained IDCNN model can
effectively analyze the complex relationship between the input
signals and moisture content, enabling real-time and reliable
monitoring without the need for further calibration.

Comparative Analysis of Model Performance. To
better illustrate the advantages of our proposed model
structure in moisture content sensing and to understand the
role of each component, we conducted a comprehensive
comparative analysis. Figure 6c succinctly illustrates the
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performance metrics of various predictive models applied to
moisture content estimation in pharmaceutical samples. Linear
regression, while foundational, exhibits limited efficacy, as
indicated by its lower R? value and higher mean absolute error
(MAE). This suggests that simplistic reliance on EIS indices
and statistical measures is inadequate for complex moisture
content dynamics. Subsequent implementations using impe-
dance spectrum data to construct random forest regressors and
neural networks showed some improvements. However, these
models did not reach the high-performance threshold set by
the IDCNN architecture. The lackluster performance of these
advanced models, compared to 1DCNN, accentuates the
latter’s sophisticated signal processing capabilities.

The training loss trends, as depicted in Figure S7 from the
Supporting Information, provide insight into the learning
dynamics of the neural network (NN) and the 1DCNN
models. It is noteworthy that the NN model demonstrates a
rapid decline in training loss, suggesting an initial quick
adaptation to the patterns within the data set. This could be
indicative of the model’s simpler architecture, which may allow
for faster convergence but potentially at the cost of overfitting
or lack of generalizability. Conversely, the IDCNN exhibits a
more gradual reduction in loss over epochs. This slower
convergence rate can be attributed to the model’s more
complex and nuanced structure, which is designed to capture
spatial hierarchies in the spectroscopy data. The convolutional
layers in the IDCNN model process the data through multiple
filters, which may initially slow down the learning process as
the model begins to understand and learn the more intricate
patterns in the frequency spectrum of the signals.

The pinnacle of accuracy is achieved with the introduction
of the baseline mechanism within the 1IDCNN structure,
significantly enhancing the model’s precision, as reflected by
the highest R* (0.93) value and the lowest MAE (0.69%) in
Figure 6¢c. This baseline channel, representing dry sample
conditions, provides a reference point for the model, capturing
intrinsic signal characteristics associated with different
moisture levels. The incorporation of a baseline mechanism
constitutes a paradigm shift, facilitating the 1DCNN'’s
contextual processing of signals by differentiating between
fluctuations attributable to moisture content and inherent
baseline characteristics. Through extensive and methodical
training, IDCNN acquires the ability to discern and decode
intricate patterns within the data, establishing direct associa-
tions with the precise moisture content values. The empirical
data illustrated in the figure corroborate that this bifurcated
channel strategy not only bolsters the efficiency of the learning
process but also significantly enhances the predictive precision
of the model.

Material-Specific Cross-Validation. In a departure from
conventional random data splitting, our study implemented a
methodical cross-validation technique predicated on the
intentional separation of data based on material types. This
method rigorously tests the model’s ability to generalize and
infer moisture content in new materials not included in the
database. The performance metrics on the validation material
data sets, as depicted in Figure 6d, are indicative of the model’s
generalization abilities. Remarkably, the results reveal that the
inclusion of the baseline enhances the model’s accuracy across
different materials. The baseline provides the model with a
reference to the initial, unaltered state of the materials, which is
instrumental in distinguishing the precise moisture differ-
entials. Consequently, this context-enriched analysis enables
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the model to make more informed decisions regarding
moisture. This is a testament to the baseline’s role in bolstering
the model’s interpretative framework, allowing it to effectively
utilize the baseline characteristics as a comparative foundation
for accurate moisture determination.

This approach to cross-validation not only underscores the
robustness of the 1DCNN model but also confirms its
potential for broader application in scenarios in which
knowledge transfer to new material types is crucial. The
success of this methodology paves the way for the adoption of
calibration-free and eflicient testing technologies within
pharmaceutical production lines. It validates the model’s
proficiency in leveraging the inherent knowledge embedded
within the EIS signals, marking a significant advancement in
the domain of predictive moisture content analysis. Such
calibration-free methods promise to streamline the analytical
process, reduce downtime, and enhance the overall efficiency
of pharmaceutical manufacturing, thereby ensuring consistent
product quality and compliance with stringent regulatory
standards.

B CONCLUSIONS

In this study, we have demonstrated the potential of
impedance spectroscopy as a reliable method for characterizing
the moisture content in pharmaceutical materials. Through the
utilization of impedance signals, we successfully investigated
the correlation between electrical properties and varying
moisture contents in pharmaceutical samples.

Through the utilization of equivalent circuit modeling, we
successfully interpreted the mechanism underlying impedance
spectroscopy’s sensitivity to moisture content variations. The
equivalent circuit analysis allowed us to identify key parameters
that exhibited strong correlations with the actual moisture
content of the samples. Leveraging AI techniques, we
developed a 1IDCNN model to process complex spectroscopy
data effectively. By combining the frequency spectrum
information, equivalent circuit indices, and material character-
istics as inputs, our proposed model achieved remarkable
results. The model’s predictive capability produced a moisture
content prediction model with an average error as low as
0.69%. This exceptional accuracy eliminates the need for
calibration, providing a rapid and calibration-free solution for
real-time moisture content monitoring in the pharmaceutical
production process.

In summary, our study establishes impedance spectroscopy
as a robust method for quantifying the moisture content in
pharmaceutical materials. Furthermore, the methodologies and
findings from this study have broader applications in other
industries, such as food processing, agriculture, and electronics.
Our study provides a pilot framework for exploring how deep
learning can enhance sensor technologies through data-driven
approaches, potentially extending its utility to diverse
industries.
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