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Abstract
Retrieval-augmented Generation (RAG) has been used to augment
language models by retrieving texts from external databases. Since
real-world texts are often connected in the graph (e.g., papers in
citation networks), we use these relations to guide the retrieval pro-
cess of RAG. Concretely, we investigate proximity and role-based
relations, where the former considers topologically close nodes
and the latter considers structurally similar nodes. We empirically
verify their correlation to text relations, which motivates us to
propose the framework of Topology-aware Retrieval-augmented
Generation for text generation, which consists of a retrieval module
to retrieve texts by their topological relations and an aggregation
module to compose retrieved texts into prompts triggering LLMs
for text generation. Extensive experiments verify the e�ectiveness
of this framework, signifying the potential of equipping RAG with
topological awareness. Our code is publically available at here.
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Figure 1: Topology-aware Retrieval for Text Generation.(a):
Peoplewrite paper abstracts by referring to other papers cited
in the related work.; (b): Employees owning the same local
subgraph structures possess the same titles/responsibilities.

1 Introduction
Text generation focuses on creating human-readable texts based
on the input text instructions [13, 16, 25, 56]. Despite the unprece-
dented success achieved by large language models (LLMs) in text
generation [3, 54], their performance is still hampered by the limited
knowledge available in input texts [63, 69, 74]. On one hand, rely-
ing solely on input text provides limited information misaligning
with the abundant knowledge necessary for the desired output. On
the other hand, while pre-training over vast corpora has equipped
LLMs with world knowledge, this knowledge is encoded in their
black-box-like parameters and there is no clear pathway to map
these intriguing parameters to interpretable knowledge that can be
faithfully used in text generation.

To address the issue of limited knowledge in input texts, Retrieval-
augmented Generation (RAG) is used to create a well-informed
context by retrieving knowledge from external databases [12, 27,
35, 41, 42, 53, 60, 61]. Unfortunately, most of these methods have
been exclusively deployed for question-answering tasks [40, 53, 61],
with a limited exploration in text generation tasks. More impor-
tantly, they neglect two fundamental knowledge in the topological
pattern, proximity-based knowledge [20, 49, 75] (i.e., nodes that
can be mutually reached via only few-hops walks) and role-based
knowledge [1, 46, 48] (i.e., nodes with similar local subgraph struc-
tures). For example, in Figure 1(a), when writing the paper abstract
(node 1), having access to its cited papers in its related work section
(nodes 2-4) could greatly enhance writing e�ciency, because these
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referenced papers likely possess similar knowledge and narrative
styles. Likewise, in Figure 1(b), employees holding comparable po-
sitions in a company, like managers 2 and 3, typically share similar
job responsibilities and analogous communication styles in their
emails. Understanding the email content and job responsibilities of
one manager can provide insights into the role and communication
style of the other manager.

Given the overlook of the above two topological relations in
current RAGs, we study their potential in enhancing RAGs for text
generation. To validate the feasibility of this idea, we address two
key questions: can the text generation be improved by incorporat-
ing additional texts? To answer the �rst question, we incremen-
tally increase the contextual similarity to the text to be generated
and observe a corresponding performance increase. Secondly, can
textual relations between any pair of nodes be re�ected by their
topological relations? To answer the second question, we analyze
the correlation between the textual relations between any two
nodes and their proximity/role-based topological relations. A�r-
mative answers to the above two questions inspire us to propose
a framework, Topology-aware Retrieval-augmented Generation
(Topo-RAG), which augments text generation by retrieving relevant
texts based on their proximity/role-based topological similarity.

• Bridging Topological and Textual Relations: we discover the
positive correlation between proximity/role-based topological
relations of any pair of two nodes and their textual relations over
nine datasets across four distinct domains, bridging the gap of
node pairwise relations between topology space and text space.

• Developing Topology-Informed RAG Framework: we equip
the RAG with topological awareness by retrieving texts from the
graph database according to their proximity/role-based similarity
to the target entity for which the text is being generated.

• Comprehensive Empirical Analysis: We construct a wide
range of text-attributed graphs from diverse domains and conduct
comprehensive experiments to verify the e�ectiveness of our
framework. Moreover, we pioneer the use of node classi�cation
and link prediction to evaluate the quality of the generated texts.

2 Preliminary
2.1 Motivative Examples
To motivate the analysis of the correlation between the textual
and topological relation, we take two examples, one analyzing
the proximity-based relation (Figure 2(a)-(b)), and the other one
analyzing the role-based relation (Figure 2(c)-(d)).

2.1.1 Textual Relation with Proximity-based Topological Relation.
In Figure 2(a), we extract a subgraph centering around node 0 from
the citation network, Cora, where each node represents a paper
with the abstract as its textual information, and each edge indicates
a reference relation between the corresponding two paper nodes.
Meanwhile, we obtain textual embedding of each node by feeding
its abstract through sentence-transformer [45] and calculate the
pairwise cosine similarity in Figure 2(b). Comparing Figure 2(a) and
(b), we observe that as nodes become further away from node 0,
their textual similarity to node 0 gradually decreases, indicating
the textual similarity between any pair of nodes is correlated to
their proximity-based topological distance.

Figure 2: (a)-(b): Cora citation network where nodes are pa-
pers and edges are reference relations. Papers that are topo-
logically closer to paper 0 have higher textual similarity to
its text; (c)-(d): Eron-email network where nodes represent
employees and edges denote their email communications.
For each row in the two heatmaps, employees in diagonal
entries share higher textual similarity and lower role-based
topological distance than the ones belonging to o�-diagonal
entries in the same row. This indicates that employees with
the same roles share a higher textual similarity and lower
topological distance than employees with di�erent roles.

2.1.2 Textual Relation with Role-based Topological Relation. We
use the Eron-email dataset [7] where we have access to emails sent
from/received by employees with their job titles. We feed each
email through the sentence-transformer [45] to obtain each email
embedding. Then, we calculate the embedding of each employee by
averaging the embeddings of their received emails. After that, we
calculate pairwise textual similarity among employees and group
them based on their job titles in Figure 2(c). For each row, we ob-
serve that the diagonal entry generally has higher textual similarity
compared with other o�-diagonal entries in the same row, indicat-
ing higher content similarity of emails received among employees
possessing the same role in a company.1 Furthermore, we construct
the graph with nodes being employees and edges being their email
communications. We run GraphWave [8] to obtain employees’ role-
based embeddings and encode their local structural information.
We calculate pairwise L2 distance among employees and group
them based on their job titles. Similarly, we observe a generally
lower role-based topological distance for employees possessing the
same roles, indicating their local subgraph structures are aligned
with their job titles in reality.

The above two observations motivate us to explore the potential
of augmenting text generation by leveraging topology information.
In the next, we introduce notations used throughout this paper and
formulate the task of topology-aware text generation.
1Similar observation is also found when analyzing their sent emails in Figure 8 in
Appendix A.1.
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2.2 Notations
Let S = {(8 }<+=

8=1 be the set of< + = text sequences where (8 repre-
sents the 8th sequence. Assume we also have access to an additional
graph connecting these textual sequences ⌧ = (V, E) where each
node E8 corresponds to a textual sequence (8 and the edge 48 9 de-
notes the connection between node E8 and E 9 . Furthermore, the
adjacency matrix of this graph is notated as A 2 R(<+=)⇥ (<+=)

where A8 9 = 1 if there is an edge 48 9 connecting E8 and E 9 , and
A8 9 = 0 otherwise. Let N8 be the neighbors of node E8 . We formu-
late the topology-aware text generation in the following.

2.3 Task Formulation
Given a set of textual sequences S = S

Full
[S

Partial where SFull =
{(8 }=8=1 comprises sequences with completely accessible texts, and
S
Partial = {(8 }<8=1 consists of sequences with texts that are only par-

tially observable. As the objective of many text-generation applica-
tions is to generate complete texts based on the �rst few pre-existing
words/sentences, the "partially observed texts" in this paper refer to
the initial words provided in a sequence. Let the partially observed
text be -8 for 8th sequence and its unobserved counterpart be .8 .
We aim to leverage LLMs F to generate the sequence b.8 utilizing
the information from input -8 , other fully observed texts in S

Full

and their topological relations in⌧ , with the expectation to recover
the ground-truth sequence .8 :

b.8 = F (⌦(-8 ,S
Full,⌧)), 88 2 {1, 2, ...,<}. (1)

Comparing with solely relying on the partially observed text -8
for the generation, i.e., b.8 = F (-8 ), Eq. (1) leverages ⌦ to further
retrieve the additional sequences from S

Full based on the topolog-
ical knowledge in the graph structure ⌧ . The general hypothesis
here is that for each pair of two textual sequences (8 , ( 9 and their
corresponding nodes E8 , E 9 in the graph, if 1) the text generation
of LLMs can bene�t from providing extra texts that are similar to
the target text and 2) the textual similarity qText8 9 = qText ((8 , ( 9 ) is

correlated to their topological similarity qTopo8 9 = qTopo (E8 , E 9 ), then
incorporating those topologically-similar sequences would bene�t
the generation of the current texts. Verifying the above hypothesis
requires answering the following two questions:

• W1: Would the text generation with a pre-trained large language
model bene�t from providing texts that have higher textual simi-
larity to the current text to be generated?

• W2: Is there any correlation between the textual similarity of two
sequences and the topological similarity of their corresponding
nodes in the graph?

Next, we address W1 by empirically demonstrating the perfor-
mance increase when providing additional texts with increasing
textual similarity to the target text (Figure 3 in Section 3). We ad-
dressW2 by formally introducing two types of topological similarity,
proximity-based one and role-based one, and analyzing their corre-
lations to textual similarity (Figure 4/5 in Section 4). Successfully
answering these two questions would motivate the proposal of
our framework Topology-aware Retrieval-Augmented Generation
(TopoRAG).

Figure 3: Comparing text generation between the scenario
"Addition" where we include additional texts based on their
proximity-based topological similarity to the target node and
the scenario "None" where we include no additional texts but
only based on its partially observed starting words.

3 Would text generation bene�t from providing
additional texts?

To address the �rst research question W1, we compute the topologi-
cal similarity between the target node designated for text generation
and all other nodes using their proximity-based topological embed-
ding according to Eq (3). Then, we rank all other nodes based on
the topological similarity to the target node, iteratively select three
consecutive nodes from the ranked list (ranging from positions :
to : + 3), and incorporate their texts as supplementary context to
enhance the text generation. Figure 3 shows the generation perfor-
mance of paper abstracts on Cora as we sequentially increase the
topological rank of the selected additional nodes.

Firstly, compared with solely based on its partially observed
starting words (horizontal line), the text generation performance
is better when including nodes that are among the Top 6. This
�nding highlights the bene�ts of incorporating additional texts in
augmenting the current text generation. Secondly, by gradually
increasing the rank of nodes we select, the performance gradually
decreases according to BertScore-F1, demonstrating that the bene�t
of including additional texts is correlated to the similarity of those
texts to the target one, answering W1.

4 Is topological similarity correlated to textual
similarity?

Assuming the topological similarity qTopo and the textual similarity
qText are two random variables where their speci�c realizations
correspond to their values for a speci�c pair of nodes, then their
Pearson correlation is computed as:

A =
# 2 Õ# ,#

8,9=1 q
Text
8 9 q

Topo
8 9 �

Õ# ,#
8,9=1 q

Text
8 9

Õ# ,#
8,9=1 q

Topo
8 9s

[# 2 Õ# ,#
8,9=1 (qText8 9 )

2
� (

Õ# ,#
8,9=1 q

Text
8 9 )2 ] [# 2 Õ# ,#

8,9=1 (q
Topo
8 9 )

2
� (

Õ# ,#
8,9=1 q

Topo
8 9 )2 ]

,

(2)

whereqText8 9 = qText ((8 , ( 9 ) is de�ned as the semantic similarity and
it is computed as the cosine similarity of textual embeddings from
sentence-transformer. qTopo8 9 = qTopo (E8 , E 9 ) de�nes the topological
similarity between two nodes E8 , E 9 . Following previous works [8,
46], we measure this topological similarity between two nodes
by the similarity of their topological embeddings. In the next, we
explore two types of node topological embeddings: proximity-based
and role-based ones.
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Figure 4: Correlation between Proximity-based Topological
Similarity and Textual Similarity. (a): In Cora, as the topo-
logical distance between two paper nodes decreases, their
textual similarity increases. (b): The Pearson correlations
across di�erent datasets are all positive and increase as the
number of di�usion layer : in Eq. (3) increases.

4.1 Proximity-based Topological Similarity
Proximity-based topological similarity quanti�es the similarity be-
tween two nodes via their topological distance in the graph. The
general intuition here is that two topologically close nodes usually
have a higher textual similarity.

Conventional ways of characterizing the topological distance
between two nodes in a graph include the shortest path distance
and the shallow embeddings (e.g., random walk, personalized page
rank and di�usion [15, 17]). In this work, we choose the di�usion-
based one due to its thorough consideration of all potential paths
in contributing to the proximity between any two nodes. Given
a degree-normalized adjacency matrix bA = D�1A and an identity
matrix I 2 {0, 1}#⇥# uniquely identifying each node, we perform
di�usion to obtain the propagated node embeddings as:

P =
 ’
:=1

U:bA: I, (3)

where P8 9 quanti�es the in�uence of node E 9 on node E8 considering
paths of lengths varying from 1 to  since two nodes that are topo-
logically close to each other should receive similar in�uence from all
other nodes in this graph. However, directly performing this di�u-
sion requires O( # 3

) for time and O(# 2
) for space complexity. To

make this computation scalable [5], we further project the unique
node label matrix I via random gaussian projection by replacing
I 2 R#⇥# with R 2 R#⇥3

⇠ N(03 , ⌃3 ) with 3 << # , which
e�ectively reduces the time/space complexity to O( # 23)/O(#3).
Then the topological similarity between two nodes is computed as
the cosine similarity between their corresponding propagated node
embeddings, i.e., qTopo8, 9 = cos(P8 , P9 ).

To verify the correlation between the proximity-based topologi-
cal similarity and textual similarity, we conduct correlation analysis
on datasets in Figure 4. On Cora dataset, we run di�usion accord-
ing to Eq. (3), obtain node embeddings P, calculate the pairwise
topological similarity, and visualize it along with the pairwise tex-
tual similarity in Figure 4(a) 2. We can see the pairwise textual

2Similar analysis on other datasets are included in Figure 9 in Appendix A.2

Figure 5: Correlation between Role-based Topological Dis-
tance and Textual Similarity on Eron-Email Dataset where
role-based topological distance is calculated based on the
L2-distance between embeddings of two employees obtained
from GraphWave while textual similarity is calculated as the
average cosine similarity of textual embeddings of either the
sent (a) or received emails (b) between two employees.

similarity increases as the pairwise topological similarity increases.
Moreover, we calculate the Pearson correlation across di�erent
datasets at di�erent di�usion layers : in Eq. (3) in Figure 4(b). In
all six datasets, the correlation is positive and increases as the dif-
fusion layer increases as the higher di�usion layer considers the
higher-order paths in quantifying the topological proximity, which
becomes more aligned with their textual similarity. Di�erent from
Cora/Pubmed/Arxiv/Product/Amazon-Book, the correlation on the
Epinion dataset does not increase since reviews posted by the same
person may not necessarily be similar if the products are di�erent.

4.2 Role-based Topological Similarity
Unlike proximity-based topological similaritywhich considers nodes
residing closely in one network to be similar, role-based topological
similarity focuses on identifying nodes with topologically similar
neighborhoods [46]. Intuitively, nodes with similar local structures
perform similar functions in the network and hence possess similar
textual information in some aspects, such as the employees’ tone
should be di�erent from the vice presidents’ tone in a company [22].
Following this intuition, we employ one of the most representa-
tive embedding methods, GraphWave, that encodes the node local
structure information in the next.

Following GraphWave [8], the spectral graph wavelet  0 is cal-
culated as:

 0 = UDiag(6B (_1), . . . ,6B (_# ))U>10, (4)

where L = D � A = UΛU> and _1  _2  ...  _# (Λ =
Diag(_1, _2, ..., _# )) is the eigenvalues of L) with 6B (_) = 4�_B

being the kernel �lter. 10 is the one-hot vector for node E0 .  0
denotes the spectral graph wavelet for the heat kernel centered at
node E0 and more speci�cally, its 1th-entry  10 denotes the amount
of energy that node E0 has received from node E1 . Furthermore,
GraphWave treats the spectral graph wavelet of node E0 , i.e.,  0 ,
as a probability distribution and characterizes it via the empirical
characteristic function with 8 being the imaginary number here:

q 0 (C) = EE1⇠V (48C 01 ), (5)
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Eventually, structural embedding P0 of node E0 is obtained by
sampling the 2-dimensional characteristics function at d evenly
spaced points C1, C2, ..., C3 and concatenating them as:

P0 = | |C1,C2,...,C3 [Re(q 0 (C)), Im(q 0 (C))] . (6)

Then the topological similarity between two nodes is computed as
the L2-distance between their corresponding structural embeddings,
i.e., qTopo

0,1
= 1

| |P0�P1 | |2
.

To verify the correlation between the role-based topological sim-
ilarity and textual similarity, we conduct correlation analysis on
the Eron-Email dataset in Figure 5. Following the experimental
setting for Figure 2(c)-(d), we group each pair of employees based
on their L2 topological distance and compute average textual simi-
larity using their sent/received emails in Figure 5(a)/(b). We can see
the negative correlation (-0.1937/-0.3295) between the role-based
topological distance between two employees and the similarity of
their sent/received emails.

To sum up, the positive responses to the preceding questions
con�rm two key insights. Firstly by the answer to W1, LLMs sig-
ni�cantly bene�t from incorporating additional texts during text
generation. The closer the resemblance of these additional texts to
the generated one, the greater the enhancement is in the output. Sec-
ondly, by the answer to W2, there is a positive correlation between
textual and topological similarity. Drawing from these �ndings, we
propose a novel framework using topological similarity to guide
the retrieval of additional texts, thereby augmenting the quality
of the generated text, i.e., Topology-aware Retrieval-Augmented
Generation (Topo-RAG), which is introduced next.

5 Framework of Topo-RAG
Following Eq. (1), the retriever works by retrieving top-K nodes
according to their topological similarity to the target text as follows:

T8 = ⌦Retriever
(-8 ,S

Full,⌧) = argmax
E9 2V

 qTopo (E8 , E 9 ), (7)

After that, we formulate the texts of nodes in T8 along with the
partially observed text -8 of target node E8 into the prompt trigger-
ing LLM for text generation. Compared with conventional retrievals
that only consider textual relations, the Topo-RAG framework con-
siders topological relations. To implement this, it’s necessary to
pre-calculate the topological relations between every pair of nodes,
a process requiring O(|V|

2
) in both space and time complexity. To

manage space constraints, we apply a top-k thresholding, reducing
the space requirement signi�cantly to O(|V| ). These computa-
tions are done in advance during an o�ine phase. Consequently,
when a text generation request for a speci�c target node is made,
we can retrieve the necessary information instantaneously from the
pre-computed dictionary, maintaining a time complexity of O(1).
Note that prompting LLMs with the retrieved nodes of very long
texts could exceed the input limits. Since this is a common issue
for any RAG framework, one can equip our Topo-RAG framework
with the existing strategies [28, 57] that handle this long-context
issue. Here, we exclude instances where the context limit is ex-
ceeded. The length distribution analysis in Figure 8(b) reveals that
the textual length of most nodes remains within acceptable limits,
ensuring that our results and insights are still applicable to the
original dataset even after the exclusion.

6 Experiments

Table 1: Statistics of Datasets. SFull denote nodes with fully
available textual information while S

Partial denote nodes
with partially observable text.

Domain Dataset # Nodes # Edges # Instances
(SFull

/S
Partial) Splitting

Citation
Cora [6, 65] 2,708 5,429 2,522/186 Random
Pubmed [6, 65] 19,717 44,335 17,786/1,931 Random
Arxiv [6, 23] 16,316 53,519 14,791/1,525 Time

E-commerce

Product [6, 23] 16,475 60,015 15,790/685 Random
Book [43] 7,252 203,438 6,526/726 Time
Epinion [4, 73] 4,976 15,613 4,477/499 Time
Music [43] 10,341 447,250 9,306/1,035 Time
Pantry [43] 4,650 43,970 4,184/466 Time

Social Eron-Email [52] 18,055 123,208 182,265/46,990 Random

6.1 Experimental Settings
6.1.1 Datasets. Although previous works [24, 33] borrow knowl-
edge graphs to enhance text generation, the improvement mainly
comes from the complex logical pattern encoded in the knowl-
edge graph rather than proximity/structure topological patterns
discussed in this paper. Therefore, we collect additional datasets to
demonstrate the e�ectiveness of considering these two patterns in
text generation, the details of which are discussed next:
• Cora, Pubmed, Arxiv [6, 23, 65]: Citation networks where
nodes represent papers with abstracts as textual information,
and edges signify reference relations. We divide nodes into fully-
observed/partially-observed sets in a 90%/10% ratio and further
remove nodes whose abstracts are less than 100 words. Then, we
create the induced subgraph and remove edges connecting two
nodes in the testing set to avoid information leakage. For the
larger Arxiv network, due to resource constraints, we randomly
select 2% nodes as seeds and apply the GraphSAGE sampling
with the number of neighbors [2, 2] across two layers. Since
Arxiv provides the publication time of each paper [23], we use
the same preprocessing as Cora/Pubmed but follow the chrono-
logical order, imitating the real scenarios where users are writing
papers with references to historical papers.

• Book, Epinion, Music, Pantry [4, 6, 23, 43, 73]: In digital e-
commerce networks, each node represents a review and two
reviews have an edge if they are either written by the same cus-
tomer or posted on the same product. Considering the vast scale
of the Book dataset, which encompasses 27,161,262 reviews, we
only take the latest 1% reviews to construct the graph.We exclude
any review whose length falls below 100 characters. We adhere
to the same data splitting ratio used in Cora/Pubmed/Arxiv fol-
lowing the chronological order when the review was generated.

• Products [23]: Amazon product co-purchasing network where
nodes represent products sold in Amazon and edges between two
products indicate the co-purchase behaviors. Following Arxiv, we
randomly select 0.1% among all product nodes as seeds and apply
a GraphSAGE-based neighborhood sampling, with the number
of neighbors as [2, 2] across two layers. Di�erent from [23] using
the sales ranking to split nodes, we randomly select 90%/10%
nodes into fully-observed/partially-observed sets.
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• Eron-Email [8]: In email communication networks, each node
represents an employee in the company with his/her textual
information being the historical written/received emails. We pre-
process the original emails and extract the sender/receiver/text
information of each email following script here3.

6.1.2 Baselines. For baselines, as no previous works considered
the proximity/role-based relations in RAG, we design baselines by
equipping LLMs, GPT3 and GPT3.5 for text generation, with the
following RAG strategies:
• None: we do not retrieve any additional texts but completely
rely on the partially observed starting words.

• Random (RD): we randomly retrieve  texts from the graph-
structured knowledge base.

• Text: we calculate the semantic similarity between the partially
observed texts in the target sequence and all other texts. Then
we select the Top- ones according to their semantic similarity.

• Topo: we calculate the topological similarity according to embed-
dings from Eq. (3)/(6) between the node of the target sequence
and all other nodes. Then we rank them and select the top- 
ones. This one is essentially our Topo-RAG framework.

6.1.3 Evaluation Tasks. To evaluate the quality of our generated
text, we compare it with ground-truth text following established
methodologies [36, 50]. We only focus on comparing the generated
content, without considering any initially observed words. In addi-
tion, for the very �rst time, we introduce a task-oriented evaluation
to assess the quality of the generated texts. The general motivation
of this task-oriented evaluation is due to the growing relevance of
text generation in real-world applications where generated content
serves not only for direct use but also as input for downstream tasks.
Speci�cally, we adopt two graph-based tasks, node classi�cation
and link prediction. In these two tasks, textual features of certain
nodes are assumed to be reconstructed using various baselines in-
cluding our Topo-RAG. With the reconstructed textual features of
nodes after text generation, we then train graph machine learning
models and evaluate their performance. We conduct the evaluation
using GCN [32], SAGE [18], andMLP to exclude any model-induced
bias during evaluation.

6.1.4 Evaluation Metrics. Following conventional works [36, 50],
we use the BLEU-4/ROUGE-L/Bert-F1 score as the evaluation met-
rics to conduct a comprehensive analysis of the generated texts. In
addition, we take the initiative to use the task-oriented evaluation,
which quanti�es the quality of generated texts based on whether
they can ful�ll purposes of downstream tasks, e.g., node classi�-
cation and link prediction. For node classi�cation, we report the
average accuracy of testing nodes (in our setting, the testing nodes
are assumed to be the ones with features to be reconstructed). For
link prediction, following [23], we report the average Hits@100 of
randomly selected edges.

6.1.5 Parameter Se�ings. For text generation, the number of re-
trieved texts and partially observed starting words are both set as
3. Moreover, we set the number of generated words to be 150, 250,
200, 150, 300, 500, 250, 200, 300 according to the average length
of texts in Cora, Pubmed, Arxiv, Product, Book, Epinion, Music,

3https://github.com/mihir-m-gandhi/Enron-Email-Analysis/tree/main

Pantry, Eron-Email. For all datasets except Eron-Email, each node is
only associated with one text sequence, hence we could directly cal-
culate textual/topological similarity metric and retrieve the Top-3
accordingly. For Eron-Email where each node/employee possesses
many texts/emails, we �rst query the sender and receiver of the
target email to be generated and then collect emails from the two
employees with the highest topological similarity to that sender
and receiver. Furthermore, we select the Top-3 emails from those
collected emails based on their textual similarity to the partially
observed target text. For most of the hyperparameters used for eval-
uation with node classi�cation and link prediction, we follow the
same setting as [59] and [72]. In node classi�cation, the hyperpa-
rameters are: training epoch is 1000, learning rate 0.01, weight decay
0.0005, early stopping 100, 2 layer graph convolution layer/MLP,
dropout 0.5, number of hidden layers 64. In link prediction, the
hyperparameters are: encoder learning rate 0.001, predictor learn-
ing rate 0.001, number of hidden layers 256, and dropout 0. We
do not perform another dedicated hyperparameter search because
the initial settings from [59, 72] have already undergone thorough
hyperparameter optimization.

6.2 Performance Comparison
6.2.1 Traditional Evaluation. Here we compare the text genera-
tion capabilities of GPT-3.5 and GPT-3 enhanced with our pro-
posed Topo-RAG and other baseline methods. Due to resource
constraints, we only randomly select 500 nodes along with their
partially observed textual sequences to complete and report the
average performance in Table 2. Overall, the proposed TopoRAG
framework achieves the highest text generation performance with
a signi�cantly large margin, as shown by "Average", underscoring
the bene�ts of integrating topological knowledge for retrieving
additional contextual information in text generation. The second
to best baseline is "Text" because it utilizes textual similarity to di-
rectly query relevant context, which augments the text generation
to some extent. Interestingly, we also �nd that including random
texts in the generation process, i.e., "RD", signi�cantly improves
performance compared to "None" which includes no additional
texts at all. This improvement likely arises because each text within
the same text-attributed network is generally related to the same
domain, e.g., all texts in Cora are papers and all texts in Epinion
are reviews. Hence, incorporating additional texts can provide in-
sights into potential writing styles and usage of domain-speci�c
terminology, which bene�ts the text generation of the target node.
Comparing performance boosts across di�erent evaluation metrics
reveals that improvements under BLEU-4 often result in relatively
larger gains compared to those under ROUGE-L and BERT-F1. This
is because BLEU-4 emphasizes exact matches of words and phrases
in the generated text against the reference, making it particularly
sensitive to precise word matching. Conversely, ROUGE-L mea-
sures the overlap of n-grams between generated and reference texts,
regardless of their order or precise phrasing, rendering it less sen-
sitive than BLEU. BERT-F1, which evaluates semantic meaning, is
even less sensitive to exact word matches, focusing more on the
contextual alignment of the content. Overall, this suggests that
incorporating additional context into text generation is more bene-
�cial for achieving similar terminology or writing style rather than
for capturing general meaning.
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Table 2: Performance comparison of TopoRAGwith baselines. The best results are in bold. BLEU is BLEU-4, ROUGE is ROUGE-L.
Our TopoRAG almost achieves the best performance across all baselines on all datasets. "Average" is computed by averaging
each metric across 9 datasets. "Boost" is computed by the relative performance gain from the second-to-best "Text" to the best
"TopoRAG".

LLM Retriever Cora Pubmed Arxiv Product Book
BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1

GPT
3.5

None 1.46 15.90 82.15 1.52 14.63 80.28 1.22 15.25 81.87 1.57 15.09 81.98 1.05 14.75 80.98
RD 1.78 16.42 83.10 2.38 15.83 81.32 2.64 16.22 83.03 1.65 14.90 82.09 1.34 14.77 82.30
Text 1.77 16.43 83.05 2.27 15.49 81.37 2.23 15.89 82.96 2.44 15.50 82.16 1.77 15.30 82.53
TopoRAG 3.49 17.58 83.86 3.97 17.54 82.97 3.66 17.49 84.10 3.65 16.85 83.17 2.55 16.14 83.15
Boost 97.18% 7.00% 0.98% 74.89% 13.23% 1.97% 64.13% 10.07% 1.37% 49.59% 8.71% 1.23% 44.07% 5.49% 0.75%

GPT
3

None 1.16 15.40 81.07 1.19 14.10 79.42 0.88 14.47 80.53 1.90 14.71 80.85 0.75 14.20 80.03
RD 1.72 16.45 82.79 2.48 15.88 81.11 2.50 16.44 82.90 1.48 14.50 81.16 1.00 15.10 82.18
Text 2.21 16.50 82.85 2.32 15.69 81.24 2.17 15.82 82.60 2.93 15.54 81.24 1.15 15.30 81.83
TopoRAG 4.19 17.58 83.69 4.20 17.67 82.89 3.65 17.48 83.95 4.91 17.33 82.88 1.88 15.80 82.78
Boost 89.59% 6.55% 1.01% 81.03% 12.62% 2.03% 68.20% 10.49% 1.63% 67.58% 11.52% 2.02% 63.48% 3.27% 1.16%

LLM Retriever Epinion Pantry Eron-Email Music Average
BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1 BLEU ROUGE Bert-F1

GPT
3.5

None 0.47 10.46 78.80 0.99 14.63 81.23 2.40 9.18 79.27 1.33 14.07 80.37 1.33 13.77 80.77
RD 0.62 10.89 80.34 1.25 15.16 82.69 2.06 9.71 80.33 1.85 14.17 81.70 1.73 14.23 81.88
Text 0.59 10.75 80.29 1.79 15.40 82.68 3.09 10.60 79.92 1.24 14.20 81.63 1.91 14.40 81.84
TopoRAG 1.00 11.22 80.75 2.03 15.65 83.00 3.98 11.83 80.70 3.49 15.08 82.13 3.09 15.49 82.65
Boost 69.49% 4.37% 0.57% 13.41% 1.62% 0.39% 28.80% 11.60% 0.98% 181.5% 6.20% 0.61% 61.78% 7.57% 0.99%

GPT
3

None 0.34 10.68 78.42 0.72 13.57 80.03 1.65 7.62 78.42 1.19 13.70 79.43 1.09 13.16 79.80
RD 0.48 10.86 80.16 1.04 14.98 82.49 3.30 10.55 79.49 1.17 14.25 81.53 1.69 14.33 81.53
Text 0.38 10.85 79.54 1.64 15.28 82.72 3.65 11.14 79.79 4.03 15.54 81.81 2.28 14.63 81.51
TopoRAG 1.14 11.68 80.79 2.02 15.51 82.86 3.97 10.69 80.38 5.13 16.10 82.18 3.45 15.54 82.49
Boost 200.0% 7.65% 1.57% 23.17% 1.51% 0.17% 8.77% -4.04% 0.74% 27.3% 3.6% 0.45% 51.32% 6.22% 1.2%

Table 3: Task-oriented Evaluation by comparing the node
classi�cation and link prediction performance of di�erent
baselines. The best results are in bold. NC - Node Classi�ca-
tion; LP - Link Prediction.

Model Retriever Cora Pubmed
NC LP NC LP

GCN

None 70.48±0.52 76.31±0.81 72.88±0.15 79.16±0.54
RD 70.68±1.05 75.41±0.81 72.98±0.44 78.78±0.86
Text 71.09±0.50 77.15±0.49 72.30±1.10 79.50±0.86
TopoRAG 75.49±0.26 89.12±0.49 77.80±0.53 81.33±0.40

SAGE

None 60.75±1.34 80.44±0.98 64.24±3.47 79.77±0.62
RD 57.20±1.69 78.61±0.58 64.76±2.43 80.00±0.72
Text 57.07±2.95 82.40±0.61 64.18±2.28 80.48±0.15
TopoRAG 70.95±1.76 90.54±0.67 73.86±0.97 82.17±0.73

MLP

None 42.03±0.38 73.85±0.92 49.58±0.15 77.43±0.51
RD 39.93±0.41 70.34±0.96 49.08±0.50 76.66±0.56
Text 47.57±0.73 72.82±0.83 51.32±0.51 77.63±0.63
TopoRAG 68.36±0.55 89.40±0.57 72.22±2.86 79.38±0.53

6.2.2 Task-oriented Evaluation. In addition to conventional met-
rics, we also utilize task-oriented metrics to assess the quality of
the generated texts. Speci�cally, we evaluate the performance of
node classi�cation and link prediction using the generated texts
from di�erent baselines. As shown in Table 3, TopoRAG consistently
achieves the highest performance across all GNN backbones in both

node classi�cation and link prediction on the Cora and Pubmed
datasets. This indicates that the texts generated by TopoRAG are
more closely aligned with the main topics (node classi�cation) and
citations (link prediction) of their corresponding papers. Moreover,
we observe that the performance improvement is even more pro-
nounced when using MLP compared to GCN/SAGE. This is because
GNN-based models inherently leverage neighborhood information
to enhance context and hence compromise the augmenting e�ect
caused by incorporating additional knowledge by Topo-RAG. De-
spite this inherent bene�t, equipping them with TopoRAG still
boosts the performance as TopoRAG additionally considers the po-
tential of incorporating texts of non-neighboring nodes while the
message-passing of GCN/SAGE only considers neighboring texts.
In addition, we can see the additional bene�t of TopoRAG on Cora
is more than the one on Pubmed. We hypothesize that this is due to
the higher correlation between textual similarity and topological
similarity of Cora (0.2099) than the one of Pubmed (0.1039) in Fig-
ure 9. Notably, the superiority of our method is more pronounced
in the results shown in Table 3 compared to "ROUGE" and "Bert-F1"
in Table 2. This suggests that employing complex, task-oriented
evaluation metrics can reveal subtle distinctions in the quality of
generated texts. Such an approach is particularly valuable in the
current landscape of Large Language Models (LLMs), providing a
nuanced means to quantify the e�ectiveness of text generation.
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Figure 6: As the number of beginning words increases, the
BLEU score �rst increases and then decreases on Cora while
the BertScore-F1 continually increases. TopoRAG Consis-
tently achieves the highest text generation performance than
the other two baselines.

6.3 Impact of Starting Words
We explore the impact of increasing the number of starting words,
ranging from 0 to 100, on the performance of text generation for the
Cora/Book datasets. Our �ndings reveal that TopoRAG consistently
outperforms other methods. This advantage becomes even more
obvious when the number of initial words becomes less. This trend
suggests that a reduced count of starting words o�ers less contex-
tual information, thereby heightening the need for the additional
information provided by the TopoRAG. Moreover, we observe an
interesting trend with BLEU scores initially increasing and then de-
creasing on Cora, whereas BertScore-F1 shows a consistent upward
trajectory. This pattern can be attributed to the inherent charac-
teristics of these evaluation metrics. The BLEU score focuses on
the overlap of exact words. As we provide more starting words,
the length of the remaining part of the target sentence decreases.
Consequently, in the latter stages, the likelihood that the gener-
ated words precisely match the few remaining words diminishes,
leading to a drop in BLEU scores. On the other hand, BertScore-F1
evaluates semantic embedding matching, which does not rely on
exact word overlap. Therefore, as the number of provided starting
words increases, LLMs gain a better understanding of the general
context of the target text. This enhanced contextual understanding
facilitates the generation of text that is semantically more aligned,
explaining the consistent improvement in BertScore-F1. The reason
why we do not see this �rst-increasing and then-decreasing trend
with BLEU score on Book is due to the generally longer lengths of
their texts compared with Cora, as veri�ed in Figure 8(b).

6.4 Feature Imputation with TopoRAG
Many machine learning models assume a fully observed feature
matrix. However, in practice, each feature is only observed for a
subset of nodes due to constraints like privacy concerns or limited
resources for data annotation [67]. In all these scenarios, themissing
feature issues could catastrophically compromise the capability of
machine learning models [47], which motivates many previous
works developing solutions to handling missing feature issue [68].

Since our proposed TopoRAG can naturally generate node fea-
tures in graph-based datasets, in this section, we evaluate its e�ec-
tiveness in handling missing features by comparing its performance

Figure 7: Performance of node classi�cation (a) and link pre-
diction (b) with varying rate of missing features on Cora
dataset. Di�erent baselines correspond to di�erent feature
imputation baselines.

against other conventional baselines handling missing node fea-
tures for graph-based tasks. We take the Cora dataset and consider
two tasks, node classi�cation (NC) and link prediction (LP). For NC,
we follow the traditional semi-supervised setting [59] and for LP,
we divide training/validation/testing links by 70%/10%/20% follow-
ing [72]. For baselines handling missing feature issues, we consider
baselines that set missing features to 0 (Zero); a random value
from a standard Gaussian (Random); and also the global mean of
that feature over the graph (Global Mean). We consider equip-
ping the backbone GCN and MLP with each of these strategies.
In Figure 7, we visualize the performance of di�erent baselines at
di�erent missing feature rates from 0.1 to 0.9. We can observe that
TopoRAG consistently outperforms other strategies in both node
classi�cation and link prediction across all rates of missing features.
This underscores the bene�ts of incorporating additional context
in handling missing feature issues on graphs.

7 Related Work
7.1 Retrieval Augmented Generation
Retrieval augmented generation (RAG) refers to augmenting the
performance of generative-based tasks via retrieving relevant in-
formation from external knowledge bases [9, 12, 21, 26, 31, 35, 37].
Conventionally, RAG is widely used in enhancing the performance
of question-answering tasks by retrieving supporting facts includ-
ing the answer to the given question [29, 31, 39, 64]. With the
advent of LLMs, RAG gained more proliferation due to its capa-
bility to remedy the disadvantages of LLMs, such as mitigating
the hallucination issue [2, 66, 71], enhancing interpretability [11],
and enabling dynamic knowledge evolution of LLMs [38, 61]. Sig-
ni�cant research e�orts have recently been devoted to improving
RAG through developing better retrieval methods [55, 58, 61, 70]
or incorporating knowledge bases of various modalities [30, 34].
Following the former research trend, we enhance RAG retrieval
methods by equipping it with topology awareness. Di�erent from
KG-based RAG where topology information is incorporated by re-
trieving triples from subgraphs around entities mentioned in the
question [61], we explicitly consider proximity and role-based topo-
logical relations in guiding the retrieval, the related works of which
are reviewed next.
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7.2 Proximity/Role-based Topological Relations
Real-world entities often exhibit interconnected relationships that
can be classi�ed into two primary categories: proximity-based and
structural-based relationships [1, 10, 48, 49, 51]. Proximity-based
relationships between two nodes focus on their topological proxim-
ity, such as friends/relatives in social networks, co-cited academic
papers in citation networks, and products co-purchased by the
same customer [1, 14, 19, 75]. On the other hand, structural-based
relations focus on the topological similarity between the local sub-
structures of two nodes, e.g., two employees possessing the same
title in a company share similar job responsibilities or airports
acting as hubs following speci�c airline patterns [8, 46]. Previous
works design various embedding-based methods capturing these
two topological patterns. Methods such as Node2Vec and DeepWalk
are mainly designed for capturing proximity-based topology pat-
terns [17, 44] while Struc2Vec [46] and GraphWave [8] are mainly
to capture structure-based patterns. Di�erent from them, we ex-
plore whether these topological patterns also correlate to the textual
patterns, e.g., whether two closely interacted people share similar
tweet contents in their Twitter accounts or two structurally similar
employees share similar job descriptions. Furthermore, we leverage
the discovered correlation to guide the retrieval and enhance text
generation.

8 Conclusion and Future Work
Given the limited knowledge provided in the input texts and the hal-
lucination problem of LLMs, traditional approaches have leveraged
RAG to incorporate extra knowledge. However, they predominantly
focus on question-answering taskswith no signi�cant investment in
text-generation tasks. Furthermore, they overlook two critical types
of knowledge embedded in the topological space, proximity-based
and role-based knowledge. Therefore, this research aims to improve
text generation performance by incorporating these two topolog-
ical knowledge. Our empirical analysis reveals that LLMs bene�t
from additional texts that are similar to the target text. Moreover,
by analyzing a wide range of text-attributed networks from diverse
domains, we empirically verify the noticeable positive correlation
between textual and proximity/role-based similarity. These �ndings
have inspired us to develop Topology-aware Retrieval-Augmented
Generation (Topo-RAG), a framework that enhances text genera-
tion by retrieving texts based on their topological similarities to the
target text. We conduct comprehensive experiments to validate the
e�ectiveness of Topo-RAG in text generation. Moreover, we take
the initiative in utilizing node classi�cation and link prediction to
quantify the quality of the generated texts in a novel task-oriented
manner. Additionally, we showcase an application of Topo-RAG in
addressing missing feature issues in graph machine learning tasks.

Recognizing the importance of not only considering the quantity
but also the structure of input knowledge in text generation [62],
future work will focus on optimizing input formats by leverag-
ing topological signals for question-answering and text-generation
tasks. Moreover, we plan to assess the robustness of the TopoRAG
framework by exploring the potential of attacking/defending over
graphs to compromise/strengthen the capability of LLMs in com-
pleting downstream tasks.

Figure 8: (a) The textual similarity of sent emails by pairs of
employees grouped based on their job titles; (b) The distribu-
tion of passage length for each dataset.

Figure 9: Correlation analysis between the textual similarity
and proximity-based topological similarity over six datasets.
The correlation shown beside the dataset name is positive
across di�erent datasets from di�erent domains.
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A Appendix
In this section, we present supplementary �ndings that enhance
the analysis from our primary study and further validate the gener-
alizability of the observed phenomenon.

A.1 Textual Similarity over Sent Emails on
Eron-Email Dataset

Following the same setting used for Figure 2(c), we visualize the
textual similarity of emails sent by any pair of employees and fur-
ther group them based on their job titles. Similar to the observation
in Figure 2(c), we can see that people sharing the same job titles
have similar textual patterns in their sent emails.

A.2 Additional Correlation Analysis
Here we conduct additional correlation analysis to demonstrate the
positive correlation between proximity-based topological similarity
and textual similarity. We can see a consistent positive correlation
across six datasets from citation and E-commerce domains. This
further justi�es why TopoRAG achieves almost consistently higher
performance than other baselines on all these datasets.
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