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ABSTRACT: We present measurements of the branching fractions of eight B —
DWtK-K ((;))0, B~ — DMOK-K ((;))0 decay channels. The results are based on data from
SuperKEKB electron-positron collisions at the T(4S5) resonance collected with the Belle I1
detector, corresponding to an integrated luminosity of 362 fb~!. The event yields are ex-
tracted from fits to the distributions of the difference between expected and observed B
meson energy, and are efficiency-corrected as a function of m(K~ K ((;))0) and m(DWK ((;))0
order to avoid dependence on the decay model. These results include the first observation
of B - DTK~K%, B~ — D**K~KJ9, and B® — D**K~KY decays and a significant
improvement in the precision of the other channels compared to previous measurements. The

helicity-angle distributions and the invariant mass distributions of the K~ K ((;))0 systems are
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compatible with quasi-two-body decays via a resonant transition with spin-parity J =1~
for the K *Kg systems and J¥ = 17 for the K~ K*0 systems. We also present measurements
of the branching fractions of four B — D®*D; B~ — D®°D7 decay channels with a
precision compatible to the current world averages.
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1 Introduction

Knowledge of B meson hadronic decays is limited: about 40% of the total B width is not
measured in terms of exclusive branching fractions (B). Hence, unmeasured decays are usually
simulated using the PYTHIA fragmentation model [1], which does not properly describe B
decays. The inclusive branching fraction for B meson decays into a D*) meson accompanied
by a kaon pair and possibly pions could account for 6% of the B width, according to PYTHIA,
However, only a small fraction of the exclusive components has been measured [2]. Improving
the knowledge of these decay channels can be of significant benefit to understanding the
background contamination of many analyses of hadronic B decays. The unknown fraction of
the total B width is spread across many exclusive channels, therefore improvements are not
expected from single branching fraction measurements, but require the systematic exploration
of the large unmeasured or poorly measured channels. This paper is part of a program of
measuring the missing components in the B decay width.

Assuming factorization [3]|, three-body B — DK~ K decays proceed via a tree-level
amplitude with an external W boson emission and the production of an s5 pair. The symbol
B indicates a neutral or charged B meson, the symbol K indicates a Kg or a K*° meson,
while the symbol D indicates a D™*)+0 meson, from now on.! However, the quasi-two-body

'We use natural units # = ¢ = 1 and charge conjugation is implied throughout.



mechanism, B — DX~ (— K~ K), with an intermediate resonance X~ that decays strongly,
is also possible. Several theoretical studies have been performed to interpret these decays in
term of conventional [4, 5] or exotic [6, 7] resonances. The factorization assumption forbids the
production of resonances with spin larger than one. Assuming factorization and exact isospin
symmetry, a spin-parity assignment J = 17 is expected for the K _Kg system [8]. If isopin
symmetry (or factorization) is not assumed J© = 07 states are also allowed. On the other
hand, for the K~ K*° system the spin-parity assignments J© =07, 17, or 17 are allowed.

A search for B — DK~ K decays was previously performed by the Belle experiment, on
a sample with an integrated luminosity of 29 fb™! [2]. Four B — DK~ K*° channels and the
B~ - DK _Kg mode were observed, while excesses in the remaining Kg channels were seen
with significances of about 2.5 standard deviations.? A study of the m(K ~ K*?) invariant mass
distribution was also reported. A dominant transition via a J = 11 state was claimed for
B — DK~ K*Y decays, and the intermediate state was interpreted as a a;(1260)~ resonance.
Due to the small sample size, no conclusive claims were made for B —» DK _Kg decays.
However, the m (K _Kg) invariant mass and angular distributions suggested the presence of a
resonant component with J =1~ in B - DK _Kg decays. This was interpreted as a p-like
resonance, but the p(770) was disfavored given the limited available phase-space.

A potential application of an improvement in understanding the B — DK~ K sector is
an amelioration of the B-tagging algorithms used at B-factories. At an energy-asymmetric
eTe™ collider such as SuperKEKB, B’BY and BT B~ meson pairs (BB pairs) are produced
at threshold from Y(4S) meson decays. A large part of the Belle II physics program [9] relies
on identifying the partner B meson produced in association with the signal B meson to infer
the properties of the signal (B-tagging). In particular, in hadronic B-tagging the partner B
meson is fully reconstructed to infer the kinematic properties of the signal using initial-state
constraints. The Belle II B-tagging algorithm, Full Event Interpretation (FEI), is based on a
set of multivariate classifiers trained on the Belle IT Monte Carlo (MC) simulation [10]. A
mismodeling in the simulation may introduce biases and uncertainties in the FEI efficiencies,
and leads to suboptimal FEI performance, degrading Belle II’s physics reach. Three-body
B — DK~ K decay channels are currently not used by the FEI algorithm. However, the high
purity of these decays [2] makes them ideal candidates to improve the B-tagging efficiency.
Moreover, information on the branching fractions alone is insufficient, and knowledge of
the final-state kinematic properties and the intermediate states is essential for an accurate
description of these decays during FEI training. In conclusion, additional measurements of
B — DK~ K decays and their dynamics can lead to an improvement of the FEI efficiency
and its background rejection.

A more precise measurement of eight B — DK~ K absolute branching fractions including
observation of the three unobserved B — DK _Kg channels is reported in this work, using
the 362 fb~! Belle II data sample collected at the Y(4S5) resonance. This analysis aims to
better understand the intermediate states in B — DK~ K decays by investigating their
Dalitz plots [11]. In particular, the m(K~K2) and m(K~ K*?) distributions and the angular
distributions of these systems are studied.

2We use “K2 channels” to refer to all the channels where a KJ is present; similarly we use “K*°”, «D%”,
“«ptr «pD*9” and “D** channels”.



Measurements of the branching fractions of the four B — DD, decays, which are
reconstructed in the same final states as the B — DK~ K channels, are also included
in this work. These channels are often adopted as control or normalization channels in
several measurements [12-15] and improvements in B(B — DD, ) precision will reduce
their uncertainties.

The branching fractions are extracted independently for each channel. After the event
reconstruction and selection, a fit to the distribution of the difference between expected
and observed B-meson energy is performed to separate the signal from the backgrounds. In
B — DK~ K channels, the sPlot procedure [16] is used to obtain a background-subtracted
(m(K~K),m(DK)) two-dimensional invariant mass distribution. The signal efficiency is
evaluated using a simulated signal sample, as a function of (m(K~K),m(DK)). The branch-
ing fraction is then obtained from the efficiency-corrected integral of the (m (K~ K),m(DK))
distribution. The B — DD (— K~ K) branching fractions are extracted using the same
strategy, but the efficiency correction is applied directly to the yield obtained from the AFE
fit, since there is no model dependence in these channels. We use simulation and data control
samples to optimize the analysis. In particular, the B — DD (— K~ K) channels, along with
the B~ — D*7~ control channel, are also used to validate the B — DK~ K analysis and
assess some of the systematic uncertainties. To reduce experimenter’s bias, data containing
signal candidates are only analyzed after the entire analysis procedure is finalized.

The paper is organized as follows. Section 2 gives a brief description of the Belle 1T detector
and analysis sample. Section 3 discusses the reconstruction and event selection. Section 4
and section 5 describe the signal yield extraction and efficiency estimation, respectively.
Section 6 and section 7 present the measured branching fractions and the related systematic
uncertainties, respectively. In section 8 discusses the m(K ~ K) invariant mass and angular
distributions.

2 The Belle II detector and samples

The Belle IT experiment [17] is located at SuperKEKB, which collides electrons and positrons
at and near the Y(4S5) resonance [18]. The Belle II detector has a cylindrical geometry
with the symmetry axis, defined as the z axis, almost coincident with the direction of the
electron beam. The detector includes a two-layer silicon-pixel detector surrounded by a
four-layer double-sided silicon-strip detector [19] and a 56-layer central drift chamber (CDC).
These detectors reconstruct trajectories of charged particles (tracks). Only one sixth of the
second layer of the pixel detector was installed for the data analyzed here. Surrounding
the CDC, which also provides dE/dx energy-loss measurements, is a time-of-propagation
counter [20] in the central region and an aerogel-based ring-imaging Cherenkov counter in the
forward region. These detectors provide charged-particle identification. Surrounding these
subsystems is an electromagnetic calorimeter based on CsI(T1) crystals that primarily provides
energy and timing measurements for photons and electrons. Outside of the calorimeter is
a superconducting solenoid magnet. The solenoid magnet provides a 1.5 T magnetic field
that is parallel to the z axis. Its flux return is instrumented with resistive-plate chambers
and plastic scintillator modules to detect muons, K% mesons, and neutrons.



Belle II integrates a hardware trigger and an online software event selection to suppress
background processes and to select bb, c¢, and 777~ events with high efficiency.

The data sample of Belle II collected from 2019 to 2022 at the energy of the Y(45) is
used in this analysis. The total integrated luminosity of the sample is Liy; = (362 & 2) fb~1,
which corresponds to (387 + 6) x 10° BB pairs.

Simulated samples of exclusive decay channels are used to determine signal efficiencies,
to define fit models, and to evaluate the systematic uncertainties. These samples have an
integrated luminosity equivalent to at least 50 times the data. A simulated sample that
reproduces the composition of Belle IT events, including BB and eTe™ — ¢q continuum (where
¢ indicates an u,d, s or ¢ quark) backgrounds, and equivalent to an integrated luminosity
of 1 ab™!, is used to investigate the sample composition and validate the analysis before
examining the signal region in data.

Simulated events are generated using KKMC generator for quark-antiquark production
~ collisions [21], PYTHIA8 generator for hadronization [1], EvtGen software package
and PYTHIA8 generator for the decay of the generated hadrons [22, 23], and Geant4 software
package for the detector response [24]. The simulation includes simulated beam-induced

from ete

backgrounds [25]. The data and the MC simulations are processed using the Belle II analysis
software [26, 27].

3 Reconstruction and event selection

Events are selected by the trigger based on the charged-particle multiplicity and total energy,
to suppress low-multiplicity events.

Candidate charged pions and kaons are identified from their tracks, which are required to
have transverse and longitudinal impact parameter calculated with respect to the interaction
point, (IP) d, < 2 cm and |d,| < 4 cm, respectively, polar angle 6 within the acceptance of the
CDC (17° < 6 < 150°), and at least 20 measurement points (hits) in the CDC. The candidates
are identified as pions or kaons based on the ratio between the particle-identification (PID)
likelihood for the test hypothesis and the sum of the likelihoods for all other hypotheses.
The PID selection efficiency is between 70% and 80% on average, with misidentification
probability varying between 3% and 10%, depending on the transverse momentum pr and
cos 6 of the charged particle, both for kaon- and pion-enriched samples.

Photon candidates are selected by requiring calorimeter energy deposits (clusters) contain
more than one crystal, have 6 within the CDC acceptance, and a polar-angle-dependent energy
threshold of 80 MeV, 30 MeV, and 60 MeV in the forward endcap, barrel, and backward endcap,
respectively. Clusters are required to be detected within 200 ns of the beam crossing to
suppress energy deposits from beam background. The misreconstructed photons from hadronic
clusters without a matched track, are suppressed with a dedicated multivariate classifier, which
uses cluster-shape variables, calorimeter crystal pulse-shape, and track-to-cluster distance.

Neutral pions are reconstructed from photon candidate pairs, requiring the diphoton
mass to be between 120 MeV and 145 MeV and the convergence of a mass-constrained
fit. Candidate Kg mesons are reconstructed from pairs of oppositely charged pions. We
require the dipion mass to be within 10 MeV of the known value, a successful vertex fit, the
transverse distance between the interaction point and the dipion vertex to exceed 0.4 cm,



and the cosine of the angle between the K2 flight direction and its reconstructed momentum
evaluated in the laboratory frame to exceed 0.8. Candidate K* mesons are reconstructed
in the K* — K*7~ decay channel, requiring their invariant mass to be within 50 MeV
of the known K** mass value.

Candidate D™ mesons are reconstructed using the D° — K~ 7, Dt — K-ntx™,
D* — D% and D** — D%zt decay channels. The invariant masses of the D and D7
candidates are required to be within 15 MeV, corresponding to three units of resolution
(0), of the known values, and a mass- and vertex-constrained fit is performed. Similarly,
the invariant mass of the D*C and D*t candidates is required to be within 3 MeV and
1.5 MeV of the known value (30).

Candidate B mesons are reconstructed in eight B — DK~ K channels and four B — DD
channels. We require the beam-constrained mass My, = W/Eﬁgam — p*32 > 5.272 GeV and
—0.12 GeV < AE = E}, — E} ., < 0.3 GeV, where pp and Ep are the momentum and the
energy of the B meson, respectively, and E} ., = /s/2 is the calibrated value of the beam
energy. The symbol * indicates that the variable is evaluated in the Y(45) center-of-mass
frame. The asymmetric requirement on AE suppresses cross-feed from other channels in
which a pion is not reconstructed. To reduce continuum background, we require that the ratio
of the second- to zeroth Fox-Wolfram moments satisfies Ry < 0.5 [28]; the absolute value of
the cosine of the angle between the thrust axis of the B and the thrust axis of the rest of the
event be smaller than 0.85, where the thrust axis is the direction that maximizes the total
projection of the momenta of all particles in the event [29]; and the absolute value of the cosine
of the angle between the B momentum and the beam direction satisfies | cos € = [ < 0.9.
The rest of the event includes all the remaining tracks and clusters selected with the following
requirements. The tracks are required to be within the CDC polar angle acceptance, to have
transverse momenta greater than 100 MeV, and to have d, < 0.5 cm, and |d;| < 3 cm. The
clusters are required to be in the CDC polar acceptance, to have energies above 50 MeV,
and to be detected within 200 ns of the beam crossing.

In the B — DK~ K channels, we also require m(K~K) to differ by more than 20 MeV
(40) from the known Dj mass, to suppress resonant B — DD (— K~ K) decays, which has
the same final state as the signal. To identify B — DD, (— K~ K) decays, the selection
procedure for B — DK~ K channels is used; however, the D_ mass veto is inverted.

The average B candidate multiplicity per event as determined from signal MC simulation is
between 1.05 and 1.08 for the DY, Dt and D** channels, while it is about 1.4 for the D*° chan-
nels. For each event, the B candidate with My, closest to the known B mass is selected. The
efficiency of this candidate selection, defined as the ratio of the number of correct candidates
chosen in multiple candidate events to the total number of candidates for events with multiple
candidates in which the correct candidate is reconstructed, is 67% for the BY — D*VK *Kg
channel, while it is between 80% and 92% for all the other channels, based on simulation.
After the candidate selection, the purity of the sample (defined as the ratio of correctly recon-
structed events to the total number of reconstructed events) is between 92% and 96% for all
channels, except for the D*0 channels where it is 71%, according to the signal MC simulation.

The B~ — D*O7~ control sample is reconstructed using the D*, 7~ and B~ selections
used in B~ — D*YK~K channels. In addition the D*0 momentum is required to be lower
than 2.5 GeV, to obtain a momentum range similar to that of the B~ — D*K~ K signal.



We apply corrections for the track-momentum scale and photon-energy scale on data,
which are derived from large data control samples. These corrections range from 10~ to
the 1073 level.

4 Signal yield extraction

The composition of the selected samples is investigated using the AFE distribution from
MC simulation. A small, smooth ete™ — ¢g continuum background is expected in all
channels, while the signal B — DK~ K peaks at AE ~ 0. In the B® - DT K~ K channels
a cross-feed component from B? — D** K~ K channels is expected, in which the 7° from
the D*t — D770 decay is not reconstructed. This component peaks at AE ~ —0.15 GeV.
A similar background is present in the B~ — DK~ K channels, which has a cross-feed
component from the B~ — D**K~K and B — D** K~ K channels, that both mimic the
signal when the 7° or the 7% from the D* decay is not reconstructed. In the B~ — D**K~K
channels, a cross-feed component from the B~ — DYK~K channel is reconstructed if an
incorrectly reconstructed 7¥ is associated with the D°. This background component peaks
around AE =~ 0.15 GeV. In the B~ — D**K~K channels a cross-feed component from
the B — D*t K~ K channels is also expected, when the 7T from the D** decay is not
reconstructed and an incorrect 70 is included. This background component peaks under the
signal, and thus it requires special treatment. The B® — D*T K~ K channels have no peaking
backgrounds. The four B — DK~ K*? channels have backgrounds from B — DK~ K*7~,
i.e. the non- K*’-resonant component. The B — DD channels have the same composition as
the B — DK~ K channels; however, they have an additional background from B — DK~ K.

The RooFit package [30] is used to perform extended maximum likelihood fits to the
unbinned AFE distribution to extract the signal yield. The fit is performed in the AFE range
[—0.12 GeV, 0.3 GeV] for all channels. The upper boundary is chosen to better constrain
the fit for the B~ — DK~ K, B® - DYK~K, and B® — D**K~K channels. In the
B~ — D**K~K channel an extended range is used to constrain the background peaking
under the signal.

The AFE distribution is described with the following model:

P(AE) = psig(AE) + prig(AE) + Peross-teed (AE) + PDK Kr-bkg(AE) + pprk-bkg(AE), (4.1)

where the details of the components are described in table 1, and each individual component
(signal, combinatorial background, cross-feed in B — D**K~K channels, B - DKTK 7
background, B — DK~ K background in B — DDj channels, respectively) is included only
in the specific B decay channel indicated in the last column of the table.

4.1 B — DK_Kg channels

In the B~ — DK~ K9, B® - DYK~K9, and B — D*" K~ K2 channels, the signal is
described by the sum of one symmetric (core) and one asymmetric (tail) Gaussian distributions
sharing the same mean parameter. The widths of the Gaussians are fixed to the values
obtained in a fit to the simulated signal sample. However, a scale factor r is assigned as a
multiplier to the core Gaussian width to compensate for any difference in resolution between



Component Description B signal channels

Dsig C[(l—t)g(AE,/L,T-J)+tgA(AE7/J,,O'L,O'R)] All
Pbkg BedArE L K All
+
Deross-feed IV [gA(AE, o+ AH, 0L0, URO) + %QA (AE, 0, 0L+, O'R+):| D*0 channels
DDK Kn-bkg fCG(AE, u,r-0) B — DK~ K* channels
DDK K-bkg DG(AE, u,r - 0) B — DD channels

Table 1. Details of the model for the AE fit. The symbol G(z, u, o) stands for a Gaussian function
with mean p and width o; Ga(z, u, 01, 0R) stands for an asymmetric Gaussian function with mean g,
left width o, and right width og; B(D**)/B(D°) is the ratio of branching fractions from eq. (4.5);
f stands for the fraction of the DK K7 component as described in the text; C', B, K, N, and D
are yield parameters; ¢ is the tail-to-core Gaussian fraction; r is the resolution scale factor; d is the
exponential decay constant; and Ay is the shift of the mean for the cross-feed component.

simulation and data. The resolution scale factor is a free parameter in the D° channel fit
to data. In the DT and D*T channels, the resolution scale factors are fixed to the value
from the DO fit (r = 1.1 4 0.1), since the expected yields are too small to constrain an
additional free parameter. The fractions of the core and the tail Gaussian are fixed to the
values obtained in a fit to the signal simulation sample. The background is described by
the sum of a falling exponential distribution and a constant. The fit has two or three free
shape parameters (mean, exponential constant, and resolution scale factor for D? channel),
along the signal yield, and two background yields.

The B~ — DK _Kg channel parametrization requires a different approach, because
of the background from the B — D*TK _Kg channel peaking under the signal. The yield
of this cross-feed component can be constrained directly from data using the cross-feed
from the B~ — DYK~ K} channel, which is shifted in AE by 0.15 GeV. This AE fitting
region is almost free from continuum background, allowing an accurate determination of
the cross-feed despite the low yield. The yield Nglf)g of cross-feed from the B~ — DK _Kg
channel can be determined from data as

NP o< B(B~ — D' K™K froe po, (4.2)

where e is the efficiency of B~ — DK~ K g reconstruction and fro is the probability of
incorrect 70 association. For the B — D*t K _Kg cross-feed, assuming that the efficiency of
a multiparticle final state factorizes into the products of single-particle efficiencies, we have

N)E & B(B® = D** K~ K3) f0¢ po_in-pe+ (43)

where € po_i,.p=+ is the efficiency of B~ — DK~ K reconstruction from B~ — D*T K~ K2
events. The BY — D*+K_Kg decay chain is identical to B~ — DOK_Kg, except for the
additional low-momentum 71, and shows no relevant kinematic differences in the simulation
of the DK _Kg channel that could lead to a significant difference in the efficiency. Therefore
we assume

EpPO_in-D*+ = €O, (44)



to obtain

Nbke _ B(B” - D*"K~K}) bkg (4.5)
b B(B~ — D'K-K9)  P°
Thus, by measuring the yield of the AE-shifted cross-feed from the B~ — DK _Kg channel,
and adding as inputs the branching fractions of the two cross-feed backgrounds measured
in this analysis, we constrain the yield of the cross-feed from B° — D*TK _Kg decays
peaking under the signal. A systematic uncertainty is assigned due to the assumptions in
this procedure (as described in section 7).

The B~ — D*K~ K2 channel is fitted using functional forms described in table 1. The
resolution scale factor is fixed to unity, as estimated from the B~ — D*7~ control channel.
The cross-feed component from the B~ — DYK ~ K{ channel is parametrized as an asymmetric
Gaussian distribution with widths fixed from the signal simulation and mean equal to the
signal mean with a fixed shift evaluated from the signal simulation. The B~ — D°K~ K}
cross-feed yield is free in the fit. The cross-feed component from the BY — D*tK _Kg
channel is fitted as an asymmetric Gaussian distribution with mean fixed to zero and width
fixed from the signal simulation. The yield is fixed based on the relation in eq. (4.5), where
Nglég is the yield of the B~ — DK _Kg cross-feed, which is fitted simultaneously, and the
D**+ and D° channel branching fractions are fixed. The fits have two shape parameters (mean
and exponential constant), the signal yield, the yields of two backgrounds, and the yield of
the B~ — DK *Kg cross-feed component as free parameters.

Data with fit projections overlaid are shown in figure 1 for the four Kg channels. The
backgrounds are smooth and small as expected, with a signal-to-background ratio at AE ~ 0
between 3 and 15. The cross-feed components in the D*? channel are well modeled. The
four signals have statistical significances well above five standard deviations, calculated
as \/ —21In(Lfax/Lmax) | where L§** and L™ are the maximized likelihood values for the

background-only and the signal-plus-background hypothesis, respectively. The pulls between

the data distribution and the fit are also shown, defined as the difference between the data
yield and the fit value divided by the data uncertainty. The agreement is reasonable. The

yields are summarized in table 2.

4.2 B — DK~ K*° channels

The B — DK~ K*® channels are fitted in AE with the same function as used for the
Kg channels, however the resolution scale factors are free parameters in the four channels.
An additional Gaussian function is added to each mode to describe the four body B —
DK~ KT~ component. The mean and the width of the additional Gaussian function are
fixed to that of the core Gaussian function. The B — DK~ K7~ yield is constrained to
be a fixed fraction of the signal yield. The fraction is estimated from a fit to the m(K+7 ™)
distribution. The latter is obtained by relaxing the K*¥ invariant mass selection, performing a
fit to the resulting A F distribution with the same model used to fit the K g channels, and using
the sPlot technique to obtain the continuum-background-subtracted m(K*7~) distribution.
The m(KTn~) distribution is fitted in the range 0.65 GeV < m(KTn~) < 2.5 GeV, with the
sum of a histogram template from the simulation for the signal component and a third-order
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Figure 1. Distribution of AE for the B~ — D°K~ K2 (top left), B® — DTK~ K2 (top right),
B~ — D**K~K? (bottom left), and B — D** K~ K2 (bottom right) channels. The projections of
the fits are overlaid, the fit components are highlighted, and the pulls between the fit and the data
are shown in the bottom panel of each plot.

Chebyshev polynomial for the B — DK~ K™n~ component with parameters fixed from
simulation. The [1.25GeV,1.60 GeV] and [1.85GeV,1.87 GeV] invariant mass regions are
vetoed to exclude higher-mass kaon resonances and B — D™ D® K decays, respectively.
The m(K*t7~) distributions with the projection of the fits overlaid are shown in figure 11
for the four channels. The non-K *O-resonant fraction is obtained from the ratio between the
B - DK~ K*n~ and the B — DK ™K yields within the K*° signal region. The fractions
are between 0.7% and 3.1% of the signal, depending on the channel. The fractions are
assumed to be as uniform in the (m(K~K), m(DK)) plane, given their small values and large
systematic uncertainties. Data with fit projections overlaid for K*° channels and the pulls
between the data distribution and the fit are shown in figure 2. As in the K¢ channels, the
remaining backgrounds are small as expected, with signal-to-background ratios at AE =~ 0
between 8 and 100. All the four signals have statistical significances well above five standard
deviations. The yields are summarized in table 2.
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Figure 2. Distribution of AFE for the B~ — DK~ K*° (top left), B® — D*K~K*Y (top right),
B~ — D*K~K*9 (bottom left), and B — D*T K~ K*? (bottom right) channels. The projections of
the fits are overlaid, the fit components are highlighted, and the pulls between the fit and the data
are shown in the bottom panel of each plot.

4.3 B — DD  channels

The B — DD channels are fitted with the same strategy as the B — DK~ K channels. The
fits are performed independently for the Dy — K *ng and D; — K~ K*Y final states. The
resolution scale factors are fixed in the B — D**D; and B~ — D*Y Dy fits using the average
of the resolution scale factors obtained from the D* and D° channels. The D; — K~ K7~
yield is assumed to be zero in the Dy — K~ K*? channels, given the previous measurements
of D7 branching fractions [31]. The B — DK~ K background is described with an additional
Gaussian component, with the same mean and width of the core Gaussian. The yield of the
latter is fixed in the fit and is estimated from the m (K~ K) distribution of the B - DK~ K
channels measured in this work, assuming it uniform within the bin of interest. Data with
fit projections overlaid and the pulls between data and the fit are shown in figure 3 and
figure 4 for the four Kg channels, and the four K*0 channels, respectively. The eight channels
are almost free from background, except for the cross-feed in the D*C channels and the
B — DK~ K cross-feed, which are between 0.1% and 13.0% of the signal.

,10,
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Figure 3. Distribution of AE for the B~ — DD, (— K~ K2) (top left), B® - D*D; (— K~ K2)
(top right), B~ — D**K~ K9 (bottom left), and B — D**D; (— K~ K2) (bottom right) channels.
The projections of the fits are overlaid, the fit components are highlighted, and the pulls between the
fit and the data are shown in the bottom panel of each plot.

The fits are validated by repeating the analysis on 103 Toy MC experiments, i.e. simplified
simulated pseudo-experiments based on sampling the likelihood, and show no bias. The
B — DK™K fit is validated on data using the B — DD, (— K~ K) decays as control
channels, which shares the same final state as the signal, and a very similar decay topology.
Thus, the efficiency for the control channels is similar to that of B — DK~ K decays. In
addition, the control channels are well measured [31]. The resulting control-channel branching
fractions are in agreement with the world averages, validating the signal extraction on data.

5 Efficiency determination

The efficiency is obtained for each channel separately using signal simulation samples. An
admixture of three-body B — DK~ K decays produced with a uniform distribution in phase-
space, and B — DX~ events (where X = a1(1260)~ or p(1450)~ for the K** or K2 channels,
respectively) is used. We divide the (m(K~K),m(DK)) distribution into 20 x 20 equally-
spaced intervals (bins) with 0.9 GeV < m(K~K) < 3.5 GeV and 2 GeV < m(DK) < 5 GeV.
The efficiency e(m(K~K),m(DK)) is defined as the fraction of generated events that are

— 11 —
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Figure 4. Distribution of AE for the B~ — DD (— K~ K*%) (top left), B® — D*D; (— K~ K*9),
(top right), B~ — D**D; (— K~ K*°) (bottom left), and B® — D**D; (— K~ K*°) (bottom right)
channels. The projections of the fits are overlaid, the fit components are highlighted, and the pulls
between the fit and the data are shown in the bottom panel of each plot.

reconstructed and selected in each bin of reconstructed (m(K~K),m(DK)). This allows the
efficiency to be much less dependent on the (m(K~K),m(DK)) distribution of the data,
which is a priori unknown and possibly different from the simulation. The reconstructed
(m(K~K),m(DK)) spectrum is obtained by fitting the AE distribution of signal simulation,
using the functional forms described in section 4. An sPlot is then used to obtain the
(m(K~K),m(DK)) distribution.

The efficiency is corrected for known data-simulation mismodeling. In particular, the
PID selection efficiency is calibrated with a scale factor as a function of momentum and
polar angle for each track; the Kg reconstruction and selection efficiency is calibrated with
a scale factor as a function of the vertex separation from the IP, and the momentum and
polar angle of the Kg; the reconstruction and selection efficiencies of the low-momentum
pions from the D** and D*° decays are calibrated with two scale factors as functions of the
pion momentum. The overall correction factor ranges between 1% and 10%.

The resulting efficiencies e(m(K~K),m(DK)) are shown in figure 5 and figure 6 for
the four Kg channels and the four K*Y channels, respectively. All channels show a drop

— 12 —
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Dt K~ K} (top right), B~ — D**K~KY (bottom left), and B — D** K~ K2 (bottom right) channels.

in efficiency at m(K~K) close to the D, mass due to the B — DD; veto. For the D*t
channels, e(m (K~ K),m(DK)) decreases at high m (K~ K) due to the anticorrelation between
m(K _Kg) and the momentum of the pion from the D** decay, for which the efficiency
decreases at low momentum. These efficiencies have statistical uncertainties between 0.5%
and 5%, and increase up to 15% at the edge of the phase-space. The allowed phase-space is
properly populated using the admixture of simulated samples. The invariant mass resolutions
are sufficiently small compared to the efficiency bin width to allow neighbour-bin migration

effects to be neglected.

The efficiencies for the B — DDg channels are defined as the fraction of the generated
events that are reconstructed and selected from the B — DDy(— K~ K) signal simulation.
The efficiencies, listed in table 2, are estimated separately for the D; — K *Kg and

D; — K~ K*0 final states.

— 13 —



Belle Il simulation Belle Il simulation

— 4 F - > — 4 ‘ >
3 | B DKK® 2 2 | B-DKK? 008 £
O o 0.05 © O L 3]
.35} - e =35 =
St w S w
X 3f 0.04 X 3f
< <
g 25 0.03 g 25
2 0.02 2
15[ 0.01 1.5}
1’””\””\HH\HH\HH\HH 0 1HH\‘H‘\HH\HH\HH\HH 0
2 25 3 35 4 45 5 2 25 3 35 4 45 5
m(D°K ) [GeV] m(D*K ™) [GeV]
4 gelle 1l simulation - — 4 gelle 1l simulation -
% | B> DK 0025 & > B’ DK K" 0 5
S35} 2 O 35} 2
SO r w SO 0.025 W
* L 0.02 x
X 3 X 3f
x I x 0.02
T 25 0.015 T 25)
i 0.015
of 0.01 o
g 0.01
15 i 0.00 151 0.005
1’\\\\ 0 1’””\‘H‘\HH\HH\HH\HH 0
2 25 3 35 4 45 5 2 25 3 35 4 45 5
m(D°K™) [GeV] m(D*K™) [GeV]

Figure 6. Efficiency as a function of (m(K~K),m(DK)) for the B~ — D°K~K*° (top, left),
B - DYK~K*0 (top right), B~ — D**K~K*% (bottom left), and B — D** K~ K*° (bottom
right) channels.

6 Branching fraction extraction

For the B — DK~ K channels, the branching fraction can be expressed as

NE COorr
B= (6.1)
2f+—,OONB§BD(*)BK((;))0

where NE ™ is the background-subtracted and efficiency-corrected signal yield, Bu B, («)o
reco g D K(S)

is the product of the branching fractions of the relevant intermediate D*) and K ((;))0 decays
in the reconstructed decay chain, N,z is the total number of BB pairs, and f+—00 is the
fraction of charged or neutral BB pairs.

The signal yield as a function of (m(K~K),m(DK)) is extracted using an sPlot tech-
nique. The AFE distribution, fitted as described in section 4, is used as a discriminating
variable to obtain the sWeights. The sWeights for the signal are then used to obtain the
(m(K~K),m(DK)) distribution for pure signal. The prerequisites for sPlot validity are
satisfied as the AE distribution is independent of m(K~K) and m(DK). The efficiency
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Channel Yield Average ¢ B [1074] Stat. significance [o]

B™ — D°K™K}% 209 £ 17 0.098 1.82£0.16 £0.08 > 10

B° - DTK™K}2 105 + 14 0.048 0.82+0.12£0.05 10

B~ - DK K} 51+9 0.044 1.47+0.27+£0.10

B - D*"K~ K¢ 367 0.046 0.91+0.19 £0.05

B~ — D°K~K*° 325 £19 0.043 7.194+0.45£0.33 > 10

B° - DTK-K*° 385 £ 22 0.021 7.56 £ 0.45 £ 0.38 > 10

B~ - DK~ K*° 160 + 15 0.019 11.93 £1.14+0.93 > 10

B - D*"K~K*° 193+ 14 0.020 13.12£1.21+0.71 > 10

B~ — DDy 144+12 / 1563+ 13 0.09 / 0.04 95 +6+5 >10/ > 10
B° - DTD; 145+ 12 /159 £ 13 0.05 / 0.02 89+£5+5 >10/ > 10
B~ — DD 30+6/29+7 0.04 / 0.02 65+10+6 7/8
B° - D**Dy 43+7 /377 0.04 / 0.02 83+10+£6 >10/ > 10

Table 2. Observed yields for the eight B — DK~ K channels and the four B — DD channels
and their statistical uncertainty; average efficiency with the correction described in Sec. 5; measured
branching fractions with statistical (first) and systematic (second) uncertainties; statistical significances.
The first/second value for yield, efficiency, and significance of B — DD channels refer to K9 /K*°
sub-channels.

correction is obtained by applying a 1/e(m (K~ K), m(DK)) weight event-by-event, according
to the efficiency map described in section 5.

The fi_ oo values used in eq. (6.1) are evaluated from the ratio fi_/foo from ref. [32],
while N7 is reported in section 2. We obtain 2f1 N5 = (399 & 11) x 105 and 2foNg5 =
(375 £ 10) x 10%. The branching fractions of the intermediate D) and KY decays are taken
from the world-average values in ref. [31].

The B — DD branching fractions are first determined independently for the D —
K *Kg and D; — K~ K*0 sub-channels using eq. (6.1), where the product of the branching
fractions is replaced by By Bp-B K0 and N5 = NE /ey, where NE  and ex are the
reconstructed yield and the efficiency in the specific sub-channel. For each of the four channels,
the two D sub-channels give compatible results. The B — DD branching fractions are then
obtained from the weighted average of the results from the two D sub-channels, including
the statistical uncertainty only in the weights.

The branching fractions are given in table 2 for each decay channel.

7 Systematic uncertainties

The contributions to the systematic uncertainties for each B — DK~ K channel are summa-
rized in table 3, expressed as relative uncertainties to the corresponding branching fractions.

The first group of systematic uncertainties affects the efficiency estimation. They are
related to the differences between efficiencies in data and in simulation, and are derived
from the uncertainties on the corresponding corrections. An uncertainty associated with the
limited size of the MC simulation sample is included (“Eff - MC sample size” in table 3),
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which gives the statistical uncertainty in the efficiency determination. The uncertainty related
to the tracking efficiency (“Eff - tracking”) is estimated using a eTe™ — 77~ data control
sample. No correction is applied, but a per-track uncertainty of 0.24% is included assuming
full correlation between the tracks. For the uncertainty associated with the Kg efficiency
(“Eff - Kg”), the nominal scale factor is varied by its uncertainty. The uncertainty is assumed
to be fully correlated in the vertex separation from the IP, momentum and polar angle
space. The scale factors and the uncertainties are determined in D** — D%(— K9 t7)7r "
decays. A similar approach is adopted for the uncertainty associated with the PID-efficiency
correction (“Eff - PID”). The uncertainty is assumed to be fully correlated between tracks
and as a function of momentum, and polar angle of the tracks. The scale factors and the
associated uncertainty are evaluated using D** — D%(— K~ 77)7" and K2 — 777~ data
control samples. For the uncertainty associated with the efficiency for reconstructing the
low-momentum charged pion (“Eff - 7+ from D**”), the scale factors are evaluated with
statistical (partially correlated in momentum) and systematic (correlated) uncertainties
estimated on a B® — D*~xt data control sample. A fully correlated 2.7% uncertainty is used
for the scale factors, equal to the sum in quadrature of both uncertainties. This uncertainty
affects only the D*t channels. For the uncertainty associated with the 70-efficiency correction
(“Eff - 797) in the D** channels, the scale factor is varied according to the uncertainties
evaluated on a BT — D*Oz% data control sample.

A systematic uncertainty is assigned to the efficiency (“Eff - modeling”) due to the
possible mismodeling of the efficiency distribution in the (m(K~K),m(DK)) plane and the
integration over additional degrees of freedom beyond the two adopted dimensions, due to
polarization of vector particles (D*, K*, and possible vector resonances). The systematic
uncertainty is determined by validating the efficiency map correcting distributions generated
with different resonant and polarization schemes (B — Dp', B — Daj,...).

The signal model used in the AF fit is modified to check its robustness. Alternative
branching fractions are evaluated, and a systematic uncertainty is quoted as the difference
between the nominal and the alternative branching fraction (“Signal model”). A variation
is considered for the channels in which the resolution scale factors are fixed using auxiliary
channels. The corresponding systematic uncertainty is evaluated by shifting the resolution
scale factors within their uncertainties (67 = 0.1 for D®* and §r = 0.03 for D*°) and
repeating the fit. This variation is applied to the D*, D* and D** channels. A second
variation is obtained from a fit to the B — DD data sample allowing the widths of the
tail Gaussian to float in the fit. The difference between the fixed values (i.e., those fixed
from signal simulation samples) and the values obtained from the fit are used as variations
of the fixed values of the widths in the B — DK _Kg fit, to obtain an alternative value of
the branching fraction. Given their small signal yields, the latter approach is not feasible
for the B — Dt D and B — D*D; channels. Therefore, the variation observed in the

B~ — D°D; mode is included for the DT and D** channels, but not for the D** channels,
for which a different approach is used as described below.

The B~ — D**K~K signal includes a 29% self-cross-feed component i.e., misrecon-
structed signal events, mostly due to incorrect 7° associations. Since the self-cross-feed
component is treated as signal, it does not artificially increase the branching ratio of the

,16,



signal channels. However, it does degrade the resolution in AE. Given the possible disagree-
ment in the description of the 7° misreconstruction between data and simulation, a dedicated
systematic uncertainty is assigned (included in “Signal model”). A fit to the B~ — D*0x~
data control channel is performed allowing the widths of the tail Gaussian o and o to
vary in the fit. A second fit is performed on the simulation fixing the values of the widths.
The differences in widths from the two fits is used to obtain an alternative value of the
branching fractions. The systematic uncertainty is the difference between the nominal and
the alternative value. The self-cross-feed is small in the other six channels and the fit-model
systematic uncertainty covers possible mismodelings.

A systematic uncertainty related to the specific choice of background model is assigned
(“Bkg model”). In the nominal fit, the background for all channels is described by the sum
of an exponential function and a constant. Two alternative fits are performed by adding a
linear term or removing the constant term. The differences between the nominal branching
fractions and the results obtained with the alternative background models are quoted as
systematic uncertainties.

A systematic uncertainty related to the possible mismodeling of the non- K *O-resonant
fraction is assigned to the four K*O channels (“DK K7 bkg”). Four alternative non-K*°-
resonant background fractions compared to the nominal one are assumed, and the branching
fraction is estimated again with the varied fractions. First, two alternative non-K*’-resonant
fractions are obtained by varying the fractions according to the statistical uncertainties of
the fractions propagated from the fit components. Second, an alternative non- K**-resonant
fraction is determined by replacing the signal template with a relativistic Breit-Wigner
distribution corrected for the two-body phase-space factor. Third, the parameters of the
Chebyshev polynomial are fixed from a simulation produced with PYTHIA instead of EvtGen.
The total systematic uncertainty is the sum in quadrature of the four variations.

A systematic uncertainty is assigned (“D*? peaking bkg”) to account for the uncertainties
in eq. (4.5), used to assess the yield of the cross-feed from B® — D*T K~ K channels in the
D*Y channels. Equation (4.4) is verified with signal simulation, and holds with a maximum
deviation of 10%. The yield of the peaking background Nglfﬁ is scaled to 110% and 90%
and two resulting signal yields are extracted. In addition, the branching fractions of D**
and D° channels are scaled by their uncertainties, to take into account the correlation
between the branching fractions and the Np.+ yield, producing additional variations of
B(B® — D**K~K). This systematic uncertainty also addresses the correlation between
the D*0 channel and the D*t and D channels. The systematic uncertainty is the sum in
quadrature of the differences between the resulting alternative branching fractions and the
nominal one. This systematic uncertainty affects only the D*° channels.

A systematic uncertainty related to the knowledge of the total number of BB pairs
dNpp = 5.6 x 109, which enters in eq. (6.1), is included (“Ngg"). Similarly, a the systematic
uncertainty related to fi_ oo from ref. [32] (“fi_00”) is included.

A systematic uncertainty related to the intermediate branching fraction used in eq. (6.1) is
also included (“Intermediate Bs”) by propagating the uncertainties of the known intermediate
branching fractions to the final results.
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Source DK~ K% DTK™KY D*Kk~K§ D**K~KY DKk~ K*® DYK~-K** DK~ K*® D*tTK~K*0

Eff. - MC sample size 0.5 0.8 1.1 0.9 0.5 0.7 0.9 1.2
Eff. - tracking 0.7 1.0 0.7 1.0 1.0 1.2 1.0 1.2
Eff. - 't from D** - - - 2.7 - - - 2.7
Eff. - K2 2.4 2.7 2.3 2.3 - - - -

Eff. - PID 1.3 1.7 0.5 0.6 2.5 2.6 1.6 1.7
Eff. - 7° - - 5.1 - - - 5.1 -

Eff. - modeling 0.2 0.3 0.6 0.7 1.3 2.0 3.1 2.4
Signal model 1.5 3.6 2.3 2.7 0.8 1.0 2.5 0.6
Bkg model 0.8 1.1 0.8 0.8 1.1 0.4 0.2 0.1
DKKr bkg - - - - 1.4 0.7 0.7 0.8
D*° peaking bkg - - <0.1 - - - 2.0 -

Nggp 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
f+—.00 2.4 2.5 2.4 2.5 2.4 2.5 2.4 2.5
Intermediate Bs 0.8 1.7 1.6 1.1 0.8 1.7 0.6 1.1
Total systematic 4.4 6.1 7.1 5.7 4.6 5.1 7.8 5.4
Statistical 8.8 14.4 18.1 20.5 6.2 6.0 9.6 9.2

Table 3. Relative statistical uncertainties and breakdown of the relative systematic uncertainties
to the corresponding branching fractions for the eight channels. All values are in percent. A dash is
shown when the uncertainty is not applicable.

The contributions to the systematic uncertainties for each B — DD_ channel are
summarized in table 4, expressed as relative uncertainties to the corresponding branching
fractions. When feasible, the same procedure used for the B — DK~ K channels is applied.
An additional systematic uncertainty is assigned for the B — DK~ K background estimation
(“DK K bkg”). This uncertainty is obtained by varying the background yield by the statistical
uncertainty of the relevant bin in the measured m(K~K) distribution. The systematic
uncertainties are evaluated separately for the D; — K~ K3 and D; — K~ K% sub-channels
and then a weighted average is provided.

The “Eff-MC sample size” systematic uncertainty is not correlated between the channels.
The “Intermediate Bs” are partially correlated between the channels, according to the shared
branching fractions. The uncertainty in the factor fi_ oo is fully correlated between B
channels, and fully anti-correlated between B~ and BY channels. All other systematic
uncertainties are fully correlated between all the relevant channels.

8 Invariant mass and helicity angles analysis for B — DK~ K channels

The signal yield as a function of m(K~K) is extracted using the signal sWeights as described
in section 6 and applying the event-by-event efficiency correction using the map described
in section 5.

The distributions of the Oxx and Ok~ helicity angles are extracted using the same
approach. The former is defined as the angle between the K*° momentum and the direction
opposite to the B momentum, both calculated in the K~ K*V system rest frame. The latter
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Source B~ —-D°D; B°—DtD; B~ —D*“D; B°— D*'D;

Eff. - MC sample size < 0.1 < 0.1 < 0.1 < 0.1
Eff. - tracking 0.8 1.0 0.8 1.0
Eff. - 7t from D** - - - 2.7
Eff. - KJ 1.2 1.2 1.2 1.2
Eff. - PID 1.9 2.1 1.1 1.3
Eff. - 70 - - 5.1 -
Signal model <0.1 < 0.1 1.1 0.3
Bkg model 0.7 0.7 1.6 0.1
DKK bkg 1.7 2.1 6.1 4.5
D*Y peaking bkg - - 0.6 -
Nggp 1.4 1.4 1.4 1.4
f+=00 2.4 2.5 2.4 2.5
Intermediate Bs 2.5 2.9 2.8 2.9
Total systematic 5.0 5.6 9.5 7.0
Statistical 6.0 5.9 15.2 11.9

Table 4. Relative statistical uncertainties and breakdown of the relative systematic uncertainties to
the corresponding branching fractions for the four B — DD channels. All values are in percent. A
dash is shown when the uncertainty is not applicable.

is defined as the angle between the momentum of the KT from K*° decay and the direction
opposite to the K~ K*0 system momentum, both in the K*° rest frame. The angles 8y x and
Ok are defined analogously for the Kg channels. There is no significant correlation between
these angles and AF, as required for the sPlot technique.

The expected angular distributions dN/df are shown in table 5 for different hypotheses
for the spin-parity J© of the K~ K ((;))0 system, assuming a single J* for the transition. Only
the J¥ states allowed by the factorization hypothesis and assuming exact isospin symmetry
are shown. In the case of J© = 17, and scalar to vector-vector decay (D* channels), the
distribution depends on the fraction of the longitudinal polarization in the B decay, so it is a
mixture of different contributions with unknown strengths. Hence, the dN/df distribution
is not known a priori for this hypothesis. In the case of J© = 11, the D-wave contribution
is assumed to be negligible compared to the S-wave [33], otherwise the angular distribution
will be a mixture of different contributions as well. The 6 distribution is not sensitive
to the spin-parity of the K _Kg system and is expected to be uniform; thus, it is used to
verify the absence of bias.

The various spin-parity hypotheses are tested by fitting the dN/ cos Ok x and dN/ cos 0 K((j;))
distributions, for each channel, with the functional forms corresponding to individual J*
hypotheses and comparing the x? of the fits. The significance of the difference between the
fit hypotheses is also estimated using the Akaike information criterion to compare non-nested
models [34]. For the Kg channels dN/0k o cos?f and dN/ O o const are preferred,
suggesting J© = 17. For the K*¥ channels dN/0xx o const and dN/fx+ oc const are

preferred, suggesting J© = 1% or a non-resonant decay. The distributions of dN/ cos @ )
()
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K~ K" channels K~ K2 channels
D° D7 channels D*°, D*T channels D° D7 channels D*°, D*T channels

JP dN/d0xx dN/d0x- dN/d0xrx dN/d0x- dN/d0xrx dN/d0x, dN/d0xx dN/dOx.

Three-body  const const const const const const const const
0~ const cos? @ const cos? 0 - - - -
1~ sin? 6 sin? 6 mix sin® @ cos> @ const mix const
1+ const! const! const! const ! - - - -

Table 5. Possible angular distributions given a specific spin-parity state of the K~ K ((;))0 system,

subdividing between pseudoscalar channels (D°, DT) and vector channels (D*°, D*T). The hyphen (-)
stands for a forbidden spin-parity assuming factorization and exact isospin symmetry; mix stands for
a polarization dependent distribution; const stands for a uniform distribution; the T symbol indicates
that the uniform distribution requires S-wave dominance.

and dN/ cos O i for the eight channels are shown in figure 7 and figure 8; the fits projections
are overlaid. Additional details about the fits are provided in the appendix A.

The m (K~ K) distributions for data are shown in figure 9 and figure 10. The m (K~ K)
distribution from the signal simulation is also overlaid to show a comparison with phase-space
and specific resonant distributions. In all channels, the bulk of the observed m(K~K3)
distributions is located at low m (K~ K3) values, and show structures different from phase-
space distributions. The distributions vanish above 2.0-2.5 GeV, disfavoring the presence
of a significant phase-space component. The overlay with the p(1450)~ meson lineshape
shows partial agreement of the peak position. Therefore, combining the observed m(K~K)
distribution and the helicity angle constraint, we conclude that the four Kg channels proceed
predominantly via B — Dp'~(— K *Kg), where p’ indicates one or more p—like resonance.
This interpretation is supported by ref. [35], where the m(K ~ KY) distribution is predominantly
described as the combination of the p(1450)~ and p(770)~ contributions. Moreover, we cannot
exclude the interference of even-spin states, which are allowed if factorization is not assumed.
In this case, the transition can proceed via a color-suppressed diagram with internal W boson
emission, and could result in a JZ = 0% state. However, from ref. [35] this contribution is
expected to be small or negligible. For the K*0 channels, the observed m(K ~K*9) distribution
also differs from phase-space, with the peak position and the high mass tail in good agreement
with the simulated a;(1640)~ meson lineshape, thus strongly disfavoring a non-resonant
transition. Given the imperfect agreement with a pure a1(1640)~ lineshape, we cannot
exclude the possibility that the observed lineshape is due to the superposition of multiple
aj resonances. However, the a;(1260)~ is unlikely to be the dominant contribution given
the observed peak position, despite the large uncertainties related to the knowledge of the
a1(1260)~ width. Combining the observed m(K~K*9) distribution and the information from
the helicity angles, we conclude that the four K *9 channels proceed via B — Day (- K K *0)]
where o) stands for one or multiple a;-like resonances.
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Figure 7. Background-subtracted and efficiency-corrected distribution of dN/dcos@ ., for the
(s)

B~ — DK~ K} (first line, left), B — DT K~ KY (first line, right), B~ — D**K~ K} (second line,
left), BY — D**K~ K (second line, right), B~ — DK~ K*Y (third line, left), B® — DT K~ K*°
(third line, right), B~ — D**K~K*0 (fourth line, left), and B® — D** K~ K*° (fourth line, right)
channels. The error bars represent the statistical uncertainty. A phase-space MC simulation and a
resonant MC simulation at generator level, rescaled to the integral of the data distribution, are also
shown for comparison. The three fit-hypotheses and the respective x? are overlaid, together with the
significance of the difference between each fit and the other two.
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Figure 8. Background-subtracted and efficiency-corrected distribution of dN/dcosf for the
B~ — DK~ K} (first line, left), B® — DT K~ K (first line, right), B~ — D**K~ K% (second line,
left), B — D** K~ K% (second line, right), B~ — DK~ K*Y (third line, left), B® — DT K~ K*°
(third line, right), B~ — D**K~K*0 (fourth line, left), and B® — D** K~ K*° (fourth line, right)
channel. The error bars represent the statistical uncertainty. A phase-space MC simulation and a
resonant MC simulation at generator level, rescaled to the integral of the data distribution, are also
shown for comparison. The three fit-hypotheses and the respective x? are overlaid, together with the
significance of the difference between each fit and the other two.
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Figure 9. Background-subtracted and efficiency-corrected distribution of m(K~ K g) for the B~ —
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data distribution, are also shown for comparison.
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integral of the data distribution, are also shown for comparison. The uncertainties on the resonance

parameters simulations are shown as shaded areas.
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9 Conclusions

Using an electron-positron data sample collected by Belle II on the Y(4S) resonance with an
integrated luminosity of 362 fb~!, we report the measurement of the eight branching fractions

B(B~ — D°K~K%) = (1.82 £ 0.16 £ 0.08) x 10~%,

BB’ - DK K"
B(B~ — DK~ K*
B(BO D*+K K*O

7.56 & 0.45 £ 0.38) x 1074,
11.93 £1.14 +0.93) x 1074,
(13.12+£1.21+£0.71) x 1074

B(B° - DTK~KY) = (0.82+£0.12 £ 0.05) x 1074,
B(B~™ — DK™ K2) = (1.47 4 0.27 4 0.10) x 1074,
B(B° — D**K~K2) = (0.91 +0.19 £ 0.05) x 10~*

( (7.19 £ 0.45 £ 0.33) x 1074,
(
(

) =
)=
) =
B(B~ — DK~ K*0) =
) =
) =
)=

where the first uncertainty is statistical and the second uncertainty is systematic. The decays
B - DTK-KY, B~ — D**K~KY, and BY — D*T K~ K} are observed for the first time.
The precision of the eight measurements is between 5% and 20% and is limited by statistical
uncertainties. The precision of B(B~ — DK~ K?) and the four B(B — DK~ K*°) are
improved by more than a factor of three compared to previous measurements [2].

The observed m(K~ K ((;))0) invariant mass and helicity angles distributions suggest the

presence of a dominant resonant component in the K~ K ((;))O system as has been previously
reported by Belle [2]. In B — DK~ K, decays, a B — Dp'~(— K~ K{) transition is favored,
where p’ stands for a J© = 1~ state. The transitions are likely to proceed via multiple
resonant states, and we cannot exclude the presence of an even-spin intermediate state.
In B - DK~K*0 decays a B — Da| (= K~ K*°) transition is favored, where a) stands
for a JI = 17 state. The observed m(K K*°) distributions favor the contribution of not
only the a1(1260)~, but also excited a; states such as the a;(1640)~, in contrast to the
earlier Belle measurement [2].

These eight channels can be exploited in the FEI B-tagging algorithm, given their high
purity. They can provide a few percent improvement in efficiency for hadronic FEI.

We also provide measurements of the branching fractions of the four channels B — DD,
obtained from the same data sample. They are found to be

B(B~ — D°D;) = (954+6+5) x 1074
BB - DT™D;)= (89 +£5+5) x 1074,
B(B~ — D*D;) = (654 104 6) x 1074,
B(B° - D*"D;) = (834+10+6) x 1074

where the first uncertainty is statistical and the second one systematic. These measurements
have a precision similar to or competitive with the current world averages [31].
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A Additional material

In figure 11 the distribution of m(K 7 ) invariant mass for the four K*° channels is shown.
The projection of the fit, as described in section 4, is overlaid. The non-K*9-resonant fraction
is listed in table 6 for the four K*° channels. The systematic uncertainties are estimated
as described in section 7.

In figure 7 and figure 8 the distributions of dN/d cos 9K<*) and dN/d cos O i respectively,
(9)
are shown for the eight B — DK~ K channels. The tested fit hypotheses, according to

table 5, are also shown. These fits models have only the total yield as a free parameter
and they consider statistical uncertainty only. A phase-space MC simulation and a specific
resonant MC are overlaid as a reference. For the K2 channels, the four cos(f ) fit show good
agreement with the uniform distribution, as expected. The cos(fx ) distributions for the
B° -+ DTK~K?2 and B® — D*" K~ K} channels follow a cos? § distribution, in agreement
with J = 17. On the other hand, the cos(fx ) distributions for the B~ — D°K~ K2 and
B~ - DK™ K g channels disagree with all the tested hypotheses. The unknown polarization
of the D*Y justifies the observed distribution for the B~ — D*YK~ K% channel. The observed
asymmetric cos(fx k) distribution for the B~ — DK _Kg channel supports the hypothesis
of interference between the J¥ = 1~ state and spin-even states. For the K*° channels, both
the cos(0k~)and cos(fk k) distributions are in good agreement with the uniform distribution,
as expected for JE = 17 but for the cos(fxk) of the B — D** K~ K*Y channel.

The (m(K~K),m(DK)) distributions are shown in figure 12 for the eight B — DK~ K
channels. The selection is applied together with the efficiency correction; sWeights are applied
to subtract the background component. The distributions also show some structures, which
are compatible with the resonant transition discussed in section 8. The m(DK) and m(DK ™)
projections show that the reflection of the m(K~ K') resonant lineshape may produce such
structures. These distributions are shown in figure 13 and figure 14.
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Channel non- K **-resonant fraction [%]
B~ — DK~ K*0 3.1+£05+£1.2
BY - DYK—K*0 0.7+0.5+0.3
B~ — DYK-K* 14+£0.64+0.3
BY - D*T K~ K*0 1.0+£05+0.5

Table 6. Non-K*Y-resonant fraction, in percent of the signal, estimated for each of the four K*°
channels. The first uncertainty is statistical, the second systematic.
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Figure 11. Distribution of m(K*+7~) for the B~ — D°K~K*° (top left), B — DTK~K** (top
right), B~ — D**K~K*Y (bottom left), and B — D**K~K*? (bottom right) channels. The
projections of the fits are overlaid, the fit components are highlighted, and the pulls between the
fit and the data are shown in the bottom panel of each plot. The background BB and continuum
background are subtracted by applying the signal sWeights.
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Figure 12. Background-subtracted and efficiency-corrected distribution of (m(K~K),m(DK))
for the B~ — DK~ K2 (first line, left), B — DTK~KY (first line, right), B~ — DK~ K
(second line, left), B® — D**K~KY (second line, right), B~ — D°K~K** (third line, left),
B — D*K~K*° (third line, right), B~ — D**K~K*Y (fourth line, left), and B® — D** K~ K*°
(fourth line, right) channels.
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Figure 13. Background-subtracted and efficiency-corrected distribution of m(DK) for the B~ —
DK~ K} (first line, left), B® — DTK~ K (first line, right), B~ — D**K~K{ (second line, left),
B° — D** K~ K} (second line, right), B~ — DK~ K*? (third line, left), B® — DT K~ K*? (third line,
right), B~ — D**K~K*° (fourth line, left), and B® — D** K~ K*V (fourth line, right) channels. The
error bars represent the statistical uncertainty. A phase-space MC simulation and a resonant MC simu-
lation at generator level, rescaled to the integral of the data distribution, are also shown for comparison.
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Figure 14. Background-subtracted and efficiency-corrected distribution of m(DK ™) for the B~ —
DK~ K} (first line, left), B® — DTK~ K (first line, right), B~ — D**K~K{ (second line, left),
B° — D** K~ K} (second line, right), B~ — DK~ K*? (third line, left), B® — DT K~ K*? (third line,
right), B~ — D**K~K*° (fourth line, left), and B® — D** K~ K*V (fourth line, right) channels. The
error bars represent the statistical uncertainty. A phase-space MC simulation and a resonant MC simu-
lation at generator level, rescaled to the integral of the data distribution, are also shown for comparison.
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