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We report measurements of time-dependent CP asymmetries in B0 → K0
Sπ

0γ decays based on a data
sample of ð388� 6Þ × 106 BB̄ events collected at theϒð4SÞ resonance with the Belle II detector. The Belle
II experiment operates at the SuperKEKB asymmetric-energy eþe− collider. We measure decay-time
distributions to determine CP -violating parameters S and C. We determine these parameters for two ranges
of K0

Sπ
0 invariant mass: mðK0

Sπ
0Þ∈ ð0.8; 1.0Þ GeV=c2, which is dominated by B0 → K�0ð→ K0

Sπ
0Þγ

decays, and a complementary region mðK0
Sπ

0Þ∈ ð0.6; 0.8Þ ∪ ð1.0; 1.8Þ GeV=c2. Our results have
improved precision as compared to previous measurements and are consistent with theory predictions.

DOI: 10.1103/PhysRevLett.134.011802

Flavor-changing neutral current decays of elementary
particles are of great interest since they predominantly
occur through quantum loop-level processes, making them
highly sensitive to phenomena beyond the standard model
(SM). Because of the heavy b quark mass and enhanced
loop contribution of the t quark, processes involving the
b → s quark transition are especially sensitive to physics
beyond the SM (BSM). Decays via the b → sγ radiative
transition are similarly important and have thus been
studied both theoretically and experimentally [1–3]. In
particular, the polarization of the final-state photon adds
unique sensitivity to BSM physics [4–11]. In the SM,
because W bosons interact only with left-handed fermions,
the s quark from b → sγ (a B̄0 decay) is left-handed and
thus the outgoing photon must have negative helicity to
conserve angular momentum along the decay axis.
Similarly, the outgoing photon from a B0 decay must have
positive helicity. The “wrong” photon polarization is
possible only if the s quark flips its chirality, which
suppresses this process by a factor of ms=mb.
In coherent B-pair production via eþe− →

ϒð4SÞ → B0B̄0, the time-dependent decay rate of one B
meson, denoted Bsig, decaying into K0

Sð→ πþπ−Þπ0×
ð→ γγÞγ, and the accompanying B meson, denoted Btag,
decaying with flavor q (q ¼ 1 for B0

tag and −1 for B̄0
tag), is

given by [12–15]

PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

f1þ q½S sinðΔmdΔtÞ

− C cosðΔmdΔtÞ�g; ð1Þ

where Δt≡ tsig − ttag is the difference between the proper
decay times of Bsig and Btag, S and C are parameters
characterizing mixing-induced and direct CP violation
[16], respectively, τB0 is the B0 lifetime, and Δmd is the
mass difference between the two neutral B-meson mass
eigenstates. In the SM, the S value is expected to be very
small, as the different photon polarizations distinguish
between otherwise identical final states originating from
B0 or B̄0 and thus preclude interference [4,5]. However, if
right-handed currents from BSM physics contribute, a B0

(B̄0) could more easily emit negative (positive) helicity
photons, leading to sizable interference and S ∼Oð0.1Þ
[6–11]. For resonant B0 → K�ð892Þ0ð→ K0

Sπ
0Þγ [17], two

SM calculations give S ¼ ð−3.5� 1.7Þ × 10−2 [18] and
ð−2.3� 1.6Þ × 10−2 [19]. Nonresonant B0 → K0

Sπ
0γ

decays could include a long-distance contribution from
b → ðcc̄Þs rescattering and should be measured separately
[20,21]. The C value in these decays has not been reliably
estimated [16].
Previously, the Belle and BABAR experiments measured

the S values in B0 → K0
Sπ

0γ decays with a precision of
about 30% [22,23]. The LHCb experiment also measured
the photon polarization in b → sγ transitions [24–26]. In
addition, these experiments measured the direct CP asym-
metry with 2% precision [27–29]. These results are con-
sistent with SM predictions, although BSM contributions
cannot be excluded. In this Letter, we report new mea-
surements of time-dependent CP asymmetries in B0 →
K�ð892Þ0γ and nonresonant B0 → K0

Sπ
0γ decays using
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365 fb−1 of data [30], corresponding to ð388� 6Þ ×
106 BB̄ events, recorded by the Belle II experiment from
2019 to 2022 [31].
Belle II [31] operates at the SuperKEKB collider [32],

which collides 7.0 GeV electrons with 4.0 GeV positrons.
The detector components most relevant for this measure-
ment are a two-layer silicon-pixel detector (PXD), a four-
layer double-sided silicon-strip detector (SVD) [33], and a
56-layer central drift chamber (CDC). These detectors
reconstruct tracks of charged particles and measure dis-
placed vertices. Only one-sixth of the second PXD layer
was installed for the data analyzed here. The symmetry axis
of these cylindrical detectors, defined as the z axis, is
almost collinear with the electron beam direction. The
detector coverage is divided into three regions depending
on the polar angle θ: the barrel for 32.2° < θ < 128.7°, and
the forward and backward end caps for 12.4° < θ < 31.4°
and 130.7° < θ < 155.1°, respectively. Surrounding the
CDC is a time-of-propagation counter [34] in the barrel
and an aerogel-based ring-imaging Cherenkov counter in
the forward end cap. These detectors provide charged-
particle identification (PID). Surrounding the PID detectors
is an electromagnetic calorimeter (ECL) based on CsI(Tl)
crystals that provides energy and timing measurements for
photons and electrons. The subdetectors described above
are enclosed within a superconducting solenoid that pro-
vides a 1.5 T magnetic field oriented in the z direction.
We use Monte Carlo simulation to optimize event

selection criteria, calculate reconstruction efficiencies,
and study sources of background. We generate simulated
signal samples of B0 → K�ð892Þ0γ, B0 → K�0

2 ð1430Þγ,
B0 → K�0ð1680Þγ, and nonresonant B0→K0

Sπ
0γ [35]. To

model backgrounds, we generate samples of eþe−→B0B̄0,
BþB−, qq̄ (q ¼ u, d, s, c), and τþτ−. We use EvtGen [36] for
hadronic decays, KKMC [37] followed by fragmentation by
Pythia [38] for qq̄, and Tauola [39] for τ decays. The detector
response is simulated with Geant4 [40]. We analyze data
and simulated events using the Belle II software [41].
We optimize [42] selection criteria for mass windows,
momentum, and boosted decision trees (BDTs), maximiz-
ing Ns=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns þ Nb

p
, where Ns and Nb are signal and

background yields in simulation.
To reconstruct the prompt photon, we select a cluster of

ECL hits with no associated track. We require that the
photon’s energy in the center-of-mass (c.m.) frame is the
highest in the event and exceeds 1.6 GeV. The dominant
background is from photons arising from π0 and η decays;
these are rejected with a BDT-based algorithm [43]. We
apply a selection on the BDT output that, according to
simulation, rejects 83% (45%) of photons from π0 (η) decays
while retaining 92% (99%) of prompt signal photons.
We reconstruct K0

S → πþπ− candidates using two oppo-
sitely charged tracks. The K0

S candidates are selected with
an invariant mass in the range jmðπþπ−Þ −mK0

S
j <

34 MeV=c2, where mK0
S
is the known K0

S mass [44].

This range corresponds to �2.6σ in resolution. To further
reduce background, we employ another BDT to form two
classifiers: K0

S likeness and Λ likeness, which are based on
kinematic and PID information. We apply selection criteria
on these classifiers that retain 97% of signal K0

S decays,
according to simulation, while rejecting 67% of candidates
due to Λ’s and 98% of other background candidates.
We reconstruct π0 → γγ candidates using pairs of ECL

clusters with no associated tracks. We require a cluster
energy greater than 22.5 (20.0) MeV in the forward end cap
(barrel and backward end cap). Photon pairs having an
invariant mass mðγγÞ∈ ð104; 164Þ MeV=c2, correspond-
ing to 2σ in resolution, are selected as π0 candidates. We
also require that the π0 momentum exceeds 430 MeV=c.
This requirement retains 92% of signal π0’s, according to
simulation, while rejecting 74% of background π0’s.
We reconstruct Bsig candidates by combining γ, K0

S, and
π0 candidates. We select Bsig candidates using the beam-

energy-constrained mass Mbc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
beam=c

4 − p�2
B =c2

p
, and

energy difference ΔE≡ E�
B − E�

beam, where E�
beam is the

beam energy and E�
B and p�

B are the reconstructed energy
and momentum of the Bsig candidate. All quantities are
evaluated in the c.m. frame. We retain Bsig candidates
satisfying 5.20 < Mbc < 5.29 GeV=c2 and −0.5 < ΔE <
0.5 GeV. Almost half (45%) of events have multiple Bsig

candidates, with 96% of these due to multiple π0 candi-
dates. To identify the correct Bsig candidate, we use a BDT-
based classifier based on the properties of the π0 candidate
[45]. We retain the Bsig candidate with the highest π0 BDT
classifier value. If multiple candidates share the same π0,
we choose the candidate with the highest value of K0

S
likeness. These criteria select the correct Bsig candidate in
85% of simulated events with multiple candidates. The
invariant mass of the K0

Sπ
0 system, mðK0

Sπ
0Þ, is required to

be in the range 0.6–1.8 GeV=c2. We define mass region 1
(MR1) as mðK0

Sπ
0Þ∈ ð0.8; 1.0Þ GeV=c2, which is domi-

nated by the K�ð892Þ0 meson, and mass region 2 (MR2)
as mðK0

Sπ
0Þ∈ ð0.6; 0.8Þ ∪ ð1.0; 1.8Þ GeV=c2.

We measure the decay vertex positions of Bsig and Btag in
kinematic fits. The Bsig vertex is determined by a fit to the
entire decay chain [53]. This fit includes the constraint that
the Bsig trajectory be consistent with originating from the
eþe− interaction point (IP). The IP is measured regularly by
averaging over eþe− → μþμ− events. For the Btag vertex
[54], the tracks used must have a distance of closest
approach to the IP within 0.5 cm in the r–ϕ plane and
within 2.0 cm along the z axis. We also require that each
track have at least one hit in each of the PXD, SVD,
and CDC subdetectors, and a momentum greater
than 50 MeV=c.

We calculate the decay time Δt as ðlsig − ltagÞ=βγc,
where lsig (ltag) is the Bsig (Btag) decay vertex position
projected along the ϒð4SÞ boost direction, and βγ is the
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Lorentz boost factor of the ϒð4SÞ in the lab frame. This
calculation applies to events satisfying the following “TD”
(time-dependent) criteria. For the Bsig vertex, both pions
from the K0

S must have at least one SVD hit; the χ2 of the
vertex fit must be less than 30 (100) for tracks (overall); and
the uncertainty on lsig, σlsig , must be less than 500 μm. For

the Btag vertex, the reduced χ2 of the vertex fit must be less
than 100, and σltag must be less than 500 μm. Events that do
not satisfy these criteria are classified as “TI” (time-
integrated); they are included in the fit (described below)
to improve the precision on C.
The flavor q of Btag is determined using a combination of

BDT algorithms [55]. The combination outputs the product
qr, where r is a quality factor that ranges from zero for no
flavor information to 1.0 for unambiguous flavor assign-
ment. As the tagging efficiency and signal purity depend on
r, we divide the data into seven r bins, each containing a
similar number of events. For each r bin, the wrong-tag
fraction w and the difference Δw between B0 and B̄0 tags
are determined using flavor-specific B decays [56]. The
effective tagging efficiency, εeff ¼ Σiε

i
tagð1 − 2wiÞ2, is

ð31.69� 0.35Þ%, where εitag is the probability for a B0 →
K0

Sπ
0γ decay to be flavor-tagged with r in the ith bin.

We train two BDT classifiers to discriminate signal from
qq̄ background, separately for MR1 and MR2 candidates.
The classifiers use event topology variables [45], and the
classifier thresholds are optimized separately for each r bin.
According to simulation, these thresholds retain 77%
(74%) of signal decays while rejecting 95% (89%) of qq̄
background for MR1 (MR2).
As a control mode, we reconstruct the decay

Bþ → K0
Sπ

þγ, which does not exhibit mixing-induced
CP violation. This decay, when the primary πþ track is
ignored, has the same vertex resolution as the signal B0 →
K0

Sπ
0γ decay, as the contribution of the π0 candidate to the

signal vertex resolution is negligible.
The signal and background yields are determined from

an unbinned maximum-likelihood fit to the Mbc–ΔE
distribution. We fit events in the ranges 5.23 < Mbc <
5.29 GeV=c2 and −0.4 < ΔE < 0.3 GeV.We combine the
TD and TI samples, as they (both for data and for simulated
signal and background events) show negligible differences
in these variables. We model the Mbc–ΔE probability
density functions (PDFs) for signal and BB̄ background
using simulation. Kernel density estimation [57] is used to
account for Mbc–ΔE correlations. The qq̄ background is
modeled with the product of an ARGUS function [58] for
Mbc and a second-order polynomial for ΔE. The signal and
BB̄ yields, and the qq̄ shape parameters, are floated in the
fit, while the total yield is fixed. To calculate signal yields,
we define a signal-enhanced region 5.27 < Mbc <
5.29 GeV=c2 and −0.2 < ΔE < 0.1 GeV. For B0 →
K�ð892Þ0γ events, the efficiency in this region is

ð22.8� 0.1Þ% for MR1. The fitted Mbc and ΔE distribu-
tions and projections of the fit result are shown in Fig. 1.
The resulting signal and BB̄ yields are listed in Table I.
The Δt PDF consists of signal and background compo-

nents weighted by their fractions as determined from the
Mbc–ΔE fit. For the TD category, the PDF is described as

PTDðΔt;qÞ¼
Z

∞

−∞
½fsigPsigðΔt0;qÞRsigðΔt−Δt0Þ

þð1−fsigÞfBB̄PBB̄ðΔt0;qÞRBB̄ðΔt−Δt0Þ�dΔt0
þð1−fsigÞð1−fBB̄ÞPqq̄ðΔtÞ; ð2Þ

PsigðΔt0; qÞ ¼
1

4τB0

e
−jΔt0 j

τ
B0

�
1 − qΔwþ qð1 − 2wÞ

× ½S sinðΔmdΔt0Þ − C cosðΔmdΔt0Þ�
�
; ð3Þ

FIG. 1. Distributions ofMbc (left) and ΔE (right) for MR1 (top)
and MR2 (bottom), with fit results overlaid. The Mbc (ΔE)
distribution corresponds to the ΔE (Mbc) signal-enhanced region.

TABLE I. Signal and control sample yields in the signal-
enhanced region. Also listed is the signal-to-background ratio
(Ns=Nb), where Nb includes all backgrounds.

Sample
Signal
yield

BB̄ background
yield Ns=Nb

B0 → K0
Sπ

0γ in MR1 385� 24 20� 8 2.36
B0 → K0

Sπ
0γ in MR2 171� 23 69� 19 0.34

Bþ → K0
Sπ

þγ 843� 34 55� 10 2.68
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PBB̄ðΔt0; qÞ ¼
1

4τBB̄
e
−jΔt0 j

τBB̄ ð1 − qΔwÞ; ð4Þ

where fsig is the event-by-event signal probability, fBB̄ is
the BB̄ background probability relative to that of all
background components, PsigðΔt0; qÞ and PBB̄ðΔt0; qÞ
are the signal and BB̄ background PDFs taking into account
the effect of w andΔw, Pqq̄ðΔtÞ is the qq̄ PDF, and Rsig and
RBB̄ are the proper-time resolution functions for signal and
BB̄ background [45]. We fix τB0 and Δmd to their known
values [44] and the effective lifetime of the BB̄ background,
τBB̄, to the value determined from simulation. The fractions
fsig and fBB̄ are taken from the previous fit. The only
floated parameters are S and C.
The resolution functions, Rsig and RBB̄, are described by

convolving three components: detector resolution for Bsig

and Btag decay vertices, bias due to the secondary decay
vertex of intermediate charm states in Btag decays, and a
correction to the boost factors due to the small momenta of
the B mesons in the c.m. frame. The last component
depends on cos θ�B, where θ

�
B is the angle in the c.m. frame

between the B0 momentum and the ϒð4SÞ boost direction
[59]. We model the detector resolution for Bsig (Btag) vertex
on an event-by-event basis, including the dependence on
σlsig (σltag ) and the χ2 from the vertex fit. The resolution
function parameters are determined from simulated sam-
ples generated with five parameters of a helixlike trajectory
[60] calibrated from data. The data used consist of cosmic
ray events in which a cosmic ray track traversing the
PXD or SVD is reconstructed as two outgoing tracks from
the IP.
For BB̄ background, the Bsig vertex resolution is the

same as that of the signal component due to the high purity
of K0

S candidates, while the Btag vertex suffers from
contamination by tracks coming from the background
Bsig decay. We adjust τBB̄ in PBB̄ and parameters of the
BB̄ resolution function to account for the smeared vertex
position and the typically shorter decay-time difference.
We model Pqq̄ðΔtÞ using three Gaussian functions, whose
shape parameters are determined from a fit to an Mbc–ΔE
sideband in data defined as 5.23 < Mbc < 5.255 GeV=c2,
−0.5 < ΔE < 0.3 GeV, and ðMbc − 5.23 GeV=c2Þ <
ðΔEþ 0.45 GeVÞ=14c2.
The PDF PTD depends on cos θ�B, σlsig , σltag , the vertex-fit

χ2’s, and r (through Δw) [45]. If signal and background
events are distributed differently in these variables, then
including them in the PDF can introduce bias [61]. Among
these variables, only r and cos θ�B differ noticeably between
signal and backgrounds, and to alleviate bias we include
additional PDFs for them in the likelihood function [61].
The r and cos θ�B distributions for signal and BB̄ back-
ground are determined from simulation, while those for qq̄
background are taken from the Mbc–ΔE sideband in data.

For the TI category, the PDF is expressed as

PTIðqÞ ¼ fsig

�
1

2

��
1 − qΔw − qð1 − 2wÞ C

1þ Δm2
dτ

2
B0

�

þ ð1 − fsigÞfBB̄
�
1 − qΔw

2

�

þ ð1 − fsigÞð1 − fBB̄Þ
�
1

2

�
; ð5Þ

where only the C parameter is extracted in the fit.
We simultaneously fit the TD and TI samples in the

signal-enhanced region, floating the common C parameter.
The results are S ¼ 0.00þ0.27

−0.26 and C ¼ 0.10� 0.13 for
MR1 events, and S ¼ 0.04þ0.45

−0.44 and C ¼ −0.06� 0.25
for MR2 events. The statistical correlation between S
and C is −0.005 in MR1 and þ0.011 in MR2. Figure 2
shows the Δt distribution along with the fit result. No
significant time-dependent asymmetries are observed.
We perform various cross-checks to confirm the validity

of our fit procedure. We fit for the B0 lifetime in the MR1
and MR2 samples and obtain 1.55� 0.14 ps and
1.58� 0.24 ps, respectively, which are consistent with
the world average [44]. We also perform studies of the
control mode Bþ → K0

Sπ
þγ. The lifetime fit obtains

1.68� 0.09 ps, which is consistent with the Bþ lifetime.
The difference between Bþ vertices with and without the
πþ track is consistent with the Bsig vertex resolution
function. We fit for CP violation and obtain S ¼ 0.05�
0.09 and C ¼ 0.03� 0.05, which are consistent with S ¼ 0
and the world average C ¼ 0.014� 0.018 [44].

FIG. 2. Δt distributions for MR1 (left) and MR2 (right) with
the fit result superimposed. The asymmetry ½NsðB0

tagÞ −
NsðB̄0

tagÞ�=½NsðB0
tagÞ þ NsðB̄0

tagÞ� is calculated in each Δt bin
using sPlot [62] and plotted in the bottom panels along with
the fit result.
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We consider various sources of systematic uncertainty.
We repeat the analysis with shifted scaling factors for the
track momentum and cluster energy and take the deviation
from the nominal results as the uncertainty. In a similar
manner, we treat four sources of uncertainties for the vertex
measurements: possible detector misalignments, imperfect
understanding of the IP profile measurement [56], correc-
tions to uncertainties on the track helix parameters, and the
TD criteria. We assess the effect of uncertainties in w and
Δw by varying them by their uncertainties and refitting the
data. We also simulate the effect of a difference in εitag
between B0

tag and B̄0
tag decays. The uncertainties due to

fixed parameters for Mbc, ΔE, and cos θ�B PDFs and r-bin
fractions in signal modeling, including fsig and fBB̄, are
also evaluated by refitting. We simulate potential mismod-
eling of Mbc–ΔE distributions and potential bias from the
modeling of σlsig , σltag and the vertex fit χ2’s [61]. The
uncertainties due to limited statistics of the dataset used for
kernel density estimation are evaluated with the bootstrap
method [63].
We consider uncertainties from the modeling and

parameters of the Δt resolution function by varying these
parameters by their uncertainties and refitting. The
differences between these results and our nominal result
are taken as uncertainties. We evaluate the uncertainties
arising from τB0 and Δmd in a similar manner [44].
We study the impact of an asymmetry in BB̄ back-

grounds. We generate samples with asymmetric back-
grounds and refit using our nominal (symmetric) BB̄
background PDF. The change in the fit results is assigned
as an uncertainty. The asymmetries simulated correspond to
the world average values of S, C for b → sqq̄ decays, and
to maximum values of S, C (�1) for b → sγ decays.
We evaluate the bias from tag-side interference [64]

assuming S ¼ C ¼ 0. The dominant uncertainties come
from the scaling factors for cluster energy, the vertex
quality selection criteria, the BB̄ background asymmetry,
and the tag-side interference. The total systematic

uncertainties, listed in Table II, are calculated as the sum
in quadrature of all individual systematic uncertainties.
In summary, we measure the time-dependent CP asym-

metry in B0 → K0
Sπ

0γ decays using ð388� 6Þ × 106 BB̄
events collected by the Belle II detector. These decays
are sensitive to right-handed currents arising from BSM
physics. We perform these measurements for two mðK0

Sπ
0Þ

mass regions corresponding to K�0 → K0
Sπ

0 and nonreso-
nant decays. We obtain CP-violating parameters

S ¼ 0.00þ0.27
−0.26 � 0.03; C ¼ 0.10� 0.13� 0.04 ð6Þ

for the K�0 resonant region and

S ¼ 0.04þ0.45
−0.44 � 0.10; C ¼ −0.06� 0.25� 0.09 ð7Þ

for the nonresonant region, where the uncertainties are
statistical and systematic, respectively. The measured S
values agree with SM predictions [18,19] within 1 standard
deviation. Our results have improved precision with respect
to previous measurements [22,23]. The improvements
mostly result from a refined K0

S identification algorithm
and a large-acceptance silicon vertex detector [33]. The
improved precision should further constrain the BSM
parameter space [4–11].
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