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ABSTRACT on Human Factors in Computing Systems (CHI ’24), May 11–16, 2024, Hon-
olulu, HI, USA. ACM, New York, NY, USA, 32 pages. https://doi.org/10.1145/ Explainability of AI systems is critical for users to take informed ac-
3613904.3642474tions. Understanding who opens the black-box of AI is just as impor-

tant as opening it. We conduct a mixed-methods study of how two 
diferent groups—people with and without AI background—perceive 1 INTRODUCTION 
diferent types of AI explanations. Quantitatively, we share user As AI-driven systems increasingly power high-stakes decision-
perceptions along fve dimensions. Qualitatively, we describe how making in public domains such as healthcare [25, 67, 76, 98], f-
AI background can infuence interpretations, elucidating the difer- nance [107, 118], law [15, 151, 158], and criminal justice [62, 80, 136],
ences through lenses of appropriation and cognitive heuristics. We their explainability is critical for end-users to take informed and 
fnd that (1) both groups showed unwarranted faith in numbers for accountable actions [143]. Issues concerning explainability lie at the 
diferent reasons and (2) each group found value in diferent expla- heart of Explainable AI (XAI), a research area that aims to provide 
nations beyond their intended design. Carrying critical implications human-understandable justifcations for the system’s behavior [2,
for the feld of XAI, our fndings showcase how AI generated expla- 47, 61]. Explainability is not a new issue within AI [74, 115, 142],
nations can have negative consequences despite best intentions and but the proliferation of Deep Learning and Reinforcement Learning 
how that could lead to harmful manipulation of trust. We propose based approaches—models of which are considered hard to inter-
design interventions to mitigate them. pret, even by experts—has led to remarkable growth in techniques 

that aim to “open” the AI opaque box [61]. CCS CONCEPTS While opening the opaque box is important, who interacts with 
• Human-centered computing → Empirical studies in HCI; the box also matters. Implicit in XAI is the question: “explainable to 
User studies; Empirical studies in collaborative and social comput- whom?” [45]. The who governs the most efective way of describing 
ing; • Computing methodologies → Artifcial intelligence. the why behind the decisions. Getting a situated understanding 

of how diferent who’s with diferent user characteristics matter 
KEYWORDS in XAI is thus important. To give an illustrative example: riders 
Explainable AI, Human-Centered Explainable AI, User Characteris- (end-users) of a self-driving car have diferent user characteristics 
tics than its engineers (developers). Riders, many of whom are not AI 

experts, might not have the AI background that the engineers have 
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reality—how developers envision the AI explanations to get inter-
preted and how users actually perceive them. If we want to bridge 
this gap, we need to understand how user characteristics, such as 
AI background, impact it.1 

In this paper, we share how and why one’s AI background (or 
lack thereof) shapes their perceptions of AI explanations. Focusing 
on two groups, one with and one without an AI background, we 
found that (1) both groups had unwarranted faith in numbers, but 
exhibited it for diferent reasons and to difering degrees, with 
the AI group showing a higher propensity to over-trust numerical 
representations and potentially be misled by the presence of it. 
(2) Each group found explanatory values in diferent explanations 
that went beyond the usage we designed them for. These insights 
have potential negative implications like susceptibility to harmful 
manipulation of user trust. 

We found these insights through a mixed-methods study where 
we probed for user perceptions of three types of AI-generated ex-
planations: (1) natural language with justifcation (explaining the 
“why” behind the action), (2) natural language without justifcation 
(describing “what” the action was), and (3) numbers that deter-
mine the agent’s actions (akin to “transparent” AI). We measure 
perceptions along fve dimensions: confdence, intelligence, under-
standability, second chance, and friendliness, which are grounded 
in related work around HCI, HRI, and XAI [17, 34, 36, 47, 160] 
and quantitatively share within- and between-group diferences. 
Through qualitative analysis, we examined how AI background 
shaped each group’s interpretation of explanations and highlight 
why their perceptual diferences might exist. 

We elucidate the why behind the group diferences using the 
conceptual lenses of heuristics (mental shortcuts) [75, 140] and ap-
propriation (users’ repurposing of a design) [40, 117, 138]. In light of 
the fndings, we share concrete design implications around mitigat-
ing the risks of overreliance on numbers which can potentially lead 
to negative consequences such as over-trust on XAI systems. We 
share broader lessons around how our insights can help re-imagine 
AI education and mitigate potential harmful manipulation with 
explanations. By bringing conscious awareness of the group difer-
ences to the human-centered design of XAI systems, we address the 
AI creator-consumer gap by making the following contributions: 

• We quantify user preferences (what) of three types of AI 
explanations along fve dimensions of user perceptions. 

• We qualitatively situate how one’s AI background (or lack 
thereof) infuences the perception of the explanations. 

• We elucidate why the group diferences or similarities might 
exist and interpret them through the conceptual lenses of 
heuristics and appropriation. 

• Using our fndings, we identify potentially negative conse-
quences (like harmful manipulation of user perceptions and 
over-trust in XAI systems) and propose mitigation strategies. 

2 BACKGROUND 
In this section, we review related work in the feld of XAI salient 
to the paper, highlight the need to attend to XAI’s sociotechnical 
1By highlighting the creator-consumer gap in XAI, we do not mean to undermine the 
diversity of stakeholders in the ecosystem. By calling attention to extreme ends, we 
are highlighting the severity of the gap while fully acknowledging the ecosystem’s 
diversity. See, e.g.: [60, 111, 116, 130]. 

dimensions and human-centered perspectives, and discuss HCI 
work studying how user background shapes users’ perception of 
and needs for technology that motivated our work. 

2.1 Explainable AI 
While the origin of “explainable AI” can be traced back to expert 
systems in the 1980s [150], the feld of XAI has been undergoing a 
resurgence due to the proliferation of complex Deep Learning mod-
els. Although there is a current lack of consensus on the meaning 
of explainability and related terms such as interpretability [10, 135], 
XAI work shares a common goal of making the AI systems’ deci-
sions or behaviors understandable by people [2, 47] Among other 
dimensions to map the landscape of technical XAI approaches, the 
feld diferentiates between methods to build directly interpretable 
models and methods to generate explanations for opaque-box mod-
els [56, 95, 134, 169] (for a detailed overview see recent survey 
papers [2, 10, 61]). While simpler models such as linear regression 
and decision-tree are typically considered directly interpretable but 
low-performing, recent work (e.g. [35, 165]) focuses on developing 
new algorithms that produce “clear-box” models allowing “under 
the hood” inspection without sacrifcing performance. 

In contrast, explanation generation methods–used in this paper– 
aim to explain models that are not directly human-understandable 
(e.g., deep neural networks). They are often post-hoc techniques [47, 
96, 112, 134, 169] that could be applied after model building. Typi-
cally, these methods rely on distilling a simpler model from the in-
put and output [105, 134] or meta-knowledge about the model [47] 
to generate explanations that approximate the model’s behavior. 
While there is, by design, a loss of scrutability, these methods allow 
the fexibility to make any model explainable, and thus have be-
come popular and been applied to transforming simulation logs to 
explanations[157], intelligent tutoring systems [31], transforming 
AI plans into natural language [156], and translating multi-agent 
communication policies into natural language [9]. By privileging 
accessible understanding over revealing “under the hood” model 
mechanisms, explanation generation methods can be geared toward 
non-AI experts. In this paper, we focus on a specifc explanation 
generation technique called rationale generation [47]—a process 
of producing a natural language explanation for agent behavior 
as if a human had performed the behavior and verbalized their 
inner monologue. While explanations can be in any modality, ra-
tionales are natural language-based, making it especially accessible 
for non-AI experts [47]. 

2.2 Towards Human-Centered XAI 
There has been a growing recognition that XAI systems are of-
ten developed without an understanding of the recipients’ needs 
and characteristics [45, 112]. For instance, many of the XAI tech-
niques created to support explainability needs during model de-
velopment [134, 139] may break down when it comes to serving 
end-users with diferent needs [91]. It is imperative to follow human-
centered approaches to understand the “personal, social, and cul-
tural aspects” [71] of the recipients of AI explanations, especially 
since a monolithic view of the who may inadvertently risk dehu-
manization [23, 81]. Given deployment in high-stakes settings, AI 
systems designed without attending to the needs and values of 
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diferent stakeholders may also risk marginalizing certain groups 
or exacerbating existing inequities [11, 127]. 

The need for human-centered approaches in XAI has inspired 
increasing eforts among HCI and CSCW researchers, following 
the community’s long-standing tradition of designing and studying 
explainable computing systems [48, 52, 84, 93, 133]. Studies em-
pirically evaluating XAI techniques in specifc use contexts reveal 
the divergent needs and preferences of users [7, 22, 27, 41, 65, 77]. 
For example, while data scientists might need multiple XAI tools 
for a comprehensive understanding [65], simple explanations are 
often sufcient for AI-novices [27]. User characteristics such as 
cognitive load disposition [55] and general trust in AI [41] could 
moderate how users perceive AI explanations. Some studies further 
reveal potential drawbacks of AI explanations— how explanations 
could impose undesired cognitive burden [1], create a false sense 
of security and over-trust [55, 77], and how even placebic expla-
nations (devoid of justifcatory content) can engender trust in AI 
systems [49]. 

Researchers have begun to examine people’s cognitive process 
of interpreting AI explanations, which could help us understand 
atypical and misaligned user receptions of XAI. Recent work high-
lights the dual-process of cognition when people process AI ex-
planations [20]. The dual-process theory [75, 132, 163] posits that 
people’s cognitive processes follow two systems: System 1 pro-
cesses stimuli in a fast and automatic manner, whereas System 
2 engages in deliberative and analytical thinking. System 1 often 
relies on heuristics (rules-of-thumb or mental shortcuts) that can 
be developed through past experiences. These heuristics, if applied 
inappropriately, should be considered cognitive biases [75]. In XAI, 
there is often an assumption that people mostly engage in analytic 
System 2 thinking whereas there is growing evidence that people 
mostly engage in System 1 thinking [20]. Negative consequences 
of cognitive biases such as over-trust in XAI could be attributed 
to a System 1 heuristic of associating explanations with AI com-
petence [29, 124]. One way to mitigate these biases would be to 
use Cognitive Forcing Functions (CFFs)–interventions that disrupt 
heuristic reasoning and promote System 2 analytical thinking [32]. 

Human-centered XAI calls for pluralistic explanation design—for 
the who, not just the what, of XAI [45]. Recent XAI work has begun 
to diferentiate major categories of XAI consumers, from builders to 
regulatory bodies [10, 38, 114, 153]. While this work is informative, 
there is still a dearth of empirical insights and understanding of 
the diferences between these XAI users, and actionable design 
guidelines to support them. 

A generative approach towards pluralistic design of XAI, we 
believe, is to develop a systematic understanding of how and why 
users with diferent characteristics (e.g., with or without AI back-
grounds) form diferent perceptions (what) of XAI systems. Such 
insights can refne our understanding of who the humans are in 
XAI. To our knowledge, this has not yet been systematically ex-
plored in the specifc context of XAI. Thus, our work adds to the 
discourse by adding empirical insights through a systematic explo-
ration of two diferent who’s in XAI. Our work is also motivated 
by broader research studying individual diferences that impact 
human-AI interaction, as reviewed below. 

2.3 Individual diferences in human-AI 
interaction 

There is a rich history of transforming insights into how individual 
diferences impact technology perception into the design of person-
alized, accessible, and inclusive technologies. For example, there 
is a large body of work on how various types of epistemic back-
ground, including computer literacy [39], digital literacy [12], and 
numeracy [72], impact user competency to use computing systems 
and ways to mitigate the competency gaps. 

Recent work has paid attention to how user characteristics im-
pact human-AI interaction. For example, studies on human-robot [33, 
88, 146] and human-agent interaction [90, 92] found that user’s 
schema, whether an agent is seen as a utilitarian tool or a social 
entity, leads to noticeable diferences in interactions with and eval-
uations of the agent. Research around AI fairness has identifed 
various mediating factors such as users’ education level, fairness 
criteria, and general trust in ML [41, 162]. In short, individual difer-
ences and user characteristics shape perceptions of AI systems and 
should be appropriately understood and carefully accommodated 
when designing them. 

A commonly studied user characteristic in Human-AI interac-
tion is users’ knowledge about AI, often operationalized as AI pro-
gramming experience [119], building ML models [55], or type of 
profession (e.g., data scientist) [65]. Recently Long and Magerko 
provided a concrete defnition of AI literacy [104] with a set of core 
competencies to understand and use AI, and proposed design guide-
lines to mitigate the competency gaps. Recent work also examines 
the implications of background in AI as a determining factor of 
one’s role in an AI ecosystem. Motivated to “problematize the asym-
metric relationship between technical experts and users”, Cheon 
and Su [28] highlighted the misalignment between the creators’ 
(roboticists’) vision of how consumers (end-users) interpret and use 
the product–a salient theme in this paper as well. McDonald and 
Pan [110] examined how CS students (likely to become AI develop-
ers) viewed ethical problems in AI, found substantial limitations, 
and called for a closer integration of ethics education with technical 
training. 

Our understanding of how people’s AI backgrounds might im-
pact their perceptions of AI explanations also draws from a long 
line of social science research on the relations between sensemak-
ing [166] and professional knowledge [59]. Passi and Jackson [128], 
for instance, analyzed academic learning practices in the feld of 
data science to show how students start “seeing” the world dif-
ferently once they learn to work with algorithms and numbers. 
Through ethnographic feldwork, they highlight how having a com-
putational background enables students to gain actionable forms 
of “data vision”—ways of seeing that allow them to approach and 
analyze the world as data. 

A person’s AI background (or a lack thereof)—a focal point of 
this paper—in fact, directly impacts user perceptions. In a recent 
ethnographic study [129], researchers found that data scientists 
and business analysts perceived an AI system’s accuracy score dif-
ferently: business analysts saw the score as a measure of overall 
performance (good vs. bad), while data scientists perceived more 
granular insights into types of errors (false positives vs. false nega-
tives). As people learn specifc ways of doing, it also changes their 
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own ways of knowing—in fact, as we argue in this paper, people’s 
AI background impacts their perception of what it means to explain 
something and how. 

Thus, the who questions are important, because people tend to 
interpret technologies diferently, leading to diferent usages of 
those technologies [8, 18, 40, 117, 138]. The process of diferential 
interpretation, followed by diferent usage, has been called appro-
priation–e.g., usage patterns that go beyond the original designers’ 
expectations [83, 154]. Dix listed six principles of user appropriation 
of technologies, including support for interpretive fexibility [40]. 
In this paper, we go beyond the insight that diferent people need 
diferent explanations. Building on the discourse of user characteris-
tics in XAI [125, 149], we extend the literature through an in-depth 
exploration of how and why interpretation and use of explanations 
may difer between people with or without AI background. 

3 STUDY DESIGN AND METHODS 
We begin by sharing the research questions (RQs) followed by how 
we operationalize key aspects of the research design. 

• RQ1: "Quantitatively, how do people with diferent AI back-
grounds perceive diferent explanations given by AI agents?" 

• RQ2: Qualitatively, how and why do diferences in AI back-
ground result in diferent or similar perceptions of explana-
tions? 

We address these RQs by conducting a within-subjects experi-
ment in which two groups of participants, with or without an AI 
background, see three versions of AI agents (depicted as robots in 
our study, Fig. 1) with diferent types of explanation. Using this 
2x3 factorial design, we quantitatively measure the perceptions of 
the AI explanations and compare the diferences between the two 
participant groups to address RQ1 (Section 4). Participants rank 
their preferences and justify their choices through open-ended text 
responses, which we qualitatively analyze to understand the under-
lying diferences between the two groups to address RQ2 (Section 5). 
Below, we unpack how we operationalize three things: (1) explana-
tion types, (2) user perceptions, and (3) backgrounds in AI. 

3.1 Explanation Generation Method and Types 
We begin with the task environment to situate the design of the AI 
agents. In the user study (task details in Section 3.4), participants 
watched 3 robots (AI agents) carry out an identical sequence of 
actions which difered only in the way that the AI agent "thinks 
out loud” about its actions. The robots need to navigate through a 
sequential decision-making environment—a feld of rolling boul-
ders and a river of fowing lava–to retrieve essential food supplies 
for trapped space explorers (Fig. 1). The robots thus need to ob-
serve a dynamic environment and think ahead in order to complete 
an objective. We chose a sequential environment because the ex-
plainability of sequential tasks is under-explored, while prior XAI 
work has explored non-sequential tasks (e.g., classifcation, cap-
tioning, etc. [161, 168, 170]). To solve the navigation problem, the 
agent used a Reinforcement Learning (RL) algorithm called tabular 
�-learning [164]. Reinforcement Learning is both a promising tech-
nology for autonomous AI systems but also challenging from an 
explanation perspective. Tabular �-learning agents attempt to learn 
the utility (called a �-value for “quality” of the action) of diferent 

actions in diferent situations. Once learning is complete, the agent 
makes decisions by picking the action with the highest �-value. In 
our case, the fully trained agent solved the environment, generating 
an action trace that contains the sequence of steps needed to reach 
the goal (food supplies) without failure. Recall that our study has 3 
robots (AI agents) with diferent types of explanation. In order to 
standardize their actions across experimental conditions, all robots 
use the same trace. This means that the decision-making mechanism 
underlying each robot is the same RL-based one. They only difer 
in how they explain their actions. 

Explanation generation: The three diferent types of explanation 
are the within-subject variable in our study comparing perception 
diferences between the AI and non-AI groups. Based on a review 
of related work, we chose three types of explanation that vary in 
their justifcation quality and representation modality (e.g., tex-
tual, numerical). With these considerations in mind, we set up the 
robots to express themselves in three ways: (1) natural language 
with justifcation (explaining the “why” behind the action; Fig 1, 
left), (2) natural language without justifcation (describing “what” 
the action was, Fig 1, center), and (3) numbers that determine the 
agent’s actions (akin to “transparent” AI, in this case showing �-
values, Fig 1, right). We share the explanation mechanisms and the 
attributes of the three robots below. 

• The Rationale-Generating (RG) robot (Robot A in the study): 
this robot “thinks out loud” in natural language rationales ex-
plaining the “why” behind the action (#1 above). Our genera-
tion approach is similar to prior work in XAI and HRI [34, 43] 
where they use a neural machine translation (NMT) [106] ap-
proach to produce plausible rationales to explain sequential 
behavior. We extend and adapt it to ft our sequential environ-
ment depicting a space mission. The RG robot’s expressions 
aim to provide a functional understanding [102, 103] of the 
actions by appealing to functions or goals of the agent (e.g., 
Fig 1, left). The RG robot has language and justifcation. 

• The Action-Declaring (AD) robot (Robot B in the study): this 
robot “thinks out loud” by stating its action in natural lan-
guage without any justifcation. It’s a neutral option that 
simply states “what” the action is (#2 above). For instance, 
it states “I will move right” as it moves right. These outputs 
are generated from pre-fxed expressions that are triggered 
based on the agent’s action. 

• The Numerical-Reasoning (NR) robot (Robot C in the study): 
this robot “thinks out loud” by simply outputting the nu-
merical Q-values for the current state with no language 
component (#3 above). It is akin to a “transparent AI” where 
we directly look inside the opaque RL-box by observing its 
Q-values. Q-values can provide some transparency into the 
agent’s beliefs about each action’s relative utility (“quality”). 
However, Q-values themselves do not contain information 
on “why” one action has a higher utility than another. Note 
that we do not indicate that the numbers are �-values in 
our study nor indicate which value is associated with which 
action. 

While all robots “think out loud”, only the RG robot is designed 
to have any justifcatory quality—it is designed to provide a func-
tional understanding [102] of the “why” behind a robot’s action. The 
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Figure 1: The three robots navigating the task environment and explaining their actions. From left to right, the robots and their 
colors are: Rationale-Generation (in blue), Action-Declaring (in purple), and Numerical-Reasoning (in green). In the screenshot, 
each robot is taking the same action, but they are explaining it diferently. The explanation text accompanying each robot is 
taken verbatim from the videos participants watched. To improve legibility, the text has been remastered to a higher resolution. 

other two conditions provide baselines that should be considered 
as lacking justifcatory qualities by design. The AD robot merely 
states “what” the action was (a neutral option). While NR could, in 
theory, provide a mechanistic understanding [103] of the ”how”, 
the unlabelled numerical format should make its meaning difcult 
to access, if not impossible. While AD and NR do not have explana-
tory qualities by design, we do not know if or how participants 
will interpret them. Through the experiment, we are interested in 
whether and how these explanations invoke diferent perceptions 
in the two groups. 

3.2 Grounding the Dimensions of User 
Perceptions 

We now motivate & ground the dimensions of perceptions. To 
scope dimensions (measures) of perceptions appropriate for our 
use case, we engaged in an iterative fltering process—this process 
included (1) a systematic review of related work around trust, ac-
ceptance, and engagement of autonomous or AI systems followed 
by (2) informal interviews with six experts spanning HCI, AI, and 
HRI. The aforementioned process informed the adaptation of the 
following dimensions from classical technology acceptance models 
and emerging work in HRI and XAI literature [17, 34, 36, 47, 160]. 

One of the core goals of XAI is to make AI systems more under-
standable. The improved understandability (or lack thereof) can 
impact one’s trust or confdence in the system. In line with these 
facets, we adapted understandability and confdence from TAM & 
UTAUT [36, 160]. Prior work in HRI and AI shows that tolerance 
to failure [37] and perceived capability of the AI system [82] are 
impacted by how one perceives how intelligent the agent is; thus 
we added intelligence to our list of user perceptions. Recent work in 
autonomous system acceptance [144] shows that sociability factors 
are core markers of user adoption [94]. We adopted the dimension 
of friendliness or how friendly an agent appears because of its im-
pact on relationship development [68, 152] and partnership [16, 21], 
which is essential for human-AI collaboration [120–122]. Emerging 
work in XAI and HRI [85, 89, 113, 141] suggests that how an AI 
agent communicates failure governs future collaboration relation-
ships with humans. Thus, we add the notion of a second chance to 
understand how past failures impact future collaboration chances 
for XAI agents. In our study, participants ranked the robots along 
these fve perception dimensions and justifed their choices using 
open-ended text responses: 

(1) Understandability: Based on their explanations, I found each 
robot’s explanation of its actions understandable in the fol-
lowing order 

(2) Confdence: Based on their explanations, I would rank my 
confdence in each robot’s ability to do its task in the follow-
ing order 

(3) Intelligence: Based on their explanations, I would rank each 
robot’s intelligence in the following order 

(4) Friendliness: Based on their explanations, I would rank the 
friendliness of each robot in the following order 

(5) Second chance: Each robot failed. Based on their explanations, 
I’d rank my willingness to give another chance to each robot 
in the following order 

3.3 Participants: Operationalizing AI vs. non-AI 
Backgrounds 

We now address how we operationalized the user background in our 
study. We acknowledge that AI background can be operationalized 
in diferent ways. As a formative frst step, we use a “high contrast” 
approach where there is a stark diference between the groups. That 
is why, we focus on people with and without an AI background. 
This high-contrast approach provides a baseline understanding 
and creates the foundation for future granular operationalizations 
(e.g., years of AI experience). Below we share the motivation and 
operationalization of each group formation. 

3.3.1 The AI Background Group. 
For the AI group, we recruited participants who are students en-
rolled in CS programs and taking AI courses. Granted there are 
other ways to operationalize this group (e.g., recruiting AI prac-
titioners), as a frst step, we chose students because it allows us 
to explore how their AI coursework impacts the way they make 
sense of explanations from AI systems. Since professionalization 
starts with academic training [128], investigating the roots of one’s 
AI background and the impact on how students make sense of AI 
systems is important. In fact, as we show in this paper, especially 
during their learning phase, AI students adopt reasoning artifacts 
that impact their perceptions of explanations from AI systems in 
very specifc ways, which has core implications for the future of 
XAI design (a point we elaborate in Section 6.3). Granted that not 
every AI student will go on to build AI systems but with the prolif-
eration of AI systems in the workplace, a majority of these students 
could become stakeholders residing on the creation or development 
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end of the technology spectrum—as potential developers, design-
ers, and managers of AI-based systems. As potential creators of AI 
systems, their perceptions matter in bridging the creator-consumer 
gap in XAI. 

3.3.2 The Non-AI Background Group. 
For the non-AI group, we recruited participants from Amazon Me-
chanical Turk (AMT). Carefully screened AMT participants have 
been shown to be representative of consumer research [14, 58, 79], 
which facilitates our goals of comparing potential creators (the 
AI group) with potential end-users (the non-AI group). We ac-
knowledge that consumers too can and do have signifcant AI 
backgrounds, which is why we systematically screen out people in 
the non-AI group with any level of AI knowledge (using the screen-
ing process outlined in 3.3.3). Non-AI students, albeit an intuitive 
comparison group, would be a subset of the larger consumer base 
making them a good candidate for future granular investigations. 
Multi-disciplinary research has also shown how AMT participants 
can be reasonable alternatives to a university participant pool in 
terms of data integrity [13, 63, 145]. Weighing the afordances and 
limitations, AMT participants are thus a reliable and accessible 
comparison group, one that reasonably satisfes our initial desire to 
create a high-contrast comparison between potential creators and 
end-users of AI systems. 

Our operationalization of the two groups’ AI backgrounds aligns 
closely with the human-grounded evaluation proposed in [42], in 
which participants conduct controlled tasks to get a formative sense 
of the afordances of the explanations. We acknowledge that there 
are limitations to this experimental setup and that our insights 
should be scoped accordingly (more in Section 6.3). However, as we 
will see later, even with a carefully controlled task, we discover sur-
prising, non-intuitive insights about how diferent groups interpret 
explanations.2 

3.3.3 Recruitment and Screening Methods. 
All participants received US $10 for their time. The AI group had 96 
US-based participants (39% self-identifying females; rest as males) 
taking 31.1 minutes on average for task completion. We recruited 
undergraduate students enrolled in an AI course at a large public 
research university located in the US. Typically taken in the 3rd 
year, this is a keystone course in an AI degree specialization track, 
implying that a signifcant number of students have expressed lon-
gitudinal interest in AI. The course is taught using the most widely 
adopted textbook (by Russell & Norvig [137] taught in over 1500 
schools worldwide [6]) and using a widely adopted set of assign-
ments. While there is no guarantee that all students will be future 
AI creators, the faculty believes that we can reasonably assume 
that many students aspire to have careers in the development of AI 
technology. In the course, students learn and implement many foun-
dational AI concepts; for instance, Markov Decision Processes and 
Reinforcement Learning. Our study was deployed after students 
had taken exams on these concepts. For the Non-AI group, we re-
cruited participants from Amazon Mechanical Turk (MTurk) using 
TurkPrime [97]. The non-AI group had 83 US-based participants 

2Practices for better data: We share some strategies that helped us gather high-quality 
data and maintain rapport with our participants throughout the study (e.g., fair pay-
ment structure, active engagement participants, etc.) in the Appendix (A.1), uploaded 
with Supplementary Material. 

(46% self-identifying females; rest as males) taking 29.8 minutes on 
average for task completion. 

Establishing group diferences while controlling for shared 
characteristics: We systematically screened both groups and en-
sured they are measurably diferent. Every participant had to pass 
three parts of our screener: (1) A knowledge test on CS & AI (col-
laboratively developed with the course’s teaching staf to ensure 
relevancy); (2) Self-reported knowledge levels in computer pro-
gramming and AI using two 5-point Likert-scales; (3) confrmation 
of whether they have ever taken an AI class. The cut-of points 
were decided through iterative piloting and consultation with the 
teaching staf of the AI course. The non-AI group, by design, 
should have “No knowledge” [= 1] in both programming and AI 
along with no prior AI classes. Out of 5, the AI-group should score 
[>= 4] (“moderate” knowledge or more) for (1) [knowledge test]; 
for (2) [self-reported AI knowledge], it should be [>= 3] (“some 
knowledge” or more). 

To establish that these two groups are measurably diferent, we 
performed statistical tests. Mann Whitney U-test with Bonferroni 
correction showed that the groups are diferent— for the AI knowl-
edge test, � < 2.2 × 10−16; for the self-reported programming 
knowledge, � < 2.2 × 10−16. Thus, we were able to establish 
two “high contrast” groups. For further details, including screener 
questions, please refer to ?? in the Appendix, uploaded with Sup-
plementary Materials. Beyond the diferences, we controlled for 
factors such as age and education levels. All participants were adults 
up to 25 years old, using smartphones and laptops every day. The 
non-AI group self-reported an average education level of 4.95 (4= 
“Vocational Training”, 5= “Some college/Associate’s degree”) while 
the AI group’s average was 5. Mann Whitney U-tests showed that 
the groups did not difer along age (� = 0.505) and education levels 
(� = 0.146). 

3.4 Procedure: Task Details 
We now discuss study mechanics— after providing informed con-
sent, participants watched an orientation video outlining the sce-
nario. Participants were asked to imagine themselves as space ex-
plorers faced with a search-and-rescue mission involving robots. 
They face a life-and-death situation where they are stuck on a dif-
ferent planet and must remain inside a protective dome. Their only 
source of survival is a remote supply depot, which they cannot reach. 
They must rely on autonomous robots, ones they cannot control, to 
navigate through a feld of boulders and a river of fowing lava to re-
trieve the essential food supplies (See Fig 1). Participants could only 
see a non-interactive video stream of their activities through their 
"space visors". This non-interactiveness aimed to heighten their 
sense of lack of control (and thereby reliance on the robots). Since 
the robots took identical actions during the task, participants were 
asked to pay special attention to the only diferentiating factor– 
the way each robot explained its actions. 

After orientation, participants watched 6 counterbalanced and 
randomized videos showing the three robots succeeding and failing 
to retrieve the essential supplies using identical sequences of actions. 
To mitigate the efects of preconceived notions, we did not use any 
descriptive names for the robots; instead, we introduced the robots 
as “Robot A,” “Robot B,” and “Robot C” for the RG, AD, and NR 
robots respectively. Participants, by design, had no idea about how 
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each robot generated its expressions; for instance, participants were 
not informed that NR’s numbers are Q-values. To them, it was just 
another diferent way of explaining the actions. As mentioned in 
3.1, the goal was to see how and if how people can make sense 
of them even if they are unlabelled. After watching all the videos, 
participants ranked the robots (1st, 2nd, and 3rd– no ties allowed) 
along the fve (5) dimensions of user perceptions highlighted above 
(in 3.2). After ranking on a dimension, participants justifed and 
contextualized their ranking using a mandatory free-text response. 

4 QUANTITATIVE RESULTS 
We conducted within-group and between-group analyses. The 
within-group analyses give a sense of which robot’s explanation 
was preferred along each dimension of user perception. The be-
tween-group analyses tell us how the two groups are the same or 
diferent when considering the robots across multiple dimensions 
and set the stage for the qualitative analysis in Section 5. Taken 
together, the quantitative results address RQ1 around quantifying 
the relative perceptions and preferences of the two groups along 
the fve dimensions. 

4.1 Within-group Comparisons 
Figure 2 shows how each robot was ranked in each dimension. The 
“violin chart” visualization makes similarities and diferences easier 
to distinguish. For example, large diferences are exemplifed in 
the Friendliness rankings given by the non-AI group participants 
(bottom, second left). A wide area at the top of the blue plot shows 
that the Rational Generating (RG) robot was ranked frst by most. In 
contrast, the plot for the Intelligence dimension by the non-AI group 
(bottom, middle) shows that all robots received the frst, second, or 
third rank comparably similar number of times. 

For each group, we conducted fve Friedman tests [171] of dif-
ferences among repeated measures (one for each of the fve dimen-
sions). We used the maximum-type (max T) implementation of 
the Friedman test, which controls for the family-wise error rate 
[171] to determine whether any preferences between robots were 
detectable. To determine which robot was preferred, we used the 
Wilcoxon-Nemenyi-McDonald-Thompson test [66] to make pair-
wise comparisons between the robots, for each participant group, 
and within each dimension. The results are summarized in Table 1. 

From the within-group analysis (Table 1 and Figure 2), we have 
some notable insights: across each dimension, the AI-background 
group unambiguously preferred RG to the other robots, particu-
larly over AD. However, the RG robot is not the unanimous winner 
across each dimension for the non-AI group– here, participants 
show no preference between RG and AD in 4 out of the 5 dimen-
sions (RG wins over AD in Friendliness). For the non-AI group, AD 
wins over NR across all dimensions except for Intelligence, which is 
a noteworthy dimension–the non-AI group showed no preferences 
between the robots, but the AI group felt NR was more intelligent 
than AD. This is the only time where NR wins over AD, highlight-
ing an important point that we explore in our qualitative fndings 
(Section 5.1 and 5.2) around the AI group’s preference for numerical 
representations. 

4.2 Between-group Comparisons 
To detect group diferences in the preference for the robots, we used 
Ordinal Logistic Regression (OLR) [5, 109, 155, 159], an extension 
of Logistic Regression when the response variable is ordinal. To 
model a 3-level categorical variable (Robot Type), OLR requires us to 
analyze two variables holding one as a reference (constant): in our 
case, we analyzed AD and NR, holding RG constant. We investigate 
the interaction efects as well as changes in reference levels in the 
OLR analysis that reveals the relative impact in ranking the robots 
between the groups. To investigate the efect of the dimensions, 
we explore the interaction efects between Robot Type (RG, AD, 
and NR) and the Participant Group (AI vs. non-AI) into the OLR 
model. Changing the reference levels of Robot Type and Participant 
Group allows us to isolate the interaction efects, which we interpret 
similarly to [70]. A full list of OLR tables is provided in the Appendix 
(Table 5- 10). 

If we group everyone regardless of their AI backgrounds, we 
fnd that ����RG > ����AD > ����NR. The odds of receiving a 
higher ranking for the RG robot is 5.5 times that of the AD robot, 
whose odds are 2.66 times that of the NR robot (see Tables 3 and 4 
in the Appendix (A.3)). 

Between the groups, there is no signifcant diference in ranking 
RG Robot—it is always the top choice across all dimensions (Table 
2, top row). However, the groups exhibit diferences in their pref-
erences when it comes to AD and NR. The Non-AI group shows 
more preference for the AD Robot (odds ratio= 1.986) while the 
AI group shows more preference for the NR Robot (odds ratio= 
1.0/0.465 = 2.15). 

Table 2 also provides the odds ratio and the �-value for each 
Robot Type per dimension. For the RG Robot, all of its �-values are 
greater than 0.05 for each of the fve dimensions resulting in no 
signifcant pattern of preference between the groups. Conversely, 
the �-values of AD Robot are all smaller than 0.05 meaning that, 
when it comes to ranking the AD Robot, there is a signifcant 
diference between the Non-AI group and the AI group. Moreover, 
all odds ratios related to AD Robot in Table 2 are greater than 1.0, 
indicating the Non-AI group shows a stronger preference for the 
AD Robot than the AI group for each of the fve dimensions. 

Last, for the NR robot, the �-values related to Confdence, Second 
Chance, and Understandability are also signifcant. The odds ratios 
for these dimensions are less than 1.0 indicating that the AI-group 
is more likely to rank the NR robot higher than the non-AI-group 
on these dimensions. There is no signifcant diference between 
the Non-AI group and the AI group when it comes to ranking the 
dimensions of Friendliness and Intelligence. 

4.3 Conclusions of Quantitative Analyses 
Overall, while we fnd that ����RG > ����AD > ����NR, there are 
signifcant diferences in the AI and the Non-AI ranking behaviors. 
In other words: AI background does change perceptions of expla-
nations along the dimensions we identifed. In particular, having a 
background in AI correlates with having a greater preference for 
the NR Robot over the AD Robot. While AD wins over NR in most 
head-to-head comparisons, NR wins it on Intelligence for the AI 
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Figure 2: Distributions of rankings for each robot, in each dimension, separated by participant group 

Note: The black horizontal bars indicate whether a pair of distributions is signifcantly diferent. ns = not signifcant, *� < .05, **� < .01, ***p < .001. The width of 
each violin plot at each ranking level indicates the proportion of people who assigned that rank to that robot. The black bullet (•) refers to the median rank. 

Table 1: Summary of �-values for pairwise comparisons, showing which robots were preferred. 

Dimension AI background Non- AI background 
Robot �-value Robot �-value 

RG vs AD < 0.001 RG vs AD 0.362 
Confdence RG vs NR < 0.001 RG vs NR < 0.001 

AD vs NR 0.869 AD vs NR 0.014 
RG vs AD < 0.001 RG vs AD < 0.001 

Friendliness RG vs NR < 0.001 RG vs NR < 0.001 
AD vs NR < 0.001 AD vs NR < 0.001 
RG vs AD < 0.001 RG vs AD -

Intelligence RG vs NR 0.021 RG vs NR -
AD vs NR 0.011 AD vs NR -
RG vs AD < 0.001 RG vs AD 0.083 

Second Chance RG vs NR < 0.001 RG vs NR < 0.001 
AD vs NR 0.902 AD vs NR 0.003 
RG vs AD < 0.001 RG vs AD 0.187 

Understandability RG vs NR < 0.001 RG vs NR < 0.001 
AD vs NR 0.002 AD vs NR < 0.001 

Note: Favored robot and signifcant �-values are in bold for each pairwise comparison. 

group. The two groups are indistinguishable concerning Friendli- manifest, addressing RQ2. Quantitative analysis puts RG as the 
ness. The next section helps us understand why these trends are clear winner; however, as we show in this section, the story is more 
present in the quantitative results and their implications. nuanced and interesting, especially the underlying reasons behind 

the group diferences between AD and NR. Below we describe the 
process of our qualitative analysis before moving on to the fndings. 

5 QUALITATIVE ANALYSIS & FINDINGS The qualitative data was coded according to principles of grounded 
While quantitative analysis tells us what is diferent between groups, theory analysis [24, 147]. Coding and analysis of the qualitative 
qualitative analysis sheds light on how and why those diferences data were done by the frst and second authors in two stages, each 



The Who in XAI CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Table 2: Robot Preference Summary across Dimensions (Non-AI [baseline] vs. AI) 

RG Robot AD Robot NR Robot 

Dimension Odds ratio �-value Odds ratio �-value Odds ratio �-value 

All dimensions 0.855 0.323 1.986 < 0.001 0.465 < 0.001 

Confdence 0.971 0.930 2.003 0.026 0.487 0.029 
Friendliness 0.280 0.051 2.827 0.017 0.436 0.160 
Intelligence 0.717 0.315 1.959 0.031 0.646 0.178 
Second Chance 1.369 0.356 1.965 0.028 0.375 0.005 
Understandability 0.659 0.255 3.088 0.005 0.114 0.006 

Note: Odds ratios > 1.0 indicate the non-AI group prefers the robot more than the AI group. 

consisting of multiple rounds of iteration. In the frst round, the 
authors separately performed coding using in-vivo codes, which 
involves generating codes from the data (e.g., using participant 
phrases such as ‘the robot knew what it was doing’ and ‘easier to 
understand’ as codes). Through discussion, the authors generated 
a merged open coding scheme. In the second round, the authors 
analyzed the data using axial codes. Axial coding involves fnding 
connections between open codes and classifying them into diferent 
categories (e.g., potential actionability of numbers). In the last step, 
the authors analyzed the diferent sets of axial codes, unifed them 
into high-level themes, and consolidated them into selective codes. 

After this, we grouped the data along the two groups (AI vs. 
non-AI) and our fve (5) analytic perception dimensions that we 
motivated in Section 3.2 and also used for quantitative analysis (con-
fdence, friendliness, intelligence, second chance, and understandabil-
ity), allowing us to compare our fndings across dimensions and 
groups. Finally, based on the grounded theory heuristic of “constant 
comparison” [57, 147], the authors frequently compared and con-
trasted axial codes across perception dimensions to tease out the 
similarities and diferences between the diferent reasonings used 
by the AI and non-AI groups to make sense of the explanations 
provided by the three robots. 

Below, we report on the most salient themes (selective codes) 
from our analysis. In particular, we showcase (1) how irrespective 
of their AI background both groups exhibited unwarranted faith in 
numbers for diferent reasons and (2) how each group saw explana-
tory value in explanations that were not designed with justifcatory 
qualities. For each theme, we highlight distinct categories of rea-
soning (axial codes) used by the groups to justify their choice of 
robots across the diferent perception dimensions. 

5.1 Unwarranted Faith in Numbers 
Participants in both groups had unwarranted faith in num-
bers. However, their extent and reasons for doing so were 
diferent. On the one hand, AI group participants often ascribed 
more value to numbers than was justifed. On the other hand, some 
non-AI group participants believed that numbers signaled intelli-
gence even if participants could not capture the numbers’ meaning. 
Below we highlight two major ways in which participants mis-
placed faith in numbers. 

The mere presence of numbers was associated with an algo-
rithmic thinking process in the robot even when the meaning 

of numbers was unclear. Both groups exhibit this perception of 
algorithmic thinking. We will begin with the AI group—this group 
ascribed higher-order cognitive abilities to the robot with numeri-
cal representations. Between AD and NR, the AI group found AD 
more understandable (Table 1) but deemed the NR robot as the 
more intelligent of the two (the only time NR wins over AD across 
all dimensions– (Table 1)). It seems contradictory that the AI group 
found the less understandable robot to be more intelligent!—the main 
reason for this is that the presence of numbers fostered the “assump-
tion that [the NR robot] uses some sort of [an] algorithm” (A50) 
in the AI group. The perception of “under-the-hood math, boosted 
[NR’s] trustworthiness” (A49). Some explicitly compared AD and 
NR robots and concluded that the mathematical representation 
demonstrated a method for the NR robot’s behavior: 

“With [the NR robot], while I did not understand its 
methodology, I could see that it was using some math-
ematical calculations to determine which way to move. 
[. . . ] With [the AD robot], I could not see any method-
ology or signs of decision-making” (A23). 

A small minority in the AI group indeed fgured out that “the 
numbers 0-4 represented diferent actions, and [NR] would choose 
the action with the highest numerical value” (A23). An even smaller 
minority even guessed the numbers’ correct meaning—a “utility 
function and reward systems” (A64). despite the fact that the num-
bers were unlabelled. These participants projected meaning on the 
numbers, lending further credence to the role of data vision [59, 
128]. 

What is surprising is their faith in numbers arose even when AI 
group participants did not “fully understand the logic behind [...NR 
robot’s] decision making.” (A43). The AI group seems to have 
followed heuristic reasoning that associates mathematical 
representations with logic and intelligence, e.g.: "logic must 
have been derived from a formula, [...which is] intelligent” (A54), or 
“Math [...had] an aura of intelligence" and “exact values” made the 
NR robot “feel smarter” (A16, A77, A75). This perception of logical 
thinking engendered unwarranted trust and made the NR robot 
seem like it "should theoretically succeed more than the others, 
making him more intelligent” (A37). The linkage between perceived 
logical thinking and higher cognitive abilities can elucidate why the 
AI group prefers NR over AD when it comes to Intelligence (Table 1). 
A few participants even claimed that they could “actually see the 
math that [the NR robot] was making decisions of of, [...making it 
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feel] more real” (A9). In fact, to them, it appeared as if the NR robot 
“clearly had an algorithm that worked [. . . and] seemed to know what 
it was doing” even if they “did not know what it was going to do in 
the future” (A91, emphasis added). 

Participants with AI background also viewed numbers as 
potentially actionable even when their meaning was unclear. 
Actionability refers to what one might do with the information to 
make sense of the robot’s behavior—“debug its faulty behavior, or 
predict its future behavior” (A76). While many highlighted that 
they could not “make sense of numbers right now, [they believed 
that] in principle, [they] should be able to act on them in the future” 
(A39). The potential explanatory value in numbers was better than 
the vacuous statements of AD: “[The NR] robot gave mathematical 
results as explanation while [the AD robot] gave no explanation” 
(A19). 

Many participants connected their AI background to their abil-
ity to work with numbers. They mentioned how their current “AI 
course [helped them] to understand what [NR robot] is doing and 
what the numbers might mean” (A52). Some even highlighted that 
if they “had a pen and some paper, writing down information, 
[they] could gleam [sic] some information based of the [numer-
ical] patterns” (A28). But how actionable were NR’s numbers in 
actuality? The numbers were Q-values, which only indicate the rel-
ative strength of one action versus the others. Specifcally, Q-values 
indicate the agent’s belief that certain actions lead to greater or 
lesser future reward, afording some amount of explanatory power. 
However, they cannot indicate why the agent has come to believe 
that one action is better than another—this information is not re-
tained by the agent nor conveyed through the numbers. This did 
not deter the AI group from deferring to the authority of numbers. 
After all, while all the robots used the same AI algorithm to make 
decisions, the NR robot’s expressions seemed most ‘AI-like’. 

These insights can help us understand why, even though both 
groups have misplaced faith in numbers, the AI group shows a 
higher inclination towards numbers (as evidenced in the quantita-
tive results (Section 4.1, Table 1), the only time NR wins over AD 
happens when the AI group judges Intelligence). 

Unable to access their meaning, the non-AI group associ-
ated numbers with the presence of a higher, more intelligent 
expression that, they argued, could only come from an intelligent 
agent. Since the NR robot was “communicating in a numerical lan-
guage that’s too hard to understand”, the numbers had a "mystery 
and aura of higher intelligence" (NA22, NA33). The “language of 
numbers”, because of its “cryptic incomprehensibility,” signalled 
higher-order thinking (NA6, NA1): “Because I could not understand 
[NR’s] output, I deemed it to be intelligent” (NA30, emphasis added). 

This can explain why the non-AI group showed no preferences 
between AD and NR when judging Intelligence, despite favoring AD 
over NR across all other dimensions (Table 1). To them, numbers 
signaled “precision”—an important quality of intelligence (NA8, 16, 
21, 30, 34). Numbers gave the impression that the NR robot “was 
more technical” than others—its “precise numerical explanations” 
resulted from it “calculating everything” (NA53, NA21, NA12). To 
these participants, “anything that uses pure numbers is going to be 
more intelligent” because “numerical outputs are likely to be more 
precise [. . . ] whereas textual representations involve a degree of 
uncertainty and subjectivity” (NA41, NA30). Such perceptions point 

to how the modality of expression—numeric vs. textual—impacts 
perceptions of explanations from AI agents, where we see projec-
tions of normative notions (e.g., objective vs. subjective) in judging 
intelligence. 

5.2 Unanticipated Explanatory Value 
As designers, we had specifc goals behind each robot’s mode of 
expression. As discussed in Section 3.1, RG was the only robot 
designed to have the justifcatory quality to explain the why be-
hind the robot’s actions, while AD and NR (as baselines) should 
be considered as lacking justifcatory qualities by-design. RG won 
the overall competition (as discussed in Section 4.2), but what was 
surprising was that both AI and non-AI groups found unan-
ticipated explanatory value in AD’s declarative statements 
and NR’s numerical representations. As we will show below, 
qualitative analysis revealed that the two groups had diferent ex-
planatory intent (what they wanted to do with the explanation), 
which was closely associated with their AI background. On the one 
hand, the non-AI group found afrmatory value (confrmation of 
stable performance) in AD’s statements. On the other hand, the AI 
group overly ascribed diagnostic value (debugging in case of failure) 
to NR’s numbers even when they could not make sense of them. 

For the non-AI group, their desire for afrmation — confrm-
ing the action without necessarily explaining it— played a key part 
in fnding value in AD’s explanations. The afrmatory value mani-
fests most clearly in their comparison between AD and NR in the 
dimensions of Confdence and Understandability. For both dimen-
sions, the non-AI group preferred AD over NR (Table 1). Recall 
that AD merely declared its action, stating the what, not the why. 
Despite this, the non-AI group found value in the confrmatory 
information because there was alignment between what AD was 
doing and saying. It showed that “[AD] is consistent and nothing 
crazy is going on where it says it went right but in actuality, it went 
down” (NA34). For both dimensions, the non-AI group attributed 
greater value to AD’s declarative statements (compared to NR’s 
numbers) because it “at least said what its movements were going to 
be" (NA7). Its “brief,” “un-embellished," and “easier to understand" 
language that got "straight to the point" boosted its understandabil-
ity (NA14, NA23, NA28, NA7). In fact, AD’s “just the facts” (NA38) 
declarative and succinct nature were signs of confdence itself. It did 
not need to say much because “it knew what it was doing,”—evident 
in its lack of “any hesitation" and "business-like [style] focused 
on performing the task at hand" (NA17, NA41, NA11). In contrast, 
NR’s numbers were inaccessible to the non-AI group, thereby in-
actionable and valueless. In short, when we designed AD, there was 
no intention of ofering value through confrmation; yet, through 
their explanatory intent of afrmation, the non-AI group 
found value in AD’s explanations by interpreting them as 
signals for stable system performance. 

The AI group overly ascribed diagnostic value in NR’s 
numbers even when their meaning was unclear—they felt 
NR’s numbers had “diagnostic information that can be used to 
debug [the robot] in case of failure” (A39). The explanatory intent 
of diagnosis is a consequence of the AI group’s faith in numbers and 
related to their perceived actionability—what one might do with the 
information (as discussed above in 5.1). Analysis of the open-ended 
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text responses for the perception dimensions of Intelligence, Second 
Chance, and Confdence exhibits this explanatory intent most clearly. 
Recall that the AI group preferred NR over AD for Intelligence and 
felt there were no diferences between them for Second Chance 
and Confdence (Table 1). This is in contrast to the non-AI group 
that preferred AD over NR for both of these dimensions. AI group 
members perceived NR’s numbers to have more explanatory value 
simply because they felt they could do “more with numbers” (A30) 
in “cases of failure and troubleshooting”(A78). 

For Intelligence, NR’s numerical representation and "exact val-
ues" made it appear more “valuable” than AD’s “inert” statements 
(A23, A51, A42) . Even when it came to giving NR a second chance, 
numbers helped because the NR robot appeared to be “trying very 
hard since it provided [...] mathematical evidence of its moves” 
(A79).“Math-based decisions” (A2) made the NR robot appear “more 
reliable” (A8, A42) and worthy of another chance. Numbers in-
spired confdence because they signaled the existence of a "con-
crete methodology"—–"the higher the number, the more optimal 
the move" (A66, A67), which added to the perceived explanatory 
value in them. Moreover, if there were a method, an algorithm, or a 
formula behind the NR’s actions, the AI group participants believed 
that they could deduce it using the numbers: 

"[NR] returned the most amount of data, and if I were 
to understand what that numbers mean, it’d be the most 
useful one to debug on repeating runs to analyze what 
it is doing and why" (A91, emphasis added). 

The AI group participants connected their background to a desire 
to troubleshoot and repair things. Numbers, they felt, were more 
manipulable than language, catalyzing over-ascription of diagnostic 
value to them: 

“As an engineer, I want to fx things. Numbers are 
concrete and objective, language is not. But you can 
manipulate numbers [...] With the AI stuf I’m learn-
ing, I can use it to diagnose [NR].” (A49) 

Thus, we see, what Eriksson called the "seductive allure" [51, 
101] exhibited through the perception of numbers in the AI group. 
This diagnostic intent showcases how the AI group over-ascribed 
explanatory value in numbers, highlighting how its unwarranted 
faith in numbers can manifest in potentially negative ways—a point 
we discuss in Sections 6. 

In summary, frst, both groups had undue faith in numbers for 
diferent reasons and to diferent extents. Both groups associated the 
presence of numbers to signal the presence of algorithmic thinking 
even when the meaning of numbers was unclear. The AI group 
seems to have employed heuristic reasoning, connecting mathemat-
ical representations with the notions of logic and intelligence. The 
non-AI group, lacking access to their meaning, correlated numbers 
with the existence of a higher, more intelligent expression. Second, 
both AI and non-AI groups found unanticipated explanatory value 
by appropriating AD’s declarative statements and NR’s numerical 
representations. The non-AI group had an explanatory intent of 
afrmation (confrming the action without explaining it). This en-
abled them to fnd value in AD’s explanations by interpreting them 
as signals for stable system performance. Notably, the AD robot 
was not designed to ofer value through confrmation. The AI group 

overly ascribed diagnostic value in NR’s numbers for potential de-
bugging even when their meaning was unclear. The explanatory 
intent of diagnosis is a consequence of the AI group’s unwarranted 
faith in numbers and related to their perceived actionability—what 
one might do with the information (as discussed above in 5.1). 

6 DISCUSSION & IMPLICATIONS 
In this section, we discuss possible causes of the observed difer-
ences between the groups, then discuss implications for designing 
XAI systems by accounting for users’ background diferences to 
bridge the AI creator-consumer gaps, and then the broader implica-
tions for explainable and responsible AI. 

6.1 Discussion: User background impacting 
perception of XAI 

We highlight two ways to interpret the potential causes be-
hind group diferences– cognitive heuristics and appropria-
tion. First, we use the notion of heuristics based on the dual-process 
theory (reviewed in Section 2.2) to understand how unwarranted 
faith in numbers (Section 5.1) can emerge from diferent lines of 
thinking afected by one’s AI background. Second, we incorporate 
the lens of appropriation to the unanticipated ways in which people 
fnd explanatory value (Section 5.2). 

Heuristics and Faith in Numbers: Recent work (reviewed in 2.2 
like [20, 55]) has highlighted that while XAI is often developed with 
an implicit assumption that the recipient will process each expla-
nation through analytical System 2 thinking (from dual-process 
theory [75]), in reality people are more likely to rely on System 1 
thinking by invoking heuristics–rules-of-thumb or mental short-
cuts, which leads to biases and errors if applied inappropriately [75, 
132, 163]. 

The notion of heuristics can help us understand the potential 
reasons behind the two groups’ diferent faith in numbers. On the 
one hand, the AI group seemed to have an instinctual response 
to numerical values; they assumed that the numbers possessed 
all the information needed to manipulate, diagnose, and reverse 
engineer. There appear to be heuristics that associate numbers with 
logical intelligence, which could potentially be acted upon (e.g., 
through diagnosis). Such heuristics are likely formed and validated 
from their past experience working with numbers and algorithms. 
This heuristic is risky because, as we noted in Section 3.1, the 
numbers are Q-values and do not allow much actionability beyond 
an assessment of the quality of the actions available. We return to 
this risk and highlight design implications to address this in the 
next subsection. 

On the other hand, lacking the AI background, some in the 
non-AI group seemed to have diferent heuristics where their very 
inability to understand complex numbers was associated with the 
presence of a higher-order intelligence. The non-AI group also lacks 
the requisite AI background to potentially access and deliberatively 
think through NR’s numbers (System 2 thinking). Thus, we see how 
diferent heuristics, tied to one’s AI background, can lead people 
to the same outcome—faith in numbers. Note that these heuristics 
are not an exhaustive list, but a starting point to understand how 
group diferences connect to their AI backgrounds. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ehsan, Passi, Liao, Chan, Lee, Muller, & Riedl 

Appropriation and Unexpected Explanatory Value: A second lens 
for understanding why participants found explanatory value in un-
expected places is that of appropriation. As we shared in Sections 2.3 
and 5.2, appropriation happens when end-users interpret and use 
technologies in ways not envisioned by designers [40, 117, 138, 154]. 
People do not passively absorb information—they interpret it, of-
ten processing it in unanticipated ways. This is what happened to 
AD’s declarative statements and NR’s numbers. Driven by diferent 
explanatory intents, each group appropriated the explanations in 
unanticipated ways. These diferent appropriations were, in part, 
a function of each group’s AI background that led participants to 
develop their own sense of how they can and cannot use explana-
tions. What is striking is that the appropriation took place even in a 
controlled experiment like ours where the participants were not ex-
plicitly asked to take actions based on explanations. Even in passive 
interactions (robots engaged in one-way communication), partici-
pants envisioned themselves using the explanations in hypothetical 
scenarios. On the one hand, the AI group’s intent of diagnosis led 
many to envision scenarios where they would troubleshoot the 
robot. As a result, they might have misplaced or over-placed di-
agnostic value in NR’s numbers—even when they could not fully 
understand them. On the other hand, for the non-AI group, NR’s 
numbers are inaccessible, thus in-actionable. Their afrmatory in-
tent drives them to fnd value in the confrmatory statements of 
AD, appropriating it as a signal for stable system behavior. 

Our discussion extends the literature around individual 
diferences and heuristics-based processing of XAI [20, 55, 
124] in two ways: frst, we explicitly highlight what heuristics 
people might use, how their AI background infuences their think-
ing, and posit the why (underlying reasons) behind them. Second, 
we add the lenses of appropriation to the conversation, which has 
implications on user agency in design (points we touch on below). 
For both, we connect it to an important user characteristic—one’s 
AI background. 

Both points around heuristics and appropriation highlight an 
important yet overlooked point around the duality of explanations. 
Explanations are both products and processes [99]. The product-
centered view, common in psychology and XAI, often ignores the 
essential processes through which people make sense of explana-
tions. However, the sensemaking process is as important as the 
explanation itself [100, 167]. Recent work calls for guiding the 
process of understanding explanations, especially for non-AI ex-
perts [29]. By investigating both AI and non-AI groups, our work 
extends the current XAI discourse– it directly speaks to the duality 
of explanations by focusing on both products (types of explanations 
from 3 robots) and processes (how one’s AI background infuences 
the interpretation of explanations). 

Taken together, these fndings reveal that the design and use of 
AI explanations is as much in the eye of the beholder as it is in the 
minds of the designer— the user’s explanatory intent and common 
heuristics matter just as much as the designer’s intended goal. Users 
might fnd explanatory value where designers never intended to 
be and use them based on their explanatory intent. Contextually 
understanding the misalignment between designer goals and user 
intent is key to fostering efective human-AI collaboration, espe-
cially in XAI systems [54, 114]. We demonstrated how diferent 
groups fnd meaning in diferent places—even when the meaning is 

misplaced. The ‘ability’ in explain-ability depends on who is look-
ing at it and emerges from the meaning-making process between 
humans and explanations. 

While the groups difered in other aspects, both preferred 
the RG robot because of its command of language exhibited 
through explanatory power (depth of reasoning) and variety 
(style and length). RG appeared to have a “good command of 
English deep enough to get at the why” (A29). Moreover, they found 
RG’s communication to be relatable and exhibited a personality 
even if the interaction was passive. It appeared to “include you 
in its thought process,” making you feel “as if you could talk to 
it” (NA11, A46). With RG robot, many felt “like you are having a 
conversation with a friend, analyzing some problem, and making 
the best decision for this problem.” (NA36) As RG navigated the 
terrain, its expressions included phrases like ‘I’m not just winning 
at life, I’m biwinning!’, which participants found humorous and 
engaging. Since participants felt RG was “the most humanlike in 
its explanations” (A35), they attributed emotional intelligence to it, 
which garnered empathy and support. Most people “rooted for [the 
RG robot because they] liked its personality, felt connected to it, 
and wanted it to succeed.” (NA27). 

Given our fndings, it might be tempting to conclude that RG-
style explanations should be used at all times. This is where the 
who in XAI comes in— the who scopes how to show the why. If 
the explainability needs of the user are to achieve functional under-
standing [102], then RG-style explanations are strong contenders. 
RG-style explanations are also suitable if the goal is to make AI 
explanations accessible to non-AI experts [47]. However, if the goal 
is to provide a mechanistic understanding [103, 126], then RG-style 
explanations will not be actionable. Mechanistic understanding 
can be useful for debugging purposes. Here, a hybrid style could 
work where the functional understanding of RG is contextualized 
with the mechanistic afordances from Q-values in NR. Imagine 
an explanation format where the user can “unfold” the associated 
Q-values and ground the natural language explanation. There are 
engineering and resource costs for RG-style explanations. They 
need to be trained with human explanations, which can be a chal-
lenging data collection exercise for more complex environments. 
The full treatise of explanation design is beyond the scope of this 
paper; however, focusing on the needs and characteristics of the 
“who” is a good starting point. 

6.2 Implications: Designing XAI for background 
diferences 

Here, we discuss the implications for designing XAI systems that ac-
commodate users’ AI background diferences. We focus on mitigat-
ing the risks of over-reliance on numbers which can potentially lead 
to negative consequences such as over-trust on AI systems [131]. 
Moreover, as those in the AI group are likely to be on the creation 
end while those in the non-AI group are likely to be towards the 
consumption and interaction end, our results have implications 
for bridging the AI creator-consumer gaps by bringing conscious 
awareness of the group diferences to the design of XAI systems. 

Our discussion around heuristics carries design implications 
for both groups. We noticed how the AI and non-AI groups utilize 
diferent heuristics (mental short-cuts) in System 1 (fast, automatic) 
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thinking to ascribe misplaced faith in them. Shifting people’s think-
ing from System 1 to System 2 (slow, deliberative) is not only an 
active area of research but is also a challenging one [26, 86]. There 
can be two actionable ways to tackle biases resulting from cognitive 
heuristics— frst, locally at the time of decision-making, we can use 
Cognitive Forcing Functions (CFFs) [32] (prompts, delays, etc.) that 
can interject the heuristic reasoning, potentially allowing the per-
son to engage in deliberative analytical thinking. Second, globally 
for future decision-making, we can utilize metacognitive strategies, 
often called cognitive forcing strategies, that include simulation 
training, increasing awareness of potential pitfalls of heuristics, etc. 

To potentially prevent over-trust in numbers, we can do design 
interventions at the local and global levels. At a local design level, 
we can introduce CFFs that can break instinctive thinking patterns 
and promote mindful ones. What if the AI group members were 
prompted to refect on their instinctive thinking through a combi-
nation of prompts and multi-modal explanations (blend between 
RG and NR)? Situating numbers in the context of language and vice 
versa can act as a CFF that could prompt the AI group members to 
refect deliberatively (using System 2) and realize the limited nature 
of the numbers. At a global level, we can introduce simulation train-
ing that provides counterfactual (what-if) scenarios highlighting 
cases where numbers from the robots are erroneous or faulty (vs. 
correct Q-values). For the non-AI group members who associate 
the opacity of numbers with higher intelligence, we can introduce 
scenario-based examples that explicitly highlight how indecipher-
able numbers can also be gibberish and useless. The goal here is 
not to eliminate heuristic reasoning but to mitigate blind faith in a 
certain modality of explanation. Exposure to these scenarios can 
facilitate long-term calibration of trust in numbers. 

Given the negative impact of cognitive biases, it might be tempt-
ing to exclusively design explanations that only promote System 
2 thinking. This is also risky because it forces users to constantly 
engage in deliberative thinking, their satisfaction sufers due to 
higher cognitive friction [20]. We need to strike a balance between 
System 1 and 2 thinking to appropriately calibrate trust. To do so, 
we can bridge existing work in non-XAI settings (e.g., balancing 
System 1 and 2 thinking in clinical decision-making) and translate 
them to XAI use cases in a contextually relevant manner. 

The appropriation of explanatory intent we saw from both 
groups also has important design implications. Our fndings high-
light that users will appropriate explanations regardless of careful 
design. This is not a bad thing. Given dynamic user goals and needs, 
it is impossible to preemptively exhaust all the interpretations. Our 
goal then should be to support, not control end-users by providing 
resources that mitigate improper or harmful appropriations. 

To aid appropriation-aware design in XAI, an operationally vi-
able path is to leverage emerging work on Seamful XAI [44] that 
translates the principles of Seamful Design from Ubiquitous Com-
puting to XAI. Instead of hiding the inherent AI imperfections 
through seamless design, Seamful XAI turns imperfections into op-
portunities for explanations while enhancing user agency through 
appropriation. Simply put, "seams" are mismatches or gaps between 
what we ideally design the AI to do and how it functions when 
used in reality. Through a concrete decision process, Seamful XAI 
uses adversarial thinking like red-teaming to proactively fnd seams 

and harness them to improve XAI. For instance, what if the lend-
ing ofcer of an AI-based lending system knew that the AI was 
trained on North American data but deployed in South Asia (the 
seam here is a data drift and a context shift)? The knowledge of 
the mismatch (seam) could help calibrate how they appropriate the 
AI’s output. For instance, they might override the AI’s output if it 
rejects the loan application of a wealthy farmer whose income is 
non-traditional compared to the income sources in the dataset. In 
our case, if the AI group were made aware of how little explanatory 
power Q-values have, it might have prevented them from ascribing 
diagnostic value to NR’s numbers. Last, a key part of designing for 
appropriation is learning from appropriation. Most XAI systems, 
including ours, are one-way systems that do not allow for user 
feedback. Feedback loops from users can highlight how, when, and 
why users are needing to appropriate XAI outputs and ensure the 
appropriation is appropriate. 

6.3 Broader lessons: Explainable and 
Responsible AI 

Our work has broader implications beyond the immediate design 
of XAI systems, especially around the discourse of responsible 
and explainable AI. Below, we share three main takeaways—how, 
despite best intentions, unanticipated negative consequences can 
emerge from AI-generated explanations & what we can do about it, 
how our insights can help re-imagine AI education, and how our 
insights can reframe how we operationalize AI adoption. 

First, our fndings illustrate how despite best intentions, unsus-
pecting negative efects of AI-generated explanations can emerge (e.g., 
unwarranted faith in numbers in 5.1). This is an instance of an 
Explainability Pitfall (EP)—“unanticipated negative downstream 
efects from adding AI explanations that emerge even when there is 
no intention to manipulate anyone” [46]. EPs are diferent from dark 
patterns, where there is an intent to deceive the user [19]. Recall 
that in our study design, we had no intention of deceiving anyone. 
While dark patterns have been explored in XAI (e.g., [30, 50]), EPs 
are severely under-explored. This paper sheds important light on 
this under-explored space. 

For mitigation strategies, given EPs are often a consequence of 
uncritical acceptance [46], we can shift our explanation design phi-
losophy to emphasize critical refection (as opposed to acceptance) 
during interpretation of explanations. This aligns with Human-
centered XAI work that advocates engendering trust via refec-
tion [45]. Langer et al. [87] point out that people are likely to accept 
explanations without conscious attention if no efortful thinking 
is required from them. In Kahneman’s dual-process theory [75] 
terms, this means that if we do not invoke mindful and delibera-
tive (system 2) thinking with explanations, we increase the likeli-
hood of uncritical consumption. To trigger mindfulness, Langer et 
al. [87] recommend designing for “efortful responses” or “thought-
ful responding.” We can utilize design interventions highlighted 
in Sec. 6.2 such as Cognitive Forcing Functions and using Seamful 
XAI strategies. 

Second, our insights call attention to wider challenges with aca-
demic practices of AI learning. AI students exhibited unwarranted 
faith in and preference for numbers even when they were not 
readily comprehensible. In light of the importance of quantitative 
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practices in AI, this bias is not surprising. One efective way to 
address this would be to critically refect on the way we educate 
students in AI. In particular, how do we ensure that students have a 
more critical eye towards the working and outputs of AI systems? 
This is where we see the impact of our focus on AI students (vs. fully 
formed AI practitioners)—by investigating how AI background can 
lead to the formation of certain heuristics, we have crucial insights 
on how we might address the issues from an academic training 
perspective. For instance, there is a need to introduce courses like 
critical data studies and human-centered data science that can pro-
vide much-needed refective lenses to students to understand their 
own cognitive biases and the importance of thinking about the 
user during system design and development. By addressing issues 
during the formation of their "Data Vision" [128], and "Professional 
Vision" [59] more generally, we can revolutionize how we train the 
next generations of AI creators and mitigate the creator-consumer 
gap. If we are asking today’s AI students to become future creators 
for consumers who think drastically diferently from themselves, 
we need to empower our students with the lenses such that the 
gap between them and the stakeholders they will serve is less than 
what it is today. When extrapolating fndings for the AI group, we 
should note that the AI-background population was drawn from 
students in a very typical introductory AI course, taught from the 
most widely adopted textbook (by Russell & Norvig [137] taught in 
over 1500 schools worldwide [6]) and using a widely adopted set 
of instructional assignments. 

Third, our work carries broader implications on reframing AI 
adoption through re-examining the relationship between user trust 
and AI adoption. This re-examination has upstream (e.g., research) 
and downstream (e..g, industry practices) implications. There is an 
oft-unspoken yet dominant assumption that connects adoption with 
acceptance—where we view AI adoption emerging from user trust, 
which, in turn, emerges from user acceptance [45]. Acceptance is 
seen as a core tenet of trust-building (thereby adoption). There 
is often an uncritical push towards trust building without asking 
a fundamental question: is AI worthy of our trust? Moreover, is 
acceptance the only way to build trust and get adoption? How would 
we feel in a human relationship if trust hinged solely on accepting 
everything the other party said? There are many ways to build 
trust. The principles of HCXAI [45] suggest diverse foundations 
for trust building such as healthy skepticism from informed users, 
awareness of variability of around system decisions, and knowledge 
of what the AI cannot do (as opposed to the typical what the AI can 
do). 

Opting to promote refection in the user can begin the process 
of defamiliarization from acceptance-frst approaches, reframing 
the discourse around AI adoption. Such mindset shifts in AI adop-
tion have cascading societal ripple efects at both upstream (e.g., 
research) and downstream (e.g., industry practices) levels. For in-
stance, if an organization embodies a critically refective AI adoption 
mindset (as opposed to an acceptance-driven one), it could mitigate 
perverse organizational incentives such as prioritizing growth and 
adoption at all costs. This can refexively catalyze a change in 
organizational culture towards responsible and accountable AI gov-
ernance. Note that we are not advocating to eliminate building trust 
via acceptance; rather, we are encouraging reforms that go beyond 

acceptance. More importantly, refection and acceptance are not mu-
tually exclusive and can work in tandem with each other. Reforming 
the dialogue around AI adoption and trust building promotes our re-
silience against detrimental pitfalls like over-estimating (or hyping) 
AI capabilities, which has cascading societal implications around 
holding these systems accountable. 

Last, when transferring our fndings to other XAI scenarios, in-
stead of shooting for blanket generalizability, we should aim for 
transferability. Inherent in transferability is context-sensitivity [53, 
64, 148]. Real-world XAI settings have diferent contexts, domains, 
and application areas —as such, the transferability of our fndings to 
new domains is subject to context-applicability. Context permitting, 
especially in terms of user characteristics, the fndings are likely 
to transfer. This is because the heuristics and appropriation strate-
gies identifed (in Sec. 6.2) have broad applicability. For example, 
our fndings can shed light on why data scientists over-trust XAI 
methods like SHAP that have numerical-based outputs [78]. There 
are, however, limits to our study design and exhaustiveness of the 
setup, elaborated in Sec. 6.3 

7 LIMITATIONS & FUTURE WORK 
With this study, we have taken a formative step towards under-

standing how interpretations of AI-generated explanations difer 
between groups with or without AI background (a consequential 
user characteristic). Given this essential yet frst step, the insights 
from our work should be scoped accordingly. A focus on AI students 
has helped understand how enculturation into AI alters people’s 
perceptions of AI explanations and makes visible the presence of 
other kinds of – often similar – interpretations within a hetero-
geneous set of non-AI group participants. [C1, C2] However, our 
study has areas of improvement. First, as shared in Secs. 3.3.3 & 6.3 
while the AI course experienced by the AI group is largely represen-
tative of curriculum across other institutions, future research could 
explore how diferences in AI curriculum may impact people’s AI 
background and perception of explanations. Second, in this study, 
we focused on using an RL-based AI agent to conduct a sequential 
decision-making task in a controlled environment. Future research 
could extend to other types of AI agents on other tasks (e.g., clas-
sifcation), especially in a situated sociotechnical context. Third, 
the quasi-experimental setup (common in behavioral research and 
neuroscience [108]) does not include random assignment of partic-
ipants; future work could conduct Randomized Controlled Trials 
using the same setup to establish causal relationships. Fourth, we 
used systematic screening to ensure the two groups are measurably 
diferent while controlling for factors such as age and education lev-
els (Sec. 3.3.3). Despite these eforts, confounds can still exist such 
as technological familiarity and AI use. Future research can conduct 
studies of user characteristics in isolation and their impact on the 
interpretation of AI explanations. Fifth, in this initial efort, we 
scoped our study in the context of three types of AI explanations– 
while they are informative, they are not exhaustive of the diferent 
types of explanations. Future work can explore how users with 
two or more diferent user characteristics (e.g., comparison with 
multiple facets of one’s background) or more homogeneous and 
striated AI backgrounds (e.g., years of AI programming experience) 
perceive explanations in diferent ways. For future iterations, we 
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are inspired by Agre’s design philosophy of Critical Technical Prac-
tice [3] where “at least for the foreseeable future, [we] will require a 
split identity – one foot planted in the craft work of design and the 
other foot planted in the refexive work of critique.” [4]. Through this 
work, we have “planted one foot" in the work of design. Now, we 
seek to learn from and with the broader HCI and XAI communities 
as we “plant the other foot” in the self-refective realm of critique. 
8 CONCLUSIONS 
In this paper, we focus on the who of XAI by investigating how 
two diferent groups of whos—people with and without a back-
ground in AI—perceive diferent types of AI explanations. Through 
a mixed-methods user study, we demonstrate how interpretations 
and perceptions of AI explanations difer between groups with or 
without AI background. Our mixed-methods analysis provides dif-
ferent levels of insight. What people prefer is relatively clear—they 
prefer natural language-based justifcatory rationales. While the 
what is somewhat straightforward, the why and how behind their 
preferences are nuanced. Diferent perceptions (e.g., unanticipated 
explanatory value) sometimes arise from diferent forms of appro-
priation (e.g., diagnosis vs. afrmatory intent). The same perception 
(unwarranted faith in numbers) sometimes arises from diferent 
types of heuristics (associating numerical vs. incomprehensible rea-
soning with intelligence) Finally, both groups were very similar in 
their desire to engage with natural-language-based explanations. 

Explainability of AI systems is crucial to instill appropriate user 
trust and facilitate recourse. Disparities in AI backgrounds have the 
potential to exacerbate the challenges arising from the diferences 
between how designers imagine users will appropriate explanations 
vs. how users actually interpret and use them. We provided concrete 
design implications to mitigate the risk of over-reliance on numbers 
and broader lessons about the need for re-imagining AI education. 
By focusing on the who and not just the what of XAI, our work 
takes a formative step in advancing a pluralistic human-centered 
XAI discourse to help bridge the creator-consumer gap. 
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A APPENDIX 
A.1 Best practices for data integrity and 

participant engagement 
Data quality and engagement with user study participants are in-
tegral to research. Below we share how previous guidelines for 
fair and equitable work treatment for MTurk workers [69] helped 
us decide the payment structure, tips on engagement with partici-
pants, design motivations behind the task environment, and how 
we deployed and reviewed the task catering for a global audience. 
While these insights are transferable to other contexts, most of 
these practices are geared towards MTurk participants, given one 
has less control over the platform. 

(1) Payment: our study was not a micro-task that is traditionally 
deployed in MTurk. As a result, we calibrated our payment 
to refect the task duration and expected efort. We tried our 
best to structure our study based on previous guidelines for 
fair and equitable work treatment for MTurk workers [69]. 
We strived to pay equal to or more than a minimum wage 
[at the time of deployment, the local minimum wage was 
$8.5/hour]. We paid $10 for a task budgeted for 45 minutes, 
making the hourly pay $13.3. However, almost all partici-
pants took 30 mins to complete the task on average, making 
the efective hourly rate around $20/hour. 
As a policy, we disbursed payments within 48 hours of task 
completion. This robust turnaround time helped our reputa-
tion on Turkopticon, a forum for MTurk workers to engage 
in peer-to-peer assistance on job information and hold em-
ployers accountable for fair treatment [69]. Moreover, one 
researcher regularly engaged with workers on Turkopticon, 
answering questions and returning compliments. This en-
gagement built rapport throughout the study. As a platform, 
TurkPrime allows internal messages between MTurk work-
ers and employers by using a proxy userID and protecting 
the privacy of the worker. This feature allowed participants 
to communicate if they had internet issues or were running 
out of time. In such cases, we sent them a one-time link 
for completion. The same applied for participants in the AI 
background group who were not bound by AMT rules. 
Every payment of a HIT had a thank you message attached 
to it. Every rejection had custom justifcations backed by ev-
idence. The research team created message templates based 
on major issues, which allowed for a quick turnaround time 
even with a custom message. For participants who failed 
to do the task despite best eforts, we paid them for their 
time even if we could not use their data. This equitable pol-
icy also made our HITs one of the most sought-after in the 
marketplace. 

(2) Task environment and setup: 
(a) Task orientation: Pilot testing showed that participants 

preferred a multi-modal (e.g., video) orientation compared 
to a textual description of it. Therefore, we provided both 
modalities. 

(b) Task engagement: Participant had to successfully pass at-
tention checks and/or explicitly acknowledge they under-
stood the instructions in a given module. On the backend, 

we had timers to evaluate if a participant spent a reason-
able amount of time on a particular section. For instance, 
if the video was 2 minutes long and a participant clicked 
through that section in 30 seconds, it triggered a review 
of their responses. These steps augment the quality of the 
experimental data. Moreover, for tasks that had to be re-
jected, these metrics also served as justifcatory evidence. 

(c) Design of the robots: To mitigate efects of preconceived 
notions, we did not use any descriptive names for the 
robots; instead, we introduced the robots as “Robot A” [= 
the Rationale-Generation robot], “Robot B” [= the Action-
Declaring robot], and “Robot C” [= the Numerical robot] 
(details on each of their attributes are below/above). To 
reduce any preferential treatment of robots based on their 
appearances, we need to standardize their appearances 
without sacrifcing their distinctness. That is, the robots 
needed to look similar, but not to the point of indistin-
guishability. This insight came from pilot testing which 
indicated that if we made the robots identical in appear-
ance but diferent in color, the cognitive load for recall 
was too high. Therefore, we iterated and struck a balance 
where all robots had wheels with a “car-like” structure (see 
Fig. 1) while they difered in color and shape. 

(3) Deployment and Review: Across both groups, we manually 
reviewed every response in the survey, especially the qualita-
tive justifcations provided by the participants. We deployed 
10-15 tasks per day to allow for manual reviews. To facilitate 
outreach of our task to all time zones, using an automated 
scheduling system, we released 3 tasks every 3 hours over a 
24-hour cycle. This improved the potential for global partici-
pation in our task. 
Spamming is a serious issue when it comes to survey data. 
Here, the qualitative responses served a secondary screening 
purpose. Participants with good-faith eforts always had rea-
sonable qualitative justifcations. Those who had spamming 
intentions shared non-sensical and even comical qualita-
tive responses; e.g., Movie titles and plots, snippets from 
Wikipedia, etc. 

While all of these steps required considerable time, and efort, they 
paid of in the high data quality we received for a task lasting 30 
minutes on average. 
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A.2 Participant Screening 
Screening criteria, group makeup, and establishing group 

diferences: 
To ensure that the two groups were measurably diferent along 

the dimension of our investigation—AI background—we performed 
additional screening using a questionnaire with three components— 
(1) a knowledge test to get a baseline understanding of programming 
and AI competency. This test was collaboratively developed with 
the course’s teaching staf to calibrate the content relevancy and 
question difculty. (2) Self-reported knowledge levels in (a) com-
puter programming and (b) AI using two 5-point Likert-scales. 
(3) confrmation of whether they have ever taken an AI class. 

To get empirically ground the cut-of points, we piloted the 
screener with 10 participants from each group to get a baseline 
understanding of the scores and completion time. For the AI group, 
a score 4 or more on the knowledge test along with self-reports 
of having “Moderate knowledge” or more [>= 4] in programming 
and some knowledge or more [>= 3] in AI were required. For the 
non-AI group, self-report of having “No knowledge” [= 1] in both 
programming and AI, along with no prior AI classes, were required. 
Using these criteria we formed the two groups. 

The AI background group consisted of 96 adult students taking 
an AI class. On average, the task duration was 31.1 minutes. Par-
ticipants received US $10 for their time ($20/hr rate). 39% of the 
participants self-identifed as females while the rest identifed as 
males. Participants reported an average education level of 5.25 
(5= “Associate’s degree”, 6= “Bachelor’s Degree”). By design, all of 
them currently reside in the US. On the screening criteria, the AI 
students scored an average of 4.73 (out of 5) [�� = 0.45] on the 
knowledge test, self-reported “moderate knowledge” on program-
ming (� = 4.53, �� = 0.52) [4= “Moderate Knowledge”, 5= “A lot 
of knowledge”] and “some knowledge” onAI (� = 3.74, �� = 0.49) 
[3= “Some knowledge”, 4= “Moderate Knowledge” ]. 

The Non-AI background group with MTurk participants consisted 
of 83 adults, who were recruited from Amazon Mechanical Turk 
(AMT) through a management service called TurkPrime [97]. On 
average, the task duration was 29.8 minutes. Participants received 
US $10 for their time ($20/hr). 46% of the participants self-identifed 
as females while the rest identifed as males. Participants reported 
an average education level of 4.8 (4= “Vocational Training”, 5= 
Associate’s degree). We screened for participants who reside in the 
US. On the screening criteria, MTurk participants scored an average 
of 0.91 (out of 5) [�� = 0.32] on the knowledge test. By design, 
for programming and AI, we screened for people who reported as 
having “No knowledge” [=1] as well as never taking an AI class. 

To establish that these two groups are measurably diferent, we 
performed statistical tests. For the knowledge test, the two groups 
were signifcantly diferent based on a two-sample Mann-Whitney 
U-test (even after Bonferroni correction, � < 2.2 × 10−16). Since 
the non-AI group systematically had only people with “No knowl-
edge” [=1] in programming or AI, we performed one-sample Mann 
Whitney U-tests on the AI-group to compare its means against 1[=“No 
knowledge”]. Even after Bonferroni correction, we found strong 
evidence that the two groups are diferent (� < 2.2 × 10−16, for 
both programming and AI scores). These results indicate that our 

screening criteria have successfully established two groups that are 
measurably diferent in terms of their AI background. 

The following aspects of the selection criteria facilitated forma-
tion of the two user groups: 

The AI knowledge questionnaire: We developed the knowl-
edge questionnaire iteratively using a participatory process involv-
ing Teaching Assistants for the class along with Graduate students 
familiar with the area. There are fve (5) multiple-choice questions 
in total equalling 5 points. The frst two questions are program-
ming questions: the frst is a question asking for the output of a 
simple print statement, and the second is one that asks for the 
output of a for-loop. The remaining three covered concepts in AI 
such as Markov Decision Processes, Reinforcement Learning, and 
Unsupervised Learning. By the time of deployment, the AI students 
had already gone through lectures covering the AI topics in the 
questionnaire. All the questions are inspired by or directly taken 
from past exam questions on various topics. For further details, 
please refer to section A.2.1 for the AI knowledge questionnaire. 

To calibrate the relative difculty of the knowledge test, we used 
a collaborative and iterative process until a consensus between 
the researchers and the teaching staf was reached. We expected 
that most students with satisfactory prerequisites (that contain 
fundamentals of programming) and current knowledge from the 
class should at least get 4 out of the 5 correct. This calibration 
appears to have been a reasonable one since all students naturally 
passed these thresholds. On the other hand, in order to be assigned 
to the non-AI background group, participants had to score less than 
or equal to 1 (out of 5). We expected that some participants, without 
any AI background, might be able to guess the output of the “print” 
statement question. However, it was unlikely that someone without 
a basic programming understanding would be able to answer the 
“for-loop” output question. Therefore, if someone correctly answers 
more than one, their AI knowledge background is not the type we 
need for members of the non-AI background group. 

AI background measurement: The knowledge test was fol-
lowed by two 5-point Likert-scale questions measuring the AI back-
ground for computer programming and AI concepts. The range 
of self-reported knowledge goes from "No knowledge"[= 1] to "A 
lot of knowledge" [= 5]. Each level of knowledge has a sentence 
clarifying the meaning behind the label. For illustrative purposes, 
here is an example from the AI scale: "No knowledge: I might be 
aware of AI, but have no knowledge about it." Both scales had sim-
ilar construction and wording. For further details, please refer to 
section A.2.1 for the AI background knowledge Likert-scales. 

AI class: Finally, participants answer if they have ever taken any 
classes on Artifcial Intelligence. 

A.2.1 Screening questionnaire. 
Here we share the survey instruments used to screen participants. 
Knowledge test questionnaire 

(1) What would be the output of the following python program? 
name = "Peter" 
print("Hello " + name) 
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(a) Peter 
(b) Hello Peter 
(c) Hello + Peter 
(d) "Hello" + name 

(2) What would be the output of the following python program? 
numbers = [2, 4] 
for i in range(len(numbers)): 

print(numbers[i] + i) 

(a) 2 
5 

(b) 2 
5 
8 

(c) 2 
4 

(d) 2 
4 
10 

(3) Which of the following is an unsupervised learning task? 
(a) Distinguishing pictures containing cats from pictures not 

containing cats 
(b) Flagging text messages as appropriate or inappropriate 
(c) Divide data points into diferent clusters without any la-

bels available 
(d) Predict the value of a house after training on a dataset 

with house features and values 
(4) What is the general goal of reinforcement learning? 
(a) Maximize potential or expected punishment 
(b) Maximize potential or expected reward 
(c) Get to the goal as soon as possible 
(d) Avoid the most obstacles in any given state 

(5) In MDPs, the Markov assumption is that: 
(a) The current state is independent of all other states 
(b) The current state depends only on the history of previous 

states and actions 
(c) The current state depends on the full sequence of states 

and actions (past and future) 
(d) The current state only depends on the immediate previous 

state and action 

Computer Programming Background Knowledge. 
When it comes to computer programming or coding, I believe I 
have 

(1) No knowledge: I might be aware of computer programs, but 
have never coded before 

(2) A little knowledge: I know basic concepts in programming, 
but have never applied it 

(3) Some knowledge: I have applied programming concepts by 
coding at least once before 

(4) Moderate knowledge: I apply programming concepts some-
what frequently for my work, class, or leisure 

(5) A lot of knowledge: I apply programming concepts very 
frequently or create cutting edge software 

AI Background Knowledge. 
When it comes to Artifcial Intelligence (AI), I believe I have 

(1) No knowledge: I might be aware of AI, but have no knowledge 
about it 

(2) A little knowledge: I know basic concepts in AI, but have 
never applied it 

(3) Some knowledge: I have applied AI concepts by coding at 
least once before 

(4) Moderate knowledge: I apply AI concepts somewhat fre-
quently for my work, class, or leisure 

(5) A lot of knowledge: I apply AI concepts very frequently or 
create cutting edge software 

AI class. 
Have you ever taken or are currently taking any classes on Artifcial 
Intelligence? 

• Yes 
• No 
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A.3 OLR Summary Tables 
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Table 3: Summary of OLR with Ranking as Response and Robot Type as Predictor 

Value Std. Error �- value �- value Odds Ratio 

AD Robot -1.711 0.104 -16.473 < 0.001 0.181 
NR_Robot -2.691 0.115 -23.393 < 0.001 0.068 
1|2 -2.366 0.093 -25.567 < 0.001 0.094 
2|3 -0.598 0.077 -7.799 < 0.001 0.5501 
Note: RG_Robot is the reference level. 

Table 4: OLR Summary with Robot Type 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.7105 0.1038 16.4728 0 5.5319 
Numerical-Reasoning Robot -0.9807 0.1001 -9.7980 0 0.3751 
1|2 -0.6550 0.0695 -9.4282 0 0.5195 
2|3 1.1129 0.0734 15.1592 0 3.0433 
Note: Action-Declaring Robot is the reference level. 

Table 5: OLR Summary - Ref. Levels: Rationale-Generation Robot and AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -2.0246 0.1302 -15.5462 0.0000 0.1320 
Numerical-Reasoning Robot -2.5072 0.1391 -18.0221 0.0000 0.0815 
Non-AI Group -0.1563 0.1582 -0.9879 0.3232 0.8553 
Action-Declaring Robot:Non-AI Group 0.8422 0.2093 4.0243 0.0001 2.3214 
Numerical-Reasoning Robot:Non-AI Group -0.6088 0.2264 -2.6892 0.0072 0.5440 

1|2 -2.4515 0.1104 -22.2009 0.0000 0.0862 
2|3 -0.6507 0.0965 -6.7413 0.0000 0.5217 

Table 6: OLR Summary - Ref. Levels: Rationale-Generation Robot and Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.1824 0.1674 -7.0614 0.0000 0.3065 
Numerical-Reasoning Robot -3.1160 0.1893 -16.4636 0.0000 0.0443 
AI Group 0.1564 0.1582 0.9881 0.3231 1.1692 
Action-Declaring Robot:AI Group -0.8422 0.2093 -4.0245 0.0001 0.4308 
Numerical-Reasoning Robot:AI Group 0.6087 0.2264 2.6889 0.0072 1.8381 

1|2 -2.2952 0.1362 -16.8540 0.0000 0.1007 
2|3 -0.4944 0.1258 -3.9305 0.0001 0.6099 

Table 7: OLR Summary - Ref. Levels: Action-Declaring Robot and AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 2.0246 0.1302 15.5462 0e+00 7.5732 
Numerical-Reasoning Robot -0.4826 0.1224 -3.9421 1e-04 0.6172 
Non-AI Group 0.6859 0.1368 5.0127 0e+00 1.9855 
Rationale-Generation Robot:Non-AI Group -0.8422 0.2093 -4.0243 1e-04 0.4308 
Numerical-Reasoning Robot:Non-AI Group -1.4510 0.2125 -6.8278 0e+00 0.2343 

1|2 -0.4269 0.0836 -5.1091 0e+00 0.6526 
2|3 1.3739 0.0904 15.2045 0e+00 3.9507 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ehsan, Passi, Liao, Chan, Lee, Muller, & Riedl 

Table 8: OLR Summary - Ref. Levels: Action-Declaring Robot and Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.1824 0.1674 7.0613 0e+00 3.2622 
Numerical-Reasoning Robot -1.9336 0.1750 -11.0468 0e+00 0.1446 
AI Group -0.6859 0.1368 -5.0127 0e+00 0.5037 
Rationale-Generation Robot:AI Group 0.8422 0.2093 4.0245 1e-04 2.3215 
Numerical-Reasoning Robot:AI Group 1.4510 0.2125 6.8278 0e+00 4.2672 

1|2 -1.1127 0.1147 -9.6973 0e+00 0.3287 
2|3 0.6880 0.1123 6.1249 0e+00 1.9898 

Table 9: OLR Summary - Ref. Levels: Numerical-Reasoning Robot and AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 2.5072 0.1391 18.0222 0.0000 12.2708 
Action-Declaring Robot 0.4826 0.1224 3.9422 0.0001 1.6203 
Non-AI Group -0.7651 0.1620 -4.7240 0.0000 0.4653 
Rationale-Generation Robot:Non-AI Group 0.6088 0.2264 2.6891 0.0072 1.8382 
Action-Declaring Robot:Non-AI Group 1.4510 0.2125 6.8278 0.0000 4.2672 

1|2 0.0557 0.0923 0.6037 0.5460 1.0573 
2|3 1.8565 0.1033 17.9798 0.0000 6.4012 

Table 10: OLR Summary - Ref. Levels: Numerical-Reasoning Robot and Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 3.1160 0.1893 16.4637 0.0000 22.5559 
Action-Declaring Robot 1.9336 0.1750 11.0468 0.0000 6.9141 
AI Group 0.7651 0.1620 4.7240 0.0000 2.1492 
Rationale-Generation Robot:AI Group -0.6088 0.2264 -2.6891 0.0072 0.5440 
Action-Declaring Robot:AI Group -1.4510 0.2125 -6.8279 0.0000 0.2343 

1|2 0.8208 0.1336 6.1447 0.0000 2.2724 
2|3 2.6216 0.1444 18.1523 0.0000 13.7575 

Table 11: OLR Summary - Confdence - Ref. Levels: Type Rationale-Generation Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.3753 0.2740 -5.0185 0.0000 0.2528 
Numerical-Reasoning Robot -1.2607 0.2815 -4.4783 0.0000 0.2835 
Non-AI Group -0.0290 0.3297 -0.0879 0.9299 0.9714 
Action-Declaring Robot:Non-AI Group 0.7232 0.4545 1.5913 0.1115 2.0610 
Numerical-Reasoning Robot:Non-AI Group -0.6906 0.4668 -1.4795 0.1390 0.5013 

1|2 -1.6705 0.2164 -7.7194 0.0000 0.1882 
2|3 -0.1251 0.1996 -0.6268 0.5308 0.8824 
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Table 12: OLR Summary - Confdence - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -0.6521 0.3654 -1.7845 0.0743 0.5210 
Numerical-Reasoning Robot -1.9513 0.3800 -5.1343 0.0000 0.1421 
AI Group 0.0290 0.3297 0.0879 0.9299 1.0294 
Action-Declaring Robot:AI Group -0.7232 0.4545 -1.5913 0.1115 0.4852 
Numerical-Reasoning Robot:AI Group 0.6906 0.4668 1.4795 0.1390 1.9949 

1|2 -1.6415 0.2777 -5.9112 0.0000 0.1937 
2|3 -0.0961 0.2651 -0.3626 0.7169 0.9083 

Table 13: OLR Summary - Confdence - Ref. Levels: Type Action-Declaring Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.3753 0.2740 5.0185 0.0000 3.9561 
Numerical-Reasoning Robot 0.1146 0.2678 0.4279 0.6687 1.1214 
Non-AI Group 0.6942 0.3127 2.2203 0.0264 2.0021 
Rationale-Generation Robot:Non-AI Group -0.7232 0.4545 -1.5913 0.1115 0.4852 
Numerical-Reasoning Robot:Non-AI Group -1.4138 0.4561 -3.0995 0.0019 0.2432 

1|2 -0.2952 0.1873 -1.5759 0.1150 0.7444 
2|3 1.2501 0.1979 6.3175 0.0000 3.4908 

Table 14: OLR Summary - Confdence - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 0.6521 0.3654 1.7845 0.0743 1.9196 
Numerical-Reasoning Robot -1.2992 0.3688 -3.5230 0.0004 0.2727 
AI Group -0.6942 0.3127 -2.2203 0.0264 0.4995 
Rationale-Generation Robot:AI Group 0.7232 0.4545 1.5913 0.1115 2.0609 
Numerical-Reasoning Robot:AI Group 1.4138 0.4561 3.0995 0.0019 4.1115 

1|2 -0.9894 0.2603 -3.8015 0.0001 0.3718 
2|3 0.5560 0.2566 2.1668 0.0303 1.7436 

Table 15: OLR Summary - Confdence - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.2607 0.2815 4.4783 0.0000 3.5278 
Action-Declaring Robot -0.1146 0.2678 -0.4279 0.6687 0.8918 
Non-AI Group -0.7196 0.3304 -2.1778 0.0294 0.4870 
Rationale-Generation Robot:Non-AI Group 0.6906 0.4668 1.4795 0.1390 1.9949 
Action-Declaring Robot:Non-AI Group 1.4138 0.4561 3.0995 0.0019 4.1115 

1|2 -0.4098 0.1999 -2.0501 0.0404 0.6638 
2|3 1.1356 0.2076 5.4701 0.0000 3.1130 
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Table 16: OLR Summary - Confdence - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.9513 0.3800 5.1343 0.0000 7.0377 
Action-Declaring Robot 1.2992 0.3688 3.5230 0.0004 3.6664 
AI Group 0.7196 0.3304 2.1778 0.0294 2.0536 
Rationale-Generation Robot:AI Group -0.6906 0.4668 -1.4795 0.1390 0.5013 
Action-Declaring Robot:AI Group -1.4138 0.4561 -3.0995 0.0019 0.2432 

1|2 0.3098 0.2666 1.1620 0.2452 1.3631 
2|3 1.8552 0.2812 6.5966 0.0000 6.3927 

Table 17: OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -5.8425 0.6241 -9.3621 0.0000 0.0029 
Numerical-Reasoning Robot -9.1613 0.6886 -13.3037 0.0000 0.0001 
Non-AI Group -1.2732 0.6531 -1.9494 0.0512 0.2799 
Action-Declaring Robot:Non-AI Group 2.3121 0.7844 2.9477 0.0032 10.0953 
Numerical-Reasoning Robot:Non-AI Group 0.4423 0.8811 0.5021 0.6156 1.5564 

1|2 -7.4844 0.6292 -11.8956 0.0000 0.0006 
2|3 -3.1140 0.5110 -6.0945 0.0000 0.0444 

Table 18: OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -3.5301 0.5314 -6.6431 0.0000 0.0293 
Numerical-Reasoning Robot -8.7179 0.7549 -11.5482 0.0000 0.0002 
AI Group 1.2734 0.6531 1.9497 0.0512 3.5730 
Action-Declaring Robot:AI Group -2.3128 0.7844 -2.9485 0.0032 0.0990 
Numerical-Reasoning Robot:AI Group -0.4435 0.8809 -0.5035 0.6146 0.6418 

1|2 -6.2112 0.5476 -11.3434 0.0000 0.0020 
2|3 -1.8407 0.4068 -4.5247 0.0000 0.1587 

Table 19: OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 5.8429 0.6241 9.3622 0.0000 344.7825 
Numerical-Reasoning Robot -3.3185 0.3827 -8.6712 0.0000 0.0362 
Non-AI Group 1.0394 0.4342 2.3940 0.0167 2.8274 
Rationale-Generation Robot:Non-AI Group -2.3129 0.7844 -2.9486 0.0032 0.0990 
Numerical-Reasoning Robot:Non-AI Group -1.8692 0.7336 -2.5481 0.0108 0.1542 

1|2 -1.6417 0.2599 -6.3158 0.0000 0.1936 
2|3 2.7288 0.3585 7.6120 0.0000 15.3144 
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Table 20: OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 3.5301 0.5314 6.6431 0.0000 34.1267 
Numerical-Reasoning Robot -5.1877 0.6660 -7.7898 0.0000 0.0056 
AI Group -1.0394 0.4341 -2.3941 0.0167 0.3537 
Rationale-Generation Robot:AI Group 2.3125 0.7844 2.9483 0.0032 10.1000 
Numerical-Reasoning Robot:AI Group 1.8692 0.7336 2.5481 0.0108 6.4832 

1|2 -2.6811 0.4164 -6.4392 0.0000 0.0685 
2|3 1.6894 0.3421 4.9375 0.0000 5.4160 

Table 21: OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 9.1614 0.6887 13.3033 0.0000 9522.2302 
Action-Declaring Robot 3.3185 0.3827 8.6712 0.0000 27.6181 
Non-AI Group -0.8299 0.5912 -1.4038 0.1604 0.4361 
Rationale-Generation Robot:Non-AI Group -0.4436 0.8809 -0.5036 0.6146 0.6417 
Action-Declaring Robot:Non-AI Group 1.8693 0.7336 2.5481 0.0108 6.4835 

1|2 1.6768 0.2812 5.9620 0.0000 5.3482 
2|3 6.0473 0.4618 13.0936 0.0000 422.9598 

Table 22: OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 8.7179 0.7549 11.5480 0.0000 6111.4635 
Action-Declaring Robot 5.1879 0.6660 7.7897 0.0000 179.0894 
AI Group 0.8301 0.5912 1.4041 0.1603 2.2934 
Rationale-Generation Robot:AI Group 0.4434 0.8809 0.5033 0.6148 1.5579 
Action-Declaring Robot:AI Group -1.8695 0.7336 -2.5483 0.0108 0.1542 

1|2 2.5068 0.5200 4.8208 0.0000 12.2655 
2|3 6.8773 0.6364 10.8059 0.0000 970.0040 

Table 23: OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.8632 0.2799 -6.6555 0.0000 0.1552 
Numerical-Reasoning Robot -0.9546 0.2801 -3.4088 0.0007 0.3850 
Non-AI Group -0.3321 0.3304 -1.0053 0.3147 0.7174 
Action-Declaring Robot:Non-AI Group 1.0047 0.4542 2.2120 0.0270 2.7310 
Numerical-Reasoning Robot:Non-AI Group -0.1047 0.4626 -0.2262 0.8210 0.9006 

1|2 -1.7485 0.2186 -7.9976 0.0000 0.1740 
2|3 -0.2121 0.2011 -1.0547 0.2916 0.8089 
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Table 24: OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -0.8585 0.3631 -2.3643 0.0181 0.4238 
Numerical-Reasoning Robot -1.0593 0.3716 -2.8510 0.0044 0.3467 
AI Group 0.3321 0.3304 1.0053 0.3148 1.3939 
Action-Declaring Robot:AI Group -1.0046 0.4542 -2.2119 0.0270 0.3662 
Numerical-Reasoning Robot:AI Group 0.1047 0.4626 0.2263 0.8210 1.1104 

1|2 -1.4164 0.2748 -5.1533 0.0000 0.2426 
2|3 0.1200 0.2651 0.4528 0.6507 1.1275 

Table 25: OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.8631 0.2799 6.6555 0.0000 6.4440 
Numerical-Reasoning Robot 0.9085 0.2704 3.3604 0.0008 2.4806 
Non-AI Group 0.6725 0.3110 2.1623 0.0306 1.9592 
Rationale-Generation Robot:Non-AI Group -1.0047 0.4542 -2.2120 0.0270 0.3662 
Numerical-Reasoning Robot:Non-AI Group -1.1093 0.4502 -2.4641 0.0137 0.3298 

1|2 0.1147 0.1878 0.6106 0.5415 1.1215 
2|3 1.6511 0.2051 8.0509 0.0000 5.2125 

Table 26: OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 0.8585 0.3631 2.3642 0.0181 2.3596 
Numerical-Reasoning Robot -0.2008 0.3593 -0.5589 0.5762 0.8181 
AI Group -0.6725 0.3110 -2.1623 0.0306 0.5104 
Rationale-Generation Robot:AI Group 1.0047 0.4542 2.2120 0.0270 2.7310 
Numerical-Reasoning Robot:AI Group 1.1093 0.4502 2.4641 0.0137 3.0323 

1|2 -0.5579 0.2530 -2.2047 0.0275 0.5724 
2|3 0.9785 0.2566 3.8132 0.0001 2.6605 

Table 27: OLR Summary - Intelligence - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 0.9546 0.2801 3.4088 0.0007 2.5977 
Action-Declaring Robot -0.9085 0.2704 -3.3604 0.0008 0.4031 
Non-AI Group -0.4368 0.3244 -1.3467 0.1781 0.6461 
Rationale-Generation Robot:Non-AI Group 0.1047 0.4626 0.2263 0.8210 1.1104 
Action-Declaring Robot:Non-AI Group 1.1093 0.4502 2.4641 0.0137 3.0323 

1|2 -0.7939 0.2021 -3.9274 0.0001 0.4521 
2|3 0.7425 0.2016 3.6836 0.0002 2.1013 
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Table 28: OLR Summary - Intelligence - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.0593 0.3716 2.8510 0.0044 2.8844 
Action-Declaring Robot 0.2008 0.3593 0.5589 0.5763 1.2224 
AI Group 0.4368 0.3244 1.3467 0.1781 1.5477 
Rationale-Generation Robot:AI Group -0.1047 0.4626 -0.2263 0.8210 0.9006 
Action-Declaring Robot:AI Group -1.1093 0.4502 -2.4641 0.0137 0.3298 

1|2 -0.3571 0.2628 -1.3587 0.1742 0.6997 
2|3 1.1793 0.2693 4.3787 0.0000 3.2522 

Table 29: OLR Summary - Potential - Ref. Levels: Type Rationale-Generation Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.4669 0.2736 -5.3619 0.0000 0.2306 
Numerical-Reasoning Robot -1.4049 0.2855 -4.9210 0.0000 0.2454 
Non-AI Group 0.3139 0.3403 0.9226 0.3562 1.3688 
Action-Declaring Robot:Non-AI Group 0.3615 0.4584 0.7888 0.4303 1.4355 
Numerical-Reasoning Robot:Non-AI Group -1.2945 0.4854 -2.6667 0.0077 0.2740 

1|2 -1.7680 0.2168 -8.1558 0.0000 0.1707 
2|3 -0.1478 0.1969 -0.7505 0.4530 0.8626 

Table 30: OLR Summary - Potential - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.1053 0.3729 -2.9642 0.0030 0.3311 
Numerical-Reasoning Robot -2.6994 0.4039 -6.6836 0.0000 0.0672 
AI Group -0.3139 0.3403 -0.9224 0.3563 0.7306 
Action-Declaring Robot:AI Group -0.3616 0.4584 -0.7889 0.4302 0.6966 
Numerical-Reasoning Robot:AI Group 1.2944 0.4854 2.6666 0.0077 3.6489 

1|2 -2.0820 0.2966 -7.0203 0.0000 0.1247 
2|3 -0.4617 0.2792 -1.6534 0.0983 0.6302 

Table 31: OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.4668 0.2736 5.3616 0.0000 4.3354 
Numerical-Reasoning Robot 0.0620 0.2728 0.2271 0.8203 1.0639 
Non-AI Group 0.6755 0.3077 2.1950 0.0282 1.9649 
Rationale-Generation Robot:Non-AI Group -0.3614 0.4584 -0.7885 0.4304 0.6967 
Numerical-Reasoning Robot:Non-AI Group -1.6561 0.4643 -3.5668 0.0004 0.1909 

1|2 -0.3012 0.1880 -1.6022 0.1091 0.7399 
2|3 1.3191 0.2005 6.5806 0.0000 3.7401 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ehsan, Passi, Liao, Chan, Lee, Muller, & Riedl 

Table 32: OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.1053 0.3729 2.9641 0.0030 3.0201 
Numerical-Reasoning Robot -1.5941 0.3754 -4.2465 0.0000 0.2031 
AI Group -0.6755 0.3077 -2.1951 0.0282 0.5089 
Rationale-Generation Robot:AI Group 0.3616 0.4584 0.7889 0.4302 1.4356 
Numerical-Reasoning Robot:AI Group 1.6560 0.4643 3.5667 0.0004 5.2385 

1|2 -0.9767 0.2543 -3.8407 0.0001 0.3766 
2|3 0.6436 0.2510 2.5639 0.0104 1.9034 

Table 33: OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.4049 0.2855 4.9210 0.0000 4.0752 
Action-Declaring Robot -0.0620 0.2728 -0.2271 0.8203 0.9399 
Non-AI Group -0.9806 0.3456 -2.8371 0.0046 0.3751 
Rationale-Generation Robot:Non-AI Group 1.2945 0.4854 2.6667 0.0077 3.6491 
Action-Declaring Robot:Non-AI Group 1.6560 0.4643 3.5667 0.0004 5.2386 

1|2 -0.3631 0.2060 -1.7628 0.0779 0.6955 
2|3 1.2571 0.2162 5.8156 0.0000 3.5154 

Table 34: OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 2.6994 0.4039 6.6837 0.0000 14.8709 
Action-Declaring Robot 1.5941 0.3754 4.2466 0.0000 4.9238 
AI Group 0.9806 0.3456 2.8371 0.0046 2.6659 
Rationale-Generation Robot:AI Group -1.2945 0.4854 -2.6667 0.0077 0.2740 
Action-Declaring Robot:AI Group -1.6560 0.4643 -3.5667 0.0004 0.1909 

1|2 0.6174 0.2798 2.2063 0.0274 1.8541 
2|3 2.2377 0.2983 7.5020 0.0000 9.3718 

Table 35: OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -2.6153 0.3274 -7.9873 0.0000 0.0731 
Numerical-Reasoning Robot -4.2054 0.3661 -11.4866 0.0000 0.0149 
Non-AI Group -0.4175 0.3664 -1.1393 0.2546 0.6587 
Action-Declaring Robot:Non-AI Group 1.5455 0.4949 3.1227 0.0018 4.6903 
Numerical-Reasoning Robot:Non-AI Group -1.7585 0.7309 -2.4059 0.0161 0.1723 

1|2 -3.5627 0.3026 -11.7746 0.0000 0.0284 
2|3 -1.0644 0.2358 -4.5135 0.0000 0.3449 
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Table 36: OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Action-Declaring Robot -1.0698 0.3807 -2.8100 0.0050 0.3431 
Numerical-Reasoning Robot -5.9638 0.6824 -8.7391 0.0000 0.0026 
AI Group 0.4175 0.3664 1.1393 0.2546 1.5182 
Action-Declaring Robot:AI Group -1.5455 0.4949 -3.1227 0.0018 0.2132 
Numerical-Reasoning Robot:AI Group 1.7584 0.7309 2.4058 0.0161 5.8032 

1|2 -3.1452 0.3361 -9.3583 0.0000 0.0431 
2|3 -0.6469 0.2808 -2.3041 0.0212 0.5237 

Table 37: OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 2.6151 0.3274 7.9869 0.0000 13.6684 
Numerical-Reasoning Robot -1.5903 0.2993 -5.3142 0.0000 0.2039 
Non-AI Group 1.1277 0.3316 3.4009 0.0007 3.0884 
Rationale-Generation Robot:Non-AI Group -1.5454 0.4949 -3.1226 0.0018 0.2132 
Numerical-Reasoning Robot:Non-AI Group -3.3039 0.7154 -4.6183 0.0000 0.0367 

1|2 -0.9474 0.2107 -4.4964 0.0000 0.3877 
2|3 1.5506 0.2308 6.7170 0.0000 4.7143 

Table 38: OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 1.0698 0.3807 2.8099 0.0050 2.9147 
Numerical-Reasoning Robot -4.8941 0.6646 -7.3645 0.0000 0.0075 
AI Group -1.1281 0.3316 -3.4020 0.0007 0.3237 
Rationale-Generation Robot:AI Group 1.5456 0.4949 3.1229 0.0018 4.6909 
Numerical-Reasoning Robot:AI Group 3.3039 0.7153 4.6190 0.0000 27.2187 

1|2 -2.0755 0.2980 -6.9645 0.0000 0.1255 
2|3 0.4228 0.2591 1.6321 0.1027 1.5263 

Table 39: OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 4.2054 0.3661 11.4867 0.0000 67.0472 
Action-Declaring Robot 1.5901 0.2993 5.3136 0.0000 4.9043 
Non-AI Group -2.1759 0.6325 -3.4403 0.0006 0.1135 
Rationale-Generation Robot:Non-AI Group 1.7584 0.7309 2.4058 0.0161 5.8031 
Action-Declaring Robot:Non-AI Group 3.3039 0.7153 4.6189 0.0000 27.2188 

1|2 0.6427 0.2166 2.9667 0.0030 1.9015 
2|3 3.1410 0.2846 11.0345 0.0000 23.1261 
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Table 40: OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group 

Value Std. Error t value p value Odds Ratio 

Rationale-Generation Robot 5.9638 0.6824 8.7390 0.0000 389.0826 
Action-Declaring Robot 4.8940 0.6646 7.3643 0.0000 133.4890 
AI Group 2.1759 0.6325 3.4403 0.0006 8.8105 
Rationale-Generation Robot:AI Group -1.7584 0.7309 -2.4058 0.0161 0.1723 
Action-Declaring Robot:AI Group -3.3039 0.7153 -4.6189 0.0000 0.0367 

1|2 2.8186 0.5943 4.7431 0.0000 16.7534 
2|3 5.3169 0.6257 8.4981 0.0000 203.7525 
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