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1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] describes weak interactions of quarks
and accommodates the only source of charge-parity symmetry (CP) violation in the Standard

Model (SM). The unitarity of the matrix can be represented as a triangle in the complex plane.



One of its interior angles, ¢3 (also known as ), is defined as ¢3 = arg (=V, ;V,5 / V., V), where
Vg are CKM matrix elements. The angle ¢3 is of particular importance because it can be
measured directly with negligible theoretical uncertainty by exploiting the interference between
tree-level quark-transition amplitudes involving exchange of a single W-boson, b — éus and
b — ucs [3].1 Hence, assuming only SM amplitudes in these processes, the measurement
of ¢3 provides an accurate reference to be compared against indirect determinations from
global unitarity fits. The latter resulting from combinations of measurements of the sides
and the other two angles of the unitarity triangle can be modified by non-SM particles via
transitions involving more than one vector boson [4]. The comparison between direct and
indirect determinations is thus a sensitive probe for the presence of non-SM particles in
quark transitions. The current world average of direct measurements is (66.41%8)0 [5],
dominated by results from the LHCb collaboration [6]. From indirect determinations,
the CKMfitter group obtains ¢3 = (66.29f?:§§)0 [7], while the UTg; Collaboration finds
(65.2 + 1.5)° [8]. The difference in precision between direct and indirect determinations implies
that an improvement in the former is important to better constrain non-SM contributions
to CP violation.

The angle ¢3 is determined directly from the analysis of BT — Dh™ decays, where D is
an admixture of D? and D flavour eigenstates and h is a kaon or pion. The interference
between the favoured BT — D°h* decay amplitude mediated by a b — ¢ transition, Ay,
and the suppressed Bt — DYh% decay amplitude mediated by a b — u transition, Asup,
depends on ¢3 and two hadronic parameters rg and 5§ , which are given by the relation

-Asup/Afav = Téei(5§+¢3), (1.1)

where rp and dp represent the decay-amplitude ratio and difference in strong-interaction
phase between the suppressed and favoured mode, respectively, and X is the B final state. For
B~ — Dh™ decays, the sign of ¢3 is flipped. Equation (1.1) implies that the sensitivity to ¢3
is approximately inversely proportional to the value of X, which is around 0.1 for B¥ — DK™
decays and 0.005 for BT — Dn™ decays [9]. Hence, the sensitivity to ¢3 in BT — Dn™*
decays is considerably worse than that in BT — DK™ decays, despite larger signal yields.

This paper presents a determination of ¢3 from a combination of measurements using
samples of up to 711fb~! from the Belle experiment and up to 362 fb~! from the Belle II
experiment using inputs from B* — DKT BT — Dn*t and Bt — D*(— D% Dy)K+
decays. We use the values and correlations, when available, of the observables reported for
these decays as inputs, incorporating them into a likelihood based on their relationships with
¢3 and the hadronic parameters. The angle ¢3 and the hadronic parameters are obtained by
maximizing the likelihood and using a frequentist technique based on the Feldman-Cousins
method [10] for the construction of confidence regions. The impact of assumptions on the
unknown correlations and the relative contributions of each input to the final results are
discussed. The rest of the paper is organized as follows. Section 2 describes the ¢3 extraction
methods for the final states used in this combination. In section 3, we present the Belle
and Belle II results entering the combination, and we list the necessary additional inputs

!Throughout this paper, charge-conjugation is implied unless stated otherwise.



in section 4. Section 5 briefly outlines the statistical treatment. In section 6, we show the
results and discuss their interpretation. A summary is presented in section 7.

2 Methods to obtain ¢3

We use four methods that directly determine ¢3. We provide a brief overview of each,
illustrating the relevant observables in section 3, and details of their dependences on ¢s,
rg(*)h, and 65(*)h in appendix C.

The Gronau-London-Wyler (GLW) method uses the decays of D mesons to CP eigenstates,
such as the CP-even (CP+) decay D — K~ K and the CP-odd (CP—) decay D — K279 [11,
12]. The Atwood-Dunietz-Soni (ADS) method uses final states, such as D — K*7F, in which
the interference between suppressed B decay followed by the Cabibbo-allowed D decay with
the favoured B decay followed by the doubly Cabibbo-suppressed D decay generate large
CP asymmetries [13, 14]. In this method, an additional dependence on the properties of the
D decay is introduced through the ratio of suppressed and favoured D decay amplitudes,
rp, and their strong-interaction phase difference, p. The ADS method has been extended
to multibody D decays, such as D — KT7~ 7%, where an extra coherence factor xp is
introduced to account for the dilution from the inseparable multiple interfering amplitudes
integrated over the D-decay phase space (Dalitz plot) [15]. All these parameters are measured
independently and are auxiliary inputs in our combination.

The relevant physics observables are CP-violating decay-rate asymmetries,

B(Bi — Dfo) — [)’(BJr — DfKJr)

Ar = , (2.1)
77 B(B~ = DyK~) + B(B* — D;K*)
and CP-averaged decay-rate ratios,
B(B~ — DyK~)+ B(B" — D;K™*
( f ) ( f ) (2.2)

Rr=3m 5 Dsh=)+B(B* — Dsht)

where f indicates that the D meson is reconstructed in a CP eigenstate (noneigenstate) and
h is a pion (kaon) and f indicates the same CP (flavour conjugate) final state for the GLW
(ADS) measurements. The double ratio, for the GLW measurements, is defined as

Rep+ = ]chi, (2.3)

flav

where Ropy or Rpay results from specializing equation (2.2) for a CP+ or flavour-specific
final state, respectively. The use of double ratios helps to reduce the systematic uncertainties
from branching fractions and reconstruction efficiencies of different D channels appearing
in the numerator and denominator of equation (2.2). Equation (2.3) is exact in the limit at
which the Cabibbo-suppressed contributions to the B~ — Dyn~ decay amplitudes completely
vanish, as detailed in ref. [16]. These asymmetries and ratios are directly related to ¢3 and
other parameters through terms proportional to sin d sin ¢3 and cos d cos ¢3, respectively, as
described in appendix C.

The Grossman-Ligeti-Soffer (GLS) method exploits singly Cabibbo-suppressed decays
D — KIK*n¥ [17]. These two different processes are labeled as “same-sign (SS)” and



“opposite-sign (OS)”, according to the relationship between the charges of the parent B meson
and the K meson from the D decay. The observables include CP asymmetries of Bt — DK™
and BT — D7 decays for each process, the CP-averaged ratio of the B* — DK™ branching-
fraction relative to that of BT — Dr for each process, and an additional ratio of the SS
branching-fraction relative to that of OS for B* — Dz . This method requires information
about the properties of the D decay, which is encapsulated in the values of rp, dp, and xp,
included as auxiliary external inputs in our combination.

The Bondar-Poluektov-Giri-Grossman-Soffer-Zupan (BPGGSZ) method relies on self-
conjugate multibody-D-meson decays such as KJh~hT. This method uses two approaches,
which are either dependent [18] or independent [19, 20] of the modelling of the D — K{h~h*
decay amplitude. The model-dependent approach relies upon a detailed description of the
intermediate-resonance structure of the D-decay amplitude and nonresonant contributions.
The model-independent method exploits CP-asymmetry measurements in disjoint regions
(bins) of the Dalitz plot that can be related to ¢3 using model-independent measurements of
D-decay strong-interaction-phase parameters. The population of candidates in the Dalitz
plot depends on four variables,

zy =71 cos(6x £ ¢3), (2.4)

yi{ = r%( sin(ég + ¢3).

The D — K2h~h*t decay proceeds via several intermediate resonances, which results in a
variation of the CP asymmetry over the Dalitz plot, providing the best sensitivity to ¢s
among all the methods.

Subleading effects from DY — D’ mixing can impact the determination of ¢3 [21]. They
are accounted for in this combination only for the ADS channels, where D% — D’ mixing
contributes at leading order in the relations between ¢3, other parameters, and the ADS
observables Raps and Aapg (see ref. [21] and equations (C.4) in appendix C). The magnitude
of the effect is inversely proportional to rfg( , making it particularly significant for BY — Dzt
decays. For consistency, D° — D’ mixing effects are also included for BT — DK™ modes.
The contribution from D° — D° mixing cancels in the CP asymmetries and is negligible in
the ratios of the GLW observables. Charm mixing is ignored in the BPGGSZ result, as to
properly account for it a new measurement would be required taking into account its effects
in the determination of the D-decay strong-interaction-phase parameters. However, the bias
from neglecting charm mixing in BPGGSZ channels is estimated to be less than 0.2° [21],
i.e., negligible compared to the expected precision of this combination. Due to the limited
precision, D° — D’ mixing is also neglected in the GLS results. Finally, we ignore the small
effect of direct CP violation in D decays [22].

3 Inputs from Belle and Belle II analyses

We summarize the measurements used as inputs in our combination in table 1 and briefly
describe them below. The values of the observables with their uncertainties and correlations
are provided in appendix D.



B decay D decay Method Data set (Belle + Belle II)[fb~!]  Ref.

BT - Dht D KM K-K* GLW 7114 189 [23]
Bt - Dht  D— Ktn Ktrn° ADS 71140 [15, 24]
Bt - Dht D — KKt GLS 711 + 362 [25]
BT — Dht D — K ht BPGGSZ (m.i.) 7114 128 [26]
Bt - Dht D — K0 ntn0 BPGGSZ (m.i.) 71140 [27]
D* - D% D — K97° K{¢, Kw,
Bf DKt T s Haw GLW 21040 [12]
ST
Bt - D*K* D* = D% Dy,D - K~ n™ BPGGSZ (m.d.) 605 + 0 28]

Table 1. Belle and Belle IT measurements used for the combination, m.i. and m.d. stand for model-
independent and model-dependent, respectively.

« Bt - Dht,D - K 371'0, K~ K. This GLW measurement is based on the combined
(711+189) fb~! Belle and Belle IT data sets, and provides two CP asymmetries and two
CP-averaged ratios, defined in equations (2.1) and (2.3), obtained from a simultaneous
fit to BT — Dh' decays [23].

e« Bt - Dht,D - K+tn—, Kt~ 7 These ADS measurements are based on the
full 711 fb~! Belle data set. They provide observables, such as CP asymmetry and
CP-averaged ratio from each channel, defined in equations (2.1) and (2.2) [15, 24].

« Bt - Dht,D — KSK_ﬂ+. This GLS measurement is based on the combined
Belle and Belle IT data samples, (711+362) fb~! and provides four CP asymmetries and
three branching-fraction ratios as inputs to the combination, defined in equations (C.8).
We use only the results restricted to the quasi-two-body D — K*K*¥ region as the
resulting enhanced interference improves the expected precision [25].

e« Bt - Dht,D — th_h"". This is a model-independent BPGGSZ measurement
based on a combination of Belle and Belle II data sets corresponding to (711+128) fb~1
of integrated luminosity [26]. The variables, defined in equations (2.4) and (2.5),
are obtained from a simultaneous fit to the Dalitz plots of D — KJh~h* decays.
In this measurement, a parametrization was adopted, which exploits the common
dependence on ¢3 in Bt — DK™ and BT — Dn" decays by introducing a single
complex variable [29, 30]

§D7r — (rgﬂ> ei(ég”—&gK) ) (31)

DK
"B

The resulting input observables for B* — Dzt decays are defined as x?’r = Re (fD”)

and y£D7r =Im ({D”). The analogous observables, for BT — Dn™ decays defined in
equations (2.4) and (2.5), are written in terms of B* — DK™ observables as

o = af TR — Py PRy = ey PR oyl (3.2)

Hence, this measurement provides the following six input observables for the combination:

DK ,DK ,.D D
e, yx,xg T, and Yot



Decay Observable Value Source Reference
RE™ 3.4440.02) x 1073
11; ( ) HFLAV [9]
DK 9D S Qorr3n°
Tcos(0K™)  —0.0562 = 0.0081
rp” cos(0p7) BESIII [34]
rE™ sin(657) —0.011 £ 0.012
pKmn? 0.0441 4 0.0011
+ =0 0
D— Krnrw K 0.79 & 0.04 CLEO + LHCb + BESIII [35]
5K’ (196 + 11)°
x 0.407 & 0.044)%
D° — D° mixing b ( % HFLAV [9]
YD (0.647 + 0.024)%
0 ™
(risfmy2 0.356 = 0.034
0
D - KOK—r+ ks KT 0.94 £ 0.12 CLEO [36]
9 ™
opst (—16.6 + 18.4)°
b R
(rishmy2 0.370 £ 0.003 LHCb [37]
Bt — Dht RaLs 0.07894:0.0027 PDG [5]

Table 2. Auxiliary input observables and their values used in the ¢3 combination.

e« Bt - Dht,D — Kgﬂ'_ﬂ"‘ﬂ'o. This is a model-independent BPGGSZ measurement
performed on the full Belle data set, corresponding to an integrated luminosity of
711 fb~! [27]. The variables, defined in equations (2.4) and (2.5), are obtained using a
fit to the Dalitz plot of D — KJ7~ 7t 7% decays.

« B - D*K*,D* - D% D — K% K?%¢, Kdw, K"K+, n~n". This GLW
measurement is based on a 210 fb~! subset of Belle data [12]. The input observables
are defined in equations (2.1) and (2.3).

« Bt - D*Kt,D* - Dn° Dvy,D — ng_w+. This is a model-dependent
BPGGSZ measurement based on a 605 fb~! subset of Belle data [28]. The input
observables are defined in equations (2.4) and (2.5).

We do not use inputs from B® — D®hr(*) decays [31-33] in the combination because,
due to their limited precision and their dependence on additional external parameters, they
would have negligible impact on the determination of ¢s.

4 Auxiliary inputs

Several auxiliary inputs are needed to constrain the D-decay parameters to extract ¢3. These
are summarized in table 2 and briefly described below. Correlations between inputs are

reported in appendix E.

e Input for D — K+~ decays. The ADS measurement requires the ratio 7“[5“ and
strong-interaction phase difference 55” between favoured D — K~ 7T and suppressed



D — K*7~ decays to constrain the properties of the charm system. We take these
from the HFLAV global fit to measurements of CP-violation and mixing in the D° — D’
system [9]. The value of §57 is shifted by 180° compared to ref. [9] to match the phase
convention adopted in this work. The parameter Rg” is the square of the amplitude
ratio ™. We also include a measurement from BESIII [34] performed on a 2.93 fb~*
¥ (3770) data set, which is not included in ref. [9].

e Input for D — K+7~ 7% decays. The ADS measurement with D — K77
decays requires knowledge of hadronic parameters describing the D decay. These are
the amplitude ratio 7“[5”0, strong-interaction phase difference , and coherence

factor /ﬁg’mo. We take the combined result of BESIII, CLEO, and LHCbD from ref. [35].

Knr0
5D

« D°-D° mixing parameters. The ADS measurements require the charm mixing
parameters xp and yp as inputs. We obtain these inputs from the HFLAV global fit
to measurements of CP-violation and mixing in the D® — D’ system [9]. The HFLAV
average of xp is dominated by the LHCb measurement of ref. [38], which uses as input
the same D-decay strong-interaction-phase parameters as used in our BPGGSZ result.
The correlation introduced by these common inputs is neglected in this combination, as
the impact of the D-decay strong-interaction-phase parameters in the BPGGSZ result
is small compared to the precision of the measurement [26].

e Input for D — KSK_ﬂ'+ decays. The GLS measurement with D — KJK 7™

. . KIKn KOKm KIKn
decays requires the hadronic parameters v, *,6,° ', and k5% *. We use the mea-

0
surement from CLEO [36] and the TESKW result from LHCbD [37]. In addition, we take
the ratio of branching fractions Rgrs = B(B~ — DK ~)/B(B~ — D%r™) from ref. [5].

5 Statistical treatment

We determine ¢3 and six hadronic parameters rB% ¢BK pDm DK DK and 607K ysing the
relations defined in equations (C.1), (C.4), (C.6), and (C.8). These relations require values of
eight D-decay parameters and one B-decay ratio, summarized in section 4. We combine all
auxiliary inputs and results from Belle and Belle II measurements in a maximum-likelihood fit.

We denote the set of all experimental observables as X and underlying physics parameters
including ¢35 as g. For a particular set of observables, X °bs the likelihood function is defined
as the product of the probability density functions (PDFs),

LX) = Hfi(ffbslg), (5.1)

where fz()?fbslé) is the PDF of observables )?fbs for each measurement i. For each of the

inputs, we assume the observables follow Gaussian distributions

FARE18) o exp { = 5 [i0) — KTV R -2

1

=L
|
>
el
_Z
—

where Vi_1 is the experimental covariance matrix, which accounts for statistical and systematic
uncertainties and their correlations. The correlation of systematic uncertainties within an



Parameters #3(°) rBk SEE(°) rBr 587 (°) rg K SETE(0)
Best-fit value  75.2 0.115 137.8 0.0165 347.0 0.229 342
68.3% interval [67.7, 82.3] [0.102, 0.127) [128.0, 146.3] [0.0113, 0.0220] [337.4, 355.7) [0.162, 0.297] [326,356]
95.4% interval  [59, 89]  [0.089, 0.138] [116, 154]  [0.006, 0.027]  [322, 366]  [0.10, 0.37] [306, 371]

Table 3. Combination results: best-fit values and 68.3% and 95.4% confidence intervals.

experiment is ignored. For the case where the uncertainties are asymmetric, we symmetrize
them, without changing the central value, by substituting the standard deviation of the
distribution observed in simulated experiments generated using the asymmetric Gaussian
likelihood function. We estimate @ by minimizing a y?-like quantity defined as XQ(O_]X' obs) —
—21InL (6] X°P). The best-fit value is given by the global minimum of the y2 function, x2(fmin)-

To estimate the confidence level (CL) for each parameter, we use the test statistic defined
as AX? = X2 (0lyin) — X*(Onin), where x?(6l;,)
parameter. We generate simulated experiments with parameters g set to 0

) is the x? function at the 6" value of the

-

! in and calculate
szl by replacing )Zobs with the simulated experiments and minimising with respect to 6.
The value of 1 — CL is calculated as the fraction of the simulated experiments that have larger

Ax? (Ax? < AX?) than the measured data. This approach is known as the PLUGIN method.

6 Results
We combine 59 input observables from the measurements listed in tables 1 and 2 to determine
¢3 and the six B-decay hadronic parameters rg(*)h and 55(*)h. The fit has a total of 18

free parameters, including eight D-decay hadronic parameters. We obtain ¢3 = (75.21“;:%)0,
where the uncertainties include the statistical and systematic contributions from all inputs.
The results for other parameters are summarized in table 3, where we report central values
and confidence intervals at 68.3% and 95.4% probability. We show the x? values for each
measurement in appendix A. We also show the pull distribution in appendix B, which is
defined as (Aobs — Agt)/o(obs), where Aqs and Agy are the input value and the best-fit
value, respectively, and o(obs) is the measurement uncertainty. Table 4 gives the combined
statistical and systematic correlation matrix for these parameters. The goodness of the fit
calculated from the fraction of simulated experiments, generated from the best-fit point,
which have a x? larger than that found in the data is p = (55.4 + 0.2)%. We perform a
one-dimensional profile-likelihood scan for ¢3, the strong-interaction phase 65 (*)h, and the
amplitude ratio rg “h, Figure 1 shows the 1 — CL distributions as function of the scanned
parameters. We also perform the two-dimensional profile-likelihood scan for (¢s, 7“][3) (*)h) and
(¢3, 08 (*)h). The corresponding confidence regions are shown in figure 2.

We also investigate the individual contributions of each method by presenting one- and
two-dimensional confidence regions for various configurations of combinations that include
only subsets of inputs, as shown in figures 3 and 4, respectively. The 68.3% confidence
intervals for these are listed in table 5. As expected, the sensitivity is mostly dominated by
the BPGGSZ measurements. Following closely are inputs from the ADS-like final states, with
the GLW measurements and other results being the next most significant. We do not report
the individual contributions of the ADS and GLW inputs, as they are strongly correlated
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A S ) )
¢3 | 1.000 0.364 0.325 —0.158 0.005  0.155 —0.016
rBK 1.000 0.256  0.054 0.012  0.056 —0.006
§PK 1.000  0.111 0.105  0.050 —0.005
rBm 1.000 0.146 —0.025  0.003
§B™ 1.000  0.000  0.000
§BT 1.000  0.000  0.000
rB K 1.000  0.168
sEK 1.000

Table 4. Combined statistical and systematic correlations between ¢3 and hadronic parameters.
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Figure 3. 1 — CL distributions as function of ¢3 for various combinations of measurements.

Method BPGGSZ BPGGSZ and GLW BPGGSZ and ADS

¢3(°) 65, 87] (68, 90] [64.2, 80.8]
rBK [0.104, 0.156] [0.098, 0.146] [0.100, 0.126]
SBE(©) [118, 142] [117, 143] [126, 148]

rB™  [0.0111, 0.0235] [0.0117, 0.0237] [0.0118, 0.0223]
§8™(°) [317, 355] (323, 357 [337.4, 355.4]

Table 5. One-dimensional confidence intervals at the 68.3% probability, derived from the combination
of measurements from various methods. Additional uncertainties due to assumptions on the unknown
correlations are not included in these intervals.

with nuisance parameters obtained from the predominant BPGGSZ measurements in this
combination. A comprehensive discussion of this effect can be found below.

A proper combination should include the statistical and systematic correlations between
inputs. However, correlations between input observables are not available for all modes.
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Figure 4. Two-dimensional confidence regions at the 68.3% confidence levels, combining measurements
based on various methods, for 7% — ¢35 (left) and §5% — ¢3 (right).

Paramcters  ¢3(°) rBX  0BK(°) BT SB"() rBK SBK()

+2.8 +0.005 +1.7 +0.0001 +0 +0.002 +0.2
—-1.3 —0.005 -0.7 —0.001 -0.7 -0 —-0.1

Uncertainty

Table 6. Additional uncertainties on all the parameters due to unknown correlations.

For example, statistical correlations are not given for refs. [12] and [15] and systematic
correlations are not provided by refs. [12, 15], [24], [27], and [28]. Our choice is to set the
unknown correlations to zero in the central combination and assign an additional uncertainty
to the results due to this assumption. To calculate the additional uncertainty, we set the
unknown statistical correlations to £0.3 and monitor the changes in results when varying
the unknown systematic correlations up to £0.9. The choice of the value +0.3 is based
on knowledge of known correlations in other ADS and GLW-like final states, as reported
in refs. [23] and [24], respectively. We examine the results when correlations are changed
individually and collectively and assign the largest difference observed on the ¢3 central
values with respect to the nominal result as an additional uncertainty. For ¢s, this is (f%g)o
This additional uncertainty is added in quadrature to the result in table 3, giving the final
result of ¢3 = (75.2 £ 7.6)°. The additional uncertainties for other parameters are negligible
compared to the nominal uncertainties, as shown in table 6. We ignore the correlation of
systematic uncertainties between different measurements from the same experiments. As
the precision of these measurements is dominated by statistical uncertainties, the impact
of neglecting such correlations is negligible.

6.1 Discussion

Our combined determination of ¢3 alone is consistent with the current world average value
within two standard deviations (o) [9]. However, the collective agreement of our full set of
results with the world average values is poor, with a p-value of 0.45%.2 In addition, the
sensitivity obtained for ¢3 is better than originally anticipated [39].

2In the comparison, we do not include the correlation due to the common Belle results used in our
combination and in the current world average.
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The discrepancy with the world average arises primarily from the large values obtained

for 7™ and §87, which deviate by 2.20 and 4.00, respectively, from the world average

values.® These parameters are correlated: a large rB™ value results in a smaller uncertainty
on 55”, thus giving a larger deviation for this parameter. The large rgw value is mainly
determined by the values of input observables in equation (3.1). While these observables
agree within 20 with the values reported by the only other measurement available with
this parametrization [40], their large central values lead to an unexpectedly high rg” value.
For instance, the expected value for the rE™ /rBE ratio is approximately 1/20, considering
only the ratio of CKM matrix-elements involved in the amplitudes, i.e., |V, Vea/VVual-
However, we obtain approximately 1/7 for this ratio in our combination. We demonstrate
that the departure of our results from the world averages is due to our higher measured
value of rE™ by repeating the combination after constraining rE™ to its expected value
rg“ = 0.0053 + 0.0007, estimated using the known branching fractions of various B — DK
and B — D decays and SU(3) symmetry [41]. With this additional constraint, our combined
¢3 value is (78.7£8.1)°, which is not significantly different from the nominal result. However,
the resulting increased uncertainty on 55” yields better agreement of the full set of results
with the world averages, with a p-value of 13%.

The second aspect that requires further checks is our better-than-expected sensitivity to
@3 [39]. We investigate this by studying separately the contribution of the individual inputs
to the ¢3 precision, as shown in table 5. The precision on ¢3 improves significantly, from 11°
to 8.3°, when the ADS inputs from BT — D(— K7~ )h" are combined with the BPGGSZ
inputs. This enhancement is driven by the Rapg observable of the BT — Dx* channel. The
relation of this observable with hadronic parameters in the absence of D° — D’ mixing is

ng’SK” = (7“]?”)2 + (Tg“)z + 27“5“7“5” cos(ég7r + 55”) cos ¢3. (6.1)

Substitution in the above equation of our Tg” value, the auxiliary input rg”, and their

uncertainties, greatly enhances the precision on the interference (last) term as compared to
the BT — DK™ case. Furthermore, our value 55“ = 347° leads to a precise determination
of cos(0B™ + 65™) close to one. The combined effect of both factors improves the precision
of our ¢3 result. The ADS contribution to the sensitivity of ¢3 is primarily attributed to
three elements: the small relative uncertainty of the large rg” value favoured by Belle and
Belle IT measurements, the availability of a precise value of rl,f” from global averages, and
the large 5]?” value favoured by Belle and Belle II measurements.

Finally, we check the impact of our large rgK value, which is 1.5¢ higher than the world
average. We generate simulated experiments assuming world average values for ¢3 and of the
hadronic parameters. Repeating the analysis on these gives 12° precision on ¢3. We repeat
the study assuming our combined value for 72% and observe that the precision improves to

K sDK ,.D
763 7rB7T7

10.1°. Finally, we repeat the study by assuming our combined values for ¢s, rg
and (55” and obtain a precision of 7.1°, which is consistent with our nominal results.

By employing simulated experiments generated using world average values, we extrapolate
this result to future sample sizes, and find the current uncertainty on ¢3 to be consistent

with recent projections [39].

3In this context, the “world average” refers to the LHCb average of 72™ and 5™, as there are currently no
world average values for r5™ and 657" [9].
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Figure 5. Dependence of the coverage of the ¢3 interval on rB% (left) and 7B (right). The dashed
horizontal lines show the nominal coverage at 1 (red) and 20 (blue) for confidence levels of 68.3% and
95.4%, respectively. The y-axis range is split to make the error bars visible.

6.2 Coverage study

We check the statistical coverage of the fit by generating simulated experiments at the best-fit
point. The coverage is then defined as the fraction of times the 1o or 20 interval of the fitted
¢3 contains the true value of ¢3. We perform the coverage study assuming that the true
values of all relevant parameters are the values measured in our data. The resulting fractions
are 0.672 4+ 0.004 and 0.951 + 0.002 for 1o and 20 coverage, respectively.

K.DT values other than the best-fit point; the 1o and 20
coverage is shown in figure 5. The coverage for the combination degrades as the true values

¢ pDE.Dx
O T'B

We also test coverage at rg

become smaller. This behaviour has previously been observed by the CKMfitter
group [7] and the LHCb experiment [42]. The fitted values found in this combination,
rgK =0.115 and erw = 0.016, are well within the regime of accurate coverage. No correction
for under-coverage is applied to the confidence intervals quoted in tables 3 and 5.

7 Summary

In summary, we report the value of the CKM angle ¢3 by combining existing Belle and Belle I1
measurements and auxiliary D-decay information from other experiments. This combination
includes inputs from a number of BT — Dh* and BT — D*K™ decay modes. The resulting
value for ¢3 is (75.2 £ 7.6)°, which is consistent with the world average value within 1.1 [9].
We obtain higher values of the parameters TgK , rgw, and (5][3)” compared to the world average
values, with deviations of 1.50, 2.20, and 4.00, respectively. We demonstrate that these
differences are likely to be due to our large measured value of 7‘5“. In addition, we achieve
a better than anticipated precision on ¢3. This is attributed to the combined effect of a
precise 7“15“ value and larger than expected values of 7"5” and 55”, which have a significant

impact on the ADS (K*7~) final state.
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Measurement x> No. of obs.
Bt — Dht,D — K0n%, KK+ 7.50 4
— Bt — Dht,D — Ktn~ 1.33 4
;» Bt - Dht,D - Ktn— 70 5.81 4
A Bt — Dh*,D — KK -7+ 7.52 7
T% B* — Dh*tD — KOn—h* 2.07 6
= Bt — Dh*,D — Ko ntn® 9.53 8
Bl B+ D*K+,D* — D% D — K07n% K%¢, K0w, K- KT m—nt 1.45 4
Bt — D*K*,D* — D’ Dy, D — K77t 1.42 8
D — Ktr~ 0.03 2
= D — Ktr 70 0.14 3
g D — D mixing 0.02 4
& D — K{K—nt 1.17 4
RaLs 0.12 1
Total 38.1 59

Table 7. Auxiliary input observables and their values used in the ¢3 combination.

A 2 of each input measurement

We show the x? value for each input measurement in table 7.

B Pull distribution of each input observable

We show the pull of each input observable with respect to the global best-fit point in figure 6.

C Relationships among parameters and observables

We list the equations that give the relationships among the parameters of interest and
observables in the B decay channels. For simplicity, the equations are given in the absence of
p° D’ mixing. In order to include the small effects from D° — D’ mixing, the equations
should be modified following the recommendation in ref. [21].

e BY — Dh* D — KJh~h* observables

22K = rBX cos(5PX & 63),
YRE = P (95K & 6o),
o7 = (/e cos(oB” — 455,

yE™ = (rB"/rBN)sin(68" — 65%).
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Figure 6. Pulls of the input observables from Belle and Belle II.
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e BY — Dh*,D — K2 770 observables

QK = TB cos(éDK + ¢3),

y2t =rpt sin(0p" £ ¢3),
g”—rB cos(d D”igﬁg)
yi = ’I”B Sln( T+ ¢3).

e Bt - D*K* D — Kdn~ 7" observables

0 * *
P K con(G K 60),

y
Y PTVE _LDK G (5D 4 g
P e ),
ygzDW) = P Esin(65 K + ¢3),

e BT — Dh",D — K*tn~ observables

]1?1%{81(7r = (rBE)? 4 (rB™)2 4 27’]?](7’]5” cos(0BK
AggSKw = 2rgKrg” sm(éng ) sin ¢3/R£§S7

+ 55”) cos ¢3,

Kr

)

RZSSKW = (rB™)? + ( rB™? 4 27“3”7“5” cos(65™ + 68™) cos b3,

Dm,Kn _ o Dr Kn Dn : Dm, K

e BT = Dht,D — KTn~n" observables

DK,Knn® _ ; DK\2 Knn9\2 DK, Knn® K7r7r0
Rxpd =(rg )"+ (rp™ ) +2rg"rp™" KD

cos(0BK

™

+05™)

DK,Knr0 DK K7r7r K7r7r0 : Kam0y DK,Km
Anpd = 2r PR BT ST sin (6B 4+ 08T ) sin g3/ Rapa

RQSSKWW :( gﬂ') +( Knr© ) +92r Dﬂ',r,gﬂ'ﬁflgﬂ'ﬂ' (5D7r7r +5K7r7r )COS(Z)g,

D, K7rn® Dn K7r7r K7r7r Drr? Krn0y Dm, Knr®
AxDs =2rg"rp"™" K" sin(0g™" +6p"" )sings/Rypy -

e BY = Dht,D — KJ7° K=K observables

Rep+ =1+ ( DK)2 + chprgK COS(5§K)

Acps = 2ncprB® sin(65% ) sin ¢3/ Rop,

where ncp denotes the CP eigenvalue of the D decay.

cos ¢3,

e BY = D*h*,D — K7 K-K+, K¢, Kdw, 7~ nt observables

D*K

Repy =1+ ( ) + 2ncpry cos(ég*K

Acpi = 27]CPTD K Sln((sB ) sin ¢3/RCPi-

,19,

) cos @3,

Cos ¢3,

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)
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e Bt — Dh* D — KJK—n" observables

A 2TB§ oy Sm@?z — 5 ) sing |
L+ (rg")2(rp° 7r) +27“DK "D Kﬂ/igSK”(:OS@gK — 555 cos ¢
(r5™)*+ (TDS F) +2rgfrp? WRD 7rcos(55K+5DS ™) cos ¢3

AR = 2:{ - e Kwﬁg K; Sl;( 5[:K 558K in ¢?}>{OK |
L+ (FB™)2(rp> " )2 + 208 Tk cos(88™ — 6,5 ) cos g

ABT = oy D 3K K3 Kr sin(00™ + 555 in g

KKWKK

- )
(7“5’7)2 + (Tg K”) + 2rD”rD KpS cos(ég7r + 5gSK7T) cos ¢3
Kk KSKn KJKm

0 0
1+ (rgK)z(rgSKﬂ) + 21"]? rpS Kp® 005(551{ — 5gSK7r) CoS ¢3

KOK KOKn KOK KOK )
1+ (rgﬂ)Q(rDS 7r)2 + QT‘EWTDS TFKDS T cos((F]g’Tr —6p° 7T) cos ¢3

KOKr KK~ KOKTr KoK~
RPEIDT _ (rBEY2 4+ (rp3" )2+ 2rBE e 55 kST cos(6BK 4+ 6,57 ") cos ¢3
OS - 0 0 )

(rBm2 + (TgSKﬂ)Q 2rpm g Kﬂﬁg K cos(65™ + 5KSK7T) cos ¢3
O
RDr 1+ (rBm)2 (rgs )2+ 2rP7y K K g K cos(65™ — 5KSK ) cos q§3
SS/0s — KOK™ K Krn KJKm OKn
(rB™2 + (rps" )2+ 2rE™r Kp® cos(5D”—|—5 ST cos 3

(C.8)

D Input observable values, uncertainties, and uncertainties correlations

We list the input observables’ values, uncertainties, as well as correlations between un-
certainties.
D.1 Bt - Dht,D — th_h"' analysis

The values and uncertainties are taken from ref. [26]. These are

#PK = 0.0924 £ 0.0327 £ 0.0029,
yPK = 0.1000 + 0.0420 + 0.0074,
xEK = —0.1128 £ 0.0315 £ 0.0029,

(D.1)
yP* = —0.0455 + 0.0420 + 0.0055,
5” = —0.1109 & 0.0475 = 0.0085,
y£™ = —0.0790 = 0.0544 + 0.0083,

where the first uncertainty is statistical and the second one includes systematic uncertainty
and the additional uncertainty from the strong-interaction phase difference in D — K277~
decays. The statistical and systematic correlation matrices are given in tables 8 and 9.
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DK yDK xEK ny x?n y?w

zPK 1 1.000 —0.204 —0.051  0.063  0.365 —0.151
yPK 1.000  0.014 —0.051 —0.090  0.404
DK 1.000  0.152 —0.330 —0.057
yPK 1.000  0.026 —0.391
zp" 1.000  0.080
Yo" 1.000

Table 8. Correlation matrix of the statistical uncertainties for the B¥ — Dh*, D — KOh~h* ob-
servables.

DK DK :I:fK ny :c?” yg”
zPK 1 1.000 0.104 0.228  0.335  0.248  0.145
yPK 1.000 0.199 —0.119 —0.410 —0.103
aPK 1.000  0.423  0.063 —0.375
yPK 1.000  0.173 —0.089
zpm 1.000  0.566
yom 1.000

Table 9. Correlation matrix of the systematic uncertainties for the B* — Dh™, D — KSh~h™ ob-
servables.

D.2 Bt - Dht,D — ng_ﬂ""ﬂo analysis

The values and uncertainties are taken from ref. [27]. Those are

2PK = 0.095 +0.121 + 0.029,
yPK = 0.354 4 0.170 4 0.045,
zPK = —0.030 £ 0.121 + 0.026,
yP® = 0.220 4+ 0.376 £ 0.079,
2P™ = —0.014 + 0.021 + 0.021,
yP™ = —0.033 + 0.059 + 0.023,
zP™ = 0.039 +0.024 + 0.020,

yf’r = —0.196 = 0.069 £ 0.048,

(D.2)

where the first uncertainty is statistical and the second one includes systematic uncertainty and
the additional uncertainty from the strong-interaction phase difference in D — K{n 7~ 7°
decays. The statistical correlation matrix is given in table 10. The systematic correlation
matrix was not reported for this measurement.
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DK PE :EEK ny P yPr xf” yf”
zPE | 1.000 0486  0.172 —0.231 0.000  0.000 0.000  0.000
yPK 1.000 —0.127  0.179 0.000  0.000 0.000  0.000
DK 1.000  0.365 0.000  0.000 0.000  0.000
yPK 1.000 0.000  0.000 0.000  0.000
D7 1.000 —0.364 0.314  0.050
yP 1.000 0.347  0.055
z D™ 1.000 —0.032
yPm 1.000

Table 10. Correlation matrix of the statistical uncertainties for the BT — Dh*™, D — K{7~ 7% ob-
servables.

D.3 Bt - D*K+,D — K&r‘ﬂ"“ analysis

The values and uncertainties are taken from ref. [28]. Those are

2 P™K — 0,024 4 0.140 £ 0.018,

y P _ 0,243+ 0.137 + 0.022,

2P — 0,133 +0.083 £ 0.018,

P = 0,130 4 0.120 £ 0.022, D3)
2 PYE — 0,144 £ 0.208 £ 0.025,

yPVE — 0196 + 0.215 + 0.037,

2 PVK = —0.006 + 0.147 + 0.025,
y PV = 0,190 + 0.177 + 0.037,

where the first uncertainty is statistical and the second one systematic. The uncertainty from
the D — KJ7" 7~ decay model is unknown. The statistical correlation matrix is given in
table 11. The systematic correlation matrix was not reported for this measurement.

D.4 Bt — DhT,D — K17~ analysis

The values and uncertainties are taken from ref. [24]. Those are

RPE — 0.0163 + 0.0042 £ 0.0010,
ARE = —0.3940.27 £ 0.04,

RE™ = 0.00328 & 0.00037 =+ 0.00015,
APT = —0.04 £0.11 4 0.02,

(D.4)

where the first uncertainty is statistical and the second one systematic. The statistical
correlation matrix is given in table 12. The systematic correlation matrix was not reported
for this measurement.
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x(_DWO)K y(_DwO)K xSrDWO)K y(+D7r0)K x(_D'y)K y(_D'y)K $(+D'y)K yErD'y)K

P 11000 0440 0000  0.000 0.000  0.000 0.000  0.000
y PO 1.000  0.000  0.000 0.000  0.00 0.00  0.000
o(PmE 1.000  —0.101  0.000  0.000 0.000  0.000
(DK 1.000  0.000  0.000 0.000  0.000

2PV 1.000  —0.207 0.000  0.000
yPIE 1000 0.000  0.000
2P 1.000  0.080
y(PVE 1.000

Table 11. Correlation matrix of the statistical uncertainties for the B — D*K*, D* — D/, D —
K27~ 7t observables.

DK DK Dr Dr
RKTI’ AK7r RKﬂ' AKTI’

RPE 11.000 0.242 0.000  0.000

APK 1.000 0.000  0.000
R 1.000 —0.032
AP 1.000

Table 12. Correlation matrix of the statistical uncertainties for the B* — Dh*, D — K7~ observ-
ables.

D.5 Bt — Dht,D — K+tn—n° analysis
The values and uncertainties are taken from ref. [15]. Those are

REE = (1.98 £0.62 £0.24) x 1072,
ARK = 0.41+0.307 £ 0.05,

RE™ o = (0.1940.05 £ 0.02) x 1072,
ART o = 0.16 £ 0.27 +0.04,

(D.5)

where the first uncertainty is statistical and the second one systematic. The statistical and
systematic correlation matrices were not reported for this measurement.
D.6 B* - Dht,D — KSTFO,K_K+ analysis
The values and uncertainties are taken from ref. [23]. Those are

ABE = —0.167 £ 0.057 & 0.006,

REK = 1.151+40.074 +0.019,

AGH, = 0.125£0.058 £0.014,

REK = 1.164+0.081 + 0.036,
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ADK RO ADE, RBK,
ACPf 1.000 0.056 0.000 0.000

RBK 1.000 0.000 —0.081
ABK 1.000  0.060
ROK. 1.000

Table 13. Correlation matrix of the statistical uncertainties for the B*¥ — DK+t D —
K97% K=K observables.

AgP. Rgb. AB, RaR,
ACPf 1.000 —0.490 0.540 0.005

RRK 1.000 —0.128 —0.063
ABK. 1.000  0.342
ROK. 1.000

Table 14. Correlation matrix of the systematic uncertainties for the Bt — DK+, D —
K97° K=K+ observables.

where the first uncertainty is statistical and the second one systematic. The statistical and
systematic correlation matrices are given in tables 13 and 14.

D.7 B* - D*ht,D — KgﬂO,K_K+,Kg¢, ng,ﬂ'_ﬂ'+ analysis
The values and uncertainties are taken from ref. [12]. Those are

ACP— = 0.13£0.30 £ 0.08,

REK = 1.15+0.31+0.12,

ACP+ = —0.20 £ 0.22 £ 0.04,
RCP+ = 1.41+£0.25+0.06,

(D.7)

where the first uncertainty is statistical and the second one systematic. The statistical and
systematic correlation matrices were not reported for this measurement.

D.8 Bt —- Dht,D — I("S)I(_W+ analysis
The values and uncertainties are taken from ref. [25]. Those are
ASE = 0.055 £ 0.119 £ 0.020,
ABK =0.231 +0.184 £ 0.014,
AET = 0.046 £ 0.029 + 0.016,
ABT =0.009 + 0.046 + 0.009, (D.8)

REF/P™ — 0,093 +0.012 + 0.005,

= 0.103 £ 0.020 = 0.006,
RED g = 2.412 £ 0.132 £ 0.019,

RDK /D
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AR ABY AR Al R RS R
ALK | 1.000 0.003 —0.012  0.001 —0.052 —0.013  0.002
ALK 1.000  0.001 —0.011 —0.004 —0.034  0.002
AL 1.000  0.001  0.002 —0.004 —0.011
A8z 1.000  —0.002 —0.002  0.014
RUI/PT 1.000  0.034 —0.133
ROK/PT 1.000  0.208
Ré)s?/os 1.000

Table 15. Correlation matrix of the statistical uncertainties for the BT — Dh*, D — KK~ 7T ob-
servables.

ARE ABK  Abr BT REYPT ROLPT R¢dos
ARE 1 1.000 0.195 0.047 0.013  0.120 —0.053  0.192
ABK 1.000 0.038 0.004  0.344 0.210  0.007
Alr 1.000 0.024 —0.004 —0.037  0.018
Al 1.000 —0.017 —0.024  0.006
REIIPT 1.000 0915  0.015
ROK/PT 1.000  —0.097
R&Fos 1.000

Table 16. Correlation matrix of the statistical uncertainties for the B¥ — Dh* D — K¢K~ 7% ob-
servables.

where the first uncertainty is statistical and the second one systematic. The statistical and
systematic correlation matrices are given in tables 15 and 16.

E External inputs’ values, uncertainties, and uncertainties correlations

E.1 Inputs from global fit to D° — D° mixing data

The values and uncertainties are taken from ref. [9]. Those are

zp = (0.407 £ 0.044)%,
yp = (0.647 +0.024)%,
K™ = (191.743.7)°,
(3.4440.02) x 1073,

r (E.1)
(rfm)? =

where the uncertainty includes both statistical and systematic uncertainties. The correlation
matrix is given in table 17.
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Tp YD SET (rpT)?

zp | 1.000 —0.030 —0.049 0.023
Tp 1.000  0.867 0.145
SB™ 1.000 0.534
(rEm)2 1.000

Table 17. Correlation matrix for all uncertainties of the input variables from global fit to D° — D
mixing data.

REm  glmn® Kl
RE™ | 100  0.19 —0.01
gBm 100 0.25
rsmr 1.00

Table 18. Correlation matrix for all uncertainties of the D — K+t7~ 7% channel parameters.

E.2 Input for D - Ktn—
The values and uncertainties are taken from ref. [34]. Those are

BT cos(55™) = —0.0562 + 0.0081 + 0.0051,

(E.2)
rE7sin(65™) = —0.011 & 0.012 + 0.0076,

where the first uncertainty is statistical and the second one systematic. The correlation
between these two quantities is 0.02.
E.3 Input for D - Ktn—=°

The values and uncertainties are taken from [35].The values used are

rEm —0.0441 4 0.0011
kBT = 0.79 £ 0.04, (E.3)
SE™ = (196 + 11)°,
where the uncertainty includes both statistical and systematic uncertainties. The correlation
matrix is given in table 18.
E.4 Input for D — KSK_Tr+

The values and uncertainties are taken from ref. [36]. Those are

0 2
(rﬁSK”) —  0.356 + 0.034 =+ 0.007,

g ™
kst T = 0.94£0.12, (E4)

SESET _ (16,6 + 18.4)°.
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K3{Km K}Km  KS{Kw

(rp° ) dp kD
(risEmy2 g 0.0 0.0
ghskT 1.0 —06
isSE 1.0

Table 19. Correlation matrix for all uncertainties of the D — K?K 7" channel parameters
from CLEO.

KK . . _— . .
For (rp® ™2, the first uncertainty is statistical, and the second one is systematic. For

KK KK . . . . ..
Kp® " and § D’ W, the uncertainty includes both statistical and systematic uncertainties.

The correlation matrix is given in table 19.
In addition, the following input from ref. [37] is used,

0 T 2
(TgsK ) — 0.370 £ 0.003 £ 0.012, (E.5)

where the first uncertainty is statistical and the second one systematic. The value
R(B(B~ — D°K™)/B(B~ — D%r™)) = 0.0789 + 0.0027 (E.6)

from the PDG [5] is also used, where the uncertainty includes both statistical and systematic
uncertainties.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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