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Explainability of Al systems is critical for users to take informed ac-
tions. Understanding who opens the black-box of Al is just as impor-
tant as opening it. We conduct a mixed-methods study of how two
different groups—people with and without Al background—perceive
different types of Al explanations. Quantitatively, we share user
perceptions along five dimensions. Qualitatively, we describe how
Al background can influence interpretations, elucidating the differ-
ences through lenses of appropriation and cognitive heuristics. We
find that (1) both groups showed unwarranted faith in numbers for
different reasons and (2) each group found value in different expla-
nations beyond their intended design. Carrying critical implications
for the field of XAI, our findings showcase how Al generated expla-
nations can have negative consequences despite best intentions and
how that could lead to harmful manipulation of trust. We propose
design interventions to mitigate them.
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1 INTRODUCTION

As Al-driven systems increasingly power high-stakes decision-
making in public domains such as healthcare [25, 67, 76, 98], fi-
nance [107, 118],law [15, 151, 158], and criminal justice [62, 80, 136],
their explainability is critical for end-users to take informed and
accountable actions [143]. Issues concerning explainability lie at the
heart of Explainable AI (XAI), a research area that aims to provide
human-understandable justifications for the system’s behavior [2,
47, 61]. Explainability is not a new issue within AI [74, 115, 142],
but the proliferation of Deep Learning and Reinforcement Learning
based approaches—models of which are considered hard to inter-
pret, even by experts—has led to remarkable growth in techniques
that aim to “open” the AI opaque box [61].

While opening the opaque box is important, who interacts with
the box also matters. Implicit in XAl is the question: “explainable to
whom?” [45]. The who governs the most effective way of describing
the why behind the decisions. Getting a situated understanding
of how different who’s with different user characteristics matter
in XAl is thus important. To give an illustrative example: riders
(end-users) of a self-driving car have different user characteristics
than its engineers (developers). Riders, many of whom are not Al
experts, might not have the Al background that the engineers have
and thus have different explainability needs and goals.

One’s Al background is an impactful user characteristic in XAI
because there is often a disparity in this characteristic between
creators/developers and end-users, which can lead to usability fail-
ures and irresponsible design [123], even inequities [29]. Many
end-users are unlikely to have Al backgrounds comparable to the
creators of the technology [73]. Nonetheless, XAI developers tend
to design explanations as if people like them are going to use their
systems [112]. In fact, a majority of current deployments of XAI
technologies serve Al engineers instead of end-users [7, 91]. This
creates a consumer-creator gap, one between design intention and
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reality—how developers envision the Al explanations to get inter-
preted and how users actually perceive them. If we want to bridge
this gap, we need to understand how user characteristics, such as
Al background, impact it.1

In this paper, we share how and why one’s Al background (or
lack thereof) shapes their perceptions of Al explanations. Focusing
on two groups, one with and one without an AI background, we
found that (1) both groups had unwarranted faith in numbers, but
exhibited it for different reasons and to differing degrees, with
the AI group showing a higher propensity to over-trust numerical
representations and potentially be misled by the presence of it.
(2) Each group found explanatory values in different explanations
that went beyond the usage we designed them for. These insights
have potential negative implications like susceptibility to harmful
manipulation of user trust.

We found these insights through a mixed-methods study where
we probed for user perceptions of three types of Al-generated ex-
planations: (1) natural language with justification (explaining the
“why” behind the action), (2) natural language without justification
(describing “what” the action was), and (3) numbers that deter-
mine the agent’s actions (akin to “transparent” Al). We measure
perceptions along five dimensions: confidence, intelligence, under-
standability, second chance, and friendliness, which are grounded
in related work around HCI, HRI, and XAI [17, 34, 36, 47, 160]
and quantitatively share within- and between-group differences.
Through qualitative analysis, we examined how Al background
shaped each group’s interpretation of explanations and highlight
why their perceptual differences might exist.

We elucidate the why behind the group differences using the
conceptual lenses of heuristics (mental shortcuts) [75, 140] and ap-
propriation (users’ repurposing of a design) [40, 117, 138]. In light of
the findings, we share concrete design implications around mitigat-
ing the risks of overreliance on numbers which can potentially lead
to negative consequences such as over-trust on XAI systems. We
share broader lessons around how our insights can help re-imagine
Al education and mitigate potential harmful manipulation with
explanations. By bringing conscious awareness of the group differ-
ences to the human-centered design of XAI systems, we address the
Al creator-consumer gap by making the following contributions:

e We quantify user preferences (what) of three types of Al
explanations along five dimensions of user perceptions.

e We qualitatively situate how one’s Al background (or lack
thereof) influences the perception of the explanations.

o We elucidate why the group differences or similarities might
exist and interpret them through the conceptual lenses of
heuristics and appropriation.

o Using our findings, we identify potentially negative conse-
quences (like harmful manipulation of user perceptions and
over-trust in XAl systems) and propose mitigation strategies.

2 BACKGROUND

In this section, we review related work in the field of XAI salient
to the paper, highlight the need to attend to XAI’s sociotechnical

!By highlighting the creator-consumer gap in XAI, we do not mean to undermine the
diversity of stakeholders in the ecosystem. By calling attention to extreme ends, we
are highlighting the severity of the gap while fully acknowledging the ecosystem’s
diversity. See, e.g.: [60, 111, 116, 130].
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dimensions and human-centered perspectives, and discuss HCI
work studying how user background shapes users’ perception of
and needs for technology that motivated our work.

2.1 Explainable Al

While the origin of “explainable AI” can be traced back to expert
systems in the 1980s [150], the field of XAI has been undergoing a
resurgence due to the proliferation of complex Deep Learning mod-
els. Although there is a current lack of consensus on the meaning
of explainability and related terms such as interpretability [10, 135],
XAI work shares a common goal of making the Al systems’ deci-
sions or behaviors understandable by people [2, 47] Among other
dimensions to map the landscape of technical XAI approaches, the
field differentiates between methods to build directly interpretable
models and methods to generate explanations for opaque-box mod-
els [56, 95, 134, 169] (for a detailed overview see recent survey
papers [2, 10, 61]). While simpler models such as linear regression
and decision-tree are typically considered directly interpretable but
low-performing, recent work (e.g. [35, 165]) focuses on developing
new algorithms that produce “clear-box” models allowing “under
the hood” inspection without sacrificing performance.

In contrast, explanation generation methods—used in this paper—
aim to explain models that are not directly human-understandable
(e.g., deep neural networks). They are often post-hoc techniques [47,
96, 112, 134, 169] that could be applied after model building. Typi-
cally, these methods rely on distilling a simpler model from the in-
put and output [105, 134] or meta-knowledge about the model [47]
to generate explanations that approximate the model’s behavior.
While there is, by design, a loss of scrutability, these methods allow
the flexibility to make any model explainable, and thus have be-
come popular and been applied to transforming simulation logs to
explanations[157], intelligent tutoring systems [31], transforming
Al plans into natural language [156], and translating multi-agent
communication policies into natural language [9]. By privileging
accessible understanding over revealing “under the hood” model
mechanisms, explanation generation methods can be geared toward
non-Al experts. In this paper, we focus on a specific explanation
generation technique called rationale generation [47]—a process
of producing a natural language explanation for agent behavior
as if a human had performed the behavior and verbalized their
inner monologue. While explanations can be in any modality, ra-
tionales are natural language-based, making it especially accessible
for non-AI experts [47].

2.2 Towards Human-Centered XAI

There has been a growing recognition that XAI systems are of-
ten developed without an understanding of the recipients’ needs
and characteristics [45, 112]. For instance, many of the XAI tech-
niques created to support explainability needs during model de-
velopment [134, 139] may break down when it comes to serving
end-users with different needs [91]. It is imperative to follow human-
centered approaches to understand the “personal, social, and cul-
tural aspects” [71] of the recipients of Al explanations, especially
since a monolithic view of the who may inadvertently risk dehu-
manization [23, 81]. Given deployment in high-stakes settings, Al
systems designed without attending to the needs and values of
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different stakeholders may also risk marginalizing certain groups
or exacerbating existing inequities [11, 127].

The need for human-centered approaches in XAI has inspired
increasing efforts among HCI and CSCW researchers, following
the community’s long-standing tradition of designing and studying
explainable computing systems [48, 52, 84, 93, 133]. Studies em-
pirically evaluating XAI techniques in specific use contexts reveal
the divergent needs and preferences of users [7, 22, 27, 41, 65, 77].
For example, while data scientists might need multiple XAI tools
for a comprehensive understanding [65], simple explanations are
often sufficient for Al-novices [27]. User characteristics such as
cognitive load disposition [55] and general trust in AI [41] could
moderate how users perceive Al explanations. Some studies further
reveal potential drawbacks of Al explanations— how explanations
could impose undesired cognitive burden [1], create a false sense
of security and over-trust [55, 77], and how even placebic expla-
nations (devoid of justificatory content) can engender trust in Al
systems [49].

Researchers have begun to examine people’s cognitive process
of interpreting Al explanations, which could help us understand
atypical and misaligned user receptions of XAI Recent work high-
lights the dual-process of cognition when people process Al ex-
planations [20]. The dual-process theory [75, 132, 163] posits that
people’s cognitive processes follow two systems: System 1 pro-
cesses stimuli in a fast and automatic manner, whereas System
2 engages in deliberative and analytical thinking. System 1 often
relies on heuristics (rules-of-thumb or mental shortcuts) that can
be developed through past experiences. These heuristics, if applied
inappropriately, should be considered cognitive biases [75]. In XAI,
there is often an assumption that people mostly engage in analytic
System 2 thinking whereas there is growing evidence that people
mostly engage in System 1 thinking [20]. Negative consequences
of cognitive biases such as over-trust in XAI could be attributed
to a System 1 heuristic of associating explanations with Al com-
petence [29, 124]. One way to mitigate these biases would be to
use Cognitive Forcing Functions (CFFs)-interventions that disrupt
heuristic reasoning and promote System 2 analytical thinking [32].

Human-centered XAI calls for pluralistic explanation design—for
the who, not just the what, of XAI [45]. Recent XAI work has begun
to differentiate major categories of XAI consumers, from builders to
regulatory bodies [10, 38, 114, 153]. While this work is informative,
there is still a dearth of empirical insights and understanding of
the differences between these XAI users, and actionable design
guidelines to support them.

A generative approach towards pluralistic design of XAI, we
believe, is to develop a systematic understanding of how and why
users with different characteristics (e.g., with or without Al back-
grounds) form different perceptions (what) of XAI systems. Such
insights can refine our understanding of who the humans are in
XALI To our knowledge, this has not yet been systematically ex-
plored in the specific context of XAI Thus, our work adds to the
discourse by adding empirical insights through a systematic explo-
ration of two different who’s in XAI. Our work is also motivated
by broader research studying individual differences that impact
human-AlI interaction, as reviewed below.
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2.3 Individual differences in human-AIl
interaction

There is a rich history of transforming insights into how individual
differences impact technology perception into the design of person-
alized, accessible, and inclusive technologies. For example, there
is a large body of work on how various types of epistemic back-
ground, including computer literacy [39], digital literacy [12], and
numeracy [72], impact user competency to use computing systems
and ways to mitigate the competency gaps.

Recent work has paid attention to how user characteristics im-
pact human-Al interaction. For example, studies on human-robot [33,
88, 146] and human-agent interaction [90, 92] found that user’s
schema, whether an agent is seen as a utilitarian tool or a social
entity, leads to noticeable differences in interactions with and eval-
uations of the agent. Research around Al fairness has identified
various mediating factors such as users’ education level, fairness
criteria, and general trust in ML [41, 162]. In short, individual differ-
ences and user characteristics shape perceptions of Al systems and
should be appropriately understood and carefully accommodated
when designing them.

A commonly studied user characteristic in Human-Al interac-
tion is users’ knowledge about Al, often operationalized as Al pro-
gramming experience [119], building ML models [55], or type of
profession (e.g., data scientist) [65]. Recently Long and Magerko
provided a concrete definition of Al literacy [104] with a set of core
competencies to understand and use Al, and proposed design guide-
lines to mitigate the competency gaps. Recent work also examines
the implications of background in Al as a determining factor of
one’s role in an Al ecosystem. Motivated to “problematize the asym-
metric relationship between technical experts and users”, Cheon
and Su [28] highlighted the misalignment between the creators’
(roboticists’) vision of how consumers (end-users) interpret and use
the product-a salient theme in this paper as well. McDonald and
Pan [110] examined how CS students (likely to become AI develop-
ers) viewed ethical problems in Al, found substantial limitations,
and called for a closer integration of ethics education with technical
training.

Our understanding of how people’s Al backgrounds might im-
pact their perceptions of Al explanations also draws from a long
line of social science research on the relations between sensemak-
ing [166] and professional knowledge [59]. Passi and Jackson [128],
for instance, analyzed academic learning practices in the field of
data science to show how students start “seeing” the world dif-
ferently once they learn to work with algorithms and numbers.
Through ethnographic fieldwork, they highlight how having a com-
putational background enables students to gain actionable forms
of “data vision”—ways of seeing that allow them to approach and
analyze the world as data.

A person’s Al background (or a lack thereof)—a focal point of
this paper—in fact, directly impacts user perceptions. In a recent
ethnographic study [129], researchers found that data scientists
and business analysts perceived an Al system’s accuracy score dif-
ferently: business analysts saw the score as a measure of overall
performance (good vs. bad), while data scientists perceived more
granular insights into types of errors (false positives vs. false nega-
tives). As people learn specific ways of doing, it also changes their
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own ways of knowing—in fact, as we argue in this paper, people’s
Al background impacts their perception of what it means to explain
something and how.

Thus, the who questions are important, because people tend to
interpret technologies differently, leading to different usages of
those technologies [8, 18, 40, 117, 138]. The process of differential
interpretation, followed by different usage, has been called appro-
priation—e.g., usage patterns that go beyond the original designers’
expectations [83, 154]. Dix listed six principles of user appropriation
of technologies, including support for interpretive flexibility [40].
In this paper, we go beyond the insight that different people need
different explanations. Building on the discourse of user characteris-
tics in XAI [125, 149], we extend the literature through an in-depth
exploration of how and why interpretation and use of explanations
may differ between people with or without Al background.

3 STUDY DESIGN AND METHODS

We begin by sharing the research questions (RQs) followed by how
we operationalize key aspects of the research design.

e RQ1: "Quantitatively, how do people with different Al back-
grounds perceive different explanations given by Al agents?"

e RQ2: Qualitatively, how and why do differences in Al back-
ground result in different or similar perceptions of explana-
tions?

We address these RQs by conducting a within-subjects experi-
ment in which two groups of participants, with or without an Al
background, see three versions of Al agents (depicted as robots in
our study, Fig. 1) with different types of explanation. Using this
2x3 factorial design, we quantitatively measure the perceptions of
the Al explanations and compare the differences between the two
participant groups to address RQ1 (Section 4). Participants rank
their preferences and justify their choices through open-ended text
responses, which we qualitatively analyze to understand the under-
lying differences between the two groups to address RQ2 (Section 5).
Below, we unpack how we operationalize three things: (1) explana-
tion types, (2) user perceptions, and (3) backgrounds in AL

3.1 Explanation Generation Method and Types

We begin with the task environment to situate the design of the AI
agents. In the user study (task details in Section 3.4), participants
watched 3 robots (Al agents) carry out an identical sequence of
actions which differed only in the way that the AI agent "thinks
out loud” about its actions. The robots need to navigate through a
sequential decision-making environment—a field of rolling boul-
ders and a river of flowing lava-to retrieve essential food supplies
for trapped space explorers (Fig. 1). The robots thus need to ob-
serve a dynamic environment and think ahead in order to complete
an objective. We chose a sequential environment because the ex-
plainability of sequential tasks is under-explored, while prior XAI
work has explored non-sequential tasks (e.g., classification, cap-
tioning, etc. [161, 168, 170]). To solve the navigation problem, the
agent used a Reinforcement Learning (RL) algorithm called tabular
Q-learning [164]. Reinforcement Learning is both a promising tech-
nology for autonomous Al systems but also challenging from an
explanation perspective. Tabular Q-learning agents attempt to learn
the utility (called a Q-value for “quality” of the action) of different
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actions in different situations. Once learning is complete, the agent
makes decisions by picking the action with the highest Q-value. In
our case, the fully trained agent solved the environment, generating
an action trace that contains the sequence of steps needed to reach
the goal (food supplies) without failure. Recall that our study has 3
robots (Al agents) with different types of explanation. In order to
standardize their actions across experimental conditions, all robots
use the same trace. This means that the decision-making mechanism
underlying each robot is the same RL-based one. They only differ
in how they explain their actions.

Explanation generation: The three different types of explanation
are the within-subject variable in our study comparing perception
differences between the Al and non-Al groups. Based on a review
of related work, we chose three types of explanation that vary in
their justification quality and representation modality (e.g., tex-
tual, numerical). With these considerations in mind, we set up the
robots to express themselves in three ways: (1) natural language
with justification (explaining the “why” behind the action; Fig 1,
left), (2) natural language without justification (describing “what”
the action was, Fig 1, center), and (3) numbers that determine the
agent’s actions (akin to “transparent” Al, in this case showing Q-
values, Fig 1, right). We share the explanation mechanisms and the
attributes of the three robots below.

o The Rationale-Generating (RG) robot (Robot A in the study):
this robot “thinks out loud” in natural language rationales ex-
plaining the “why” behind the action (#1 above). Our genera-
tion approach is similar to prior work in XAl and HRI [34, 43]
where they use a neural machine translation (NMT) [106] ap-
proach to produce plausible rationales to explain sequential
behavior. We extend and adapt it to fit our sequential environ-
ment depicting a space mission. The RG robot’s expressions
aim to provide a functional understanding [102, 103] of the
actions by appealing to functions or goals of the agent (e.g.,
Fig 1, left). The RG robot has language and justification.

e The Action-Declaring (AD) robot (Robot B in the study): this
robot “thinks out loud” by stating its action in natural lan-
guage without any justification. It’s a neutral option that
simply states “what” the action is (#2 above). For instance,
it states “I will move right” as it moves right. These outputs
are generated from pre-fixed expressions that are triggered
based on the agent’s action.

o The Numerical-Reasoning (NR) robot (Robot C in the study):
this robot “thinks out loud” by simply outputting the nu-
merical Q-values for the current state with no language
component (#3 above). It is akin to a “transparent AI” where
we directly look inside the opaque RL-box by observing its
Q-values. Q-values can provide some transparency into the
agent’s beliefs about each action’s relative utility (“quality”).
However, Q-values themselves do not contain information
on “why” one action has a higher utility than another. Note
that we do not indicate that the numbers are Q-values in
our study nor indicate which value is associated with which
action.

While all robots “think out loud”, only the RG robot is designed
to have any justificatory quality—it is designed to provide a func-
tional understanding [102] of the “why” behind a robot’s action. The
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Figure 1: The three robots navigating the task environment and explaining their actions. From left to right, the robots and their
colors are: Rationale-Generation (in blue), Action-Declaring (in purple), and Numerical-Reasoning (in green). In the screenshot,
each robot is taking the same action, but they are explaining it differently. The explanation text accompanying each robot is
taken verbatim from the videos participants watched. To improve legibility, the text has been remastered to a higher resolution.

amongst the
boulders...
couldn't go
through...

need to wait
patiently for a
break between

other two conditions provide baselines that should be considered
as lacking justificatory qualities by design. The AD robot merely
states “what” the action was (a neutral option). While NR could, in
theory, provide a mechanistic understanding [103] of the "how”,
the unlabelled numerical format should make its meaning difficult
to access, if not impossible. While AD and NR do not have explana-
tory qualities by design, we do not know if or how participants
will interpret them. Through the experiment, we are interested in
whether and how these explanations invoke different perceptions
in the two groups.

3.2 Grounding the Dimensions of User
Perceptions

We now motivate & ground the dimensions of perceptions. To
scope dimensions (measures) of perceptions appropriate for our
use case, we engaged in an iterative filtering process—this process
included (1) a systematic review of related work around trust, ac-
ceptance, and engagement of autonomous or Al systems followed
by (2) informal interviews with six experts spanning HCI, Al, and
HRI. The aforementioned process informed the adaptation of the
following dimensions from classical technology acceptance models
and emerging work in HRI and XAI literature [17, 34, 36, 47, 160].

One of the core goals of XAI is to make Al systems more under-
standable. The improved understandability (or lack thereof) can
impact one’s trust or confidence in the system. In line with these
facets, we adapted understandability and confidence from TAM &
UTAUT [36, 160]. Prior work in HRI and AI shows that tolerance
to failure [37] and perceived capability of the Al system [82] are
impacted by how one perceives how intelligent the agent is; thus
we added intelligence to our list of user perceptions. Recent work in
autonomous system acceptance [144] shows that sociability factors
are core markers of user adoption [94]. We adopted the dimension
of friendliness or how friendly an agent appears because of its im-
pact on relationship development [68, 152] and partnership [16, 21],
which is essential for human-AlI collaboration [120-122]. Emerging
work in XAI and HRI [85, 89, 113, 141] suggests that how an Al
agent communicates failure governs future collaboration relation-
ships with humans. Thus, we add the notion of a second chance to
understand how past failures impact future collaboration chances
for XAI agents. In our study, participants ranked the robots along
these five perception dimensions and justified their choices using
open-ended text responses:

: 1.32998974
: -2.12671373
: -8.97841630
:-9.97611535
: 2.07117343

T will stand still

(1) Understandability: Based on their explanations, I found each
robot’s explanation of its actions understandable in the fol-
lowing order

(2) Confidence: Based on their explanations, I would rank my
confidence in each robot’s ability to do its task in the follow-
ing order

(3) Intelligence: Based on their explanations, I would rank each
robot’s intelligence in the following order

(4) Friendliness: Based on their explanations, I would rank the
friendliness of each robot in the following order

(5) Second chance: Each robot failed. Based on their explanations,
I'd rank my willingness to give another chance to each robot
in the following order

3.3 Participants: Operationalizing Al vs. non-Al
Backgrounds

We now address how we operationalized the user background in our
study. We acknowledge that Al background can be operationalized
in different ways. As a formative first step, we use a “high contrast”
approach where there is a stark difference between the groups. That
is why, we focus on people with and without an Al background.
This high-contrast approach provides a baseline understanding
and creates the foundation for future granular operationalizations
(e.g., years of Al experience). Below we share the motivation and
operationalization of each group formation.

3.3.1 The Al Background Group.

For the AI group, we recruited participants who are students en-
rolled in CS programs and taking Al courses. Granted there are
other ways to operationalize this group (e.g., recruiting Al prac-
titioners), as a first step, we chose students because it allows us
to explore how their AI coursework impacts the way they make
sense of explanations from Al systems. Since professionalization
starts with academic training [128], investigating the roots of one’s
Al background and the impact on how students make sense of Al
systems is important. In fact, as we show in this paper, especially
during their learning phase, Al students adopt reasoning artifacts
that impact their perceptions of explanations from Al systems in
very specific ways, which has core implications for the future of
XAl design (a point we elaborate in Section 6.3). Granted that not
every Al student will go on to build Al systems but with the prolif-
eration of Al systems in the workplace, a majority of these students
could become stakeholders residing on the creation or development
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end of the technology spectrum—as potential developers, design-
ers, and managers of Al-based systems. As potential creators of Al
systems, their perceptions matter in bridging the creator-consumer
gap in XAL

3.3.2  The Non-Al Background Group.

For the non-Al group, we recruited participants from Amazon Me-
chanical Turk (AMT). Carefully screened AMT participants have
been shown to be representative of consumer research [14, 58, 79],
which facilitates our goals of comparing potential creators (the
AT group) with potential end-users (the non-Al group). We ac-
knowledge that consumers too can and do have significant AI
backgrounds, which is why we systematically screen out people in
the non-Al group with any level of Al knowledge (using the screen-
ing process outlined in 3.3.3). Non-Al students, albeit an intuitive
comparison group, would be a subset of the larger consumer base
making them a good candidate for future granular investigations.
Multi-disciplinary research has also shown how AMT participants
can be reasonable alternatives to a university participant pool in
terms of data integrity [13, 63, 145]. Weighing the affordances and
limitations, AMT participants are thus a reliable and accessible
comparison group, one that reasonably satisfies our initial desire to
create a high-contrast comparison between potential creators and
end-users of Al systems.

Our operationalization of the two groups’ Al backgrounds aligns
closely with the human-grounded evaluation proposed in [42], in
which participants conduct controlled tasks to get a formative sense
of the affordances of the explanations. We acknowledge that there
are limitations to this experimental setup and that our insights
should be scoped accordingly (more in Section 6.3). However, as we
will see later, even with a carefully controlled task, we discover sur-
prising, non-intuitive insights about how different groups interpret
explanations.?

3.3.3  Recruitment and Screening Methods.

All participants received US $10 for their time. The AI group had 96
US-based participants (39% self-identifying females; rest as males)
taking 31.1 minutes on average for task completion. We recruited
undergraduate students enrolled in an Al course at a large public
research university located in the US. Typically taken in the 3rd
year, this is a keystone course in an Al degree specialization track,
implying that a significant number of students have expressed lon-
gitudinal interest in AL The course is taught using the most widely
adopted textbook (by Russell & Norvig [137] taught in over 1500
schools worldwide [6]) and using a widely adopted set of assign-
ments. While there is no guarantee that all students will be future
Al creators, the faculty believes that we can reasonably assume
that many students aspire to have careers in the development of Al
technology. In the course, students learn and implement many foun-
dational Al concepts; for instance, Markov Decision Processes and
Reinforcement Learning. Our study was deployed after students
had taken exams on these concepts. For the Non-AlI group, we re-
cruited participants from Amazon Mechanical Turk (MTurk) using
TurkPrime [97]. The non-AI group had 83 US-based participants

2 Practices for better data: We share some strategies that helped us gather high-quality
data and maintain rapport with our participants throughout the study (e.g., fair pay-
ment structure, active engagement participants, etc.) in the Appendix (A.1), uploaded
with Supplementary Material.
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(46% self-identifying females; rest as males) taking 29.8 minutes on
average for task completion.

Establishing group differences while controlling for shared
characteristics: We systematically screened both groups and en-
sured they are measurably different. Every participant had to pass
three parts of our screener: (1) A knowledge test on CS & Al (col-
laboratively developed with the course’s teaching staff to ensure
relevancy); (2) Self-reported knowledge levels in computer pro-
gramming and Al using two 5-point Likert-scales; (3) confirmation
of whether they have ever taken an Al class. The cut-off points
were decided through iterative piloting and consultation with the
teaching staff of the Al course. The non-Al group, by design,
should have “No knowledge” [= 1] in both programming and AI
along with no prior Al classes. Out of 5, the AI-group should score
[>= 4] (“moderate” knowledge or more) for (1) [knowledge test];
for (2) [self-reported AI knowledge], it should be [>= 3] (“some
knowledge” or more).

To establish that these two groups are measurably different, we
performed statistical tests. Mann Whitney U-test with Bonferroni
correction showed that the groups are different— for the AI knowl-
edge test, p < 2.2 x 10716; for the self-reported programming
knowledge, p < 2.2 X 10710, Thus, we were able to establish
two “high contrast” groups. For further details, including screener
questions, please refer to ?? in the Appendix, uploaded with Sup-
plementary Materials. Beyond the differences, we controlled for
factors such as age and education levels. All participants were adults
up to 25 years old, using smartphones and laptops every day. The
non-Al group self-reported an average education level of 4.95 (4=
“Vocational Training”, 5= “Some college/Associate’s degree”) while
the Al group’s average was 5. Mann Whitney U-tests showed that
the groups did not differ along age (p = 0.505) and education levels
(p = 0.146).

3.4 Procedure: Task Details

We now discuss study mechanics— after providing informed con-
sent, participants watched an orientation video outlining the sce-
nario. Participants were asked to imagine themselves as space ex-
plorers faced with a search-and-rescue mission involving robots.
They face a life-and-death situation where they are stuck on a dif-
ferent planet and must remain inside a protective dome. Their only
source of survival is a remote supply depot, which they cannot reach.
They must rely on autonomous robots, ones they cannot control, to
navigate through a field of boulders and a river of flowing lava to re-
trieve the essential food supplies (See Fig 1). Participants could only
see a non-interactive video stream of their activities through their
"space visors". This non-interactiveness aimed to heighten their
sense of lack of control (and thereby reliance on the robots). Since
the robots took identical actions during the task, participants were
asked to pay special attention to the only differentiating factor—
the way each robot explained its actions.

After orientation, participants watched 6 counterbalanced and
randomized videos showing the three robots succeeding and failing
to retrieve the essential supplies using identical sequences of actions.
To mitigate the effects of preconceived notions, we did not use any
descriptive names for the robots; instead, we introduced the robots
as “Robot A “Robot B,” and “Robot C” for the RG, AD, and NR
robots respectively. Participants, by design, had no idea about how
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each robot generated its expressions; for instance, participants were
not informed that NR’s numbers are Q-values. To them, it was just
another different way of explaining the actions. As mentioned in
3.1, the goal was to see how and if how people can make sense
of them even if they are unlabelled. After watching all the videos,
participants ranked the robots (1st, 2nd, and 3rd- no ties allowed)
along the five (5) dimensions of user perceptions highlighted above
(in 3.2). After ranking on a dimension, participants justified and
contextualized their ranking using a mandatory free-text response.

4 QUANTITATIVE RESULTS

We conducted within-group and between-group analyses. The
within-group analyses give a sense of which robot’s explanation
was preferred along each dimension of user perception. The be-
tween-group analyses tell us how the two groups are the same or
different when considering the robots across multiple dimensions
and set the stage for the qualitative analysis in Section 5. Taken
together, the quantitative results address RQ1 around quantifying
the relative perceptions and preferences of the two groups along
the five dimensions.

4.1 Within-group Comparisons

Figure 2 shows how each robot was ranked in each dimension. The
“violin chart” visualization makes similarities and differences easier
to distinguish. For example, large differences are exemplified in
the Friendliness rankings given by the non-Al group participants
(bottom, second left). A wide area at the top of the blue plot shows
that the Rational Generating (RG) robot was ranked first by most. In
contrast, the plot for the Intelligence dimension by the non-AlI group
(bottom, middle) shows that all robots received the first, second, or
third rank comparably similar number of times.

For each group, we conducted five Friedman tests [171] of dif-
ferences among repeated measures (one for each of the five dimen-
sions). We used the maximum-type (max T) implementation of
the Friedman test, which controls for the family-wise error rate
[171] to determine whether any preferences between robots were
detectable. To determine which robot was preferred, we used the
Wilcoxon-Nemenyi-McDonald-Thompson test [66] to make pair-
wise comparisons between the robots, for each participant group,
and within each dimension. The results are summarized in Table 1.

From the within-group analysis (Table 1 and Figure 2), we have
some notable insights: across each dimension, the Al-background
group unambiguously preferred RG to the other robots, particu-
larly over AD. However, the RG robot is not the unanimous winner
across each dimension for the non-Al group- here, participants
show no preference between RG and AD in 4 out of the 5 dimen-
sions (RG wins over AD in Friendliness). For the non-Al group, AD
wins over NR across all dimensions except for Intelligence, which is
a noteworthy dimension—-the non-AI group showed no preferences
between the robots, but the AI group felt NR was more intelligent
than AD. This is the only time where NR wins over AD, highlight-
ing an important point that we explore in our qualitative findings
(Section 5.1 and 5.2) around the Al group’s preference for numerical
representations.
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4.2 Between-group Comparisons

To detect group differences in the preference for the robots, we used
Ordinal Logistic Regression (OLR) [5, 109, 155, 159], an extension
of Logistic Regression when the response variable is ordinal. To
model a 3-level categorical variable (Robot Type), OLR requires us to
analyze two variables holding one as a reference (constant): in our
case, we analyzed AD and NR, holding RG constant. We investigate
the interaction effects as well as changes in reference levels in the
OLR analysis that reveals the relative impact in ranking the robots
between the groups. To investigate the effect of the dimensions,
we explore the interaction effects between Robot Type (RG, AD,
and NR) and the Participant Group (AI vs. non-Al) into the OLR
model. Changing the reference levels of Robot Type and Participant
Group allows us to isolate the interaction effects, which we interpret
similarly to [70]. A full list of OLR tables is provided in the Appendix
(Table 5- 10).

If we group everyone regardless of their Al backgrounds, we
find that Rankpg > Rankap > Rankngr. The odds of receiving a
higher ranking for the RG robot is 5.5 times that of the AD robot,
whose odds are 2.66 times that of the NR robot (see Tables 3 and 4
in the Appendix (A.3)).

Between the groups, there is no significant difference in ranking
RG Robot—it is always the top choice across all dimensions (Table
2, top row). However, the groups exhibit differences in their pref-
erences when it comes to AD and NR. The Non-AI group shows
more preference for the AD Robot (odds ratio= 1.986) while the
Al group shows more preference for the NR Robot (odds ratio=
1.0/0.465 = 2.15).

Table 2 also provides the odds ratio and the p-value for each
Robot Type per dimension. For the RG Robot, all of its p-values are
greater than 0.05 for each of the five dimensions resulting in no
significant pattern of preference between the groups. Conversely,
the p-values of AD Robot are all smaller than 0.05 meaning that,
when it comes to ranking the AD Robot, there is a significant
difference between the Non-Al group and the Al group. Moreover,
all odds ratios related to AD Robot in Table 2 are greater than 1.0,
indicating the Non-AI group shows a stronger preference for the
AD Robot than the AI group for each of the five dimensions.

Last, for the NR robot, the p-values related to Confidence, Second
Chance, and Understandability are also significant. The odds ratios
for these dimensions are less than 1.0 indicating that the Al-group
is more likely to rank the NR robot higher than the non-Al-group
on these dimensions. There is no significant difference between
the Non-AI group and the AI group when it comes to ranking the
dimensions of Friendliness and Intelligence.

4.3 Conclusions of Quantitative Analyses

Overall, while we find that Rankrg > Rankap > Rankng, there are
significant differences in the Al and the Non-Al ranking behaviors.
In other words: Al background does change perceptions of expla-
nations along the dimensions we identified. In particular, having a
background in Al correlates with having a greater preference for
the NR Robot over the AD Robot. While AD wins over NR in most
head-to-head comparisons, NR wins it on Intelligence for the Al
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Figure 2: Distributions of rankings for each robot, in each dimension, separated by participant group
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Table 1: Summary of p-values for pairwise comparisons, showing which robots were preferred.

Dimension Al background Non- Al background
Robot p-value Robot p-value

RGvs AD <0.001 RG vs AD 0.362

Confidence RGvsNR <0.001 RGvsNR <0.001
AD vs NR 0.869 AD vs NR 0.014

RGvs AD <0.001 RGvs AD <0.001

Friendliness RGvsNR <0.001 RGvsNR <0.001
ADvsNR <0.001 ADvsNR <0.001

RGvs AD <0.001 RG vs AD -

Intelligence RG vs NR 0.021 RG vs NR -
AD vs NR 0.011 AD vs NR -

RGvs AD <0.001 RGvs AD 0.083

Second Chance RGvsNR <0.001 RGvsNR <0.001
AD vs NR 0.902 AD vs NR 0.003

RGvs AD <0.001 RGvs AD 0.187

Understandability RGvsNR <0.001 RGvsNR <0.001
AD vs NR 0.002 ADvsNR <0.001

Note: Favored robot and significant p-values are in bold for each pairwise comparison.

group. The two groups are indistinguishable concerning Friendli-
ness. The next section helps us understand why these trends are
present in the quantitative results and their implications.

5 OQUALITATIVE ANALYSIS & FINDINGS

While quantitative analysis tells us what is different between groups,
qualitative analysis sheds light on how and why those differences

manifest, addressing RQ2. Quantitative analysis puts RG as the
clear winner; however, as we show in this section, the story is more
nuanced and interesting, especially the underlying reasons behind
the group differences between AD and NR. Below we describe the
process of our qualitative analysis before moving on to the findings.
The qualitative data was coded according to principles of grounded
theory analysis [24, 147]. Coding and analysis of the qualitative
data were done by the first and second authors in two stages, each
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Table 2: Robot Preference Summary across Dimensions (Non-Al [baseline] vs. AI)

RG Robot AD Robot NR Robot
Dimension Odds ratio  p-value Oddsratio p-value Oddsratio p-value
All dimensions 0.855 0.323 1.986 < 0.001 0.465 < 0.001
Confidence 0.971 0.930 2.003 0.026 0.487 0.029
Friendliness 0.280 0.051 2.827 0.017 0.436 0.160
Intelligence 0.717 0.315 1.959 0.031 0.646 0.178
Second Chance 1.369 0.356 1.965 0.028 0.375 0.005
Understandability  0.659 0.255 3.088 0.005 0.114 0.006

Note: Odds ratios > 1.0 indicate the non-Al group prefers the robot more than the Al group.

consisting of multiple rounds of iteration. In the first round, the
authors separately performed coding using in-vivo codes, which
involves generating codes from the data (e.g., using participant
phrases such as ‘the robot knew what it was doing’ and ‘easier to
understand’ as codes). Through discussion, the authors generated
a merged open coding scheme. In the second round, the authors
analyzed the data using axial codes. Axial coding involves finding
connections between open codes and classifying them into different
categories (e.g., potential actionability of numbers). In the last step,
the authors analyzed the different sets of axial codes, unified them
into high-level themes, and consolidated them into selective codes.

After this, we grouped the data along the two groups (Al vs.
non-Al) and our five (5) analytic perception dimensions that we
motivated in Section 3.2 and also used for quantitative analysis (con-
fidence, friendliness, intelligence, second chance, and understandabil-
ity), allowing us to compare our findings across dimensions and
groups. Finally, based on the grounded theory heuristic of “constant
comparison” [57, 147], the authors frequently compared and con-
trasted axial codes across perception dimensions to tease out the
similarities and differences between the different reasonings used
by the AI and non-AI groups to make sense of the explanations
provided by the three robots.

Below, we report on the most salient themes (selective codes)
from our analysis. In particular, we showcase (1) how irrespective
of their Al background both groups exhibited unwarranted faith in
numbers for different reasons and (2) how each group saw explana-
tory value in explanations that were not designed with justificatory
qualities. For each theme, we highlight distinct categories of rea-
soning (axial codes) used by the groups to justify their choice of
robots across the different perception dimensions.

5.1 Unwarranted Faith in Numbers

Participants in both groups had unwarranted faith in num-
bers. However, their extent and reasons for doing so were
different. On the one hand, Al group participants often ascribed
more value to numbers than was justified. On the other hand, some
non-Al group participants believed that numbers signaled intelli-
gence even if participants could not capture the numbers’ meaning.
Below we highlight two major ways in which participants mis-
placed faith in numbers.

The mere presence of numbers was associated with an algo-
rithmic thinking process in the robot even when the meaning

of numbers was unclear. Both groups exhibit this perception of
algorithmic thinking. We will begin with the AI group—this group
ascribed higher-order cognitive abilities to the robot with numeri-
cal representations. Between AD and NR, the Al group found AD
more understandable (Table 1) but deemed the NR robot as the
more intelligent of the two (the only time NR wins over AD across
all dimensions— (Table 1)). It seems contradictory that the Al group
found the less understandable robot to be more intelligent!—the main
reason for this is that the presence of numbers fostered the “assump-
tion that [the NR robot] uses some sort of [an] algorithm” (A50)
in the Al group. The perception of “under-the-hood math, boosted
[NR’s] trustworthiness” (A49). Some explicitly compared AD and
NR robots and concluded that the mathematical representation
demonstrated a method for the NR robot’s behavior:

“With [the NR robot], while I did not understand its
methodology, I could see that it was using some math-
ematical calculations to determine which way to move.
[...] With [the AD robot], I could not see any method-
ology or signs of decision-making” (A23).

A small minority in the Al group indeed figured out that “the
numbers 0-4 represented different actions, and [NR] would choose
the action with the highest numerical value” (A23). An even smaller
minority even guessed the numbers’ correct meaning—a “utility
function and reward systems” (A64). despite the fact that the num-
bers were unlabelled. These participants projected meaning on the
numbers, lending further credence to the role of data vision [59,
128].

What is surprising is their faith in numbers arose even when Al
group participants did not “fully understand the logic behind [...NR
robot’s] decision making” (A43). The Al group seems to have
followed heuristic reasoning that associates mathematical
representations with logic and intelligence, e.g.: "logic must
have been derived from a formula, [...which is] intelligent” (A54), or
“Math [...had] an aura of intelligence" and “exact values” made the
NR robot “feel smarter” (A16, A77, A75). This perception of logical
thinking engendered unwarranted trust and made the NR robot
seem like it "should theoretically succeed more than the others,
making him more intelligent” (A37). The linkage between perceived
logical thinking and higher cognitive abilities can elucidate why the
Al group prefers NR over AD when it comes to Intelligence (Table 1).
A few participants even claimed that they could “actually see the
math that [the NR robot] was making decisions off of, [...making it
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feel] more real” (A9). In fact, to them, it appeared as if the NR robot
“clearly had an algorithm that worked [...and] seemed to know what
it was doing” even if they “did not know what it was going to do in
the future” (A91, emphasis added).

Participants with AI background also viewed numbers as
potentially actionable even when their meaning was unclear.
Actionability refers to what one might do with the information to
make sense of the robot’s behavior—“debug its faulty behavior, or
predict its future behavior” (A76). While many highlighted that
they could not “make sense of numbers right now, [they believed
that] in principle, [they] should be able to act on them in the future”
(A39). The potential explanatory value in numbers was better than
the vacuous statements of AD: “[The NR] robot gave mathematical
results as explanation while [the AD robot] gave no explanation”
(A19).

Many participants connected their Al background to their abil-
ity to work with numbers. They mentioned how their current “Al
course [helped them] to understand what [NR robot] is doing and
what the numbers might mean” (A52). Some even highlighted that
if they “had a pen and some paper, writing down information,
[they] could gleam [sic] some information based off the [numer-
ical] patterns” (A28). But how actionable were NR’s numbers in
actuality? The numbers were Q-values, which only indicate the rel-
ative strength of one action versus the others. Specifically, Q-values
indicate the agent’s belief that certain actions lead to greater or
lesser future reward, affording some amount of explanatory power.
However, they cannot indicate why the agent has come to believe
that one action is better than another—this information is not re-
tained by the agent nor conveyed through the numbers. This did
not deter the Al group from deferring to the authority of numbers.
After all, while all the robots used the same Al algorithm to make
decisions, the NR robot’s expressions seemed most ‘Al-like’.

These insights can help us understand why, even though both
groups have misplaced faith in numbers, the Al group shows a
higher inclination towards numbers (as evidenced in the quantita-
tive results (Section 4.1, Table 1), the only time NR wins over AD
happens when the Al group judges Intelligence).

Unable to access their meaning, the non-Al group associ-
ated numbers with the presence of a higher, more intelligent
expression that, they argued, could only come from an intelligent
agent. Since the NR robot was “communicating in a numerical lan-
guage that’s too hard to understand”, the numbers had a "mystery
and aura of higher intelligence" (NA22, NA33). The “language of
numbers”, because of its “cryptic incomprehensibility,” signalled
higher-order thinking (NA6, NA1): “Because I could not understand
[NR’s] output, I deemed it to be intelligent” (NA30, emphasis added).

This can explain why the non-Al group showed no preferences
between AD and NR when judging Intelligence, despite favoring AD
over NR across all other dimensions (Table 1). To them, numbers
signaled “precision”—an important quality of intelligence (NAS, 16,
21, 30, 34). Numbers gave the impression that the NR robot “was
more technical” than others—its “precise numerical explanations”
resulted from it “calculating everything” (NA53, NA21, NA12). To
these participants, “anything that uses pure numbers is going to be
more intelligent” because “numerical outputs are likely to be more
precise [...] whereas textual representations involve a degree of
uncertainty and subjectivity” (NA41, NA30). Such perceptions point
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to how the modality of expression—numeric vs. textual—impacts
perceptions of explanations from Al agents, where we see projec-
tions of normative notions (e.g., objective vs. subjective) in judging
intelligence.

5.2 Unanticipated Explanatory Value

As designers, we had specific goals behind each robot’s mode of
expression. As discussed in Section 3.1, RG was the only robot
designed to have the justificatory quality to explain the why be-
hind the robot’s actions, while AD and NR (as baselines) should
be considered as lacking justificatory qualities by-design. RG won
the overall competition (as discussed in Section 4.2), but what was
surprising was that both AI and non-AI groups found unan-
ticipated explanatory value in AD’s declarative statements
and NR’s numerical representations. As we will show below,
qualitative analysis revealed that the two groups had different ex-
planatory intent (what they wanted to do with the explanation),
which was closely associated with their Al background. On the one
hand, the non-AI group found affirmatory value (confirmation of
stable performance) in AD’s statements. On the other hand, the Al
group overly ascribed diagnostic value (debugging in case of failure)
to NR’s numbers even when they could not make sense of them.

For the non-Al group, their desire for affirmation — confirm-
ing the action without necessarily explaining it— played a key part
in finding value in AD’s explanations. The affirmatory value mani-
fests most clearly in their comparison between AD and NR in the
dimensions of Confidence and Understandability. For both dimen-
sions, the non-Al group preferred AD over NR (Table 1). Recall
that AD merely declared its action, stating the what, not the why.
Despite this, the non-Al group found value in the confirmatory
information because there was alignment between what AD was
doing and saying. It showed that “[AD] is consistent and nothing
crazy is going on where it says it went right but in actuality, it went
down” (NA34). For both dimensions, the non-Al group attributed
greater value to AD’s declarative statements (compared to NR’s
numbers) because it “at least said what its movements were going to
be" (NA7). Its “brief,;” “un-embellished, and “easier to understand"
language that got "straight to the point" boosted its understandabil-
ity (NA14, NA23, NA28, NA7). In fact, AD’s “just the facts” (NA38)
declarative and succinct nature were signs of confidence itself. It did
not need to say much because “it knew what it was doing,’—evident
in its lack of “any hesitation" and "business-like [style] focused
on performing the task at hand" (NA17, NA41, NA11). In contrast,
NR’s numbers were inaccessible to the non-Al group, thereby in-
actionable and valueless. In short, when we designed AD, there was
no intention of offering value through confirmation; yet, through
their explanatory intent of affirmation, the non-AI group
found value in AD’s explanations by interpreting them as
signals for stable system performance.

The AI group overly ascribed diagnostic value in NR’s
numbers even when their meaning was unclear—they felt
NR’s numbers had “diagnostic information that can be used to
debug [the robot] in case of failure” (A39). The explanatory intent
of diagnosis is a consequence of the Al group’s faith in numbers and
related to their perceived actionability—what one might do with the
information (as discussed above in 5.1). Analysis of the open-ended
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text responses for the perception dimensions of Intelligence, Second
Chance, and Confidence exhibits this explanatory intent most clearly.
Recall that the Al group preferred NR over AD for Intelligence and
felt there were no differences between them for Second Chance
and Confidence (Table 1). This is in contrast to the non-AlI group
that preferred AD over NR for both of these dimensions. Al group
members perceived NR’s numbers to have more explanatory value
simply because they felt they could do “more with numbers” (A30)
in “cases of failure and troubleshooting”(A78).

For Intelligence, NR’s numerical representation and "exact val-
ues" made it appear more “valuable” than AD’s “inert” statements
(A23, A51, A42) . Even when it came to giving NR a second chance,
numbers helped because the NR robot appeared to be “trying very
hard since it provided [...] mathematical evidence of its moves”
(A79).“Math-based decisions” (A2) made the NR robot appear “more
reliable” (A8, A42) and worthy of another chance. Numbers in-
spired confidence because they signaled the existence of a "con-
crete methodology"—-"the higher the number, the more optimal
the move" (A66, A67), which added to the perceived explanatory
value in them. Moreover, if there were a method, an algorithm, or a
formula behind the NR’s actions, the Al group participants believed
that they could deduce it using the numbers:

"[NR] returned the most amount of data, and if I were
to understand what that numbers mean, it’d be the most
useful one to debug on repeating runs to analyze what
it is doing and why" (A91, emphasis added).

The Al group participants connected their background to a desire
to troubleshoot and repair things. Numbers, they felt, were more
manipulable than language, catalyzing over-ascription of diagnostic
value to them:

“As an engineer, | want to fix things. Numbers are
concrete and objective, language is not. But you can
manipulate numbers [...] With the Al stuff I'm learn-
ing, I can use it to diagnose [NR].” (A49)

Thus, we see, what Eriksson called the "seductive allure" [51,
101] exhibited through the perception of numbers in the AI group.
This diagnostic intent showcases how the Al group over-ascribed
explanatory value in numbers, highlighting how its unwarranted
faith in numbers can manifest in potentially negative ways—a point
we discuss in Sections 6.

In summary, first, both groups had undue faith in numbers for
different reasons and to different extents. Both groups associated the
presence of numbers to signal the presence of algorithmic thinking
even when the meaning of numbers was unclear. The AI group
seems to have employed heuristic reasoning, connecting mathemat-
ical representations with the notions of logic and intelligence. The
non-Al group, lacking access to their meaning, correlated numbers
with the existence of a higher, more intelligent expression. Second,
both Al and non-AI groups found unanticipated explanatory value
by appropriating AD’s declarative statements and NR’s numerical
representations. The non-Al group had an explanatory intent of
affirmation (confirming the action without explaining it). This en-
abled them to find value in AD’s explanations by interpreting them
as signals for stable system performance. Notably, the AD robot
was not designed to offer value through confirmation. The Al group
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overly ascribed diagnostic value in NR’s numbers for potential de-
bugging even when their meaning was unclear. The explanatory
intent of diagnosis is a consequence of the Al group’s unwarranted
faith in numbers and related to their perceived actionability—what
one might do with the information (as discussed above in 5.1).

6 DISCUSSION & IMPLICATIONS

In this section, we discuss possible causes of the observed differ-
ences between the groups, then discuss implications for designing
XAI systems by accounting for users’ background differences to
bridge the Al creator-consumer gaps, and then the broader implica-
tions for explainable and responsible Al

6.1 Discussion: User background impacting
perception of XAI

We highlight two ways to interpret the potential causes be-
hind group differences— cognitive heuristics and appropria-
tion. First, we use the notion of heuristics based on the dual-process
theory (reviewed in Section 2.2) to understand how unwarranted
faith in numbers (Section 5.1) can emerge from different lines of
thinking affected by one’s AI background. Second, we incorporate
the lens of appropriation to the unanticipated ways in which people
find explanatory value (Section 5.2).

Heuristics and Faith in Numbers: Recent work (reviewed in 2.2
like [20, 55]) has highlighted that while XAl is often developed with
an implicit assumption that the recipient will process each expla-
nation through analytical System 2 thinking (from dual-process
theory [75]), in reality people are more likely to rely on System 1
thinking by invoking heuristics—rules-of-thumb or mental short-
cuts, which leads to biases and errors if applied inappropriately [75,
132, 163].

The notion of heuristics can help us understand the potential
reasons behind the two groups’ different faith in numbers. On the
one hand, the Al group seemed to have an instinctual response
to numerical values; they assumed that the numbers possessed
all the information needed to manipulate, diagnose, and reverse
engineer. There appear to be heuristics that associate numbers with
logical intelligence, which could potentially be acted upon (e.g.,
through diagnosis). Such heuristics are likely formed and validated
from their past experience working with numbers and algorithms.
This heuristic is risky because, as we noted in Section 3.1, the
numbers are Q-values and do not allow much actionability beyond
an assessment of the quality of the actions available. We return to
this risk and highlight design implications to address this in the
next subsection.

On the other hand, lacking the AI background, some in the
non-Al group seemed to have different heuristics where their very
inability to understand complex numbers was associated with the
presence of a higher-order intelligence. The non-Al group also lacks
the requisite Al background to potentially access and deliberatively
think through NR’s numbers (System 2 thinking). Thus, we see how
different heuristics, tied to one’s Al background, can lead people
to the same outcome—faith in numbers. Note that these heuristics
are not an exhaustive list, but a starting point to understand how
group differences connect to their Al backgrounds.
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Appropriation and Unexpected Explanatory Value: A second lens
for understanding why participants found explanatory value in un-
expected places is that of appropriation. As we shared in Sections 2.3
and 5.2, appropriation happens when end-users interpret and use
technologies in ways not envisioned by designers [40, 117, 138, 154].
People do not passively absorb information—they interpret it, of-
ten processing it in unanticipated ways. This is what happened to
AD’s declarative statements and NR’s numbers. Driven by different
explanatory intents, each group appropriated the explanations in
unanticipated ways. These different appropriations were, in part,
a function of each group’s Al background that led participants to
develop their own sense of how they can and cannot use explana-
tions. What is striking is that the appropriation took place even in a
controlled experiment like ours where the participants were not ex-
plicitly asked to take actions based on explanations. Even in passive
interactions (robots engaged in one-way communication), partici-
pants envisioned themselves using the explanations in hypothetical
scenarios. On the one hand, the Al group’s intent of diagnosis led
many to envision scenarios where they would troubleshoot the
robot. As a result, they might have misplaced or over-placed di-
agnostic value in NR’s numbers—even when they could not fully
understand them. On the other hand, for the non-AI group, NR’s
numbers are inaccessible, thus in-actionable. Their affirmatory in-
tent drives them to find value in the confirmatory statements of
AD, appropriating it as a signal for stable system behavior.

Our discussion extends the literature around individual
differences and heuristics-based processing of XAI [20, 55,
124] in two ways: first, we explicitly highlight what heuristics
people might use, how their Al background influences their think-
ing, and posit the why (underlying reasons) behind them. Second,
we add the lenses of appropriation to the conversation, which has
implications on user agency in design (points we touch on below).
For both, we connect it to an important user characteristic—one’s
Al background.

Both points around heuristics and appropriation highlight an
important yet overlooked point around the duality of explanations.
Explanations are both products and processes [99]. The product-
centered view, common in psychology and XAI, often ignores the
essential processes through which people make sense of explana-
tions. However, the sensemaking process is as important as the
explanation itself [100, 167]. Recent work calls for guiding the
process of understanding explanations, especially for non-Al ex-
perts [29]. By investigating both AT and non-Al groups, our work
extends the current XAl discourse- it directly speaks to the duality
of explanations by focusing on both products (types of explanations
from 3 robots) and processes (how one’s Al background influences
the interpretation of explanations).

Taken together, these findings reveal that the design and use of
Al explanations is as much in the eye of the beholder as it is in the
minds of the designer— the user’s explanatory intent and common
heuristics matter just as much as the designer’s intended goal. Users
might find explanatory value where designers never intended to
be and use them based on their explanatory intent. Contextually
understanding the misalignment between designer goals and user
intent is key to fostering effective human-AI collaboration, espe-
cially in XAI systems [54, 114]. We demonstrated how different
groups find meaning in different places—even when the meaning is
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misplaced. The ‘ability’ in explain-ability depends on who is look-
ing at it and emerges from the meaning-making process between
humans and explanations.

While the groups differed in other aspects, both preferred
the RG robot because of its command of language exhibited
through explanatory power (depth of reasoning) and variety
(style and length). RG appeared to have a “good command of
English deep enough to get at the why” (A29). Moreover, they found
RG’s communication to be relatable and exhibited a personality
even if the interaction was passive. It appeared to “include you
in its thought process,” making you feel “as if you could talk to
it” (NA11, A46). With RG robot, many felt “like you are having a
conversation with a friend, analyzing some problem, and making
the best decision for this problem.” (NA36) As RG navigated the
terrain, its expressions included phrases like ‘T'm not just winning
at life, 'm biwinning!’, which participants found humorous and
engaging. Since participants felt RG was “the most humanlike in
its explanations” (A35), they attributed emotional intelligence to it,
which garnered empathy and support. Most people “rooted for [the
RG robot because they] liked its personality, felt connected to it,
and wanted it to succeed.” (NA27).

Given our findings, it might be tempting to conclude that RG-
style explanations should be used at all times. This is where the
who in XAI comes in— the who scopes how to show the why. If
the explainability needs of the user are to achieve functional under-
standing [102], then RG-style explanations are strong contenders.
RG-style explanations are also suitable if the goal is to make AI
explanations accessible to non-Al experts [47]. However, if the goal
is to provide a mechanistic understanding [103, 126], then RG-style
explanations will not be actionable. Mechanistic understanding
can be useful for debugging purposes. Here, a hybrid style could
work where the functional understanding of RG is contextualized
with the mechanistic affordances from Q-values in NR. Imagine
an explanation format where the user can “unfold” the associated
Q-values and ground the natural language explanation. There are
engineering and resource costs for RG-style explanations. They
need to be trained with human explanations, which can be a chal-
lenging data collection exercise for more complex environments.
The full treatise of explanation design is beyond the scope of this
paper; however, focusing on the needs and characteristics of the
“who” is a good starting point.

6.2 Implications: Designing XAI for background
differences

Here, we discuss the implications for designing XAl systems that ac-
commodate users’ Al background differences. We focus on mitigat-
ing the risks of over-reliance on numbers which can potentially lead
to negative consequences such as over-trust on Al systems [131].
Moreover, as those in the AI group are likely to be on the creation
end while those in the non-AI group are likely to be towards the
consumption and interaction end, our results have implications
for bridging the Al creator-consumer gaps by bringing conscious
awareness of the group differences to the design of XAI systems.
Our discussion around heuristics carries design implications
for both groups. We noticed how the AI and non-Al groups utilize
different heuristics (mental short-cuts) in System 1 (fast, automatic)
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thinking to ascribe misplaced faith in them. Shifting people’s think-
ing from System 1 to System 2 (slow, deliberative) is not only an
active area of research but is also a challenging one [26, 86]. There
can be two actionable ways to tackle biases resulting from cognitive
heuristics— first, locally at the time of decision-making, we can use
Cognitive Forcing Functions (CFFs) [32] (prompts, delays, etc.) that
can interject the heuristic reasoning, potentially allowing the per-
son to engage in deliberative analytical thinking. Second, globally
for future decision-making, we can utilize metacognitive strategies,
often called cognitive forcing strategies, that include simulation
training, increasing awareness of potential pitfalls of heuristics, etc.

To potentially prevent over-trust in numbers, we can do design
interventions at the local and global levels. At a local design level,
we can introduce CFFs that can break instinctive thinking patterns
and promote mindful ones. What if the AI group members were
prompted to reflect on their instinctive thinking through a combi-
nation of prompts and multi-modal explanations (blend between
RG and NR)? Situating numbers in the context of language and vice
versa can act as a CFF that could prompt the Al group members to
reflect deliberatively (using System 2) and realize the limited nature
of the numbers. At a global level, we can introduce simulation train-
ing that provides counterfactual (what-if) scenarios highlighting
cases where numbers from the robots are erroneous or faulty (vs.
correct Q-values). For the non-Al group members who associate
the opacity of numbers with higher intelligence, we can introduce
scenario-based examples that explicitly highlight how indecipher-
able numbers can also be gibberish and useless. The goal here is
not to eliminate heuristic reasoning but to mitigate blind faith in a
certain modality of explanation. Exposure to these scenarios can
facilitate long-term calibration of trust in numbers.

Given the negative impact of cognitive biases, it might be tempt-
ing to exclusively design explanations that only promote System
2 thinking. This is also risky because it forces users to constantly
engage in deliberative thinking, their satisfaction suffers due to
higher cognitive friction [20]. We need to strike a balance between
System 1 and 2 thinking to appropriately calibrate trust. To do so,
we can bridge existing work in non-XAI settings (e.g., balancing
System 1 and 2 thinking in clinical decision-making) and translate
them to XAI use cases in a contextually relevant manner.

The appropriation of explanatory intent we saw from both
groups also has important design implications. Our findings high-
light that users will appropriate explanations regardless of careful
design. This is not a bad thing. Given dynamic user goals and needs,
it is impossible to preemptively exhaust all the interpretations. Our
goal then should be to support, not control end-users by providing
resources that mitigate improper or harmful appropriations.

To aid appropriation-aware design in XAl, an operationally vi-
able path is to leverage emerging work on Seamful XAI [44] that
translates the principles of Seamful Design from Ubiquitous Com-
puting to XAl Instead of hiding the inherent Al imperfections
through seamless design, Seamful XAI turns imperfections into op-
portunities for explanations while enhancing user agency through
appropriation. Simply put, "seams" are mismatches or gaps between
what we ideally design the Al to do and how it functions when
used in reality. Through a concrete decision process, Seamful XAI
uses adversarial thinking like red-teaming to proactively find seams
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and harness them to improve XAI. For instance, what if the lend-
ing officer of an Al-based lending system knew that the AI was
trained on North American data but deployed in South Asia (the
seam here is a data drift and a context shift)? The knowledge of
the mismatch (seam) could help calibrate how they appropriate the
AT’s output. For instance, they might override the AT’s output if it
rejects the loan application of a wealthy farmer whose income is
non-traditional compared to the income sources in the dataset. In
our case, if the Al group were made aware of how little explanatory
power Q-values have, it might have prevented them from ascribing
diagnostic value to NR’s numbers. Last, a key part of designing for
appropriation is learning from appropriation. Most XAI systems,
including ours, are one-way systems that do not allow for user
feedback. Feedback loops from users can highlight how, when, and
why users are needing to appropriate XAI outputs and ensure the
appropriation is appropriate.

6.3 Broader lessons: Explainable and
Responsible Al

Our work has broader implications beyond the immediate design
of XAI systems, especially around the discourse of responsible
and explainable Al Below, we share three main takeaways—how,
despite best intentions, unanticipated negative consequences can
emerge from Al-generated explanations & what we can do about it,
how our insights can help re-imagine Al education, and how our
insights can reframe how we operationalize Al adoption.

First, our findings illustrate how despite best intentions, unsus-
pecting negative effects of Al-generated explanations can emerge (e.g.,
unwarranted faith in numbers in 5.1). This is an instance of an
Explainability Pitfall (EP)—“unanticipated negative downstream
effects from adding Al explanations that emerge even when there is
no intention to manipulate anyone” [46]. EPs are different from dark
patterns, where there is an intent to deceive the user [19]. Recall
that in our study design, we had no intention of deceiving anyone.
While dark patterns have been explored in XAl (e.g., [30, 50]), EPs
are severely under-explored. This paper sheds important light on
this under-explored space.

For mitigation strategies, given EPs are often a consequence of
uncritical acceptance [46], we can shift our explanation design phi-
losophy to emphasize critical reflection (as opposed to acceptance)
during interpretation of explanations. This aligns with Human-
centered XAI work that advocates engendering trust via reflec-
tion [45]. Langer et al. [87] point out that people are likely to accept
explanations without conscious attention if no effortful thinking
is required from them. In Kahneman’s dual-process theory [75]
terms, this means that if we do not invoke mindful and delibera-
tive (system 2) thinking with explanations, we increase the likeli-
hood of uncritical consumption. To trigger mindfulness, Langer et
al. [87] recommend designing for “effortful responses” or “thought-
ful responding.” We can utilize design interventions highlighted
in Sec. 6.2 such as Cognitive Forcing Functions and using Seamful
XAI strategies.

Second, our insights call attention to wider challenges with aca-
demic practices of Al learning. Al students exhibited unwarranted
faith in and preference for numbers even when they were not
readily comprehensible. In light of the importance of quantitative
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practices in Al, this bias is not surprising. One effective way to
address this would be to critically reflect on the way we educate
students in AL In particular, how do we ensure that students have a
more critical eye towards the working and outputs of Al systems?
This is where we see the impact of our focus on Al students (vs. fully
formed Al practitioners)—by investigating how Al background can
lead to the formation of certain heuristics, we have crucial insights
on how we might address the issues from an academic training
perspective. For instance, there is a need to introduce courses like
critical data studies and human-centered data science that can pro-
vide much-needed reflective lenses to students to understand their
own cognitive biases and the importance of thinking about the
user during system design and development. By addressing issues
during the formation of their "Data Vision" [128], and "Professional
Vision" [59] more generally, we can revolutionize how we train the
next generations of Al creators and mitigate the creator-consumer
gap. If we are asking today’s Al students to become future creators
for consumers who think drastically differently from themselves,
we need to empower our students with the lenses such that the
gap between them and the stakeholders they will serve is less than
what it is today. When extrapolating findings for the AI group, we
should note that the Al-background population was drawn from
students in a very typical introductory Al course, taught from the
most widely adopted textbook (by Russell & Norvig [137] taught in
over 1500 schools worldwide [6]) and using a widely adopted set
of instructional assignments.

Third, our work carries broader implications on reframing AI
adoption through re-examining the relationship between user trust
and Al adoption. This re-examination has upstream (e.g., research)
and downstream (e..g, industry practices) implications. There is an
oft-unspoken yet dominant assumption that connects adoption with
acceptance—where we view Al adoption emerging from user trust,
which, in turn, emerges from user acceptance [45]. Acceptance is
seen as a core tenet of trust-building (thereby adoption). There
is often an uncritical push towards trust building without asking
a fundamental question: is AI worthy of our trust? Moreover, is
acceptance the only way to build trust and get adoption? How would
we feel in a human relationship if trust hinged solely on accepting
everything the other party said? There are many ways to build
trust. The principles of HCXAI [45] suggest diverse foundations
for trust building such as healthy skepticism from informed users,
awareness of variability of around system decisions, and knowledge
of what the Al cannot do (as opposed to the typical what the Al can
do).

Opting to promote reflection in the user can begin the process
of defamiliarization from acceptance-first approaches, reframing
the discourse around Al adoption. Such mindset shifts in Al adop-
tion have cascading societal ripple effects at both upstream (e.g.,
research) and downstream (e.g., industry practices) levels. For in-
stance, if an organization embodies a critically reflective Al adoption
mindset (as opposed to an acceptance-driven one), it could mitigate
perverse organizational incentives such as prioritizing growth and
adoption at all costs. This can reflexively catalyze a change in
organizational culture towards responsible and accountable Al gov-
ernance. Note that we are not advocating to eliminate building trust
via acceptance; rather, we are encouraging reforms that go beyond
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acceptance. More importantly, reflection and acceptance are not mu-
tually exclusive and can work in tandem with each other. Reforming
the dialogue around Al adoption and trust building promotes our re-
silience against detrimental pitfalls like over-estimating (or hyping)
Al capabilities, which has cascading societal implications around
holding these systems accountable.

Last, when transferring our findings to other XAI scenarios, in-
stead of shooting for blanket generalizability, we should aim for
transferability. Inherent in transferability is context-sensitivity [53,
64, 148]. Real-world XAI settings have different contexts, domains,
and application areas —as such, the transferability of our findings to
new domains is subject to context-applicability. Context permitting,
especially in terms of user characteristics, the findings are likely
to transfer. This is because the heuristics and appropriation strate-
gies identified (in Sec. 6.2) have broad applicability. For example,
our findings can shed light on why data scientists over-trust XAI
methods like SHAP that have numerical-based outputs [78]. There
are, however, limits to our study design and exhaustiveness of the
setup, elaborated in Sec. 6.3

7 LIMITATIONS & FUTURE WORK

With this study, we have taken a formative step towards under-
standing how interpretations of Al-generated explanations differ
between groups with or without AI background (a consequential
user characteristic). Given this essential yet first step, the insights
from our work should be scoped accordingly. A focus on Al students
has helped understand how enculturation into Al alters people’s
perceptions of Al explanations and makes visible the presence of
other kinds of — often similar - interpretations within a hetero-
geneous set of non-Al group participants. [C1, C2] However, our
study has areas of improvement. First, as shared in Secs. 3.3.3 & 6.3
while the Al course experienced by the Al group is largely represen-
tative of curriculum across other institutions, future research could
explore how differences in Al curriculum may impact people’s Al
background and perception of explanations. Second, in this study,
we focused on using an RL-based Al agent to conduct a sequential
decision-making task in a controlled environment. Future research
could extend to other types of Al agents on other tasks (e.g., clas-
sification), especially in a situated sociotechnical context. Third,
the quasi-experimental setup (common in behavioral research and
neuroscience [108]) does not include random assignment of partic-
ipants; future work could conduct Randomized Controlled Trials
using the same setup to establish causal relationships. Fourth, we
used systematic screening to ensure the two groups are measurably
different while controlling for factors such as age and education lev-
els (Sec. 3.3.3). Despite these efforts, confounds can still exist such
as technological familiarity and Al use. Future research can conduct
studies of user characteristics in isolation and their impact on the
interpretation of Al explanations. Fifth, in this initial effort, we
scoped our study in the context of three types of Al explanations—
while they are informative, they are not exhaustive of the different
types of explanations. Future work can explore how users with
two or more different user characteristics (e.g., comparison with
multiple facets of one’s background) or more homogeneous and
striated Al backgrounds (e.g., years of Al programming experience)
perceive explanations in different ways. For future iterations, we
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are inspired by Agre’s design philosophy of Critical Technical Prac-
tice [3] where “at least for the foreseeable future, [we] will require a
split identity — one foot planted in the craft work of design and the
other foot planted in the reflexive work of critique.” [4]. Through this
work, we have “planted one foot" in the work of design. Now, we
seek to learn from and with the broader HCI and XAI communities
as we “plant the other foot” in the self-reflective realm of critique.

8 CONCLUSIONS

In this paper, we focus on the who of XAI by investigating how
two different groups of whos—people with and without a back-
ground in Al—perceive different types of Al explanations. Through
a mixed-methods user study, we demonstrate how interpretations
and perceptions of Al explanations differ between groups with or
without AI background. Our mixed-methods analysis provides dif-
ferent levels of insight. What people prefer is relatively clear—they
prefer natural language-based justificatory rationales. While the
what is somewhat straightforward, the why and how behind their
preferences are nuanced. Different perceptions (e.g., unanticipated
explanatory value) sometimes arise from different forms of appro-
priation (e.g., diagnosis vs. affirmatory intent). The same perception
(unwarranted faith in numbers) sometimes arises from different
types of heuristics (associating numerical vs. incomprehensible rea-
soning with intelligence) Finally, both groups were very similar in
their desire to engage with natural-language-based explanations.

Explainability of Al systems is crucial to instill appropriate user
trust and facilitate recourse. Disparities in Al backgrounds have the
potential to exacerbate the challenges arising from the differences
between how designers imagine users will appropriate explanations
vs. how users actually interpret and use them. We provided concrete
design implications to mitigate the risk of over-reliance on numbers
and broader lessons about the need for re-imagining AI education.
By focusing on the who and not just the what of XAI, our work
takes a formative step in advancing a pluralistic human-centered
XAI discourse to help bridge the creator-consumer gap.
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A APPENDIX

A.1 Best practices for data integrity and
participant engagement

Data quality and engagement with user study participants are in-
tegral to research. Below we share how previous guidelines for
fair and equitable work treatment for MTurk workers [69] helped
us decide the payment structure, tips on engagement with partici-
pants, design motivations behind the task environment, and how
we deployed and reviewed the task catering for a global audience.
While these insights are transferable to other contexts, most of
these practices are geared towards MTurk participants, given one
has less control over the platform.

(1) Payment: our study was not a micro-task that is traditionally
deployed in MTurk. As a result, we calibrated our payment
to reflect the task duration and expected effort. We tried our
best to structure our study based on previous guidelines for
fair and equitable work treatment for MTurk workers [69].
We strived to pay equal to or more than a minimum wage
[at the time of deployment, the local minimum wage was
$8.5/hour]. We paid $10 for a task budgeted for 45 minutes,
making the hourly pay $13.3. However, almost all partici-
pants took 30 mins to complete the task on average, making
the effective hourly rate around $20/hour.

As a policy, we disbursed payments within 48 hours of task
completion. This robust turnaround time helped our reputa-
tion on Turkopticon, a forum for MTurk workers to engage
in peer-to-peer assistance on job information and hold em-
ployers accountable for fair treatment [69]. Moreover, one
researcher regularly engaged with workers on Turkopticon,
answering questions and returning compliments. This en-
gagement built rapport throughout the study. As a platform,
TurkPrime allows internal messages between MTurk work-
ers and employers by using a proxy userID and protecting
the privacy of the worker. This feature allowed participants
to communicate if they had internet issues or were running
out of time. In such cases, we sent them a one-time link
for completion. The same applied for participants in the AI
background group who were not bound by AMT rules.
Every payment of a HIT had a thank you message attached
to it. Every rejection had custom justifications backed by ev-
idence. The research team created message templates based
on major issues, which allowed for a quick turnaround time
even with a custom message. For participants who failed
to do the task despite best efforts, we paid them for their
time even if we could not use their data. This equitable pol-
icy also made our HITs one of the most sought-after in the
marketplace.

(2) Task environment and setup:

(a) Task orientation: Pilot testing showed that participants
preferred a multi-modal (e.g., video) orientation compared
to a textual description of it. Therefore, we provided both
modalities.

(b) Task engagement: Participant had to successfully pass at-
tention checks and/or explicitly acknowledge they under-
stood the instructions in a given module. On the backend,
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we had timers to evaluate if a participant spent a reason-
able amount of time on a particular section. For instance,
if the video was 2 minutes long and a participant clicked
through that section in 30 seconds, it triggered a review
of their responses. These steps augment the quality of the
experimental data. Moreover, for tasks that had to be re-
jected, these metrics also served as justificatory evidence.

(c) Design of the robots: To mitigate effects of preconceived
notions, we did not use any descriptive names for the
robots; instead, we introduced the robots as “Robot A” [=
the Rationale-Generation robot], “Robot B” [= the Action-
Declaring robot], and “Robot C” [= the Numerical robot]
(details on each of their attributes are below/above). To
reduce any preferential treatment of robots based on their
appearances, we need to standardize their appearances
without sacrificing their distinctness. That is, the robots
needed to look similar, but not to the point of indistin-
guishability. This insight came from pilot testing which
indicated that if we made the robots identical in appear-
ance but different in color, the cognitive load for recall
was too high. Therefore, we iterated and struck a balance
where all robots had wheels with a “car-like” structure (see
Fig. 1) while they differed in color and shape.

(3) Deployment and Review: Across both groups, we manually

reviewed every response in the survey, especially the qualita-
tive justifications provided by the participants. We deployed
10-15 tasks per day to allow for manual reviews. To facilitate
outreach of our task to all time zones, using an automated
scheduling system, we released 3 tasks every 3 hours over a
24-hour cycle. This improved the potential for global partici-
pation in our task.

Spamming is a serious issue when it comes to survey data.
Here, the qualitative responses served a secondary screening
purpose. Participants with good-faith efforts always had rea-
sonable qualitative justifications. Those who had spamming
intentions shared non-sensical and even comical qualita-
tive responses; e.g., Movie titles and plots, snippets from
Wikipedia, etc.

While all of these steps required considerable time, and effort, they
paid off in the high data quality we received for a task lasting 30
minutes on average.
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A.2 Participant Screening

Screening criteria, group makeup, and establishing group
differences:

To ensure that the two groups were measurably different along
the dimension of our investigation—AI background—we performed
additional screening using a questionnaire with three components—
(1) aknowledge test to get a baseline understanding of programming
and Al competency. This test was collaboratively developed with
the course’s teaching staff to calibrate the content relevancy and
question difficulty. (2) Self-reported knowledge levels in (a) com-
puter programming and (b) Al using two 5-point Likert-scales.
(3) confirmation of whether they have ever taken an Al class.

To get empirically ground the cut-off points, we piloted the
screener with 10 participants from each group to get a baseline
understanding of the scores and completion time. For the AI group,
a score 4 or more on the knowledge test along with self-reports
of having “Moderate knowledge” or more [>= 4] in programming
and some knowledge or more [>= 3] in Al were required. For the
non-Al group, self-report of having “No knowledge” [= 1] in both
programming and Al along with no prior Al classes, were required.
Using these criteria we formed the two groups.

The AI background group consisted of 96 adult students taking
an Al class. On average, the task duration was 31.1 minutes. Par-
ticipants received US $10 for their time ($20/hr rate). 39% of the
participants self-identified as females while the rest identified as
males. Participants reported an average education level of 5.25
(5= “Associate’s degree”, 6= “Bachelor’s Degree”). By design, all of
them currently reside in the US. On the screening criteria, the Al
students scored an average of 4.73 (out of 5) [SD = 0.45] on the
knowledge test, self-reported “moderate knowledge” on program-
ming (M = 4.53,SD = 0.52) [4= “Moderate Knowledge”, 5= “A lot
of knowledge”] and “some knowledge” onAI (M = 3.74, SD = 0.49)
[3= “Some knowledge”, 4= “Moderate Knowledge” ].

The Non-AI background group with MTurk participants consisted
of 83 adults, who were recruited from Amazon Mechanical Turk
(AMT) through a management service called TurkPrime [97]. On
average, the task duration was 29.8 minutes. Participants received
US $10 for their time ($20/hr). 46% of the participants self-identified
as females while the rest identified as males. Participants reported
an average education level of 4.8 (4= “Vocational Training”, 5=
Associate’s degree). We screened for participants who reside in the
US. On the screening criteria, MTurk participants scored an average
of 0.91 (out of 5) [SD = 0.32] on the knowledge test. By design,
for programming and Al we screened for people who reported as
having “No knowledge” [=1] as well as never taking an Al class.

To establish that these two groups are measurably different, we
performed statistical tests. For the knowledge test, the two groups
were significantly different based on a two-sample Mann-Whitney
U-test (even after Bonferroni correction, p < 2.2 x 10716). Since
the non-Al group systematically had only people with “No knowl-
edge” [=1] in programming or Al, we performed one-sample Mann
Whitney U-tests on the Al-group to compare its means against 1[=“No
knowledge”]. Even after Bonferroni correction, we found strong
evidence that the two groups are different (p < 2.2 X 10716, for
both programming and Al scores). These results indicate that our
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screening criteria have successfully established two groups that are
measurably different in terms of their AI background.

The following aspects of the selection criteria facilitated forma-
tion of the two user groups:

The AI knowledge questionnaire: We developed the knowl-
edge questionnaire iteratively using a participatory process involv-
ing Teaching Assistants for the class along with Graduate students
familiar with the area. There are five (5) multiple-choice questions
in total equalling 5 points. The first two questions are program-
ming questions: the first is a question asking for the output of a
simple print statement, and the second is one that asks for the
output of a for-loop. The remaining three covered concepts in Al
such as Markov Decision Processes, Reinforcement Learning, and
Unsupervised Learning. By the time of deployment, the Al students
had already gone through lectures covering the Al topics in the
questionnaire. All the questions are inspired by or directly taken
from past exam questions on various topics. For further details,
please refer to section A.2.1 for the Al knowledge questionnaire.

To calibrate the relative difficulty of the knowledge test, we used
a collaborative and iterative process until a consensus between
the researchers and the teaching staff was reached. We expected
that most students with satisfactory prerequisites (that contain
fundamentals of programming) and current knowledge from the
class should at least get 4 out of the 5 correct. This calibration
appears to have been a reasonable one since all students naturally
passed these thresholds. On the other hand, in order to be assigned
to the non-Al background group, participants had to score less than
or equal to 1 (out of 5). We expected that some participants, without
any Al background, might be able to guess the output of the “print”
statement question. However, it was unlikely that someone without
a basic programming understanding would be able to answer the
“for-loop” output question. Therefore, if someone correctly answers
more than one, their Al knowledge background is not the type we
need for members of the non-Al background group.

Al background measurement: The knowledge test was fol-
lowed by two 5-point Likert-scale questions measuring the Al back-
ground for computer programming and Al concepts. The range
of self-reported knowledge goes from "No knowledge"[= 1] to "A
lot of knowledge" [= 5]. Each level of knowledge has a sentence
clarifying the meaning behind the label. For illustrative purposes,
here is an example from the Al scale: "No knowledge: I might be
aware of Al but have no knowledge about it." Both scales had sim-
ilar construction and wording. For further details, please refer to
section A.2.1 for the Al background knowledge Likert-scales.

AlI class: Finally, participants answer if they have ever taken any
classes on Artificial Intelligence.

A.2.1 Screening questionnaire.
Here we share the survey instruments used to screen participants.
Knowledge test questionnaire

(1) What would be the output of the following python program?

name = "Peter"
print("Hello " + name)
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(a) Peter
(b) Hello Peter
(c) Hello + Peter
(d) "Hello" + name
(2) What would be the output of the following python program?

numbers = [2, 4]
for i in range(len(numbers)):
print(numbers[i] + i)

(a) 2
5
(b) 2
5
8
(c) 2
4
(d) 2
4
10
(3) Which of the following is an unsupervised learning task?
(a) Distinguishing pictures containing cats from pictures not
containing cats
(b) Flagging text messages as appropriate or inappropriate
(c) Divide data points into different clusters without any la-
bels available
(d) Predict the value of a house after training on a dataset
with house features and values
(4) What is the general goal of reinforcement learning?
(a) Maximize potential or expected punishment
(b) Maximize potential or expected reward
(c) Get to the goal as soon as possible
(d) Avoid the most obstacles in any given state
(5) In MDPs, the Markov assumption is that:
(a) The current state is independent of all other states
(b) The current state depends only on the history of previous
states and actions
(c) The current state depends on the full sequence of states
and actions (past and future)
(d) The current state only depends on the immediate previous
state and action

Computer Programming Background Knowledge.
When it comes to computer programming or coding, I believe I
have

(1) No knowledge: I might be aware of computer programs, but
have never coded before

(2) A little knowledge: I know basic concepts in programming,
but have never applied it

(3) Some knowledge: I have applied programming concepts by
coding at least once before

(4) Moderate knowledge: I apply programming concepts some-
what frequently for my work, class, or leisure

(5) A lot of knowledge: I apply programming concepts very
frequently or create cutting edge software

Al Background Knowledge.
When it comes to Artificial Intelligence (AI), I believe I have
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(1) No knowledge: I might be aware of Al, but have no knowledge
about it

(2) A little knowledge: I know basic concepts in Al but have
never applied it

(3) Some knowledge: I have applied Al concepts by coding at
least once before

(4) Moderate knowledge: I apply Al concepts somewhat fre-
quently for my work, class, or leisure

(5) A lot of knowledge: I apply Al concepts very frequently or
create cutting edge software

Al class.
Have you ever taken or are currently taking any classes on Artificial
Intelligence?

e Yes
e No
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A.3 OLR Summary Tables



The Who in XAl

CH

1°24, May 11-16, 2024, Honolulu, HI, USA

Table 3: Summary of OLR with Ranking as Response and Robot Type as Predictor

Value

Std. Error ¢

-value p-value Odds Ratio

AD Robot -1.711
NR_Robot -2.691
12 -2.366
23 -0.598

0.104
0.115
0.093
0.077

-16.473 < 0.001
-23.393  <0.001
-25.567 < 0.001

-7.799 < 0.001

0.181
0.068
0.094
0.5501

Note: RG_Robot is the reference level.

Table 4: OLR Summary with Robot Type

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot  1.7105 0.1038 16.4728 0 5.5319
Numerical-Reasoning Robot  -0.9807  0.1001 -9.7980 0 0.3751
1|2 -0.6550 0.0695 -9.4282 0 0.5195
23 1.1129 0.0734 15.1592 0 3.0433

Note: Action-Declaring Robot is the reference level.

Table 5: OLR Summary - Ref. Levels: Rationale-Generation Robot and AI Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -2.0246  0.1302  -15.5462  0.0000 0.1320
Numerical-Reasoning Robot -2.5072 0.1391 -18.0221  0.0000 0.0815
Non-Al Group -0.1563 0.1582 -0.9879  0.3232 0.8553
Action-Declaring Robot:Non-AI Group 0.8422 0.2093 4.0243  0.0001 2.3214
Numerical-Reasoning Robot:Non-AI Group -0.6088  0.2264 -2.6892  0.0072 0.5440
12 -2.4515 0.1104 -22.2009  0.0000 0.0862
23 -0.6507 0.0965 -6.7413  0.0000 0.5217

Table 6: OLR Summary - Ref. Levels: Rationale-Generation Robot and Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -1.1824 0.1674 -7.0614  0.0000 0.3065
Numerical-Reasoning Robot -3.1160  0.1893 -16.4636  0.0000 0.0443
Al Group 0.1564 0.1582 0.9881 0.3231 1.1692
Action-Declaring Robot:AI Group -0.8422 0.2093 -4.0245  0.0001 0.4308
Numerical-Reasoning Robot:Al Group  0.6087 0.2264 2.6889  0.0072 1.8381
12 -2.2952 0.1362 -16.8540  0.0000 0.1007
2|3 -0.4944 0.1258 -3.9305  0.0001 0.6099

Table 7: OLR Summary - Ref. Levels: Action-Declaring Robot and AI Group

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot 2.0246 0.1302 15.5462  0e+00 7.5732
Numerical-Reasoning Robot -0.4826 0.1224 -3.9421  1le-04 0.6172
Non-AI Group 0.6859 0.1368 5.0127 0e+00 1.9855
Rationale-Generation Robot:Non-AI Group  -0.8422 0.2093 -4.0243  1le-04 0.4308
Numerical-Reasoning Robot:Non-AI Group -1.4510 0.2125 -6.8278  0e+00 0.2343
1|2 -0.4269 0.0836 -5.1091  0e+00 0.6526
2|3 1.3739 0.0904 15.2045  0e+00 3.9507
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Table 8: OLR Summary - Ref. Levels: Action-Declaring Robot and Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.1824 0.1674 7.0613 0e+00 3.2622
Numerical-Reasoning Robot -1.9336  0.1750 -11.0468  0e+00 0.1446
Al Group -0.6859 0.1368 -5.0127 0e+00 0.5037

Rationale-Generation Robot:AI Group ~ 0.8422 0.2093 4.0245 le-04 2.3215
Numerical-Reasoning Robot:Al Group  1.4510 0.2125 6.8278  0e+00 4.2672

12 -1.1127 0.1147 -9.6973 0e+00 0.3287
2|3 0.6880 0.1123 6.1249 0e+00 1.9898

Table 9: OLR Summary - Ref. Levels: Numerical-Reasoning Robot and AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 2.5072 0.1391 18.0222  0.0000 12.2708
Action-Declaring Robot 0.4826 0.1224 3.9422  0.0001 1.6203
Non-Al Group -0.7651 0.1620 -4.7240  0.0000 0.4653
Rationale-Generation Robot:Non-AI Group  0.6088 0.2264 2.6891  0.0072 1.8382
Action-Declaring Robot:Non-AI Group 1.4510 0.2125 6.8278  0.0000 4.2672
12 0.0557 0.0923 0.6037  0.5460 1.0573
23 1.8565 0.1033 17.9798  0.0000 6.4012

Table 10: OLR Summary - Ref. Levels: Numerical-Reasoning Robot and Non-AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 3.1160 0.1893 16.4637  0.0000 22.5559
Action-Declaring Robot 1.9336 0.1750 11.0468  0.0000 6.9141
Al Group 0.7651 0.1620 4.7240  0.0000 2.1492
Rationale-Generation Robot:AlI Group -0.6088 0.2264 -2.6891  0.0072 0.5440
Action-Declaring Robot:AI Group -1.4510  0.2125 -6.8279  0.0000 0.2343
12 0.8208 0.1336 6.1447  0.0000 2.2724
23 2.6216 0.1444 18.1523  0.0000 13.7575

Table 11: OLR Summary - Confidence - Ref. Levels: Type Rationale-Generation Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -1.3753  0.2740  -5.0185  0.0000 0.2528
Numerical-Reasoning Robot -1.2607 0.2815 -4.4783  0.0000 0.2835
Non-AI Group -0.0290 0.3297 -0.0879  0.9299 0.9714
Action-Declaring Robot:Non-AI Group 0.7232 0.4545 1.5913  0.1115 2.0610

Numerical-Reasoning Robot:Non-AI Group -0.6906 0.4668 -1.4795  0.1390 0.5013

12 -1.6705 0.2164 -7.7194  0.0000 0.1882
23 -0.1251 0.1996 -0.6268  0.5308 0.8824




The Who in XAl CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Table 12: OLR Summary - Confidence - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -0.6521  0.3654  -1.7845 0.0743 0.5210
Numerical-Reasoning Robot -1.9513 0.3800 -5.1343  0.0000 0.1421
AI Group 0.0290 0.3297 0.0879  0.9299 1.0294
Action-Declaring Robot:AI Group -0.7232 0.4545 -1.5913  0.1115 0.4852
Numerical-Reasoning Robot:Al Group  0.6906 0.4668 1.4795  0.1390 1.9949
12 -1.6415 0.2777 -5.9112  0.0000 0.1937
23 -0.0961 0.2651 -0.3626  0.7169 0.9083

Table 13: OLR Summary - Confidence - Ref. Levels: Type Action-Declaring Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.3753 0.2740 5.0185  0.0000 3.9561
Numerical-Reasoning Robot 0.1146 0.2678 0.4279  0.6687 1.1214
Non-Al Group 0.6942 0.3127 2.2203 0.0264 2.0021

Rationale-Generation Robot:Non-AI Group  -0.7232 0.4545 -1.5913  0.1115 0.4852
Numerical-Reasoning Robot:Non-AI Group -1.4138 0.4561 -3.0995  0.0019 0.2432

12 -0.2952 0.1873 -1.5759  0.1150 0.7444
23 1.2501 0.1979 6.3175  0.0000 3.4908

Table 14: OLR Summary - Confidence - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 0.6521 0.3654 1.7845  0.0743 1.9196
Numerical-Reasoning Robot -1.2992 0.3688 -3.5230  0.0004 0.2727
Al Group -0.6942 0.3127 -2.2203  0.0264 0.4995

Rationale-Generation Robot:AI Group ~ 0.7232 0.4545 1.5913  0.1115 2.0609
Numerical-Reasoning Robot:Al Group  1.4138 0.4561 3.0995  0.0019 4.1115

12 -0.9894 0.2603 -3.8015  0.0001 0.3718
23 0.5560 0.2566 2.1668  0.0303 1.7436

Table 15: OLR Summary - Confidence - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 1.2607 0.2815 4.4783  0.0000 3.5278
Action-Declaring Robot -0.1146 0.2678 -0.4279  0.6687 0.8918
Non-Al Group -0.7196 0.3304 -2.1778  0.0294 0.4870
Rationale-Generation Robot:Non-AI Group  0.6906 0.4668 1.4795  0.1390 1.9949
Action-Declaring Robot:Non-AI Group 1.4138 0.4561 3.0995  0.0019 4.1115
12 -0.4098 0.1999 -2.0501  0.0404 0.6638

23 1.1356 0.2076 5.4701  0.0000 3.1130
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Table 16: OLR Summary - Confidence - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.9513 0.3800 5.1343  0.0000 7.0377
Action-Declaring Robot 1.2992 0.3688 3.5230  0.0004 3.6664
Al Group 0.7196 0.3304 2.1778  0.0294 2.0536
Rationale-Generation Robot:AI Group -0.6906 0.4668 -1.4795  0.1390 0.5013
Action-Declaring Robot:AI Group -1.4138 0.4561 -3.0995  0.0019 0.2432
12 0.3098 0.2666 1.1620  0.2452 1.3631
2|3 1.8552 0.2812 6.5966  0.0000 6.3927

Table 17: OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -5.8425  0.6241 -9.3621  0.0000 0.0029
Numerical-Reasoning Robot -9.1613 0.6886  -13.3037  0.0000 0.0001
Non-AI Group -1.2732 0.6531 -1.9494  0.0512 0.2799
Action-Declaring Robot:Non-AI Group 2.3121 0.7844 2.9477 0.0032 10.0953
Numerical-Reasoning Robot:Non-AI Group  0.4423 0.8811 0.5021  0.6156 1.5564
12 -7.4844 0.6292 -11.8956  0.0000 0.0006
23 -3.1140 0.5110 -6.0945  0.0000 0.0444

Table 18: OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -3.5301  0.5314 -6.6431  0.0000 0.0293
Numerical-Reasoning Robot -8.7179  0.7549  -11.5482  0.0000 0.0002
AI Group 1.2734 0.6531 1.9497 0.0512 3.5730
Action-Declaring Robot:AI Group -2.3128 0.7844 -2.9485  0.0032 0.0990
Numerical-Reasoning Robot:Al Group -0.4435 0.8809 -0.5035  0.6146 0.6418
12 -6.2112 0.5476 -11.3434  0.0000 0.0020
2|3 -1.8407 0.4068 -4.5247  0.0000 0.1587

Table 19: OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 5.8429 0.6241 9.3622  0.0000 344.7825
Numerical-Reasoning Robot -3.3185 0.3827 -8.6712  0.0000 0.0362
Non-Al Group 1.0394 0.4342 2.3940 0.0167 2.8274

Rationale-Generation Robot:Non-AI Group  -2.3129  0.7844  -2.9486  0.0032 0.0990
Numerical-Reasoning Robot:Non-AI Group -1.8692 0.7336 -2.5481  0.0108 0.1542

12 -1.6417 0.2599 -6.3158  0.0000 0.1936
23 2.7288 0.3585 7.6120  0.0000 15.3144
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Table 20: OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 3.5301 0.5314 6.6431  0.0000 34.1267
Numerical-Reasoning Robot -5.1877 0.6660 -7.7898  0.0000 0.0056
Al Group -1.0394 0.4341 -2.3941  0.0167 0.3537

Rationale-Generation Robot:AI Group ~ 2.3125 0.7844 2.9483  0.0032 10.1000
Numerical-Reasoning Robot:Al Group  1.8692 0.7336 2.5481  0.0108 6.4832

1|2 -2.6811 0.4164 -6.4392  0.0000 0.0685
23 1.6894 0.3421 49375  0.0000 5.4160

Table 21: OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 9.1614 0.6887 13.3033  0.0000  9522.2302
Action-Declaring Robot 3.3185 0.3827 8.6712  0.0000 27.6181
Non-Al Group -0.8299 0.5912 -1.4038 0.1604 0.4361
Rationale-Generation Robot:Non-AI Group  -0.4436 0.8809 -0.5036  0.6146 0.6417
Action-Declaring Robot:Non-AI Group 1.8693 0.7336 2.5481  0.0108 6.4835
12 1.6768 0.2812 5.9620  0.0000 5.3482
23 6.0473 0.4618 13.0936  0.0000  422.9598

Table 22: OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AlI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 8.7179 0.7549 11.5480  0.0000  6111.4635
Action-Declaring Robot 5.1879 0.6660 7.7897  0.0000 179.0894
Al Group 0.8301 0.5912 1.4041 0.1603 2.2934
Rationale-Generation Robot:AI Group ~ 0.4434 0.8809 0.5033  0.6148 1.5579
Action-Declaring Robot:AI Group -1.8695 0.7336 -2.5483  0.0108 0.1542
12 2.5068 0.5200 4.8208 0.0000 12.2655
23 6.8773 0.6364 10.8059  0.0000 970.0040

Table 23: OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -1.8632  0.2799  -6.6555  0.0000 0.1552
Numerical-Reasoning Robot -0.9546 0.2801 -3.4088  0.0007 0.3850
Non-AI Group -0.3321 0.3304 -1.0053  0.3147 0.7174
Action-Declaring Robot:Non-AI Group 1.0047 0.4542 2.2120  0.0270 2.7310

Numerical-Reasoning Robot:Non-AI Group -0.1047 0.4626 -0.2262  0.8210 0.9006

12 -1.7485 0.2186 -7.9976  0.0000 0.1740
23 -0.2121 0.2011 -1.0547  0.2916 0.8089
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Table 24: OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -0.8585  0.3631 -2.3643  0.0181 0.4238
Numerical-Reasoning Robot -1.0593 0.3716 -2.8510  0.0044 0.3467
AI Group 0.3321 0.3304 1.0053  0.3148 1.3939
Action-Declaring Robot:AI Group -1.0046 0.4542 -2.2119  0.0270 0.3662
Numerical-Reasoning Robot:Al Group  0.1047 0.4626 0.2263  0.8210 1.1104
12 -1.4164 0.2748 -5.1533  0.0000 0.2426
23 0.1200 0.2651 0.4528  0.6507 1.1275

Table 25: OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.8631 0.2799 6.6555  0.0000 6.4440
Numerical-Reasoning Robot 0.9085 0.2704 3.3604  0.0008 2.4806
Non-Al Group 0.6725 0.3110 2.1623 0.0306 1.9592

Rationale-Generation Robot:Non-AI Group  -1.0047 0.4542 -2.2120  0.0270 0.3662
Numerical-Reasoning Robot:Non-AI Group -1.1093 0.4502 -2.4641  0.0137 0.3298

12 0.1147 0.1878 0.6106  0.5415 1.1215
23 1.6511 0.2051 8.0509  0.0000 5.2125

Table 26: OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 0.8585 0.3631 2.3642  0.0181 2.3596
Numerical-Reasoning Robot -0.2008 0.3593 -0.5589  0.5762 0.8181
Al Group -0.6725 0.3110 -2.1623  0.0306 0.5104

Rationale-Generation Robot:AI Group ~ 1.0047 0.4542 2.2120  0.0270 2.7310
Numerical-Reasoning Robot:Al Group  1.1093 0.4502 24641  0.0137 3.0323

12 -0.5579 0.2530 -2.2047  0.0275 0.5724
23 0.9785 0.2566 3.8132  0.0001 2.6605

Table 27: OLR Summary - Intelligence - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 0.9546 0.2801 3.4088  0.0007 2.5977
Action-Declaring Robot -0.9085 0.2704  -3.3604 0.0008 0.4031
Non-Al Group -0.4368 0.3244 -1.3467  0.1781 0.6461
Rationale-Generation Robot:Non-AI Group  0.1047 0.4626 0.2263  0.8210 1.1104
Action-Declaring Robot:Non-AI Group 1.1093 0.4502 2.4641  0.0137 3.0323
12 -0.7939 0.2021 -3.9274  0.0001 0.4521

23 0.7425 0.2016 3.6836  0.0002 2.1013
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Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.0593 0.3716 2.8510  0.0044 2.8844
Action-Declaring Robot 0.2008 0.3593 0.5589  0.5763 1.2224
Al Group 0.4368 0.3244 1.3467  0.1781 1.5477
Rationale-Generation Robot:AI Group -0.1047  0.4626  -0.2263  0.8210 0.9006
Action-Declaring Robot:AI Group -1.1093 0.4502 -2.4641  0.0137 0.3298
12 -0.3571 0.2628 -1.3587  0.1742 0.6997
2|3 1.1793 0.2693 4.3787  0.0000 3.2522

Table 29: OLR Summary - Potential - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -1.4669  0.2736  -5.3619  0.0000 0.2306
Numerical-Reasoning Robot -1.4049  0.2855 -4.9210  0.0000 0.2454
Non-Al Group 0.3139 0.3403 0.9226  0.3562 1.3688
Action-Declaring Robot:Non-AI Group 0.3615 0.4584 0.7888  0.4303 1.4355
Numerical-Reasoning Robot:Non-AI Group -1.2945 0.4854  -2.6667  0.0077 0.2740
12 -1.7680 0.2168 -8.1558  0.0000 0.1707
23 -0.1478 0.1969 -0.7505  0.4530 0.8626

Table 30: OLR Summary - Potential - Ref. Levels:

Type Rationale-Generation Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue Odds Ratio
Action-Declaring Robot -1.1053 03729 -2.9642  0.0030 0.3311
Numerical-Reasoning Robot -2.6994  0.4039 -6.6836  0.0000 0.0672
AI Group -0.3139 0.3403 -0.9224  0.3563 0.7306
Action-Declaring Robot:AI Group -0.3616 0.4584 -0.7889  0.4302 0.6966
Numerical-Reasoning Robot:Al Group  1.2944 0.4854 2.6666  0.0077 3.6489
1|2 -2.0820 0.2966 -7.0203  0.0000 0.1247
23 -0.4617 0.2792 -1.6534  0.0983 0.6302

Table 31: OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.4668 0.2736 5.3616  0.0000 4.3354
Numerical-Reasoning Robot 0.0620 0.2728 0.2271  0.8203 1.0639
Non-Al Group 0.6755 0.3077 2.1950  0.0282 1.9649
Rationale-Generation Robot:Non-AI Group -0.3614  0.4584  -0.7885  0.4304 0.6967
Numerical-Reasoning Robot:Non-AI Group -1.6561 0.4643 -3.5668  0.0004 0.1909
12 -0.3012 0.1880 -1.6022  0.1091 0.7399
23 1.3191 0.2005 6.5806  0.0000 3.7401
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Table 32: OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.1053 0.3729 2.9641  0.0030 3.0201
Numerical-Reasoning Robot -1.5941 0.3754  -4.2465  0.0000 0.2031
Al Group -0.6755 0.3077 -2.1951  0.0282 0.5089

Rationale-Generation Robot:AI Group ~ 0.3616 0.4584 0.7889  0.4302 1.4356
Numerical-Reasoning Robot:Al Group  1.6560 0.4643 3.5667  0.0004 5.2385

1|2 -0.9767 0.2543 -3.8407  0.0001 0.3766
23 0.6436 0.2510 2.5639  0.0104 1.9034

Table 33: OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.4049 0.2855 4.9210  0.0000 4.0752
Action-Declaring Robot -0.0620 0.2728 -0.2271  0.8203 0.9399
Non-Al Group -0.9806 0.3456 -2.8371  0.0046 0.3751
Rationale-Generation Robot:Non-AI Group ~ 1.2945 0.4854 2.6667  0.0077 3.6491
Action-Declaring Robot:Non-AI Group 1.6560 0.4643 3.5667  0.0004 5.2386
12 -0.3631 0.2060 -1.7628  0.0779 0.6955
23 1.2571 0.2162 5.8156  0.0000 3.5154

Table 34: OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 2.6994 0.4039 6.6837  0.0000 14.8709
Action-Declaring Robot 1.5941 0.3754 4.2466  0.0000 4.9238
Al Group 0.9806 0.3456 2.8371  0.0046 2.6659
Rationale-Generation Robot:Al Group  -1.2945 0.4854  -2.6667  0.0077 0.2740
Action-Declaring Robot:AI Group -1.6560 0.4643 -3.5667  0.0004 0.1909
12 0.6174 0.2798 2.2063  0.0274 1.8541
2|3 2.2377 0.2983 7.5020  0.0000 9.3718

Table 35: OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Action-Declaring Robot -2.6153  0.3274 -7.9873  0.0000 0.0731
Numerical-Reasoning Robot -4.2054 0.3661 -11.4866  0.0000 0.0149
Non-AI Group -0.4175 0.3664 -1.1393  0.2546 0.6587
Action-Declaring Robot:Non-AI Group 1.5455 0.4949 3.1227  0.0018 4.6903

Numerical-Reasoning Robot:Non-AI Group -1.7585 0.7309 -2.4059  0.0161 0.1723

12 -3.5627 0.3026 -11.7746  0.0000 0.0284
23 -1.0644 0.2358 -4.5135  0.0000 0.3449
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Table 36: OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -1.0698  0.3807  -2.8100  0.0050 0.3431
Numerical-Reasoning Robot -5.9638 0.6824  -8.7391  0.0000 0.0026
AI Group 0.4175 0.3664 1.1393  0.2546 1.5182
Action-Declaring Robot:AI Group -1.5455 0.4949 -3.1227  0.0018 0.2132
Numerical-Reasoning Robot:Al Group  1.7584 0.7309 2.4058  0.0161 5.8032
12 -3.1452 0.3361 -9.3583  0.0000 0.0431
23 -0.6469 0.2808 -2.3041  0.0212 0.5237

Table 37: OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group AI Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 2.6151 0.3274 7.9869  0.0000 13.6684
Numerical-Reasoning Robot -1.5903 0.2993 -5.3142  0.0000 0.2039
Non-Al Group 1.1277 0.3316 3.4009 0.0007 3.0884

Rationale-Generation Robot:Non-Al Group  -1.5454 0.4949 -3.1226  0.0018 0.2132
Numerical-Reasoning Robot:Non-AI Group -3.3039  0.7154  -4.6183  0.0000 0.0367

12 -0.9474 0.2107 -4.4964  0.0000 0.3877
23 1.5506 0.2308 6.7170  0.0000 4.7143

Table 38: OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 1.0698 0.3807 2.8099  0.0050 2.9147
Numerical-Reasoning Robot -4.8941 0.6646 -7.3645  0.0000 0.0075
Al Group -1.1281 0.3316 -3.4020  0.0007 0.3237

Rationale-Generation Robot:AI Group ~ 1.5456 0.4949 3.1229  0.0018 4.6909
Numerical-Reasoning Robot:AI Group  3.3039 0.7153 4.6190  0.0000 27.2187

12 -2.0755 0.2980 -6.9645  0.0000 0.1255
23 0.4228 0.2591 1.6321  0.1027 1.5263

Table 39: OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group AI Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 4.2054 0.3661 11.4867  0.0000 67.0472
Action-Declaring Robot 1.5901 0.2993 5.3136  0.0000 4.9043
Non-Al Group -2.1759 0.6325 -3.4403  0.0006 0.1135
Rationale-Generation Robot:Non-AI Group ~ 1.7584 0.7309 2.4058  0.0161 5.8031
Action-Declaring Robot:Non-AI Group 3.3039 0.7153 4.6189  0.0000 27.2188
12 0.6427 0.2166 2.9667 0.0030 1.9015

23 3.1410 0.2846 11.0345  0.0000 23.1261
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Table 40: OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-AI Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 5.9638 0.6824 8.7390  0.0000 389.0826
Action-Declaring Robot 4.8940 0.6646 7.3643  0.0000 133.4890
Al Group 2.1759 0.6325 3.4403  0.0006 8.8105
Rationale-Generation Robot:AI Group -1.7584  0.7309 -2.4058  0.0161 0.1723
Action-Declaring Robot:AI Group -3.3039 0.7153 -4.6189  0.0000 0.0367
12 2.8186 0.5943 4.7431  0.0000 16.7534
2|3 5.3169 0.6257 8.4981  0.0000 203.7525
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