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Abstract

Reinforcement learning (RL) systems can be complex and non-interpretable, making it challenging for non-Al experts to
understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because
of their likelihood of obtaining future rewards. However, RL agents discard the qualitative features of their training, making
it difficult to recover user-understandable information for “why” an action is chosen. We propose a technique Experiential
Explanations to generate counterfactual explanations by training influence predictors along with the RL policy. Influence
predictors are models that learn how different sources of reward affect the agent in different states, thus restoring information
about how the policy reflects the environment. Two human evaluation studies revealed that participants presented with
Experiential Explanations were better able to correctly guess what an agent would do than those presented with other standard
types of explanation. Participants also found that Experiential Explanations are more understandable, satisfying, complete,
useful, and accurate. Qualitative analysis provides information on the factors of Experiential Explanations that are most useful
and the desired characteristics that participants seek from the explanations.

Keywords Explainable reinforcement learning - Explainable artificial intelligent - Human-—artificial intelligence interaction -

Explainable sequential decision-making

1 Introduction

Reinforcement learning (RL) techniques are becoming
increasingly popular in critical domains such as robotics
and autonomous vehicles. However, applications such as
autonomous cars and socially assistive robots in health-
care and home settings are expected to interact with non-Al
experts. People often seek explanations for abnormal events
or observations to improve their understanding of the agent
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and better predict and control its actions [1]. This need for an
explanation will likely arise when interacting with these sys-
tems, whether it is a car taking an unexpected turn or a robot
performing a task unconventionally. Without an explanation,
users can find it difficult to trust the agent’s ability to act safely
and reasonably [2], especially if they have limited artificial
intelligence expertise. Even in the case where the agent is
operating optimally and without failure, the agent’s optimal
behavior may not match the user’s expectations, resulting in
confusion and lack of trust. Therefore, RL systems need to
provide good explanations without compromising their per-
formance. To address this need, explainable RL has become a
rapidly growing area of research with many open challenges
[3-9].

But what makes a good explanation for end-users who
cannot change the underlying model? How do we generate
explanations if we cannot modify the underlying RL model or
degrade its performance? In RL, an agent learns dynamically
to maximize its reward through a series of experiences inter-
acting with the environment [ 10]. Through these interactions,
the agent builds a utility model, V (s, a), which estimates the
future reward that can be expected to be achieved if a partic-
ular action a is performed from a particular state s.
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Fig. 1 In an interaction between the user and the agent, the user
expected the agent to go up, but the agent went down instead. The
user asks the system for an explanation. The figure shows two types
of explanations the user can receive. A is an explanation that can be

While an RL agent learns from its experiences during
training, those experiences are inaccessible after their train-
ing is over [4]. This is because V (s, @) summarizes future
experiences as a single, real-valued number; this is all that is
needed to execute a policy = = argmax, V (s, a). For exam-
ple, consider a robot that receives a negative reward for being
close to the stairs and thus learns that states along an alterna-
tive route have higher utility. When it comes time to figure
out why the agent executed one action trajectory over another,
the policy is devoid of any information from which to con-
struct an explanation beyond the fact that some actions have
lower expected utility than others.

Explanations need not only address agents’ failures. The
user’s need for explanations can also arise when the agent
makes an unexpected decision. Requests for explanations
thus often manifest themselves as “why-not” questions ref-
erencing a counterfactual: “why did not the agent make
a different decision?” Explanations in sequential decision-
making environments can help users update their mental
models of the agent or identify how to change the environ-
ment so that the agent performs as expected.

We propose a technique, Experiential Explanations, in
which deep RL agents generate explanations in response
to on-demand, local, counterfactuals proposed by users.
These explanations qualitatively contrast the agent’s intended
action trajectory with a trajectory proposed by the user
and specifically link agent behavior to environmental con-
texts. The agent maintains a set of models—called influence
predictors—of how different sparse reward states influence
the agent’s state—action utilities and, thus, its policy. Influ-
ence predictors are trained alongside an RL policy with a
specific focus on retaining details about the training expe-
rience. The influence models are “outside the black box,”
but provide information with which to interpret the agent’s
black-box policy in a human-understandable fashion.

@ Springer

going down is 0.95, while my

My expected future reward for 0 O -
future reward for going up is 0.80. o
A

<
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derived directly from the agent’s policy. B is an explanation that can be
derived from the agent’s policy with the assistance of additional models
called negative and positive influence predictors

Consider the illustrative example in Fig. 1 where the user
observes the agent go down around the wall. The user expects
the agent to go up, but the agent goes down instead. The user
asks why the agent did not choose up, which appears to lead
to a shorter route to the goal. One possible and correct expla-
nation would be that the agent’s estimated expected utility for
the down action is higher than that for the up action. However,
this is not information that a user can easily act upon. The
alternative, Experiential Explanation, states that up will pass
through a region that is in proximity to dangerous locations.
The user can update their understanding that the agent prefers
to avoid stairs. The user can also understand how to take an
explicit action to change the environment, such as blocking
stairs—an action a non-expert can take to influence agent
behavior when they do not have the ability to directly change
the agent. Our technique focuses on post hoc, real-time expla-
nations of agents operating in situ, instead of pre-explanation
of agent plans [11], although the two are closely related.

We evaluate our Experiential Explanations technique with
studies with human participants. We show that explanations
generated by our technique allow users to better understand
and predict agent actions and are found to be more useful.
We additionally perform a qualitative analysis of participant
responses to elicit how users use the information in the expla-
nations in our technique and baseline alternatives to reason
about the agent’s behavior. This not only provides evidence
for Experimental Explanations, but provides a blueprint to
understand the human factors of other explanation tech-
niques.

2 Background and related work
Reinforcement learning is an approach to learning in which

an agent attempts to maximize its reward through feedback
from a trial-and-error process. RL is suitable for Markov
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decision processes, which can be represented as a tuple M =
(S, A, T, R, y) where S is the set of possible world states, A
is the set of possible actions, T is the state transition function,
which determines the probability of the following state P (S)
as a function of the current state and action. 7 : § X A —
P(S), R is the reward function R : § x A — R, and y
is a discount factor 0 < y < 1. RL first learns a policy
7w .S — A, which defines which actions should be taken in
each state. Deep RL uses deep neural networks to estimate
the expected future utility such that 7 (s) = argmax, Vo (s, a)
where 0 are the model parameters.

As deep reinforcement learning is increasingly used in
sensitive areas such as healthcare and robotics, Explainable
RL (XRL) is becoming a crucial research field. However, the
reinforcement learning paradigm differs substantially from
other machine learning paradigms, such as supervised learn-
ing, in that they solve sequential decision-making problems
where each decision an agent makes is not an end to itself but
establishes conditions for future actions; understanding any
one decision may be dependent on understanding prior deci-
sions as well as future potential decisions. For an overview
of XRL, please refer to Milani et al. [8]. We highlight the
most relevant work on XRL to our approach.

Explanation via reward decomposition breaks down
rewards into a sum of semantically meaningful reward cat-
egories, allowing actions to be evaluated based on the
trade-offs between these categories [12]. Many XRL tech-
niques generate explanations by decomposing utilities in the
agent’s network and showing information about the compo-
nents of the utility score for an agent’s state [13—15]. Our
technique is related to decompositions in that we learn the
influence of different sources of reward on utilities. How-
ever, we differ in that we approximate the decomposition
using external models, avoiding the trade-off between using
a semi-interpretable system or a better black-box system.

Explanations are inherently contrastive, as they are framed
in the context of particular counterfactual comparisons.
Rather than merely questioning why event P took place,
individuals ask why event P occurred rather than event
Q [1]. Contrastive approaches such as van der Waa et al.
[16] leverage an interpretable model and a learned transi-
tion model. Madumal et al. [17] explain local actions with
a causal structural model as an action influence graph to
encode the causal relations between variables. Sreedharan
et al. [18] generate contrastive explanations using a par-
tial symbolic model approximation, including knowledge
about concepts, preconditions, and action costs. These meth-
ods provided answers to user’s local why-not questions.
While our approach still produces counterfactual explana-
tions, we minimize the use of predefined symbolic or a
priori environment knowledge. Other work looked at utiliz-
ing counterfactual explanations for other explanation goals.
For example, Frost et al. [19] trained an exploration policy

to generate test time trajectories to explain how the agent
behaves in unseen states after training. Explanation trajec-
tories help users understand how the agent would perform
under new conditions. While this method gives users a global
understanding of the agent, our method focuses on provid-
ing local counterfactual explanations of an agent’s action.
Olson et al. [20] explain the local decisions of an agent by
demonstrating a counterfactual state in which the agent takes
a different action to illustrate the minimal alteration neces-
sary for adifferent result. Huber et al. [21] further this concept
by creating counterfactual states with an adversarial learning
model. Our technique, however, concentrates on the qualita-
tive distinctions between trajectories and not on the states.

Rationale generation, introduced by Ehsan et al. [22], is
an approach to explanation generation for sequential envi-
ronments in which explanations approximate how humans
would explain what they would do in the same situation as
the agent. Rationale generation does not “open the black box”
but looks at the agent’s state and action and applies a model
trained from human explanations. Rationales do not guaran-
tee faithfulness, though studies show they can still provide
actionable insights. Like rationale generation, our mod-
els train alongside the agent. However, our technique also
achieves a high degree of faithfulness. State2Explanation
(S2E), introduced in Das et al. [23], demonstrates generat-
ing more faithful explanations by using them to inform the
agent’s reward shaping and requires the derivation of the con-
cepts from mathematical representations and expert domain
knowledge. By aligning state—action pairs with high-level
concepts, S2E uses natural language templates to provide
actionable insights during training and deployment. In our
approach, we avoid intervening with the learning of the agent
while preserving a high level of faithfulness by confining the
learning only from the agent’s transitions and trying to min-
imize the reliance on domain knowledge to only the names
and effects of reward components.

3 Experiential Explanations

Experiential Explanations are contrastive explanations gen-
erated for local decisions with minimal reliance on structured
inputs and without imposing limitations on the agent or the
RL algorithm. Our explanation technique uses additional
models called influence predictors that learn how the sources
of the sparse rewards affect the agent’s utility predictions.
The agent’s learned policy learns the utilities with respect to
all rewards. Influence predictors can tell us how strongly or
weakly any source of reward (positive or negative) is impact-
ing states in the state space that the agent believes it will pass
through. The influence predictors provide the additional con-
text that explains the agent’s choices through finer-grained
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utility detail. As in Fig. 1, we see the explanation referenc-
ing the agent’s relationship to the environment in terms of
negative and positive elements.

The main components of Experiential Explanations are
the trained influence predictors and the two modules of
explanation generation. The first module starts with the user
proposing an alternative action and asking why the agent did
something else, seeking a counterfactual explanation. This
triggers simulation of the trajectories of both actions. For
example, in Fig. | the agent’s action is down, but the user
asks about going up. The generated trajectories account for
those actions and continue until the end of the respective
episodes. In the second module, we compare the states along
a specified horizon of the simulated trajectories using influ-
ence predictors.

In Sect. 3.1, we dive into the deeper details of the influ-
ence predictors. In Sect.3.2, we demonstrate how they can
be used in the explanation generation modules to generate
explanations.

3.1 Influence predictors

Influence predictors reconstruct the effects of rewards
received on the utility learned by the agent during train-
ing. These models are trained alongside the agent to predict
the strength of the influence of different sources of reward
on the agent by learning a value function that outputs the
expected utility from each source of reward: U, (s, a) where
each ¢ € C is a distinct source (or class) of reward. For
example, a terminal goal state might be a source of positive
reward, stairs might be a source of negative reward, and other
dangerous objects may be other sources of negative reward.
In a more complex environment, multiple sources of positive
and negative rewards can be helpful in describing the agent’s
plan. For instance, a robot attempting to make a cup of cof-
fee would receive positive rewards for obtaining a clean mug,
hot milk, and coffee, then combining the milk and coffee in
the mug and stirring them. Negative influences could include
getting a dirty cup or adding salt.

Each source of reward has its own influence predictor
model. Typically, one class is associated with a goal state (or
states required for task completion) and produces positive
rewards. Sometimes an intermediate positive reward is given
when it is known in advance that the task requires particu-
lar actions or states to be traversed, as in the case of reward
shaping [24]. Other classes are associated with states that
are a priori known to be detrimental to the task and produce
negative rewards.

In principle, influence predictors can be used with any
agent architecture and optimization algorithm as long as we
can observe its transitions during training. Influence predic-
tors are trained similarly to an RL agent (e.g., standard Deep
Q-networks (DQN) [25], or A2C [26]) but with two dif-
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ferences. First, influence predictors are not used to guide the
agent’s exploration during training or inference. They rely on
the main policy’s training loop to generate transitions. Sec-
ond, each influence predictor model can receive only rewards
from one class of rewards. Influence predictors are trained
using loss based on a modified Bellman equation:

Uc(st, ar) = |r{y |+ y max Ue(si41, @) ¢))
a

where 7, | is the reward associated with ¢ delivered to the
agent upon transition to state s;41. The absolute value re-
interprets the reward as an influence, since the influence
predictor is now predicting the utility of attaining the reward,
even if it is negative. As a consequence of ever receiving only
the absolute value of a class of rewards, U.(-) is an estimate
of the strength of ¢ in s and a.

The training process for influence predictors is shown
in Algorithm 1. The agent, controlled by its base policy
learning algorithm, interacts with the environment, executing
actions, and receiving state observations. State transitions,
actions, and rewards are recorded and used to populate sepa-
rate buffers for each influence predictor. For model updates,
we sample the transitions from each designated buffer sepa-
rately and backpropagate loss in each influence predictor.

Algorithm 1 Influence predictor and agent training

for cachc € C do > C is the reward sources
Initialize buffer memory D, to capacity N
Initialize action-value function U, with random weights
end for
for episode = 1, M do
transitionst <— agent.transitions(T) > The agent’s transition
data from its buffer
for t=0, T do
for each ¢ € C do
transition[c] < transitionst[t]
if reward; € c then
transition;[c][reward] <~
|transitionsy [t][reward]|
else
transitions[c][reward] < 0
end if
(transition;[c]) — D,
end for
end for
for each ¢ € C do
U, < update(D,.)
end for
agent < update(transitionsr)
end for

To illustrate, Fig.2 shows an agent operating in an envi-
ronment with two reward classes: a positive reward class
for the terminal goal and a negative reward class for the blue
squares—hence, two influence predictors. The influence map
on the left was generated by querying the negative influ-
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Fig.2 This figure shows an example of the agent’s learned maximum
learned utility value at each state and the two influence predictors val-
ues visualized on Heatmaps. The blue squares are the source of negative
rewards, whereas the green square is the source of positive rewards. The

ence predictor for each state and maxing across all possible
actions. The negative influence trends are stronger closer to
the blue squares. The influence map in the middle is generated
from the positive influence predictor. The map on the right is
the agent’s main policy model, trained on all reward classes
as normal. Even though the visualization aggregates action
utilities, one can see that the agent will prefer a trajectory in
the upper part of the map.

3.2 Explanation generation

At any time during the execution of the policy, the user can
request a counterfactual explanation by proposing an action
(ayser) Tather than the one the agent chose (dagent). Given the
action chosen by the agent and the alternative action proposed
by the user, the explanation generation process proceeds in
three phases.

First, we generate and record the trajectory Tagen: the agent
will take from this point forward.! Second, we generate a
counterfactual trajectory tygr as if the agent had executed the
user’s proposed alternative action. To generate sy, we force
the agent to follow the user’s suggested alternative action (or
sequence of actions in the case that the user wants to specify
a partial or complete counterfactual trajectory) and complete
the trajectory using the same planning approach.

Finally, we use influence predictors to compare the two
trajectories. Recall, in Sect. 3.1, we have an influence predic-
tor I P, per reward source ¢ € C. We have access to all the
influence predictor values in both trajectories at this stage,

I We assume access to a simulator or a world model (e.g., [27]) with
sufficient fidelity to predict action outcomes, though a world model-
based learner was not used to create a minimalistic experiment.

Positive Influence Predictor values ")

Agent values

purple and yellow shapes have no effect. Intuitively, one can see that the
agent’s policy (right) is closely associated with the positive influence
values and the opposite of the negative influence values

which gives us control over the types of explanation we can
generate depending on our use case.

We can produce local, detailed, global, or aggregated
explanations in natural language. To do so, we require one
modification to the typical Markov decision process formu-
lation: we use an enhanced reward function,

R:SxA—>Rx/[L* 2)

where L is a natural language vocabulary and £* is the set of
all possible natural language strings. The enhanced reward
function produces both a real-valued number and a natural
language string that describes the circumstances under which
the reward is given. For example, for the scenario in Fig. 1,
the enhanced reward function might produce the value —1
and “fall down stairs” when the agent encounters the location
in the top center of the environment.

These textual descriptions of reward circumstances can
be embedded in the explanation templates to automatically
add stance or other details about the reward influences to the
explanations. In this work, we explore two variants of the
explanations: an aggregated explanation and a detailed local
explanation.

Aggregated Explanation. An aggregated explanation presents
an overview of the effect of each reward class on the agent
throughout a complete trajectory. To generate these explana-
tions, we calculate the mean value of each influence predictor
I P, for all states s € Tagent and compare this mean with the
other trajectories.

(Zs maX(IPc(Ta[s]))) VeeC.
length(ty)

3

argmax
a€{ayser >dagent }

@ Springer
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The resulting explanation assigns each influence predictor to
the trajectory in which they were the most dominant. We then
take these values and translate them into natural language
(English) explanations. If the values generated by I P, were
similar for both trajectories, then they can be excluded from
the explanation, as they do not provide valuable, contrastive
information. For example, in the case of two influence predic-
tors in a simple environment, if we assume that we only had
a difference in the negative influence predictor, the explana-
tion would be as follows: “If I go up, I fear falling down the
stairs; going down feels safer.” This case is demonstrated in
Fig. 1. Suppose that there is a difference in an additional I P,
mean. In that case, we add it to the explanation by appending
its relevant sentence to explain all influence predictors if we
observe a significant difference in their mean values.

Local Explanation. In more complex environments where
there are many influences, the explanations can shed light
on the agent’s near-horizon and concentrate more on explor-
ing local values. These local explanations zoom in on the
most influential factors related to actual and counterfactual
actions over their corresponding segments, which are denoted
by fagent € Tagent- Each segment starts at the beginning of the
designated action and includes a pre-determined number of
additional steps (we used five steps) after the end of the action
to capture some of the longer-term effects.

To generate a local explanation, we first identify the most
significant factors for each local segment by calculating the
maximum influences of each state s during a segment:

{argmax(max (1 Pc(s)))|Va € {auser, dagent}, VS € fagent}
ce{C}

“

From Eq. (4), we get two sets of influence predictors that
had the maximum value at any state within the segments
fagenr and t,5., . If there is no difference between the segments
Of dagent and ayuser With respect to their sets of maximum
influences I P., we resolve to compare the mean values of
the influence predictors during the same period and obtain
the three influences with the highest means in their segments.
First, we get the mean of every influence predictor in each
segment:

Zs max (I Pe(fagent[s]))

[|Zagent ||
Ve € C,Va € {ayser, aagent} (5)

mean(I P., a) =

’

Then, we obtain the top three influences for each segment
fagent and tyger, ordered by mean(I P.).

We provide this explanation even if there is no difference
in the top influences, which can happen if the alternative
action considered is too similar to the actual action taken.
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To generate English explanations, we use the list of the top
influence predictors obtained through the maximum or high-
est mean method. And then embed them into the templates.
An example of a generated explanation can be: “If I got
the nearby cup, I would still have to clean it before mak-
ing my coffee. But if I get a cup from the cupboard, I will not
need to clean it and I can immediately make coffee.” where
“cleaning” and “making coffee” are terms derived from the
enhanced reward sources, as described above.

The explanation strategies mentioned above provide infor-
mation about how external environmental rewards affect the
choices made by the agent, even if they are not directly linked
to the agent’s actions. These explanations are in line with the
definition of first-order explanations [28], as they reveal the
underlying inclinations of the agent toward the environment
and other factors that influence its decisions.

4 Evaluation overview

Our evaluations focus on exploring how beneficial Expe-
riential Explanations are to participants in understanding
RL agents and how they use these explanations to reason
about their own decisions through quantitative and quali-
tative analyzes. We conducted two studies to evaluate our
explanations with human participants in simple and complex
environments. Our simple environment is a grid world built
on MiniGrid [29] environment. Our complex environment is
the Crafter game [30], a 2D version of the popular commer-
cial game, Minecraft.

Our evaluations address the following research questions
in both settings.

RQ 1. Do explanations derived from influence predictors
accurately represent the actual values of the agent?

RQ 2. How do Experiential Explanations improve users’
ability to predict the agent’s actions compared to
baselines?

RQ 3. How does user satisfaction with Experiential Expla-
nations compare to baseline explanations?

RQ 4. How do users who got Experiential Explanations
compare in their reasoning with those who received
baseline explanations?

In both simple and complex environments, we first address
RQ1, which focuses on examining the faithfulness of the
explanation, a key consideration of explanation generation,
which measures the extent to which the explanations are
faithful to the underlying system [31]. Influence predictors
sit “outside of the black box,” whereas the main policy model
that drives the agent is “inside.” However, influence predic-
tors are trained alongside the main policy model, and thus, if
they learned correctly, should be able to estimate the agent’s
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actions with a high degree of accuracy. We don’t expect
them to replicate the agent’s actions as they are learning
influences instead of generating actions. To assess the faith-
fulness of influence predictors, we evaluated the accuracy of
the combined decision of influence predictors in predicting
the agents’ actions and how closely the combined influence
predictor’s values estimate the agent’s.

We then designed and conducted our human participant
study following the framework proposed by Hoffman et al.
[32], evaluating our explanations for actionability, satisfac-
tion, and utilization. We examine the actionability of the
given explanations through a prediction and ordering tasks of
the agent’s actions and sub-goals (RQ?2). Then we examine
the participants’ perception of the explanations and their sat-
isfaction ratings (RQ3). Lastly, both the prediction tasks and
the satisfaction survey are followed by reasoning questions
that we qualitatively analyze to explore the use of explanation
elements in reasoning for the different groups (RQ4).

The first experiment focused on understanding the overall
utility of the explanations in understanding and predicting the
agent’s actions. This experiment is set in a MiniGrid environ-
ment, where we examine the performance of the aggregated
version of the explanations in a sparse reward setting with
two reward classes.

In the second study, we evaluate the usefulness and action-
ability of explanations in a more complex environment. We
set our experiment in the Crafter environment to explore
the effectiveness of the local explanations generated by our
Experiential Explanations method in a more complex envi-
ronment with sequential multistep goals, with more granular
reward classes. Moreover, we want to see if the local Experi-
ential Explanations can convey these complex values to the
participants coherently.

In the next sections, we provide a comprehensive overview
of the two experiments we designed and conducted to eval-
uate our explanation technique and address our research
questions.

5 Experiment 1: MiniGrid environment

In this study, we evaluate our explanations in an environment
with two simple reward sources and simplified grid naviga-
tion settings, with only one possible counterfactual action at
the decision point (see Fig. 3). To answer our research ques-
tions, we first automatically validated the faithfulness of the
explanations (RQ1), and then, we evaluated our explanation
method with quantitative and qualitative analyses through a
human evaluation study (RQ2, RQ3 and RQ4). We built our
experimental domain on MiniGrid [29], a popular minimal-
istic grid world environment that offers a variety of tasks to
test RL algorithms.

5.1 Model setup and environment details

Environment customization. We require an environment
with multiple reward classes—positive rewards as well as
one or more sources of negative rewards—thus, we created a
custom task where the agent is placed in a room with a goal (a
green square) and other objects represented by colored shapes
that we could assign to neutral or negative reward values
when approached. The environment provides sparse rewards,
apositive reward of (1 — ﬁ»\%) for reaching a green
goal tile (the MiniGrid default) and —1 for stepping into a
dangerous object. Both the goal and stepping on the danger-
ous object terminate the episode. All other states and actions
produce zero reward.

Agent training. Our base agent policy model is the advan-
tage actor-critic (A2C) [33] optimized using the exponential
policy optimization algorithm (PPO) [34]. A state observa-
tion is an image of the grid constrained by a limited field
of view. We include more technical details about the agent’s
architecture and training in Appendix A.

Influence predictors design and training. We are using
DQNs as our influence predictors (as described in [25]).
Specifically, we have two predictors, one for negative rewards
and one for positive/goal rewards. We provide more details
on the training and architecture of the influence predictors in
Appendix B.

Explanation generation. We use the aggregated explana-
tions described in Sect.3.2. These explanations contrast the
aggregated difference in the means between the agent’s paths,
the one associated with the proposed counterfactual, and the
one the agent did. Below are some examples of these expla-
nations:

1. Negative rewards heavily influence the counterfactual
trajectory.
Template: “If the agent [ayser], it will pass through
regions influenced by the [negative influence]; going
laagent] feels safer.”
Explanation Example: “If the agent goes down, it will
pass through regions influenced by the dangerous blue
obstacles; going up feels safer.”

2. Goal rewards have a lower influence on the counter-
factual trajectory.
Template: “If the agent [ayser], it will pass through
regions less influenced by the [positive influence]; going
[aagent] feels better.”
Explanation Example: “If the agent goes right, it will
pass through regions less influenced by the green goal;
going left is better.”

@ Springer
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Fig.3 Three episodes from the
human study, in order presented
to participants

5.2 Baselines

In this experiment, we focus on similar baseline explanations
that the agent can generate. We compared our method with
the following baselines:

e Heatmap explanation: Showing the agent’s learned
maximum values for each state. We generate the expla-
nations for this baseline by getting the maximum agent
value in each possible state on the map. This is similar to
the agent values map in Fig. 2.

e (Q-Value explanation: Presenting the average expected
reward for both paths. These explanations utilize the sim-
ulator from our explanation generation pipeline, but not
the influence predictors. This baseline is a comparison of
the mean agent’s values between the paths. An example
of such an explanation is The Q average if the agent goes
up 9.84, while the Q average if the agent goes down is
9.66.

e No explanation: The users only saw the correct answer
without further explanation.

5.3 Faithfulness evaluation methodology

To evaluate the reliability of our explanation method, we
resort to addressing the faithfulness (RQ1); we combine the
predictions of the influence models using two methods. The
first is to combine the values of the influence predictors and
using their cumulative value to estimate the agent’s action
action = argmax,(d_; Pi(s,a) — Zj Nj(s,a)), where P;
is a positive influence predictor and N, is a negative influence
predictor. The second method is to train a classifier on the
predicted positive and negative influence values as features
and the agent’s actions as the ground truth. We used a support
vector machine (SVM) classifier with a radial basis function
(RBF) kernel. We also hypothesized that in the sparse reward
setting, it is more meaningful to look at the influences around
the emitting rewards rather than further away from them, as
it would likely be more influential to the agent’s decision in
those areas rather than further away, and therefore, the values
would likely be better at predicting the agent’s actions when
those influence signals are high enough to impact the agent.
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To do this, we filter our dataset, by influence values at a set of
different fixed intervals and examine the prediction accuracy
ateach threshold, we start at 0.100, and we keep increasing by
+0.1 untilitis no longer meaningful to do so. The faithfulness
methodology does not make use of the baselines since it is the
comparison of the aggregation of information from influence
predictors to the main policy model.

5.4 User study methodology

We designed our human participant evaluation following the
framework proposed by Hoffman et al. [32], evaluating our
system for understandability, performance, and user satisfac-
tion. We conducted our online evaluation between subjects
using Prolific> with 81 participants aged 21-71 years old
(M=37.41, SD=11.03); 39.5% of the participants identified
as women. The average study completion time was approx-
imately 10min, and we compensated each participant with
$3.75. The study consists of two parts: answering a series of
prediction tasks (RQ2, RQ4) and a satisfaction survey (RQ3,
RQ4). The explanation group selection was fully randomized
and balanced using Qualtrics.’

The study involved participants observing an agent (repre-
sented as ared triangle) navigate toward a goal (green square)
across three episodes, with certain shapes yielding negative
rewards. Initially, participants made uninformed predictions
about the agent’s movements, which were manipulated to
ensure incorrectness. This established the conditions for
which the participant must now learn to correct their under-
standing of the agent’s interactions with the environment.
This setup was used to teach the participants to adjust their
understanding based on consistent negative reward assign-
ments in subsequent episodes. The last two episodes were
considered for the prediction task. The expectation was that
the participants in the experimental condition would demon-
strate improved prediction accuracy over those in the baseline
conditions. In addition, a satisfaction survey assessed par-
ticipants’ perceptions of the explanations provided for the
agent’s behavior. Each of the questions in the prediction

2 http://prolific.co.

3 https://www.qualtrics.com/.
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Table 1 Percentages of correct answers for first prediction task and
second prediction task and the combined percentages

2nd Correct 3rd Correct Both Correct
Experiential Exp. 90.48 % 95.24% 85.71%
Heatmap Exp. 78.95% 78.95% 63.16%
Q-value Exp. 80.95% 80.95% 66.67%
No explanation 75.00% 70.00% 55.00%

Bold text highlights the highest percentage in each column

task we followed by a text entry question to capture the
participants rationales for making these predictions. In addi-
tion, another text entry question was added to get an overall
impression of the helpfulness of these explanations. These
are the responses that we analyze in our qualitative section.
We include screenshots and a detailed description of the study
in Appendix D.

5.5 Quantitative results

RQ1: Faithfulness. For measuring faithfulness, we look at
the accuracy of influence models in predicting agent actions;
we found that the accuracy of the prediction of the direct
aggregation is 72% and the accuracy of the classifier 76%.
To examine the alignment of the influence predictors with
the agent at states with higher influence, we gradually exam-
ine the alignment between the highest action as predicted by
the influence predictors and the agent’s actions. At a thresh-
old of 0.100, the aggregate of influence predictors agreed
with the main policy 83%, covering at least 20% of the envi-
ronment. At higher thresholds, agreement increases above
90%, indicating that when decisions are the most important,
faithfulness is very high. Looking at the positive influence
predictor alone, at a threshold of 0.200 and higher, it alone
can predict the agent with a precision of 100%. This is to be
expected; influence predictors cannot dictate what states and
actions get explored—it is controlled by the main policy and
the main training algorithm—so states that are less critical to
positive reward attainment are under-sampled and prone to
more error in both the main policy and the influence predic-
tors. In contrast, more important decision points are sampled
more often, so the influence predictors get more training on
those states and actions.

RQ2: Prediction Correctness. We measure whether the
participant can correctly predict the agent trajectory after
interacting with the second and third episodes (Fig. 3).
Table 1 shows the percentage of correct answers for each
type of explanation after the second and third episodes (the
first was a control), as well as the combined average. Par-
ticipants provided with Experiential Explanations had the
highest success rate. Experiential Explanations were signif-
icantly higher than the no explanation condition, validated

with a logistic regression (p < 0.05, df = 3, x> = 4.404).
Experiential Explanations led to a 9.5+% improvement over
other baselines, but were not statistically significant at the
same threshold.

RQ3: Satisfaction Survey. For each type of explanation,
we analyzed the ratings of the participants for the Likert
scale questions on the satisfaction survey. We include a
visualization of the results in Fig.22 in Appendix. Expe-
riential Explanations had the highest average scores on all
dimensions, except trust. A one-way analysis of variance
(ANOVA) followed by Tukey’s honestly significant differ-
ence test revealed that the Experiential Explanations (M =
3.62, SD = 1.32) were preferred over the Heatmaps (M =
2.42, SD = 1.35) in completeness (F (3, 81) = 3.032, p <
0.05). Experiential Explanations (M = 3.71,SD = 1.0)
were preferred over the Heatmaps (M = 2.63, SD = 1.38)
in satisfaction(F (3, 81) = 3.106, p < 0.05). Experien-
tial Explanations (M = 4.38, SD = 0.59) were preferred
over Q-Value Explanations (M = 3.28, SD = 1.01) and
Heatmap Explanations(M = 3.0, SD = 1.37) in the dimen-
sion of understandability (F (3, 81) = 5.572, p < 0.05).

5.6 Qualitative analysis and findings

To address RQ4, we thematically analyzed open response
questions for the tasks and satisfaction survey to better
understand how participants used the explanations. Thematic
analysis is one of the most common qualitative research
methods and involves identifying, analyzing, and reporting
patterned responses or meanings (i.e., themes) [35]. It is most
appropriate for understanding a set of experiences, thoughts,
or behaviors across data [36]. To conduct the thematic anal-
ysis for each of these codes, three authors performed the
following established process, as outlined by [35]: (1) We
familiarized ourselves with the data through repeated active
readings. (2) We developed a coding framework consisting
of a set of codes organizing the data at a granular level and the
corresponding well-defined and distinct definitions. (3) Each
of the authors independently coded the entirety of the data.
If a code was unclear or a new code was needed, the authors
consulted with each other to modify the coding framework. If
a change was made, each author independently re-analyzed
the entirety of the data. (4) We jointly examined the codes
to derive themes and findings. We compared our applica-
tion of the codes for each response to ensure consistency.
Discrepancies were counted and used to calculate the inter-
rater reliability. The process iterated until all discrepancies
were resolved. We identified three themes: Usefulness, For-
mat, and Utilization. The codes, definitions, and examples
are summarized in Figs.4 and 5.

Explanation Usefulness. The theme of Usefulness emerged
in the open-ended comments about how participants per-
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Comments around whether participants found the explanation useful

T . )
Useful The participant found the explanations useful he exp"lanatlons helped me understand and achieve
the task.
“Th lanati did not hel hieve the task. | had
Not Useful The participant found the explanations not useful/relied to rzleX:nar:a Isc;rl].:—i;te:mret:t:::se (aec Ie_\li:e : eanst's a
@¢\UEal on other factors for their predictions ¥ v ) P N (&g 9
actual routes/consistency)
. . “I think the agent could have made it to the goal safely
Unclear Usefulness couldn't be inferred from the answer either way he went.”
Format

Comments around the explanation formats and the difficulties they encountered

Need more information )
details.

Mentions that the explanation is too brief, needed more

“The explanations should be longer and answer only
some of my questions.”

Hard to understand forward/needed time to understand.

Mentions that the explanation was not straight

“The explanations were hard to understand.”

Suggestions explanation

Suggestions on what they wanted to see in the

“I wanted to know more about why the agent avoided
the purple circle.”

Fig.4 Summary tables of the codes used to understand how users across the explanation groups perceived the explanations in terms of usefulness

and format

Utilization

Reasoning around the information used in reasoning about the agent

Object Related

Reference to the object shapes or colors.

“The agent hates the color purple, The agent wants to
avoid circles."

Reward Related

Reference to safer, better or higher rewards.

“This path has higher reward. Going up is better.”

Goal Related

Reference to distance from the goal or direction.

“This path is closer to the goal.” “This path leads to the
goal.”

Random Choice Arbitrary justification.

“50/50 chance. | think the agent will go up.”

Prior Behavior

Reasoning relied solely on past directions

“The agent went up previously.”

Other

Other reasons (e.g., obstruction)

“The agent go around walls.”

Fig.5 Summary table of the codes used to understand how users across the explanation groups utilized information from the explanations

ceived the explanations. Because these comments were made
alongside users’ explanations of their reasoning, this pro-
vides additional information on how useful users found
the explanations. We identified three Usefulness codes:
Useful,Not Useful,orUnclear Wecodedaresponse
Useful if a participant explicitly mentioned that the expla-
nation was useful, for example, “I understood that purple
was dangerous and that the agent should avoid getting near
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it (EE8).” Responses were coded Not Useful if a partici-
pant explicitly stated that the explanation was not useful, for
example, “I tried to read the chart but found it confusing and
unclear. I didn’t understand it very well (HE10).” Responses
were coded Unclear if the user’s perception was ambigu-
ous, for instance, “I found the explanations a bit too brief.
For instance, what makes the purple circles feel safer than
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Table 2 Participant’s rates of usefulness for each explanation type

Useful Unclear Not useful
Experiential Exp. 80.95% 19.05% 0.00%
Heatmap 31.58% 31.58% 36.84%
Q-value Exp. 47.62% 14.29% 38.10%
No explanation N/A N/A N/A

the blue squares (EE7)?” The initial inter-rater reliability for
Usefulness was 81.5%.

Table 2 shows participants’ perceived Usefulness across
explanation types according to usefulness codes. Experi-
ential Explanations were considered Useful most often.
Heatmap explanations were considered Not Useful most
often, even more than when no explanation was provided. A
logistic regression comparing the Usefulness of each expla-
nation showed Experiential Explanations were 9 times more
likely to be found Useful than Heatmap explanations and
4 times more likely than Q-value explanations (p < 0.05,
df = 3, x*> = 14.99). We also note that 88.89% of the
participants who thought the explanations were useful pre-
dicted correctly in both questions, indicating the correlation
between correctness and usefulness (p < 0.05, df = 2,
x2 =9.33).

Explanation Format. Participant responses were also coded
for Format. We derived three codes for Format: Need More
Information, Hard to Understand, and
Suggestion. Responses coded as
Information explicitly stated why the explanation was
lacking and what data was desired. If the response said that
the explanation was not clear, it was coded as Hard to
Understand, and if the response offered another way to
explain, it was coded as Suggestion. Only responses from
individuals who received explanations and referenced the
explanation’s content could be coded for Format,41.98% of
our dataset; therefore, our reported observations are mainly
comparisons of the percentages and could not be statisti-
cally tested due to the small data size. Participants often
expressed a Hard to Understand 40% when shown
Heatmap explanations, followed by 29.41% who got Q-value
explanations while this was not a problem for the Experi-
ential Explanation group. On the other hand, we observed
Need More Information between the three explana-
tion groups with higher concentrations of 35.29% being
from the Q-value explanation group and 26.67% are from
the Heatmap explanation groups and 21.05% are from the
Experiential Explanation group. Participants who did not
find the explanations useful had more Format comments,
especially requesting more Need More Information
30.77% and Hard to Understand 69.23%. The initial
inter-rater reliability was 76.47%.

Need More

Object Related
100%

75% - - - -

Random Choice - ~
, 50% S

Goal Related

- other

Reward Related

-e- Heatmap Explanation -e- Experiential Explanation

No Explanation Q_value Explanation

Fig. 6 Distribution of themes over the different explanation types.
Participants who saw Experiential Explanations, which presented
Object-Related and Reward-Related information, relied
more heavily on the kinds of information it provided than other
explanation types. Q-Value and Heatmap explanations both presented
Reward-Related information. The breakdown of themes for the
Heatmap and g-value explanations more closely resemble the no expla-
nation case

Explanation Utilization. Utilization refers to whether the
participant made use of the information available within
the explanation to reason about what the agent will do.
We extracted the following codes for the types of informa-
tion participants referenced in their rationales: Object-
Related (e.g., shapes or colors); Reward-Related
(e.g., “safer,” “higher,” or “lower” rewards); Goal -Related
(e.g., distance / direction to goal); Prior Behavior
(e.g., references behavior from prior outcomes); Random
Choice (e.g., no clear justification); and Other (e.g., ref-
erences other factors such as obstructions). The inter-rater
reliability of the initial coding was 75.6%.

We compared the frequency with which utilization codes
appeared in open responses. If a participant used the
same types of information as the explanation provided,
we considered the participant as “Utilizing” the expla-
nation. Experiential Explanations provide Object- and
Reward-Related information. Heatmap and Q-Value
Explanations provide Reward-Related Explanations.
No explanation only provides for Prior Behavior.71%
of the participants who were shown Experiential Expla-
nations utilized the exact kinds of information presented
in the explanation, compared to 21% and 28% for the
Heatmap and Q-Value explanations, respectively. Although
the Q-Value and Heatmap explanations both presented
Reward-Related information, participants still relied
heavily on Prior Behavior to understand the agent.
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Figure 6 shows the distribution of the reasons the
participants referenced for each type of explanation. Par-
ticipants who saw Experiential Explanations most used
Object-Related and Reward-Related information.
Participants who saw Q-Value explanations referenced
Goal-Related reasons the most. Participants who saw
no explanation most often utilized Prior Behavior, fol-
lowed by Object-Relatedreasons. Notably, participants
who saw Experiential Explanations were 4 times /ess likely to
rely on Prior Behavior, indicating they did not rely as
much on watching the agent to understand it. Those who saw
Heatmap and Q-Value Explanations relied heavily on Prior
Behavior and Utilization patterns mimicking those of the
no explanation condition.

Experiential Explanations were 13 and 15 times more
likely to have the information they provided be Utilized and
Useful, respectively. Utilized refers to what they used in their
reasoning, while Useful focuses on whether they thought the
explanations were useful or not in the post-task satisfaction
survey. Yes, it is the code from the previous section with
respect to Heatmap and Q-Value explanations, respectively.
We also found that among those who used components of
explanations in their reasoning, 55.88% answered correctly
on both questions (p < 0.05,df = 1, x> = 3.849). But
within the Experiential Explanations group, the percentage
was 84.62% and that group was more statistically significant
to get both questions correctly than other baseline explana-
tion groups (p < 0.05,df =3, x> = 12.22).

6 Experiment 2: crafter environment

In this experiment, we address our research questions (RQ?2,
RQ3, and RQ4) with a focus on evaluating the actionabil-
ity of the explanations in a more complex environment, as
this experiment is designed to evaluate the influence pre-
dictors and Experiential Explanations in a visually richer
environment, with more decision points and options, along
with multiple reward classes. And, as before, we will vali-
date the faithfulness through automated testing designed to
address (RQ1).

To create such a setting, we used the Crafter environ-
ment developed by Hafner [30], a 2D version of the game
Minecraft with the same rules for interacting with the envi-
ronment and crafting new tools. Crafter can generate 2D
open-world survival environments with randomized maps.
These environments consist of varying terrains, a day—night
cycle, as well as interactable materials, objects, and living
entities. Crafter also supports an on-screen inventory, allow-
ing an agent to collect items in order to construct a variety
of items later. An agent playing Crafter needs to complete
various tasks in sequential order while maintaining its health
by obtaining resources and avoiding threats.

@ Springer

6.1 Model setup and environment details

Environment Customization. We needed a good distribu-
tion of positive and negative reward sources. Crafter provides
multiple sources of positive rewards, but the only nega-
tive rewards come from health depletions. To counter this
and to add a conceptual narrative, we created an agent per-
sona, called the Digger, whose aim is to obtain a diamond.
The Digger’s reward system provides positive rewards for
achievements related to digging, such as acquiring resources
to construct digging tools, creating these tools, and dig-
ging for minerals. We provide negative rewards if the agent
strays from the Digger persona, for example, by constructing
weapons, or killing an entity. Figure 7 depicts the sequence
of achievements required to reach a diamond.

Additional customizations were added to optimize the
training process. The world map was made static, so that the
agent could find all required resources in a limited number of
steps while making it easier for a participant to understand the
world map. No rewards were given for performing actions to
maintain health, such as drinking water, but improvement or
depletion of health had corresponding positive and negative
rewards. While all other achievement rewards are in the range
of +1 to -1, diamond collection has a +50 reward to focus
the agent’s training exploration toward getting a diamond.
Finally, a small bonus is given for reaching the diamond in
fewer timesteps, to improve agent performance.

Agent training. The agent needs to learn to traverse the
map, completing the achievements required to reach the dia-
mond in a small number of timesteps. At any given point,
its observation consists of an image of its surroundings
inside a limited field of view along with its current inven-
tory. Given a static map, the agent is trained from various
starting points to aid in the training exploration. We use
on-policy learning algorithms for the agent, advantage actor-
critic (A2C) [33] optimized using the exponential policy
optimization algorithm (PPO) [34], implementation details
for which are available in Appendix C.

Influence Predictor design and training. For the Crafter
experiment, we attached influence predictors (IP) to achieve-
ment categories. Each predictor was responsible for tracking
either favorable achievements leading to positive rewards
or unfavorable achievements leading to negative rewards.
The health-tracking IP was the only exception here, as it
tracked both improvement and depletion of health, resulting
in rewards that are sometimes positive and sometimes neg-
ative. Table 3 lists all influence predictors, along with the
achievements they track. The health-tracking influence pre-
dictor is a special case of a reward signal that is both negative
and positive. We opted not to divide the health rewards com-
ing from the environment, because we didn’t want to change
the health signal artificially; we would need to significantly
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5. (a) Make Stone Pickaxe

6. Collect Iron

Location

- Next to Table

Needs 1 piece of wood

Needs 1 piece of stone

Location

- Center of the map to the right

- Center of the map to the left

Needs a stone pickaxe

2. Place Table 4. (a) Collect Stone

A4

Location
- On the sand only

Location

— | - Bottom of the map in the middle
- Top of the map in the middie

7. Make Iron Pickaxe

> Location
Table

- Next to Furnace

Needs 2 pieces of wood Needs a wood pickaxe

1. Collect Wood v

5. (b) Place Furnace

Needs 1 piece of Iron

3. Make Wood Pickaxe

Location

- On the

Loc

v

atl
> - Next to Table

Needs 1 piece of stone

8. Collect Diamond

Needs 1 piece of wood

Limited to 5 pieces

4. (b) Collect Coal

A4

- Near cente map to the right

nap to the left

Needs an iron pickaxe

comer.
- Bottom right corner

Needs a wood pickaxe

Fig.7 Depiction of the task dependencies of the Digger’s quest, listing the achievements that the Digger needs to attain and the order in which that

needs to be done

intervene to separate the signal into its positive and negative
components. To handle this special case, we don’t use the
absolute function for the health-tracking influence predictor;
we took both the sign and the magnitude of the values when
it came to the health IP. This still works because we still
standardized all the values before the explanation generation
which corrects any inconsistency this inclusion of the sign
might have caused.

The influence predictors were also trained using on-policy
learning; the technical details are found in Appendix C. The
predictors were given full access to the agent’s rollout buffer
allowing them to see the agent’s observation space, action
taken, and reward obtained, along with whether the episode
just started and the probability distribution of agent’s actions.
IPs would only read the rewards pertaining to their own
achievements and consider rewards from other sources as
0. Also, instead of taking the actual reward, IPs read the
magnitude of the reward to track the intensity of influence
of their achievements, irrespective of whether they are posi-
tive or negative. The health-tracking IP would also consider
the sign of its reward, given that health can be both posi-
tive and negative. The predictor models calculated the value
and subsequently the advantage and results using their own
respective critics. They would then populate their own roll-
out buffers with these details and train on the same. Each IP

hence would learn its individual policy based on the agent’s
explorations.

We explored the IP values by standardizing them to com-
pensate for reward variations and obtained graphs such as
Fig.8. We see that the influence of rewarded states associ-
ated with achievements keep rising until the achievement
was obtained and drop immediately after, leading to creation
of spikes as visual indicators of when an achievement was
made. The IPs hence expose the user to knowledge about
the agent’s goal hierarchy because the positive rewards are
attached to achievements. This is something that we don’t
see in the simpler MiniGrid and a useful emergent property
of the technique.

Explanation generation. To explain the actions of the agent,
we provide local explanations that narrate what the agent
plans to do next after the actual or counterfactual action, as
described in Sect. 3.2 and using the following template.

Template: “[The agent] needed [highest influence predic-
tor at decision point] and chose t0 [@agent]. This led to the
prioritization of [list of top influences for tygent] next. How-
ever, if it had [ayser ], it would have to think about [list of top
influences for tyser] instead.”

Example: “Jade needed wood and chose to get it from the
sparse forest. This led to the prioritization of building a table,
building a stone pickaxe, and getting stones next. However,
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Table 3 Complete list of
influence predictors with the

achievements that they track and
their corresponding reward

types

Influence predictor Reward type Achievements

Coal collection Positive Collect-coal
Diamond collection Positive Collect-diamond
Iron collection Positive Collect-iron

Stone collection Positive Collect-stone

Wood collection Positive Collect-wood

Iron pickaxe construction Positive Make-iron-pickaxe
Stone pickaxe construction Positive Make-stone-pickaxe
Wood pickaxe construction Positive Make-wood-pickaxe
Furnace placement Positive Place-furnace

Table placement Positive Place-table

Murder tracking Negative Defeat-zombie

Iron sword construction Negative Make-iron-sword
Stone sword construction Negative Make-stone-sword
‘Wood sword construction Negative Make-wood-sword

Health tracking

Positive and negative Life-maintenance, collect-drink, eat-cow

STANDARDIZED VALUE OF THE STATE

_pigk

'moy

'make_wood

'move Jri
_plck
'move_{i

'move
_pitkaxe

‘collect_mat@rial'

‘collect_matefid
‘collect_matgria

make_stone

ACTION CAUSING THIS STATE

Diamond collection
e Murder tracking

e== Coal collection
e \W00d collection

== Stone sword construction e \\/ood pickaxe construction

=Health tracking
= |ron pickaxe construction
e \\/00d sword construction

Stone collection
= Stone pickaxe construction
Table placement

Iron collection
== |ron sword construction
Furnace placement

Fig. 8 A plot of an agent’s full trajectory over an episode and the standardized values of every state along the trajectory according to individual
influence predictors. The x axis shows the temporally ordered actions preceding each state whose influence predictor values are represented on the

y axis

if it had gotten to the dense forest, it would have to think
about owning a wooden pickaxe, fearing for its health and
avoiding dangerous zombies instead.”

This explanation conveys that the dense forest is a more dan-
gerous option for the agent, because the agent knows, while
the user might not, that there are zombies roaming around that
forest and it would be wiser to get wood from the safer sparse
forest. We anthorpomorphize our agent; calling it “Jade” in
all explanation groups and make minor edits for readability
as needed (e.g., change the tense or add articles) to improve
the survey experience of the participants.
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6.2 Faithfulness evaluation methodology

We look at faithfulness to evaluate how good our expla-
nation method is at approximating the agent. We calculate
faithfulness (RQ1), which looks at how the influence pre-
dictors (I P) models can align with the agent’s model. We
used the two faithfulness evaluation methods from the first
experiment as described in Sect.5.3 to estimate an agent’s
actions based on influence predictors. The first method
combines the values of all the positive and negative influ-
ence predictors to calculate a cumulative value, allowing
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Step 0

Fig. 9 Plot depicts the values of different states as traversed by the
agent during a successful test run. The green line represents the values
according to the agent’s learned policy. The deep blue line depicts the
cumulative values according to the policies learned by the influence

us to determine the agent’s action as follows: [action =
argmax, (Zl P;(s,a) — Zj Nj(s, a))] where (P;) repre-
sents a positive influence predictor and (N;) represents a
negative influence predictor.

The second method involves training a classifier using
the standardized positive and negative influence values as
features, with the agent’s actions as the ground truth. We
used the same setup we had in the first experiment, an SVM
classifier with an RBF kernel.

To learn more about how our influences perform in dif-
ferent parts of the trajectory, we take a slightly different
approach than the one we did in the first study. In the first
study we did so by focusing on how the influences values
impact the agent at a close proximity. In this experiment,
because our setting here is more complex and combining
the influence predictors individual action predictions can be
noisy, and it is not feasible to easily identify the strengths of
their signals at different locations, as not all the 15 IPs are
equally influential at all decision points, we resort to look-
ing at the sum of their values at each state as a way to show
their alignment with the agent’s. Then we compare this sum
with the agent’s values for each state. The goal is to see how
closely the camulative IP values can match those of the agent.
Our process begins by obtaining the cumulative IP values of

Step 71

AgentValue  emmm=Cummulative IP Values

predictors. Both plots match almost exactly, meaning that the policies
learned by the influence predictors align closely with the policy learned
by the agent

each state using the formula:

Cumulative IP value for state s = Z I P.(s)
IP.eCt

— Y IPs) (6)

I1P.eC—

where C is the set of positive IPs including health-tracking
IP and C~ is the set of negative IPs.

We then calculate the Root Mean Squared Percentage
Error (RMSPE) [37] between the agent values and the cumu-
lative IP values for a set of 9 test runs. These runs used the
same trained agent on the same map, but varied the starting
location. RMSPE is calculated as:

Lon (=)
RMSPE = | — u) (7)
N Z( Yn

n=1

As before, the faithfulness evaluation does not use the
baselines as the purpose is to evaluate the influence predictor
models’ ability to approximate the policy model.
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6.3 Baselines

The setup of this experiment allows the generation of local-
ized explanations, so we used the following baselines to
compare them with:

1. Local agent value explanation: For both options pro-
vided to the user, this explanation presents the agent value
of the state reached right as the action sequence ends. This
action sequence will end in some reward-producing state,
but not necessarily in the goal state. Similar to the pre-
vious experiment, these values are generated using the
simulator. We similarly used templates to generate the
explanations encapsulating the values.

Template:Jade’s value for [aagent] is [agent value after
Qagent]. While the Jade’s value for [ayser ] is [agent value
after ayser/

Example:Jade’s value for getting wood from the sparse
forest is 6.99. While Jade’s value for getting wood from
dense forest is 5.59

2. No explanation: As in the first experiment, users only
saw the correct answer, without further explanation.

The agent value explanation is similar to the Q-value explana-
tion we had in the previous study, except now it is calculated
on a local point rather than an aggregate mean over the full
trajectory. We did not include the Heatmap baseline because
the agent may need to traverse the same positions on the map
multiple times to complete its task, which made Heatmaps
inapplicable.

6.4 User study methodology

We follow a study design similar to our first experiment;
we have similar main study components of prediction tasks
(RQI, RQ3) and a satisfaction survey (RQ2, RQ3) as in our
previous study. We adjusted the prediction task to be more
suitable for the new environment and local explanations. We
also introduce a new ordering task to further explore the com-
prehension of the explanations that address RQ3 and RQA4.

Our study is an online evaluation between subjects using
Prolific with 96 participants aged 18-82 years old (M=38.90,
SD=12.91); 32.65% of the participants identified as women.
The median study completion time is approximately 12 min,
and each participant was compensated with $2.50 with a
bonus for thoughtful responses.

Initially, to introduce the participants to the map and
receive the initial explanation, we show them a scenario and
then ask them what the agent would choose between two
options. After making a selection, they will see an expla-
nation generated by our technique or one of the baselines.
The explanation group selection was fully randomized and
balanced using Qualtrics.
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Then they will see another scenario, a prediction task,
where they are asked to predict the agent’s follow-up action;
they are presented with one of two prediction tasks. The
first examines the case of multiple positive influences, where
they are asked which action will the agent take next. The
other examines the negative influences, where they are asked
which option the agent will avoid. In both versions, the cor-
rect options relate to the influence with the highest value.
After making their predictions, we ask them to explain their
reasoning.

The next task is an ordering task, where we show them
a list of the factors affecting the agent for each of the action
choices of the initial scenario. And ask them to order them
according to their relative importance to the agent. We also
ask them what factors they considered with the ordering.
Then we ask if the explanations were helpful in this task and
how.

Finally, they conduct a satisfaction survey, identical to
experiment 1, where they rate the explanation on under-
standability, satisfaction, amount of details, completeness,
usefulness, precision, and trust. In addition, a text entry
question about the usefulness of the explanations to their
decision-making. We provide a detailed description of the
survey and a screenshot in Appendix G.

Disguising of assets The functionality of Crafter’s materials,
objects, and living entities is quite intuitive, and many people
are familiar to different degrees with Minecraft. We needed to
ensure that the explanations were the only source of a partic-
ipant’s understanding of concepts of this world, as opposed
to prior knowledge about Minecraft or commonsense. We
re-skinned the art assets to random alternatives which carry
no relation to the thing they represented. Figure 10 displays
the main map with a subset of original and re-skinned assets.
The full list of re-skinned assets can be found in technical
appendix.

6.5 Quantitative results

RQ1: Faithfulness For the first test, the accuracy of the influ-
ence predictors in predicting the agent’s actions along the
trajectory, we found that the accuracy of the prediction of the
direct aggregation is 73.35%.

Using the classifier from experiment 1 with only move-
ment actions (4 classes) resulted in 69.61% and with all
possible actions (11 classes) is 60.71%. The classifier from
experiment 1 only uses influence predictor values as features,
not the entire observation; this was sufficient for experiment
1. However, the Crafter environment is much more complex
in terms of action space, state space, and temporality—states
are seen repeatedly but under different conditions such as
different tasks. Furthermore, the size and complexity of the
state—action space is such that certain trajectories through
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Fig. 10 Comparison of a 13x13
tile Crafter map with original art
assets on the left and re-skinned
art assets on the right

state space are vastly over-sampled by the policy learner
while others are under-sampled. This makes it hard to learn
a classifier without artificially forcing a more balanced sam-
pling of states and actions. Other classifier architectures may
perform better. Regardless, it shows that the influence pre-
dictors provide information that can be used to reconstruct
the policy many times above random chance (9%) even using
naive reconstruction means such as this classifier.

The cumulative values of the influence predictors, calcu-
lated with Eq. (6), were almost identical to those of the agent.
We plot the results of an example test run of average length
that shows how the values are aligned almost perfectly, as
demonstrated in Fig. 9. This is verified by the RMSPE values
that averaged 3.13% (SD = 0.52%, min = 2.45%, max =
3.82%), indicating a high similarity between the agent policy
and the cumulative IP values.

RQ2: Prediction Correctness and Order Correctness
We measure whether participants can correctly predict the
agent’s action at the prediction task decision point after inter-
acting with the explanation of the initial decision point. The
correctness rose up for the local Experiential Explanation
group from 0.4 — 0.71, while there was no difference
in the other groups as shown in table 4 The group that
received local Experiential Explanations demonstrated a sig-
nificant improvement in the accuracy of the prediction in
all groups after exposure to an explanation. The results
of the logistic regression model were statistically signifi-
cant (X2(2, N = 96) = 13.327, p < 0.05). There was a
positive correlation between the local Experiential Explana-
tion group and the accurate prediction of influences (OR :
2.55;95%C1[1.785, 3.326]).

For the ordering task, we measure the ability of the par-
ticipants to order the factors that impact the agent the most
for each action proposed at the initial decision point. We
used Sum of Squared Error to compare the correctness of
the sequences as shown in Fig. 11. The group provided with
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Table4 A comparison of the explanation groups prediction correctness
for their initial predictions; before seeing any explanations; and after
seeing the relevant explanation

Initial predictions Prediction task

Experiential Explanation 40.63% 71.88%*
Agent value explanation 28.13% 28.13%
No explanation 37.50% 34.38%

*Statistical significance difference compared to other explanation
groups (X2(2, N = 96) = 13.327, p < 0.05, logistic regression)

local Experiential Explanations showed significantly reduced
squared errors (M=1.19, SD=2.27) compared to other base-
line groups which is found by conducting a one-way analysis
of variance (ANOVA) followed by Tukey’s honestly signif-
icant difference test (F(2,96) = 14.1315, p < 0.05). This
indicates that the local Experiential Explanation group was
more effective in achieving accurate ordering compared to
the agent value explanation group (M = 3.09, SD = 2.89)
and the group without explanations (M = 3.63,5D =
2.91).

RQ3: Satisfaction Survey As with the first experiment, we
analyzed the explanation goodness ratings the participants
provided for each explanation group for the Likert scale ques-
tions. We include a visualization of the results in Fig.28 in
Appendix. The local Experiential Explanation group exhibits
the most favorable mean values in all measured dimensions,
with the exception of Trust. A one-way analysis of variance
(ANOVA) followed by a Tukey’s honestly significant differ-
ence test revealed that these differences are not statistically
significant, with the sole exception of the dimension of suf-
ficient detail (F(2, 96) = 4.716, p < 0.05), where the local
Experiential Explanation (M = 3.33, SD = 1.45) was per-
ceived as significantly more detailed compared to the agent
value explanation (M = 4.06, SD = 1.16).

@ Springer



Neural Computing and Applications

Ordering task performance between the Explanation groups
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Fig. 11 A comparison showing the distribution of the sum of squared
errors for the ordering task between the different explanation groups

6.6 Qualitative analysis and findings

To understand how users in different explanation groups
varied in the way they used the information provided in
explanations, we thematically analyzed the open response
questions asking participants why they selected their partic-
ular answers for the reasoning tasks. We followed the same
procedure we describe in Sect. 5.6, familiarizing ourselves
with the data, developing a coding framework, independently
coding the data, and jointly resolving differences [35]. Dis-
crepancies were counted and used to calculate the inter-rater
reliability. The process was repeated until all discrepancies
were resolved. The inter-rater reliability for all three ques-
tions we analyzed is 71%, 75.1%, and 80.1%.

Using this procedure, we identified the following codes
that are broadly separated into: (1) elements, participants
understanding the parts of the environment the agent would
interact with; and (2) logic, participants reasoning around
the circumstances leading to the agent’s actions. The codes,
definitions, and examples are summarized in Fig. 12. Signif-
icantly, the codes for Experiment 2 reflect and extend the
codes identified for Utilization in Experiment 1, but they
were developed independently, grounded in each set of data,
demonstrating an additional layer of validity and consistency
between the two studies’ findings.

We also used the same procedure to conduct a thematic
analysis of the open response question from the satisfac-
tion survey asking participants about the usefulness of the
explanations. We qualitatively coded their responses to iden-
tify the features that users perceived as present and missing
from the explanations. We broadly separated our codes into
features related to the broader Game (e.g., game rules) and
features related to the Agent (e.g., agent strategies). The
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codes, definitions, and examples are summarized in Fig. 13.
The inter-rater reliability for this question is 83.5%.

We focus our discussion on the most salient themes we
identified from our analysis. (1) Participants in the different
explanation groups vary in how they utilize the information
provided in the explanation. (2) Participants identified the
features they perceived as missing from the explanations. (3)
In the absence of a complete picture, how do participants
reconcile their mental models of the agent?

Comparing Elements & Logic Utilization Across Expla-
nation Groups. The group provided with local Experiential
Explanations was the only group to demonstrate direct
reliance, relying only on the Explanation Logic and
Explanation Element with nothing else added. Of the 96 ques-
tions answered by the local explanation group, 41 (42.7%)
directly relied on the explanation provided, compared to
none in either of the other two baselines. Those who did not
directly rely on the explanation most often relied on both the
and Explanation Element,
but added other explanations or elements. The group pro-
vided with agent value explanations most heavily relied on
) , and
Info Elements. The group provided with no expla-
nations most heavily relied on
s ,and Info Elements.
This indicates that participants in the local Experiential
Explanation group more heavily relied on the information
provided in the explanation to predict the agent’s actions,
rather than drawing on other knowledge. It also confirms
the experimental validity, as not all participants in the local
Experiential Explanations solely depended on the explana-
tions, indicating answers were not directly given to them in
the explanation.

Overall, using influence predictors provided a signifi-
cant improvement over other explanation methods in helping
users predict the agent’s downstream actions. Participants
who received the local Experiential Explanations were sig-
nificantly more likely (p < 0.05) to correctly choose the
influences on the model compared to the other explanation
groups. Further, those who received local Experiential Expla-
nations more frequently relied on the information provided in
the explanation, rather than what was provided in the images
or on connections to experiences outside of the experiment.
42.7% of the participants in the local Experiential Explana-
tions group directly relied on only the explanation elements
and explanation logic provided to make their decision.

The improvement in performance aligns with the provi-
sion of additional information through our method. Influence
predictors are models that learn how sources of reward affect
the agent in different stages, restoring information about
how the policy reflects the environment. This information
allows users to predict the downstream actions of the agent
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Elements

Reasoning around the parts of the environment with which the agent interacts

Explanation Element

References an object or item provided in the explanation

“It was mentioned [in the explanation] previously that the
yellow ducks are dangerous, so | assume she should
avoid them”

Info Element

References an object or item shown in the image or listed
as an answer for a question

“I ranked the flashlight as a factor of highest importance
since it seems to have been used for getting a coaster. It's
gone in the ‘Finish’ picture”

Other Element

References anything other than an Explanation or Info
Element

“I think Jade could have considered the coaster as a
weapon similar to the hammer where she could have
smashed any obstacles that get in her way”

Reasoning around why the agent acted as they did

Explanation Logic

Reasoning based on the logic provided in the explanation

“It was mentioned [in the explanation] previously that
the yellow ducks are dangerous, so | assume she
should avoid them”

Real Life - Object Logic

Reasoning based on what they know about objects in
real life

“i went from usable tools to least usable or beneficial”

Real Life - People Logic

Reasoning based on what they know about how people
think or act in real life

“When Jade listed these options they did so in this order, when
people recall objects they tend to recall the more fond objects
first. So | rearranged the items in [this] order”

Real Life - Other Games
Logic

Reasoning based on around what they know from
playing other video games

“I figure in video games having tools is usually very
important...”

Image Event Logic

Reasoning based on an event in the game depicted in the
images or in the non-explanation portion of descriptions

“I ranked the flashlight as a factor of highest importance, since
it seems to have been used for getting a coaster. It [the
flashlight] is gone in the ‘Finish’ picture”

Other Logic

Any other reasoning used, including when no specific
reason mentioned or if they say they chose at random

“It felt right to me, logical but with little actual facts
behind it”

Fig. 12 Summary table of the codes used to understand how users
across the explanation groups utilized information from the explana-
tions. Element codes refer to parts of the environment that participants

as opposed to the other experimental groups that could not
provide this information. Hence, those presented with local
Experiential Explanations had significantly higher correct
predictions and reliance on the elements and logic of the
explanation given, compared to baselines. The agent value
explanations baseline did not have information that could
be translated to make downstream predictions, and so those
participants relied more heavily on

and to fill in the gaps around what the
agent might do. Similarly, participants who were not pro-
vided an explanation at all were left in the dark entirely,
relying mostly on )

s , and . Further,
no participants in either the agent value explanations or the no
explanation groups were able to correctly predict the agent’s
actions and order the agent’s priorities as compared to 13 of

thought the agent would interact with. Logic codes refer to participants’
beliefs around the circumstances leading to the agent’s actions

the 26 local Experiential Explanation participants who were
able to correctly do both.

The qualitative analysis of participants’ responses to how
well they felt they understood the agent revealed implica-
tions for the design of explanations in complex environments.
Many people in the local Experiential Explanation group
directly relied on the explanation and felt they understood
the agent. For example, one participant clearly stated what
several others echoed, “They made it clear what her though[t]
process was, including her priorities” (L31).* However, oth-
ers expressed that they wanted more from the explanations.
As one participant said, “The descriptions explain what Jade
[the agent] is doing, but not necessarily why” (L28, emphasis
added).

4 The first letter in the participant code indicate their explanation group.
(L) Local Experiential Explanations, (A) agent value explanation and
(N) no explanation.
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Present & Missing Features

Reasoning around what features were present or missing from explanations

Game Goals

References what the objective of the game is

“While the descriptions give you a breakdown on her
priorities, you have no idea her motives or the motives of
the game. Not even sure what the goal is.”

Game Rules
mention agent)

References the set of principles governing the way the
game works or how values or states are assigned (cannot

“None of it had the context of how the game functions.”

General reference to the environment in which the agent

“Everything just seemed so disconnected and there

Game World is acting wasn't much explanation at all about what was going
on...”
. . “The descriptions explain what Jade is doing, but not
Agent Actions References what the agent does in the game necessarily why.”
. References why the agent is acting as she is and/or how “They made it clear what her though[t] process was,
Agent Strategles the agent coordinates their actions to achieve a goal including her priorities.”
. . . “While the descriptions give you a breakdown on her
Agent Goals References what the agent is trying to accomplish priorities, you have no idea her motives or the motives of

overall, the agent’s motives, and/or a desired outcome

the game. Not even sure what the goal is.”

Fig. 13 Summary table of the codes used to understand what features users perceived as present and missing from the explanations. Features are

separated by if they tie to the game or the agent

The Multi-Dimensional Nature of Users’ Needs in Com-
plex Environments The nature of the task is extremely
disguised to ensure that participants would not be able to rely
on prior knowledge of the Crafter game or commonsense.
This is important for understanding how much information
can be derived from the explanations and put to use in mak-
ing predictions about the agent and the environment. The
extreme disguise of the task was also useful in that it elicited
feedback about what users wanted regardless of whether they
were successful or unsuccessful at the task. These are mainly
reflected in the Game (Goals, Rules, World)and the
Agent (Actions, Strategies, and Goals)codes.
These desires were not only expressed in the local Expe-
riential Explanation group, but were also expressed across
the agent and no explanation groups. For example, a par-
ticipant in the no explanation group who did not get any
correct answers said “There is no context or logic to the
decision-making process from the information given” (N16),
which almost exactly mirrored the statement of a local Expe-
riential Explanation participant who correctly responded
to all the questions, “I don’t know what she [the agent]
chose or what her goal is, so her motivation doesn’t make
sense to me” (L19). Despite the ability to perform well on
the task, the participant still desired additional information
beyond what influence predictors could provide, revealing
the multi-dimensional nature of the needed explanations. An
explanation of the rewards influences on the agent through
influence predictors helps clarify some of the causal dimen-
sions, which were enough to predict the agent’s functions, yet
they fall short of providing a comprehensive understanding of
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the agent’s underlying motivations or broader environmental
context that remains outside the scope of the reward function.

Participants’ desire for additional information isn’t a
shortcoming of our method as participants in the Local
Experiential Explanation group did well on the predictive
task; it shows areas for future work addressing the multi-
dimensional nature of users’ needs in complex environments.
Since influence predictors tracked the sources of reward for
the agent, local Experiential Explanations extracted and pro-
vided participants with all the information possible from
the model. The information we provided about the circum-
stances related to the agent’s actions still significantly helped
participants predict the circumstances leading to the agent’s
actions. Consequently, the request of some participants can
help identify where new explanation methods can be devel-
oped to start meeting users’ other needs. Looking to the
codes around present and missing features helps highlight
some of these directions, including users’ desires around the
Game (i.e., Goals, Rules, World) and their desires
around the Agent (i.e., Actions, Strategies, and
Goals), which were echoed across all experimental groups.

Examining How Participants Attempt to Fill the Gaps
to Complete their Understanding of the Agent. Because
of the extreme disguise of the tasks, participants expressed
an unanticipated degree of creativity and curiosity to explain
the actions of the agent. The environment in which we placed
the participants was intentionally opaque to ensure that they
relied on the information provided in the explanations, rather
than relying on their knowledge from other games or experi-
ences. Still, participants used their imaginations to fill in the
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gaps around what was not provided in the explanations and
reconcile the agent’s model with their knowledge. For exam-
ple, one participant hypothesized that the gray ducks were
actually “evil robot ducks” (LL12). Another participant cre-
ated a full narrative around the explanation about how Jade
is trying to escape a cave (N16). There was also a plethora
of hypotheses around healing apples (L25), or Jade’s desire
for a new pet lizard or crab (N25, L.26, A27, L31). We set
up Jade as an agent in an environment that would not make
intuitive sense, giving participants the job of predicting her
task with an explanation. The participants filled out her story
around the explanations they were given, adding motive and
context where we did not.

In some contexts, creativity is not a desired feature. For
example, it is (probably) not good for doctors (or others)
to creatively invent reasons around Al recommendations
for medical environments. Similarly, users should not be
creatively attributing reasons their bank loan was rejected.
However, in storytelling and games, creativity and curiosity
are critical features of a positive and engaging experience.
This opens up the direction of future work for these environ-
ments to understand how explanations can be a feature that
encourages creativity and curiosity while maintaining high
task performance and understanding of the agent and pro-
moting an overall positive experience. We encourage future
work to consider exploring explanation methods as places
to which people can tether their imaginations, building on
explanations to construct fun, interesting storytelling expe-
riences.

7 Limitations and future work

Our experiments focus on the content of the explanation
rather than optimizing the language delivery or comparing
different styles of language explanations. Templates were
sufficient to show a significant effect on human participants
regardless of the acknowledged limitations of templates such
as rigidity and formulaicity of text. As such, we evaluated
against baselines with other presentational modalities, such
as visual or numeric modalities, instead of language variation
baselines. As more verbal and fluent explanation methods are
developed, more research should consider how different pre-
sentational aspects of language generation can impact users’
performance and preference for explanation. Preliminary
investigation by Tambwekar and Gombolay [38] suggests
that surface-form language variation may not have a large
impact.

Our approach highlights broader trends in the influences
presenting an overview of how they collectively impact the
agent’s actions over time. While this provides a helpful sum-
mary, there is potential to derive richer insights by examining
these interactions in greater depth. In certain contexts, the

interactions between these influences may provide valuable
insights for system users. Nonetheless, it remains unclear
whether such detailed explanations are feasible or necessary.

We do not consider the question of when users should ask
for explanations; we make the simplifying assumption that
an explanation generation system should be able to gener-
ate an explanation at any point in response to any “why-not”
question from an operator for any action performed by the
agent. However, further research is required to understand the
cognitive load involved in explanations that are presented in
real-time in an interactive context. Determining the optimal
timing and method for presenting these real-time insights will
be crucial to ensure they enhance user understanding with-
out causing undue strain. For example, explanations given in
real time in an environment like Crafter might be disruptive,
whereas an after-action review [39] may allow an operator
to revisit a previous point in time after the fact to seek expla-
nations.

Future research in this domain should explore the poten-
tial of the multi-dimensional nature of explanations to more
effectively reconcile users’ mental models of agents by
addressing the disconnects in knowledge that might arise in
understanding any part of the system. This exploration can
include the integration of various sources of explanation, dif-
ferent modalities, and innovative interaction techniques. For
example, exploring how increased interactivity and allowing
users to ask varying questions at different times would have
impacts on the users’ performance and preference of expla-
nations [40]. Explainable RL will be a crucial component as
reinforcement learning algorithms begin to drive agents and
rise of human-robots collaboration settings. Future research
should investigate how this approach could be extended to
continuous environments, robotics, or multi-agent systems
to enhance its scope and applicability.

8 Conclusions

Explaining reinforcement learning to non-Al expert audi-
ences is challenging. Actionable local explanations should
reference future anticipated interactions with respect to
the environment. Our Experiential Explanations technique
attempts to capture the “experiences” of the agent in terms
of reward influences that can be relayed to the user in the
form of explanations that help them construct an appropriate
mental model of how the agent interacts with the environ-
ment. Experiential Explanations provide context to the RL
agent’s behaviors without changing the agent architecture
while still providing a high degree of faithfulness. This is sig-
nificant because any core RL algorithm can be used to train
the influence predictors, as we demonstrated through our
studies using both Deep Q-Networks and PPO. Quantitative
and qualitative studies with non-Al expert study partici-
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Fig. 14 Architecture of the agent A2C model

pants show that Experiential Explanations help users better
understand the agent and predict its behaviors in partially-
observable long-horizon discrete planning problems with
sparse rewards. They also show that Experiential Explana-
tions are preferred and found more useful than the compared
agent explanation baselines. The experimental results sug-
gest that Experiential Explanations may provide for more
actionable ways for non-Al expert users to understand the
behavior of reinforcement learning agents.

A Implementation details of the MiniGrid
agent

Figure 14 shows the architecture of our agent. The state
observation is encoded using a convolutional neural network
(CNN) and then passed to the actor-critic network heads com-
posed of two shallow MLPs with one hidden layer each. The
MiniGrid agent was implemented using the torch-ac imple-
mentation presented in the official MiniGrid documentation.’

We train our agents with the following hyperparameters:

processes = 20
frames = 1221120
batch size = 256

discount factor = (.99

learning rate = 3.5 x 10~*

> https://github.com/lcswillems/rl-starter-files/

@ Springer

P(action 1)
m m
= =
< < P(action 2)
(@) - o
e 3 S P(action 3)
] = >
[0] [0]
Q Q
5] 5]
= S P(action n)
agent
Py
@
ol
c
m m
= =
< <
9]
Q — @) T
S = S s
] = > =
[0] [0] (0]
Q Q
@ 5]
o o
critic
PPO hyperparameters:
epochs = 10

lambda coefficient in GAE = 0.95
entropy term coefficient = 0.01
value loss term coefficient = 0.5
maximum norm of the gradient = 0.5
optimizer = Adam
optimizer epsilon = 1 x 1078

clipping epsilon for PPO = (.2

B Implementation details of the MiniGrid
influence predictors

Our DQN influence predictors are implemented in Pytorch®
and all the code is available in our git repository. Figure 15
details the architecture of the influence predictor’s model.
We train the influence predictor with the following hyperpa-
rameters:

replay buffer capacity = 50000
gamma = 0.5

target update = 5

6 https://pytorch.org/tutorials/intermediate/reinforcement_q_
learning.html
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Fig. 15 Architecture of the influence predictor network

bootstrap = 100000
batch size = 64

learning rate = 1 x 1073

optimizer = RMSprop

C Implementations details of Crafter’s agent
and influence predictors

As mentioned earlier, both the agent and the influence pre-
dictors are implemented using Stable-Baselines3’s [41] PPO
[34] implementation. Given the observations are in the form
of images, the policy used here ActorCriticCnnPolicy (also
from the Stable-Baselines3 [41]).

They use the same values as hyperparameters. The training
was done on a single node of a single a40 processor. The
training time can be reduced by parallelizing over multiple
nodes/processors. The hyperparameters were obtained from
[42].

Hyperparameters for the implementations:

nodes = 1
timesteps = 8994816
PPO hyperparameters:

learning rate = 3 x 1074
Number of steps per env per update = 4096
gamma = 0.95
Number of epochs = 4
batch size = 128
lambda coefficient in GAE = 0.65
entropy term coefficient = 0.0
value loss term coefficient = 0.5
maximum norm of the gradient = 0.5
optimizer = Adam

clipping parameter = 0.2
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Where do you think the agent [red triangle] will go?

(O The agent will go up.
(O The agent will go down.

Fig. 16 Example of the prediction task. The participants saw the map
and predicted which direction they thought the agent preferred

D Experiment 1: evaluation survey

The human evaluation study in MiniGrid is made up of three
parts. The first part is a prediction task, as shown in the
example in Fig.16. We presented three episodes to each
participant, as shown in Fig.3. During each episode, the
agent—the red triangle—must navigate to the green square.
Some colored shapes are associated with negative rewards,
but the participant is not told which ones. After each episode,
the participant is asked to predict whether the agent will
go up or down. The participant has no information at the
beginning of the first episode to make an informed choice,
and the participant choice is random—we do not evaluate
on this choice. Further, upon the participant’s choice, we
assign which object is dangerous such that the participant is
always wrong. This established the conditions for which the
participant must now learn to correct their understanding of
the agent’s interactions with the environment. We use that
assignment of dangerous object consistently throughout the
second and third episodes. The participant tries to predict the
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The correct answer is: The agent chose to go up.
0 ~

0 2 - 6 8

Fig. 17 After predicting the agent’s following action, all participants
will see the correct action. But for participants in the no explanation
group, this is the only information they are given

Explanation:

If the agent goes down (the path shown in red stars), It will pass
through regions influenced by dangerous blue obstacles; going up feels
safer.

0
1

2

0 2 4 6 8

Fig. 18 Experiential Explanation highlights the dangerous objects and
compares the agent’s actual and suggested path

agent’s choice after the second and third episodes (without
the object assignment switching); we expect to see the partic-
ipants in the experimental condition to have higher accuracy
rates than in the baseline conditions.

After each episode, participants fill out a brief text entry
question explaining the rationale behind their choice. Then

@ Springer

Explanation:

This is the agent’s maximum anticipated future rewards (Q

values) distribution on the map. (The higher value is, the more favorable
a state is).

975

0 2 4 6

Fig. 19 Heatmap explanation shows the maximum anticipated future
reward for each state in the environment

Explanation:

The following is a comparison of the agent’s anticipated future rewards
(Q values) assigned to the path it took and the alternative path. (The
higher this value is, the more favorable a path is).

» Q average if the agent goes up (shown in white): 9.85
o Q average if the agent goes down (shown in red): 9.69

0

1

7

8

0 2 4 6 8

Fig. 20 Q-value explanation compares the actual and suggested paths
regarding their average anticipated future reward

after the participants submit their predictions and reasoning,
they see the correct answer as shown in Fig. 17. Afterward,
they see one of the three types of explanations, Experien-
tial Explanation (Fig. 18), Heatmap Explanation (Fig.19),
Q-value explanation (Fig. 20), or they see no explanation at
all. Then they repeat this process two times.

After the participants finish the prediction task, they pro-
ceed to the second part of the study, a satisfaction survey,
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Based on your experience with the agents explanations please evaluate
them on the following points

Fig. 21 After the experiments, the participants completed the shown satisfaction survey evaluating the explanation type they interacted with on a
seven-point scale, measuring helpfulness, satisfaction, understandability, level of detail, completeness, accuracy, and trust

consisting of five-point Likert scale questions asking the ~ E Experiment 1: satisfaction survey analysis
user to rate understandability, satisfaction, amount of details,

completeness, usefulness, precision, and trust for the expla-  Figure 22 shows the results of the satisfaction survey ques-
nations they saw. It also had an open-ended response question  tions shown in Fig. 21. The discussion and analysis of Fig. 22
asking how the explanation helped or did not help them  results are in the main paper.

understand the agent. This survey is shown in Fig. 21.
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Understandability Satisfaction
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Fig.22 Experiment 1 satisfaction survey results for each explanation quality dimensions grouped by explanation type
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Q561

This picture displays Jade rb standing in the middle, with her inventory shown in a black rectangle below. Each action may

require one or more time steps to finish. She is currently at step 57.

Q562

* XG x=9

Jade needs to decide what to do next, the options are to get a coaster or get a fan, which one would she do?

Get a coaster

Get a fan

Fig. 23 First decision point the participants encounter during experiment 2

Description:
Start Finish

Jade went to the sparse rocks. Jade assigned a value to each state based on expected
future rewards, reflecting her proximity to her goal. Below are the values of each state
after each action. The higher the value, the better the expected outcome.

Jade's value for getting rock slabs from the sparse rocks is 6.99. While Jade's value for
getting rock slabs from dense rocks is 5.59

Fig.24 Example of the agent value explanation baseline

F Crafter re-skin mappings

Table 5 lists a complete mapping of assets re-skinned assets

G Experiment 2: evaluation survey

The human evaluation study in Crafter has three tasks, a pre-
diction task and an ordering task, and a satisfaction survey.
We picked four random decision points from the agent’s tra-
jectory, each paired with a counterfactual trajectory that the

Description:
Start Finish

Jade needed rock slabs and chose to get them from the sparse rocks cluster. This
prompted her to prioritize adopting a parrot, owning a plier and getting scissors next.

However, if she had gotten to the dense rocks, she would have to think about owning a
cutter, fearing for her health and avoiding dangerous yellow ducks instead.

Fig.25 Example of the local experiential explanation

agent can take by performing a counterfactual action at this
decision point. We presented each participant with one deci-
sion point and asked them to predict the agent’s action as
shown in Fig.23. After this first interaction, they are shown
their assigned explanation. The explanations are one of the
three baselines specified in Sect.6.3. An agent value expla-
nation (Fig.24), the local experiential explanation (Fig.25),
or they do not see an explanation.

Then after seeing the explanation, we asked them to pre-
dict and reason about the agent’s action at a future decision
point displayed in Fig.26. Lastly, the participants engage
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Jade is now standing in the middle of three colored ducks

avoid?

a brown one, a gray one, and a yellow or

1e. Which direction should she

Fig.26 Second decision point the participants encounter during experiment 2. Which is used for the prediction task and followed by the reasoning

question

Table 5 Original crafter assets vs their rock-paper-scissors (RPS) asset
collection counterparts

Actual asset Re-skinned asset

Materials and objects

Player (Jade) No change
Tree Rock
Grass No change
Sand No change
Water No change
Stone Scissors
Iron Paper
Coal Lizard
Diamond Electric torch
Zombie Duck
Table Parrot
Furnace Crab
Bridge No change
Cow Apple
Inventory Items

Wood Rock slabs
Wooden pickaxe Cutter

Wooden sword Throwing knives

Iron pickaxe Coaster
Iron sword Fan

stone pickaxe Plier
stone sword Hammer
Parameters

Health No change
Food No change
Drink No change
Energy No change

@ Springer

Getting Rock slabs from the sparse cluster.

parrot
pliers

scissors

Fig.27 Ordering task which asks the participants to order the influences
by their importance to the agent at the decision point

in an additional task in order of the influences by their
importance to the agent when it considers performing the
counterfactual action or the actual action as shown in Fig. 27.
Both tasks are followed by a text entry question asking them
to reason about their predictions.

After participants complete both tasks, they proceed to
the last part of the study, a satisfaction survey identical to the
one we used in experiment 1 as shown in Fig.21 consisting
of five-point Likert scale questions asking the user to rate
understandability, satisfaction, amount of details, complete-
ness, usefulness, precision, and trust for the explanations they
saw. It also had an open-ended response question asking how
the explanation helped or did not help them understand the
agent. The results of the survey for Experiment 2 are shown
in Fig.22.
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Understandability Satisfaction
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Fig.28 Experiment 2 satisfaction survey results for each explanation quality dimensions grouped by explanation type
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