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We present the results of a search for the b — d¢"#~ flavor-changing neutral-current rare decays
B0 = (0,20, p7ete™ and BY? — (5, 0, 7% pT)uu~ using a 711 fb~' data sample that contains
772 x 10° BB events. The data were collected at the Y (45) resonance with the Belle detector at the KEKB

asymmetric-energy ete

collider. We find no evidence for signal and set upper limits on branching

fractions at the 90% confidence level in the range (3.8-47) x 1078 depending on the decay channel. The
obtained limits are the world’s best results. This is the first search for the channels B*? — (@, p™0)e* e~

and BT — (w, pM)utp~.

DOI: 10.1103/PhysRevLett.133.101804

In the standard model (SM), the flavor-changing neutral
current (FCNC) decays B0 — (5, w, 70, p*0) ¢t ¢,
¢ = e or yu, proceed through b — d¢+¢~ transitions [1].
The FCNC b — (s,d)¢ "¢~ processes are forbidden at the
tree level in the SM and proceed through loop-level
diagrams. Various extensions of the SM predict the
existence of new heavy particles that couple to the SM
fermions and bosons. Beyond the standard model (BSM)
physics can interfere with the SM processes, altering the
physical observables and thus providing a promising
avenue to search for BSM physics using rare decays [2,3].
Most experimental studies [4—13] and theoretical predic-
tions [2,3,14—-17] are focused on observables such as
lepton-flavor-universality ratios, isospin asymmetries, for-
ward-backward asymmetries, total or differential branching
fractions, angular observables, etc., in b — s£+¢~ FCNC
decays. However, signatures due to BSM physics may be
uniquely observed in b — dZ+¢~ decays if the former is
sensitive to the flavor of the quarks in the interaction [14].
These decays could have better sensitivity to BSM physics
than b — s£+£~ decays, as the SM branching fraction is
further suppressed by a factor of |V,;/V,|> ~0.04, where
Vg and V, are elements of the Cabibbo-Kobayashi-
Maskawa quark-mixing matrix [18,19]. Typical branching
fractions of b — d£*¢~ decays are of O(107®%) or smaller
in the SM [20-22], making them a challenging target for
experiments.

Previously, BABAR, Belle, and LHCb have searched for
several of these decay processes. The best upper limits
(ULs) on the B® — n¢+¢~ and B — 72°/*¢~ branching
fractions are from BABAR [23] using a 428 fb~! data
sample, while the best BY — n7e™e™ branching fraction
UL is from a 605 fb~' data sample of Belle [24].

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

LHCb [25,26] has measured the branching fractions for
the decays B* — ztutp~, B - 2tn pup~, and B —
PPutu~ to be (1.78 £0.23) x 1078, (2.1140.52) x 1078,
and (1.98+£0.53) x 1073, respectively, using 3 fb~! of data.
We perform searches for rare B0 — (7,0,270,pt0) £+ ¢~
decays using a 711 fb-! data sample that contains
772 x 10° BB events, collected at the Y(4S) resonance
with the Belle detector at the KEKB asymmetric-energy
eTe™ collider. The data are converted into the Belle II
analysis software framework (BASF2) [27] format using the
B2BII software package [28]. Searches are conducted in
both the electron and muon channels. Tests of lepton flavor
universality in b — d£7 transitions are possible if these
modes are seen in the data [29].

The Belle detector [30] is a large-solid-angle magnetic
spectrometer. The inner part is composed of a silicon vertex
detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a
barrel-like arrangement of time-of-flight (TOF) scintillation
counters, and an electromagnetic calorimeter (ECL) com-
posed of CsI(TI) crystals. All these subdetectors are located
inside a superconducting solenoid coil that providesa 1.5 T
magnetic field. An iron flux-return yoke placed outside the
coil is instrumented with resistive plate chambers to detect
K9 mesons and muons (KLM). Two inner detector con-
figurations are used: a 2.0 cm radius beam pipe and a three-
layer SVD for the first sample of 140 fb~!; and a 1.5 cm
radius beam pipe, a four-layer SVD, and a small-inner-cell
CDC for the remaining 571 fb~! [31].

We use Monte Carlo (MC) simulated events to study the
properties of signal decays and to suppress various back-
ground sources. The B*0 — (7, w, 20, pt0)£+ ¢~ decays
are generated with the EviGen package [32] using the
BTOSLLBALL [33] decay model. The PHOTOS package [34]
is used to incorporate final-state radiation effects, while
GEANTS3 [35] is used for detector simulation. We study the
expected background contributions using simulated sam-
ples corresponding to an integrated luminosity 6 times that
of the Belle data sample. The background sample includes
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on-resonance Y (4S) — BB (other B decay) and continuum
ete™ — gq events with ¢ €u, d, s, ¢, which are generated
using the EvtGen, PYTHIA [36], and PHOTOS packages with
interference effects due to final state radiation switched on
for the latter.

We reconstruct B — nete™, B > nutu~, B — wete™,
B s wutu~, B> 1%t e, B 5 2% u~, BT = ntete,
BY = plete, Bt — ptete, and Bt — ptutyu~ decays.
The charged particles #*, p*, and e* are selected
to originate from the interaction point by requiring their
impact parameters to be less than 4.0 cm along the
z axis (direction opposite to the e™ beam), and less than
1.0 cm in the transverse plane. We apply a minimum of
100 MeV/c on their transverse momentum to reduce the
background from low-momentum particles. The muon
candidates are selected using a likelihood ratio R, =
L,/(L,+ L, + Lg), where L, L, and L are the like-
lihood values obtained for the muon, pion, and kaon
hypotheses, respectively, based on information from the
KLM. The muon candidates are required to have a
minimum momentum of 0.8 GeV/c to ensure they reach
the KLM. We apply R, > 0.9, corresponding to an
efficiency of 89% with a pion (or kaon) misidentification
rate of approximately 1.5% [37]. The electron candidates
are required to have a minimum momentum of 0.5 GeV/c¢
and an electron likelihood ratio R, = L,/(L, + L) >
0.9, where £, and L are the likelihood values for electron
and nonelectron hypotheses, respectively. These likeli-
hoods are calculated with the ratio of calorimetric cluster
energy to the track momentum, the shower shape in the
ECL, the matching of the track with the ECL cluster, the
specific ionization in the CDC, and the number of photo-
electrons in the ACC [38]. The electron selection efficiency
is 92% with a pion misidentification rate of less than 1%.
The photon candidates are identified from energy clusters
in the ECL that are not associated with any charged track.
The photon energy is required to be greater than 50 MeV if
reconstructed in the barrel, and greater than 100 or
150 MeV if reconstructed in the forward or backward
end cap regions, respectively, to remove beam-induced
background. The forward end cap, barrel, and backward
end cap regions of the ECL are given by 12° < 6 < 31°,
32° < @ < 129° and 132° < @ < 157°, respectively, where
@ is the polar angle in the laboratory frame with respect to
the z axis. The ratio of the energy deposited in a 3 x 3 array
of crystals centered on the crystal with the highest energy to
the energy deposited in the corresponding 5 x 5 array is
required to be greater than 0.80 to reject showers produced
by hadrons. The energy loss due to bremsstrahlung for the
electron candidate is recovered by considering the energy
of all photons found in a 50 mrad cone along its initial
momentum direction. The pion candidates are selected
using a likelihood ratio R,/x = L,/(L, + Lg). Each
candidate’s likelihood is calculated based on the number
of photoelectrons in the ACC, the specific ionization in the

CDC, and the flight time in the TOF scintillation
counter. The requirement R,/x > 0.6 is 89% efficient
for pions, and has a misidentification rate of ~8% for
kaons [39]. Candidate 7° — yy decays are reconstructed
from photon pairs that have an invariant mass satisfying
124 < M,, < 145 MeV/c?, this region corresponds to
about +3¢ of the invariant mass resolution around the
nominal 7° mass [40]. A mass-constrained fit is sub-
sequently performed to improve the z° momentum reso-
lution. We apply a minimum momentum requirement of
1 GeV/c on the pion candidates only for the decays
B0 — 7+t0%%e~ to suppress background from low-
multiplicity two-photon processes.

The 5 meson candidates are reconstructed in the
decay modes 2y and ztz 7z’ in the mass range
M, €(530,559] MeV/c?. Similarly, the @ meson candi-
dates are reconstructed in the decay mode z"z~ 7" in the
mass range M, €[768,795] MeV/c?. The selected mass
windows for 77 and @ are within £2¢ of the known masses
[40]. The n* candidates are combined with z~ or z°
candidates to form p° or p™ meson in the mass range
M .o €[650,900] MeV/c?. The charged (neutral) B can-
didates are reconstructed by combining light meson can-
didates with selected ete~ or ptu~ candidates. The
kinematic variables that distinguish signal from back-
ground are the beam-energy constrained mass M;. and
the energy difference AFE,

Mye = \/ (Eieum/ 2 = (P /)2, (1)
AE = EE - E;;eam’ (2)
where Ef_, - is the beam energy, while E; and pj are the

energy and momentum of the B candidate, respectively.
These quantities are calculated in the e*e™ center-of-mass
(c.m.) frame. We retain the candidates that satisfy M. >
5.2 GeV/c* and —0.15 < AE < 0.10 GeV for further
analysis. For signal events, My, and AE should peak at
the B mass and zero, respectively. The mass windows for 7,
w, and p** mesons are obtained by maximizing the figure
of merit = ¢/(a/2 + \/E) [41], where ¢ and B are
the signal efficiency in MC simulated events and the
number of background events in the signal region, M, >
5.27 GeV/c? and |AE| < 0.05 GeV. The a term denotes
the significance, where we use a = 3o.

The contributions from the charmonium decays B*? —
(.0, 270, p™0) ] fy(— £7¢7) and (n, 0, 70, p* )y (28)
(= ¢T¢~) are suppressed by rejecting events with
invariant-mass squared of the lepton pair in the ranges
8.5(8.8) < ¢* < 10.22(9.9) GeV?/c* and 13(13)<¢’<
14(14)GeV?/c*, respectively, for the electron (muon) chan-
nels. An additional rejection criterion g% <0.045GeV?/c* is
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applied to suppress possible contamination from converted
photons or z° Dalitz decays.

We find significant contributions from continuum proc-
esses and other B decays after signal reconstruction. The
continuum background typically has a back-to-back top-
ology, in contrast to BB events that are produced almost at
rest in the c.m. frame resulting in a more spherical
topology. To reduce the background contribution, we use
a boosted decision tree (BDT) [42] technique. The variables
used are the ratio of the second to zeroth Fox-Wolfram
moment [43]; the cosine of the angle between the B flight
direction and the z axis; the cosine of the angle between the
thrust axis of the B candidate and that of the rest of the
event (ROE), i.e., not associated to the signal candidate, in
the c.m. frame; the magnitude of the signal B thrust; the
magnitude of the ROE thrust [44]; the difference between
the z coordinate of the decay vertices of the signal B and the
ROE; the separation between the two lepton tracks along
the z axis; the azimuthal separation between two leptons;
the separation between the light meson and high-momen-
tum lepton track along the z axis; the B vertex fit
probability; the sum of energy of the tracks and clusters
of the ROE; the missing mass squared over missing
energy of the ROE; and the output of a BDT-based flavor
tagger [45]. We determine an optimal requirement on the
BDT output for each decay channel by maximizing the
figure of merit. These BDT requirements reduce the
background by 93%-98% with 25%-55% signal efficiency
loss, depending on the decay channel.

With the above selection criteria applied, the average
candidate multiplicity per event is found to be 1.03-1.61
from signal MC samples across the decay channels. When
there are multiple candidates, we select the candidate
having the smallest y? value from the B decay vertex fit.
This procedure selects the correct signal candidate
70%—-90% of the time, depending on the decay channel.

We perform a two-dimensional unbinned extended
maximum-likelihood fit to the M. and AE distributions
to extract the signal yields. In M, the signal component is
modeled with a crystal ball [46] or a crystal ball with a
Gaussian and in AE with Johnson’s S;; [47] or Johnson’s
Sy with a Gaussian. The signal parameters of the fit to data
are fixed to those in simulation, while the width and mean
are modified with width scale factors and mean shifts
obtained from B0 — J/y(— £7¢7)n ™ control samples
to take into account the differences between data and
simulation. The combinatorial backgrounds are modeled
with an ARGUS [48] shape and a polynomial of first or
second order for My, and AE, respectively. The back-
ground shape parameters are floated in the fit in addition to
their yield. We also look for background from specific
decay channels that can mimic the signal and peak in the
M, or AE signal region, or both using MC simulation.
For the BT — n"ete™ channel, the background from
BT — Kte'e™ decays peaks in the My, signal region

but is shifted to negative values of AE. This background is
studied using a MC sample of that decay. The peaking
background in M. and AE are both fit with a combination
of Gaussian and asymmetric Gaussian probability density
functions (PDFs). For the B’ — plete” and B* —
p T~ decay channels a peaking background arises when
one of the two leptons originating from a J/y is combined
with a kaon from a K* resonance (K*, K30, K30, etc) that is
misidentified as a lepton. This background peaks in the M,
signal region but is shifted toward negative values of AE.
This contribution is studied using an inclusive J/y MC
sample with an integrated luminosity corresponding to 100
times the Belle data sample. The contribution from this
peaking background for both M, and AFE is fit with a
combination of Gaussian and asymmetric Gaussian PDFs.
The PDF shape parameters are fixed in the signal yield
extraction procedure while the yield is floated. For the
BT = ptutu~ channel, we find an additional peaking
contribution from BT — p*D%(— K*z~), where both
the K™ and n~ are misidentified as muon candidates.
We also apply a veto on the mass of the muon pair,
M, & [1.858-1.881] GeV/c?, to reduce this back-
ground, where the invariant mass is calculated by reassign-
ing the faking particle mass hypotheses to the muon
candidates. We find background from charmless decays,
i.e., B - nK*z~ contributions to the B® — nu*u~ chan-
nel, and B® — z°K*z~ and B° — z°K+ K~ contributions
to the B® — 7%y~ channel, and the PDF shapes for these
peaking contributions are determined with simulation and
corresponding yields are floated.

The fits are performed separately for each of the charged
and neutral B decay channels containing gy~ and eTe™ in
the final state. To extract the combined signal yield for
modes containing ¢~ (ete™ and " p™) in the final state,
we perform a simultaneous fit of the ete™ and utu~
channels, where the background shape parameters are
common between the two samples. The fit results are
shown in Fig. 1. There is no significant excess of signal
found in any of the decay channels.

We calculate the ULs at the 90% confidence level (CL)
for these decay channels using a frequentist approach. In
this method, 10 000 MC experiments are generated using
signal and background PDFs considering different numbers
of signal events, Ng,(gen), and background events
obtained from fitting. The simulated datasets are fit, and
we calculate the fraction of MC experiments that have fitted
yields less than or equal to that observed in data, i.e.,
Ngjo < N (data). For channels with negative signal yield,
the N, (data) is assumed to be O for UL calculation. The
90% CL UL is the value of N, (gen) for which 10% of the

experiments have N, < Ng,(data), defined as NG

Several sources of systematic uncertainties contribute to
the branching fraction UL measurement. The systematic
uncertainty due to # identification is 0.5% from a study of
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FIG. 1. My, (left) and AE (right) distributions of two-dimen-

sional unbinned extended maximum-likelihood fits to data after
signal selection for (a) B® — £+ ¢~ (first row), (b) B® — wt*¢~
(second row), (c) B — 7%/t ¢~ (third row), (d) Bt — ntete”
(fourth row), (e) B® — p%e* e~ (fifth row), and (f) BT — pT¢+¢-
(sixth row). Points with error bars are the data; blue solid curves
are the fitted results for the signal-plus-background hypothesis;
red long-dashed curves denote the signal component; black
dashed and cyan dash-dotted curves are combinatorial and
peaking backgrounds, respectively.

a DY - D%(— K=z*)z" sample. The z° efficiency is
studied using 7~ — 7~ 2%, decays and found to have a
systematic uncertainty of 2.3%. The systematic uncertain-
ties arising due to lepton identification are 0.3% and
0.4% for each selected muon and electron, respectively,
calculated from an inclusive J/y sample. The photon
detection uncertainty is 2.0% determined from radiative
Bhabha and B° — K*%y samples. The systematic uncer-
tainty due to charged track reconstruction is 0.35%
per track estimated by using partially reconstructed
D*" - D%*, DY - 77 2"KY, and KO — ztz~ events.
The signal decay model systematic uncertainty is obtained
by replacing the BTOSLLBALL decay model with LCSR [49]
and QUARK [50] models, and the maximum deviation of the
signal efficiencies from the nominal is assigned as a
systematic uncertainty, which has an effect of less than
1%. The uncertainty in efficiency due to the limited MC
sample size is less than 1%. To account for the uncertainty
arising from the mass window requirements for p, 1, and @
mesons, the change in signal yield in MC by varying the
window to data resolution is assigned as a systematic. This
varies between 1 and 3%. To assess the potential bias due to
the method of best candidate selection, this is changed to
random candidate selection, and the difference in branching
fraction ULs at the 90% confidence level has a systematic
uncertainty of less than 1%. The effect of the BDT, used
for background suppression, is studied using BT —
J/y(— €+¢7)a™0 channels by taking the ratio in effi-
ciencies between the data and simulation, which results in
systematic uncertainties of 1%—7%, depending on the
decay channel. The uncertainty in the number of BB events
is 1.4%. The systematic uncertainty in both B[Y(4S) —
B™B~] and B[Y(4S) — B°B’] is 2.4% [51]. The shape
parameters fixed in the fit are varied by 1o, deter-
mined from 10° generated signal MC events or a B0 —
J/y(— £+¢7)a ™ control sample, from their mean values
and the deviation from the nominal fit value of N, is the
uncertainty due to the signal and background shapes: this is
found to be less than 1%.

The branching fractions ULs are calculated using the
formula

UL
g - Nw (3)
2fHOIN ye

Here, f*(%0) is the branching fraction B[Y(4S) — B*B~| =
(51.6 £ 1.2)% (B[Y(4S) — B°B] = (48.4 £1.2)%) for
charged (neutral) B decays [51]; Nz and ¢ are the number
of BB events = (772 4+ 11) x 10° and data-MC difference
corrected signal MC efficiency, respectively. The system-
atic uncertainties in BU" are included by smearing N, with
the fractional systematic uncertainties described above. The
results are listed in Table L.
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TABLEL. BYforb — dete™,b — duty~,and b — df* ¢~ decays. The columns correspond to decay channels, signal yields (Nsig)
90% CL signal yield upper limits (NUL), data-MC difference corrected signal MC efficiencies (¢), branching fraction 90% CL upper

sig

limits (BYY), previous branching fraction 90% CL upper limits (Previous BYY), branching fractions (B), and branching fraction

theoretical predictions (Theory B).

Previous Theory
Channel Ngg NG e(%) B (107%) BY- (107%) B (107%) B (107%)
B? - pete” 0.0114 3.1 3.9 <105 <10.8 [23] 0.0 +0.1
BY = nqutu~ 0.8 42 5.9 <94 < 11.2 [23] 193¢ +£0.2
B - ntte- 0.5510 18 4.9 <438 < 6.4 [23] 13528 + 0.1
B’ > wete” -0.3732 3.7 1.6 <307 -2.15353 £ 0.2
B = wutp 1723 5.5 2.9 <249 77598 +0.6
B > wttem 1054 3.6 2.2 <220 6.457%7 +£0.5
B = z%¢te” -2.91/4% 4.0 6.7 <179 < 8.4 [23] 58730405
BY = 2Oty -0.53% 6.1 13.7 <59 < 6.9 [23] 04752 £0.1 e
B’ - n¢tem -1.85}¢ 2.9 102 <38 <53[23] -23771 +£0.2 0.911955 122]
Bt > ntete” 0.1723 5.0 115 <54 < 8.0 [24] 01727 +0.1 1.96 +£0.21 [21]
B? - plete” 56133 10.8 32 <455 2361 £ 1.1
BY > ptete” —4.47370 53 1.4 <46.7 382177 £3.4 4.2070%8 [21]
BT = ptyptu” 3.0130 8.7 2.9 <38.1 13.05175 £ 1.1 4.03190%3 121]
BY > ptetes 0472 30 20 <189 251§ £0.2 -

In summary, we have searched for the rare decays B —
(0,770, ptNete= and BT - (n,0,2°% pH)utu,
which involve b — df*¢~ transitions, using a 711 fb™!
data sample of Belle. We find no evidence for the signal in
any of the decay channels and set 90% confidence-
level upper limits on the branching fractions in the
range (3.8-47) x 1078, depending on the decay channel.
The world’s best limits are obtained. This is the first
search for the channels B*" — (w,p*0)ete” and
BT = (w,p)u*p~. Our branching fraction results for
BT — ntete and B® — pPete, though statistically lim-
ited, are consistent with measurements of the BT — zu*pu~
and B® — p°u*u~ branching fractions from LHCb [25,26]
within 1 — 20. These results are consistent with lepton flavor
universality in b — d£*¢~ transitions. These results will
constrain the development of BSM models for b — d¢+¢~
transitions.
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