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ABSTRACT: High-frequency wave propagation in near-inertial wave shear has, for four decades, been considered funda-
mental in setting the spectral character of the oceanic internal wave continuum and for transporting energy to wave break-
ing. We compare idealized ray-tracing numerical results with metrics derived using a wave turbulence derivation for the
kinetic equation and a path integral to study this specific process. Statistical metrics include the time-dependent ensemble
mean vertical wavenumber, referred to as a mean drift; dispersion about the mean drift; time-lagged correlation estimates
of wavenumber; and phase locking of the wave packets with the background. The path integral permits us to identify the
mean drift as a resonant process and dispersion about that mean drift as nonresonant. At small inertial wave amplitudes,
ray tracing, wave turbulence, and the path integral provide consistent descriptions for the mean drift of wave packets in the
spectral domain and dispersion about the mean drift. Extrapolating these results to the background internal wavefield
overpredicts downscale energy transports by an order of magnitude. At oceanic amplitudes, however, the numerics support
diminished transport and dispersion that coincide with the mean drift time scale becoming similar to the lagged correlation
time scale. We parse this as the transition to a non-Markovian process. Despite this decrease, numerical estimates of down-
scale energy transfer are still too large. We argue that residual differences result from an unwarranted discard of Bragg
scattering resonances. Our results support replacing the long-standing interpretive paradigm of extreme scale-separated in-
teractions with a more nuanced slate of “local” interactions in the kinetic equation.
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1. Introduction

Internal waves are an important piece of the climate sys-
tem. In the stratified interior, away from the direct influence
of the ocean surface boundary layer, they provide the agency
by which mass and buoyancy are mixed across density surfa-
ces (MacKinnon et al. 2017). Internal waves are a key piece of
mixing at the ocean’s bottom boundary, especially over com-
plex topography (Polzin 2004b, 2009). Consequently, there is
a significant literature that attempts to link internal waves to
mixing, tracking downscale transfers of energy associated
with nonlinear interactions through a wave-breaking process
to 3D turbulence. This literature concerns three disjoint pieces:
observational inference, formal theory encapsulated in a kinetic
equation, and knowledge gained from ray-tracing simulations.
This work was initiated as an effort to synthesize these three el-
ements, an effort that ultimately ended in failure. This failure
has dynamic parallels with 3D turbulence and physics. These
three elements are briefly presented below, followed by an ex-
tended discussion of the underlying concepts of resonance, scale
separation, and spectral transport.

a. A brief review of internal wave energy cascades

1) OBSERVATIONAL INFERENCE

Gregg (1989) provides us with an assertion that turbulent
dissipation e ; e0E

2N2 with e0 ffi 7 3 10210 W kg21, where E
is a length scale metric of wave amplitude and buoyancy

frequency N. Gargett (1990) notes that the bandwidth in
Gregg’s datasets is insufficient to distinguish e ; N2 from al-
ternate scalings such as e ; N3/2 and that Gregg’s metric of E
is biased. Wijesekera et al. (1993) provide additional data
analysis with CTD data that are consistent with Gregg (1989).
Polzin et al. (1995) present datasets with greater bandwidth N
and an unbiased metric of E to argue that e ; e0E

2N2 with e0
agreeing with Gregg (1989) and tertiary variability that plausi-
bly depends upon frequency content or aspect ratio. On a
contrary note, Hibiya et al. (2012) present data in which e0 is
3–4 times smaller. There are likely two issues in play. The first
is that the estimates of e are likely biased low by a factor of
2–3 through the use of the Goodman coherent noise subtrac-
tion scheme [T. Ijichi 2023, personal communication; see also
Thurnherr et al. (2020)] and a mismatch of the space–time
scales in which fine structure and microstructure are being av-
eraged (Whalen 2021). Apart from this amplitude bias issue,
Hibiya et al. (2012) also note variability that plausibly de-
pends upon frequency content and provide a metric to assess
the enhancement of both near-inertial and continuum wave
amplitudes. Polzin et al. (1995) express the frequency content
as an aspect ratio using scaling arguments concerning ray-
tracing transports in Henyey et al. (1986) and Henyey (1991)
to obtain e ; e0E

2N2f. The estimates of aspect ratio utilize a
shear/strain ratio metric available to vertical profiling instru-
mentation. Such metrics are noted to be biased, i.e., they do
not encapsulate the dynamic range that one would obtain if
one used a frequency spectrum to estimate the corresponding
moment. Gregg et al. (2003) present further data and make a
hydrostatic approximation in the algebra for the aspect ratio.Corresponding author: Kurt L. Polzin, kpolzin@whoi.edu

DOI: 10.1175/JPO-D-23-0185.1

Ó 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

3

VOLUME 55 J OURNAL OF PHY S I CAL OCEANOGRAPHY JANUARY 2025

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 06/09/25 01:56 PM UTC

mailto:kpolzin@whoi.edu
http://www.ametsoc.org/PUBSReuseLicenses


This provides a compact expression that is straightforward to
evaluate, but one that has even greater bias. Ijichi and Hibiya
(2015) provide algebra that corrects for the bias in aspect ratio
estimates, essentially codifying in algebra the estimates of bias
presented in Fig. A1 of Polzin et al. (1995).

The focus on variable aspect ratio to explain tertiary depar-
tures from an e ; e0E

2N2f scaling is plausible, but ray-tracing
concepts compete with alternative explanations concerning
the efficacy of parametric subharmonic instability transports
that are a function of power laws and variability in the inertial
cusp (Olbers et al. 2020; Dematteis et al. 2024). The endpoint
of observational inference is a “finescale parameterization”
that is robust but heuristic in nature (Polzin et al. 2014).

2) FORMAL THEORY

Wave turbulence (Zakharov et al. 1992; Nazarenko 2011)
provides, through an expansion in the strength of interaction
that starts with a linear wave basis, a formal basis for assessing
the slow time evolution of the wave spectral density associ-
ated with weakly nonlinear wave–wave interactions in a
small-amplitude limit. This formal approach is built upon the
concept of a resonant manifold. For a three-wave system with
wavenumbers p, p1, and p2 and frequencies s, s1, and s2

linked by a dispersion relation, the resonant manifold is de-
fined by solutions to

s 5 s1 1 s2 p 5 p1 1 p2

s 5 s1 2 s2 p 5 p1 2 p2

s 5 s2 2 s1 p 5 p2 2 p1:

(1)

Solutions for s and p being a high-frequency and high-
vertical-wavenumber wave, respectively, are displayed graphi-
cally in Fig. 1.

One paradigm happens when one of the three waves has a
much greater physical dimension, a scale separation, in at least one
spatial coordinate. These limits are referred to as “induced dif-
fusion” (ID), “elastic scattering” (ES), and “parametric subhar-
monic instability” (PSI) in the oceanographic literature. Physical
interpretations for the scale-separated ID and ES interactions are
pursued in section 1b(3). Invoking these scale separations allows
simplification of the considerable algebraic complexity of the inte-
grand of the kinetic equation.

A second paradigm of “local” interactions happens in the
absence of a scale separation. In this paradigm, the kinetic
equation refuses to submit to simplification, and one turns
to dimensional analysis Polzin (2004a). This differs from
Kolmogorov (1941) due to the fact that the resonant mani-
fold lacks a precise three-dimensional symmetry, apparent
in Fig. 1, even in the absence of rotation. We refer the
reader to Dematteis and Lvov (2021) and Dematteis et al.
(2022, 2024) for quantitative characterization of local inter-
actions from the kinetic equation.

Holloway (1980, 1982) provides us with a critique of the
internal wave kinetic equation: that, if it could be derived, a
kinetic equation that includes finite amplitude resonance
broadening will suffer from a Doppler shifting defect in the
induced diffusion regime. The theoretical community at
that time is using a resonant version, i.e., the infinitesimal am-
plitude limit of the above, and symptomatic of this are interac-
tion time scales shorter than a wave period, far shorter than
the slow time evolution envisioned in the derivation of the ki-
netic equation. This issue needs to wait for the derivation of
that broadened kinetic in Lvov et al. (2012) and further analy-
sis in Polzin and Lvov (2017), in which these short time scales
are able to be physically interpreted as an artifact of Doppler
shifting.

Ascertaining the practical consequences of this defect,
though, requires further effort that this report details.

FIG. 1. Solid lines depict the resonant manifold of the internal wave problem [(1)] in the situation where the three
horizontal wavevectors are either parallel or antiparallel, plotted in a vertical wavenumber–frequency space, for a
wave with (p, s) at the center of the green circle. With rotation, extreme scale separations in horizontal wavenumber
lead to Bragg scattering (ES) and a phase velocity Cph equals group velocity Cz

g resonance condition (ID) being lo-
cated at the Coriolis frequency f. This study focuses upon the latter class, with scale separation in both horizontal and
vertical wavenumbers. The Bragg scattering resonance is only scale-separated in horizontal wavenumber. Near-
resonant ID conditions are depicted in green, and bandwidth-limited nonresonant ID forcing is depicted in cyan.
Local interactions are depicted with gray shading. Vertical wavenumber–frequency combinations pertaining to a
fourth-order cumulant are labeled 1, 2, A, and B.
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3) RAY TRACING

Ray tracing provides an alternate treatment of the induced
diffusion regime as it deals directly with Doppler shifting.
Early efforts are assessed in a review of internal wave dynam-
ics (Müller et al. 1986). The coauthors of that review appear
to accept that the ray-tracing results are phenomenologically
different from the induced diffusion limit of the kinetic equa-
tion but are unable to make progress. There is speculation
that the Doppler shift defect and phenomenological dispar-
ities could be encapsulated as an “interaction time” relative
to a “decorrelation time” relating to a “Markov approx-
imation” in the context of ray tracing. Yet, again, no progress
is made concerning speculation that ray tracing provides a
fundamentally different description of the evolution of a sta-
tistical ensemble of wave packets or whether the results ap-
pear different due to the ray-tracing simulations being run in
a strongly nonlinear parameter regime.

There are three major efforts at ray-tracing simulations
with the goal of defining downscale transports in the back-
ground internal wave spectrum: Henyey et al. (1986), Sun and
Kunze (1999b), and Ijichi and Hibiya (2017). After renormal-
izing results in Henyey et al. (1986) to account for differences
in definitions of the background spectrum (see Polzin et al.
1995), ray-tracing-based estimates of dissipation can be con-
strued as remarkably consistent with the observations.

However, there are issues. These assessments share the
following:

• Lack of a derivation of ray tracing to articulate the underly-
ing assumptions. This allows Henyey et al. (1986) to state,
“ray tracing is not subject to a weak interaction approx-
imation,” with the implication that it has fewer restrictions.
It is, however, a small-amplitude theory, and this is not
appreciated.

• Assessment of downscale transports using an advective clo-
sure. This closure is introduced without theoretical support
and is inconsistent with statements made in McComas and
Bretherton (1977) and Nazarenko et al. (2001).

• The backgrounds in these simulations are not solutions to
the nonlinear equations of motion, and thus, the propaga-
tion of initial conditions forward in time may not be
realistic.

• The simulations have tunable parameters that lead to a plau-
sible order of magnitude ambiguity in downscale transports.
These parameters are scale separations between test waves
and background and placement of a high-wavenumber cutoff
relating to wave breaking to evaluate downscale transports.

• Lack of an analytic solution against which to compare nu-
merical results and with which to understand the potential
for numerical artifacts.

In short, the pattern match with the observations is nice,
but ray tracing is an asymptotic theory and the pattern match
requires accepting the small expansion parameters in the the-
ory to beO(1).

In this work, we introduce a simplified one-dimensional ray-
tracing model focused on the interaction of test waves with iner-
tial shear that permits a critical assessment of these issues.

b. Decoder ring

The development of prognostic models for the evolution
of nonlinear wave systems is a process that produces a mys-
tifying amount of algebra that emphasizes first principles
over physical insight. In the following subsections, we relate
some of the basic concepts that assist the reader in arriving
at that physical understanding of extreme scale-separated
systems.

1) POLARIZATION RELATIONS

Assuming a plane wave formulation of a expi(r?p2st), the lin-
earized f-plane equations of motion for 3D velocities (u, y ,
and w), buoyancy b 5 2gr/r0, and pressure perturbation
p can be manipulated to provide “polarization relations”
(Müller and Olbers 1975; Polzin and Lvov 2011):

u 5
k2h

m2|p|2
( )1/2

m2(k 2 ifl/s)
k2h

a ei(p?r2st)

y 5
k2h

m2|p|2
( )1/2

m2(l 1 ifk/s)
k2
h

a ei(p?r2st)

w 5
k2h

m2|p|2
( )1/2

2 ma ei(p?r2st)

b 5
k2h

m2|p|2
( )1/2

2
imN2

s
a ei(p?r2st)

p 5
k2h

m2|p|2
( )1/2

2
(N2 2 s2)

s
a ei(p?r2st): (2)

The prefactor in these polarization relations is such that the
wave amplitude a is normalized to represent the total energy:

Ek 1 Ey 1 Ep 5 aa*:

The total energy is the sum of horizontal kinetic Ek, vertical
kinetic Ey, and potential Ep.

2) MOMENTUM, ACTION, AND ENERGY

Our interest is in small-amplitude waves propagating in a
larger-amplitude, larger horizontal scale background, for
which we refer the reader to Lvov and Polzin (2024) for an ac-
tual derivation. Wave action spectral density

n(p, r) 5 a(p, r)a*(p, r)/v (3)

is conserved,

­np,r
­t

1 =psp,r ? =rnp,r 2 =rsp,r ? =pnp,r 5 0,

along characteristics (ray trajectories) defined by

ṙ(t) ; =psp,r 5 U 1 Cg,

ṗ(t) ;2=rsp,r, (4)
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in which the intrinsic frequency v 5 s 2 p ? U plays the role
of the Eulerian frequency s in the polarization relations. The
latter of these equations are the eikonal representations of
geometric optics:

k̇ 52kUx 2 lVx 2 mWx

l̇ 52kUy 2 lVy 2 mWy

ṁ 52kUz 2 lVz 2 mWz , (5)

where we neglect vertical gradients of background stratification.
The internal wave energy equation is (Müller 1976)

­

­t
1 U ? =h

( )
(Ek 1 Ep) 1 = ?p′u′ 5

2u′u′Ux 2 u′y ′Uy 2 y ′u′Vx 2 y ′y ′Vy

2u′w′Uz 2 N22b′u′bx 2 y ′w′Vz 2 N22b′y ′ by: (6)

The polarization relations then provide compact algebraic ex-
pressions for the energy exchange, for which we refer the
reader to Polzin (2010) and Müller (1976). Our interest here
is the vertical coordinate, for which

u′w′ 2
f
N2 b

′y ′ 5 kCz
g
aa*

v

y ′w′ 1
f
N2 b

′u′ 5 lCz
g
aa*

v
: (7)

The two terms in the effective stress will cancel each other in
the limit that v " f (Ruddick and Joyce 1979): transfers in the
vertical coordinate emphasize high-frequency waves. If the
background is in thermal wind balance,

2u′w′Uz 2 N22b′y ′by 5 kCz
g
aa*

v
Uz

2y ′w′Vz 2 N22b′u′bx 5 lCz
g
aa*

v
Vz, (8)

and (k, l)Cz
gaa

*/v can be parsed as the vertical flux of horizon-
tal angular momentum across an isopycnal surface (Jones
1967; Bretherton 1969) which has a rich history in the zonal-
mean literature (Andrews et al. 1987; Polzin 2010) under the
phrase Eliassen–Palm flux (Eliassen and Palm 1961). In our
work, the background buoyancy perturbations are small, but
relation (7) proves invaluable in developing physical insight
into the behavior of this nonlinear system.

3) THE PLAYERS IN TODAY’S DRAMA

The two players in today’s drama are induced diffusion and
elastic scattering that represent different limbs of the resonant
manifold (Fig. 1) for three wave interactions. Further discus-
sion is presented in section 5c.

(i) Induced diffusion

Induced diffusion is an example of a generic interaction in
which the phase velocity of a large-scale wave is equal to the
group velocity of a smaller-scale wave. A schematic of a single

background wave and single high-frequency wave packet is
rendered in Fig. 2. The high-frequency wave loses energy as its
stress u′w′ correlates with the background shear Uz [(6)–(8)].
The depicted interaction does not go on forever: the wave
packet will change its group velocity as the vertical wavenum-
ber is modulated [(5)] and the wave packet slowly migrates to
a different phase of the background.

Assessing this interaction is far more complicated in a ran-
dom sea of background waves, few of which are resonant at
any given time. Questions naturally arise, such as “what are
the roles of resonant and nonresonant interactions?” “how do
these concepts differ between the kinetic equation and ray
tracing?” and “what is the characteristic time that a wave
packet will spend in a resonance before decorrelating?” which
in turn motivate questions about the average drift of the wave
packet in wavenumber and the bandwidth of the resonance.
A net energy exchange over all space requires an accumula-
tion of wave packets on the specific phase of the inertial wave
relative to the opposing sign of phase. How is this distributed
relative to the phase of the near-inertial field at resonance?
This structure is obviously different from kinetic theory,
which represents the resonant bandwidth as a delta function.
An important tool to answer such questions comes about
by considering an analogy between a wave packet and a
Lagrangian parcel.

The characterization of the phase velocity equals group ve-
locity resonance as a “diffusive” process comes about from a

FIG. 2. A schematic of the phase velocity equals group velocity
resonance. The large vertical scale sinusoid is depicted with black
trace to blue trace implying upward phase propagation. Small verti-
cal scale cyan traces and red envelope structure depict a high-
frequency wave packet with upward group velocity going from left
to right in the schematic. The wave traces are oriented such that
u′w′ . 0 and the packets are riding within a region of positive
vertical shear Uz so that they are losing energy to the large-scale
wave at a rate in proportion to kCz

gUz. The interaction results in a
change in the vertical wavenumber ṁ of the high-frequency wave
so that, as depicted, vertical wavenumber magnitude increases,
slowing the wave packet and having it migrate out of the positive
shear region on a long time scale.
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direct analogy to Taylor (1922). We paraphrase. Consider the
position of a fluid parcel xi. As a Lagrangian parcel,

xi(t) ;
� t

2‘
ẋi(t′)dt′: (9)

Multiplying both the sides by ẋi(t), creating an ensemble h… i
over many such particles by summing over i and introducing a
change of variables in the difference between time t and t′,
t 5 t2 t′:

1
2
dhx2i
dt

;
�‘

0
hẋ(t)ẋ(t 2 t)idt: (10)

The magic words are “IF this integral converges,” the right-
hand side will be the product of a velocity variance ẋ2 and a
correlation time scale tc:

1
2
dhx2i
dt

5 hẋ2itc, (11)

so that the second moment hx2i grows linearly with time:

hx2i ffi 2hẋ2itct 5 2Dt, (12)

and we refer to hẋ2itc as an eddy diffusivity D. It is a simple
yet very insightful step to substitute wavevector p for position
vector r, motivating a diffusive closure (e.g., McComas and
Bretherton 1977; Nazarenko et al. 2001). However, what has
not been realized in what is becoming an extensive literature
is that, while the IF statement may be true in physical space, it is
decidedly unlikely that it will be true in phase space. A first step
in trying to fix this will be to introduce a mean drift into (9),

x(t) 2 hx(t)i ;
� t

2‘
ẋ(t′) 2 hẋ(t′)idt′, (13)

and hope that the corresponding analysis exhibits a multiple-
time-scale behavior. Convergence of the resulting lag correla-
tion analysis on a fast time scale plausibly defines a Markov
process in a “weakly” inhomogeneous system.

The seemingly ad hoc introduction of a mean drift actually
represents concrete progress. Not only does it provide a defi-
nition for an interaction vis correlation time-scale comparison
missing from the previous discussions summarized in Müller
et al. (1986), in an actual derivation of a packet ensemble
action transport equation (Lvov and Polzin 2024), it also
provides the missing advective closure utilized in ray-tracing
studies.

(ii) Elastic scattering

Elastic scattering is an example of a generic interaction in
which the spatial scale of a wave in some dimension is equal
to twice that of a larger amplitude “background” which is pre-
cisely the character of a Bragg scattering process (Fig. 3). The
process figures most prominently in the vertical wavenumber
so that the sign of the vertical wavenumber is flipped while
the horizontal wavenumber is preserved. With regard to the
metric of energy exchange [(8)], flipping the sign of the group

velocity provides a reversal in the sign of the energy exchange
associated with the phase velocity–group velocity resonance.

This Bragg scattering process does not conserve wave action
and implies a damping of the phase velocity–group velocity reso-
nance. This prompts a question of crucial importance: what is the
associated damping time scale relative to downscale transports as-
sociated with the phase velocity–group velocity resonance?

4) TRANSPORT EQUATIONS

We refer the reader to Lvov and Polzin (2024) for side-
by-side derivations of Fokker–Planck equations describing
the slow time evolution of wave action spectral density np from
the kinetic equation [(14)] and the evolution of a wave packet en-
semble mean action spectral density hnpi [(15)] that starts from
the leading-order expression for a single wave packet [(4)].

For the kinetic equation,

­np
­t

5
­

­pi

Dij(p, q)
­

­pj
np, (14)

with diffusivity tensor

Dij(p, q) 5 8p
�
dq(qiqj)|Vp

p1,q
|2nqdp2p12qL(sp 2 sp1

2 sq)dp1,

where q5 p2 p1 is a small residual, Vp
p1,q

is the resonant scat-
tering cross sections, and i and j are the Cartesian indices in a
3D spectral domain.

FIG. 3. A schematic of the ES mechanism. A high-frequency
wave with downward group velocity partially reflects from an
abrupt transition to a higher stratification N′. We imagine this
high-stratification region has a limited height h so that the wave
transmitted from the first “interface” will partially reflect from the
second interface. The interface is flat so that the wave is forward
scattered in the horizontal. The maximum vertical backscatter is at-
tained when the phases of the waves constructively interfere, which
is attained when the height of the middle layer is half the vertical
wavelength of the waves in that region, h5 l′y /2. This is an exam-
ple of Bragg scattering. Flipping the sign of the vertical wavenum-
ber flips the sign of the group velocity and thus changes the sign of
energy extraction being set up by larger vertical scale background
waves with the phase velocity–group velocity resonance in Fig. 2.
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For ray tracing,

­hnpi
­t

52=pi
?

� t

t2t

Cij(p, t, t′)dt′ ? =pj
hnpi 2 =pi

hṗiihnpi, (15)

with lagged covariance matrix

Cij(p, t, t′) 5 h{ṗ[r(t)] 2 hṗ[r(t)]i}i{ṗ[r(t′)] 2 hṗ[r(t′)]i}ji:
(16)

Induced diffusion represents the interaction of high-frequency
waves with near-inertial shear, and it is the vertical i 5 j 5 3
coordinate that dominates the singularities of the integrand in
the kinetic equation (Lvov et al. 2010; Dematteis and Lvov
2021). It is the focal point of efforts to understand the spectral
character of the internal wave continuum (McComas and
Bretherton 1977; McComas and Müller 1981b; Müller et al.
1986). We develop a simple model for this process in this
paper. In section 3, we demonstrate that if the time-integrated
lagged autocorrelation converges, then

D33 "
� t

t2t

C33(p, t, t′)dt′: (17)

However, predictions for dissipation using the Garrett and
Munk model (GM76) spectrum are quite different. The 3D
action spectrum n(p) of the GM76 model is independent of
vertical wavenumber, n(p) ~m0, so that (14) predicts no diffu-
sive transport of action or energy in vertical wavenumber: the
predicted dissipation is e0 5 0. The ray-tracing Fokker–Planck
[(15)] contains an advective term representing the ensemble
mean drift of wave packets in the spectral domain. We evalu-
ate the associated downscale energy transport in section 5a
and find that it predicts an order of magnitude greater dissipa-
tion rates than supported by oceanic observations.

To complicate matters, even though expressions for disper-
sion in vertical wavenumber are similar [(17)], the physical in-
terpretations of the diffusivity tensors are decidedly different.
The diffusivity Dij represents a resonant process in kinetic
theory, while Cij represents the dispersion about a mean drift
hṗi. We demonstrate in section 3 that the mean drift of ray
theory is associated with the resonant process and dispersion
about the mean drift is driven by nonresonant interactions.
The appearance of the mean drift and the nonresonant inter-
pretation of dispersion about that mean drift are contrary to
extant derivations of spectral transports in the ray-tracing
limit (e.g., McComas and Bretherton 1977; Nazarenko et al.
2001).

This difference in interpretation parallels a fundamental
distinction between the kinetic equation and ray tracing. Both
begin with expressions for wave amplitude and phase:

a(p, r)ei(p ? r2st) with np 5 a(p)a*(p):

The kinetic equation seeks to solve for the slow time evolu-
tion of wave amplitude np with time-invariant p and s linked
by a dispersion relation. Ray tracing assumes a time-invariant
n(p) with a slow time modulation of the constituents of wave

phase, p and s, constrained through an intrinsic frequency.
These have fundamentally different expressions in terms of
bandwidth (Cohen and Lee 1990; Polzin and Lvov 2017) as
the former is an amplitude-modulated (AM) process and
the latter is a frequency-modulated (FM) process. We note
that the AM bandwidth figures prominently in Holloway’s
complaints.

c. An outline for today’s efforts

In this and a companion paper, Lvov and Polzin (2024,
hereafter LP), we address and attempt to synthesize the un-
resolved issues discussed in section 1a. In LP, we provide a
derivation which clearly articulates the assumptions underpin-
ning ray tracing and derive Fokker–Planck representations of
action transport for induced diffusion in both the kinetic
equation and ray tracing. These differ in that the ensemble
average wave packet transport equation contains the missing
advective closure. The advective closure arises as the diffusivity
in induced diffusion is inhomogeneous in the spectral domain.
The kinetic equation, as an amplitude-modulated theory for
plane waves, represents spectral transports differently from
ray tracing, in which wave packets sample this inhomogeneity
along their ray trajectories as their vertical wavenumber is
modulated.

Knowledge here is gained by creating a stochastic model of
high-frequency test waves interacting with a background field
of inertial waves (section 2) in which the background is a solu-
tion to the nonlinear equations of motion. We present a cata-
log of diagnostics for the numerical simulations (section 3)
that includes the time evolution of spectral moments and lag
correlation functions. The stochastic model is designed to pro-
vide simple analytic expressions for such diagnostics.

Diagnostics are applied to the ray-tracing output in section 4.
Estimates of phase locking (section 4a) between vertical wave-
number and inertial shear clearly document the inertial phase
velocity equals high-frequency group velocity coupling that
underlies the induced diffusion resonance. The ray-tracing
Fokker–Planck introduced in LP permits unambiguous defini-
tions of an interaction time relative to a decorrelation time relat-
ing to a Markov approximation. We demonstrate the interplay
of the Markov approximation and scale separation in the ray
tracing as a finite amplitude effect in section 4b. The first and
second moments of the evolving test-wave distributions are
compared with the analytic solutions in section 3.

The stochastic model provides an understanding (section 5a)
that ray tracing supports downscale energy transports that are
an order of magnitude greater than e0. This understanding is val-
idated in three independent ways: through estimates of the first
moment in ray-tracing simulations (section 4b), a path integral
assessment of the downscale transport [section 3b(2)], and iden-
tification of the mean drift as the gradient of the diffusivity oper-
ator from kinetic theory [section 3a(1)].

The result of 10 times too much mixing is at odds with a
significant body of observations. We end this contribution
(section 5c) by arguing that energy transfers associated with
the induced diffusion resonance imply spatially local aniso-
tropic wavefields are short-circuited by a Bragg scattering
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resonance acting on the same time scale. We present this as
an eddy-damped quasi-normal Markovian closure that paral-
lels the damping of third-order energy transfers by fourth-
order cumulants in three-dimensional turbulence. Our results
support replacing the long-standing interpretive paradigm of
high-frequency action diffusion with a paradigm based upon a
more nuanced slate of local resonant interactions (Fig. 1) in
the kinetic equation.

We summarize in section 6 and point out that the particle
analogy does not end with a path integral and Bragg scatter-
ing. The damping also has a parallel originating in solid-state
physics, in which a doped conductor makes an abrupt dynami-
cal transition to an insulating state known as “Anderson local-
ization” and points toward the potential for assessing this
damping using techniques in open quantum systems.

2. A scale-invariant model of wave refraction in
inertial shear

a. Ray equations

In this section, we describe a one-dimensional numerical
ray-tracing model similar to that presented in Polzin and Lvov
(2017). The model uses (18) to represent the evolution of
high-frequency test waves having wavenumber p 5 (k, 0, m)
along trajectories in the vertical wavenumber–intrinsic fre-
quency space as in Fig. 4 and in space–time as in Fig. 5. We re-
fer the reader to LP for a derivation of the eikonal relations
ṗ 52=rs(p, r) and ṙ 5=ps(p, r) that define ray trajectories in
the wavenumber p 5 (k, m) and spatial r 5 (x, y, z) domains

from an Eulerian frequency s(p, r) rendered as Eq. (3.18) in
LP. The one-dimensional model equations are

ṁ 52k­zU(z, t),
ż 5­mv,

v2 2 f 2 5 k2N2/m2, (18)

where k is the horizontal wavenumber, aligned with a purely
horizontal background inertial flow U(z, t); m is the vertical
wavenumber; v is the intrinsic frequency; f is the Coriolis fre-
quency; and ? indicates a time derivative.

b. Model formulation

The backgrounds (19) and (20) comprised a field of ran-
domly phased inertial oscillations having no horizontal struc-
ture and a white vertical shear spectrum that extends to
oceanographically unrealistic large wavelengths, i.e., a small
bandwidth parameter m*. The lack of horizontal structure and
vertical velocity implies that the sum of an arbitrary number of
such waves is a solution to the nonlinear equations of motion.
The specification of an excessively small bandwidthm* ensures
that the results for packet dispersion are scale-invariant and
thus leads to simple diagnostics. In this paper, we employ a
stratification (N) that is 4 times larger than the nominal 3-cph
metric used in Polzin and Lvov (2017) in order to move the
spectral boundaries away from the initial release site. The
large-scale background consists of a random inertial wavefield:

U(z, t) 5∑
i
Ui sin(Miz 2 ft 1 fi), (19)
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FIG. 4. Schematic of trajectories in a vertical wavenumber–
intrinsic frequency space for the one-dimensional model. Test
waves are displaced along the solid black line such that v/N 5 k/m
with constant k. Test waves are released at the black circle. The
probability distribution evolves with a mean drift to a higher wave-
number and dispersion about the mean drift. The test waves con-
nect to the inertial field along the lower axis through a phase veloc-
ity f/M equals group velocity (2v/m) resonance condition (Fig. 2).
Note that m and M have opposite signs (Fig. 1). The gray shading
denotes the boundary of the model domain where the dispersion
relation departs from the hydrostatic, nonrotating limit.

FIG. 5. Schematic of trajectories in space and time for the one-
dimensional model. With no interaction, all wave packets follow
the dashed line. Interaction with a stochastic inertial shear results
in an evolving probability distribution of test-wave vertical wave-
number. We characterize this probability distribution using its first
and second moments. Test waves are displaced from the dashed
line by interaction with the inertial field. This interaction results in
a mean drift toward higher vertical wavenumber and consequently
smaller group velocity with dispersion (gray shading) about that
mean drift.
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with 1/40 # Mi/j1 # 1600 and the mode one equivalent
j1 5 p/1300 m21. In contrast to Polzin and Lvov (2017), a
slightly more sophisticated scale separation between wave
and background [(20)] is enforced by a single pole filter:

Ui " Ui 3

�����������������������������������������������������
M2

i /{[M2
i 1 ( j1/32)]2} * [1 1 (ssMi/m)2]

√
, (20)

with time-dependent m and variable scale selection factor ss.
We regard this as nothing more than an ad hoc device to en-
force a spatial smoothing on the envelope scale when infor-
mation on the envelope has long since been discarded (see
section 3.2.1 of LP), in order to assess the sensitivity of the
mean drift in wavenumber and dispersion of packets about
that drift. Run parameters appear in Table 1.

This formulation has been selected with the intent that the
vertical wavenumber spectra of vertical shear are independent
of vertical wavenumber for j1/32 ,, Mi ,, m/ss. We use an
aphysically small vertical wavenumber bandwidth parameter

j1/32 and large stratification (12 cph) to enable us to study the
long time evolution with analytic scale-invariant diagnos-
tics presented in section 3. In doing so, the results can be
directly related to the GM76 spectrum, in which the level of
the vertical wavenumber shear spectrum is proportional to
the combination e0m*, independent of vertical wavenumber
m, where e0 is the total energy (nominally 0.0030 m2 s22)
and m* is the vertical wavenumber bandwidth parameter
(nominally 4p/1300 m21). The one-sided vertical wavenumber–
frequency energy spectrum is

e(m, s) 5 e0
2m*

p

1
m2

* 1 m2

2f
p

1

s(s2 2 f 2)1/2 , (21)

with n(p) 5 e(p)/sp. The ray-tracing results will be presented
as increments of GM, but what is intended is the dynamically
relevant combination e0m*. This two-sided vertical wavenum-
ber power spectral density (PSD) of one horizontal compo-
nent shear has an asymptotic level of

TABLE 1. Run summary. We create an ensemble of test-wave time series with a number of test wave (tw) realizations of the
randomly phased inertial field having a number of background wave (bw) constituents uniformly distributed in vertical wavenumber
between jmin 3 p/1300 m and jmax 3 p/1300 m. The length of the simulations is denoted by the number of time steps at the indicated
time difference. The initial condition m(t 5 0) is quoted in equivalent mode number j 5 m(t 5 0)p/1300 m. The length of the
simulations (column 3) is that required to get the test-wave distribution to touch the edges of the spectral domain in Fig. 4. The
number of test waves (column 4) is dictated by the convergence of lag correlation statistics. The number of background waves
(column 5) was selected such that the resonant bandwidth [(45)] would be occupied by multiple randomly phased background waves.
The intent is that the resonance is not dominated by a single background wave. The spectral bandwidth parameters jmin and jmax

(columns 7 and 8, respectively) are determined by the interest in setting up a scale-invariant system and the geometric constraints of
the experimental domain. The last column contains figure number references.

Name e0/e
GM
0 Time step No. of tw No. of bw ss jmin jmax m(t 5 0) Figure No.

run j3 100 5000@1/10N 20 000 24 001 1 0.025 1600 j 5 100 7–11
run k3 100 5000@1/10N 20 000 24 001 1/p 0.025 1600 j 5 100 9
run l3 100 5000@1/10N 20 000 24 001 p 0.025 1600 j 5 100 9
run ll3 100 5000@1/10N 20 000 24 001 2p 0.025 1600 j 5 100
run m3 0.50 10 000@1/10N 20 000 24 001 1 0.025 1600 j 5 100 9
run n3 0.50 10 000@1/10N 20 000 24 001 p 0.025 1600 j 5 100 9
run p3 0.25 20 000@1/10N 20 000 24 001 1 0.025 1600 j 5 100 9
run q3 0.25 20 000@1/10N 20 000 24 001 p 0.025 1600 j 5 100 9
run g3 1021 20 000@1/10N 10 000 24 001 1 0.025 1600 j 5 100 7–11
run h3 1021 20 000@1/10N 10 000 24 001 1/p 0.025 1600 j 5 100 9
run i3 1021 20 000@1/10N 10 000 24 001 p 0.025 1600 j 5 100 9
run a31 1022 240 000@1/10N 2000 24 001 1 0.025 1600 j 5 100 7–11
run a32 1022 240 000@1/10N 2000 24 001 1 0.025 1600 j 5 100 7–11
run a33 1022 240 000@1/10N 2000 24 001 1 0.025 1600 j 5 100 7–11
run a34 1022 240 000@1/10N 2000 24 001 1 0.025 1600 j 5 100 7–11
run a35 1022 240 000@1/10N 2000 24 001 1 0.025 1600 j 5 100 7–11
run d31 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 6–11
run d32 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d33 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d34 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d35 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d36 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d37 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d38 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d39 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run d310 1023 800 000@1/5N 1000 24 001 1 0.025 1600 j 5 100 7–11
run e3 1023 800 000@1/5N 1000 24 001 1/p 0.025 1600 j 5 100 6
run f3 1023 800 000@1/5N 1000 24 001 p 0.025 1600 j 5 100 6
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PSD(GM, two-sided, one-component shear) 5 3
4p

m*e0:

(22)

At oceanic levels, the one-sided vertical wavenumber power
spectrum of two-component shear is approximately 1:0N2

0 m
21

with N0 5 3 cph.
Test waves are traced in m (Fig. 4) and in z (Fig. 5) as a

function of time using a simple forward difference scheme in
(18). Values of the random phase fi are stored to permit
quantification of the total phaseMiz 2 ft1 fi in (19). Ensem-
ble averages are generated by averaging over tens of thou-
sands of test waves.

Test waves are released at a vertical wavenumberm equiva-
lent to mode 50 (50p/1300 m21). The analysis starts at a time
t 5 0 when the wave packet crosses the equivalent mode 100,
m0 ; m(t 5 0) 5 100p/1300. The analysis period ends when a
small fraction (,1%) of the wave packets have intrinsic fre-
quencies larger than N/

��
2

√
or intrinsic frequencies smaller than��

2
√

f (Fig. 4). These metrics signify departures of the dispersion
relation from its nonrotating hydrostatic approximation and
thus the absence of scale-invariant behavior. Despite such con-
ditioning, subtle nonscale-invariant behavior is noted in the lat-
ter half of all simulations.

3. Metrics of transport

In this study of high-frequency internal wave interactions with
near-inertial shear, there are three distinct paradigms. All three
are considered to be scale separated in horizontal wavenumber,
rendering them distinct from local interactions graphically de-
picted in Fig. 1. These three are the phase velocity–group veloc-
ity resonance, a Bragg scattering resonance at half the vertical
wavelength of the high-frequency wave, and an assortment of
nonresonant interactions. The first and last are treated by ray-
tracing techniques. Bragg scattering is eliminated from ray trac-
ing at the point of invoking a Wigner transform and Taylor
series expansion that is focused upon the phase velocity–group
velocity resonance, for which we refer the interested reader
to LP. This section seeks to build tools for the analysis of
ray-tracing simulations, for which there are subtle but cru-
cial differences between kinetic theory [(14)] and ray trac-
ing [(15)].

a. Kinetic equation

1) FOKKER–PLANCK EQUATION

The moment method is a methodology for the interpreta-
tion of a Fokker–Planck equation. For internal waves, this is
(14). For our one-dimensional model, (14) reduces to

­

­t
n(m, t) 1 ­

­m
D33(m) ­

­m
n(m, t) 5 0: (23)

The vertical–vertical component of the diffusivity tensor D33

[Eq. (47); Polzin and Lvov 2017] from the kinetic equation is

D33 5 pk2f
�
dp1n(p1)m2

1d m1
s

m
2 s1

( )
: (24)

The action density n(p) represents the high-frequency field
and n(p1) represents the inertial background. Our inertial
wave model is two-dimensional in the x–z plane so that n(p1) 5
n(k1, 0,m1)d(l1) in which n(k1, m1)5 (1/4)[e(s1, m1)/s1](ds1/dk1),
and the corresponding normalized frequency spectrum is
d(s1 2 f). The diffusivity is estimated by integrating over
horizontal azimuth, changing variables from horizontal
wavenumber magnitude to wave frequency, and integrating
over vertical wavenumber. The factor e0 represents the to-
tal internal wave energy, kinetic plus potential. These are
in a ratio of 3:1 for the GM76 model. Our inertial wave
model has no potential energy. Incorporating this into
(24), we find

D1D
33 5

3
8
km2e0m*

N
: (25)

2) MOMENTS

The moment method proceeds by multiplying the diffusion
equation by mj, utilizing the chain rule, integrating over the
spectral domain, and discarding terms at m 5 6‘ to produce
differential equations for the jth moment. Here, h… i repre-
sents the integral over vertical wavenumber.

hn(m)it 5 0,

hmn(m)it 5 h­m(D33)n(m)i,
hm2n(m)it 5 h­m(2mD33)n(m)i: (26)

These moments have analytic solutions for our scale-invariant
model:

hmi 5 m0e
2D33t/m

2
,

hm2i 5 m2
0e

6D33 t/m
2
,

h(m 2 hmi)2i 5 hm2i 2 hmi2: (27)

b. Ray path methods

1) FOKKER–PLANCK EQUATION

In LP, we use ray path techniques to formulate an en-
semble average transport [(15)]. In one dimension, this re-
duces to

­hnpi
­t

52=m ? C33(p) ? =mhnpi 2 =mhṁihnpi, (28)

with time-integrated lagged autocorrelation function

C33(p) 5
� t

t2t

dt′h[ṁ[r(t)] 2 hṁ[r(t)]i][ṁ[r(t′)] 2 hṁ[r(t′)]i]i:
(29)

Note that both the first and second moments of the ensem-
ble average action density appear explicitly in the transport
equation.
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2) A PATH INTEGRAL FOR THE MEAN DRIFT

Here, we present a derivation for the mean drift hṁi. We
start at (18) and represent the background shear with its in-
verse Fourier transform:

ṁ 52kUz 52
k
2p

�‘

2‘
Yz(M)ei(Mz2ft)dM: (30)

The factor Yz represents the Fourier coefficient for vertical
shear [(22)]. The vertical coordinate following the ray path is
the time integral of the vertical group velocity Cz

g. For internal
waves,

z(t) 5
� t

2‘

2kN

m(t′)2dt
′:

The major contributions to the integral [(30)] come from con-
ditions in which the inertial phase velocity f/M is equal to the
internal wave group velocity, Cz

g 52sgn(m)(|k|N/m2). In the
ray coordinate, z is a function of time, and integration in time
permits the application of a stationary phase approximation
to solve (30). There is a phase

q(t) 52M
� t

2‘
dt′

kN
m2 2 ft, (31)

differentiating with respect to time,

q̇ 52M
kN
m2 2 f , (32)

and differentiating once more,

q̈ 5 M
2kN
m3 ṁ: (33)

After Taylor series expanding the phase about the resonance
Mr 52fm2/kN, the wave phase in (30) becomes

ei(Mz2ft) " ei{q(t0)1[q̈ (t0)(t2t0)2 /2]1: : :}:

Changing the variable of integration from M to t by consider-
ing the background wavenumber M to be a property of the
time-evolving resonance along the ray path returns

�
dM "

�
dMr |t5t0

1

�
dMr

dt

∣∣∣∣
t5t0

dt…,

and applying the stationary phase formula (Bender and
Orszag 1978), we obtain

1 ffi 2k

�������
pm3

kNṁ

√
2mf
kN

1
2p

‖Yz(Mr)‖����
Mr

√
[ ]

cos 6
p

4
1 q(t0)

[ ]
, (34)

with a choice of sign depending upon the value of q̈ (t0). We
square both sides of (34) to obtain

ṁ 524pm3 f
N2

1
2p

‖Yz(Mr)‖
[ ]2

cos2 6
p

4
1 q(t0)

[ ]
, (35)

and average over a vertical wavelength

ṁ
z
5

1
ly

�1ly /2

2ly /2
ṁdz 5

1
ly

�1p

2p

ṁ
dz
dq

dq:

We then construct an ensemble average hṁzi by uniformly
weighting all possible initial conditions q(t0):

h�1p

2p

cos2 6
p

4
1 q(t0)

[ ]
dqi 5 p:

This ensemble represents a sum over all possible paths en-
coded in the phase function q, and thus, the ensemble average
represents a “path integral.” Upon recognizing the definition
of the PSD given the choice of ly for a transform interval,

2p
ly

1
2p

( )2
Yz(Mr)Y*

z(Mr)
[ ]

; PSD,

we obtain, for the GMmodel in which PSD5 (3/4p)m*e0,

hṁzi 5 3
4
kmm*e0

N
: (36)

The mean drift is equivalent to ­mD
1D
33 derived from kinetic

theory [(25)]. Note that the mean drift is arrived at as a reso-
nant process.

3) LAG CORRELATION FUNCTIONS AND

SECOND MOMENTS

The lagged autocorrelation function

1
2
d(m 2 hmi)2

dt
5 k2

� t

t2t

[Uz(t) 2 hUz(t)i][Uz(t 2 t) 2 hUz(t 2 t)i]dt
(37)

is the one-dimensional representation for C33 [(29)]. A predic-
tion for the lag correlation function and thus variance can be
obtained by noting that the high-wavenumber inertial shear is
stationary in the time required for a high-frequency wave
packet to propagate through that shear. This suggests replac-
ing the Doppler shift of Taylor’s “frozen field” hypothesis
with an encounter frequency s representing the time rate of
change along a ray:

s 5 MCz
g, (38)

where Cz
g is the vertical group velocity. We investigate by as-

suming ergotic statistics at small amplitude and invoking the
Wiener–Khinchin theorem. Thus,

1
2
d(m 2 hmi)2

dt
5 k2

� t

t2t

�1‘

0
cos(st)PUz

(s)dsdt, (39)

in which s is the encounter frequency along the ray and PUz
(s)5

PUz
(M)dM/ds is the shear spectral density in that coordinate.

From a purely empirical standpoint, the spectra of vertical shear

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 5512

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 06/09/25 01:56 PM UTC



in encounter frequency s (Fig. 6) are bandwidth-limited and
white. Much of the variability collapses onto

PUz
(s) 5 3

4p

e0m*/C
z
g

1 1 ss
s

hvi
( )2 , (40)

which can be derived from the spectrum [(21)] using the
change of variables [(38)] and filter [(20)]. Carrying out the
cosine transform, we obtain

1
2
d(m 2 hmi)2

dt
ffi k2

3
8
e0m*

Cz
g

hvi
ss

� t

t2t

e2hvit/ssdt: (41)

If hvi is regarded as a constant,

1
2
d(m 2 hmi)2

dt
ffi 3

4
km2e0m*

N
[1 2 e2hvit/ss]: (42)

This prompts several interpretations. The first is the identifi-
cation of a diffusivity. In the limit that hmi/hṁi.. ss/hvi; tc,
the diffusivity is just

D33 ffi k2hU2
zitc with tc 5

ss
hvi and

hU2
zi 5

3
4p

e0m*

�‘

0

dM

1 1 ss
Mi

m

( )2 5 3
8
m
ss
e0m*,

which is equivalent to that arrived at from resonant theory
[(25)]. Note that tc is controlled by the scale separation crite-
rion ss. However, since the encounter spectrum of vertical
shear is white, it really does not matter what the scale selec-
tion factor ss is; the product hU2

zitc is a constant for a white
spectrum, as long as the integral [(41)] has converged. Con-
versely, if the background vertical shear spectrum was other
than uniform in vertical wavenumber, variations in the scale
separation ss would have a weak influence on the diffusivity.

The second interpretation is that the long time limit in (41),
in which effects of the mean drift on the ensemble average
frequency hvi are neglected, is identifiable as the Markov ap-
proximation. Our numerical results for moments and lag cor-
relation in section 4b suggest that this approximation is
challenged at oceanic amplitudes.

The third interpretation is that the diffusivity results from a
nonresonant process: the bandwidth of the integrand in (41) is
not the resonant bandwidth from the ray numerics in Figs. 7
and 8 or from kinetic theory. This result is in direct contrast
to McComas and Bretherton (1977) and Nazarenko et al.
(2001), who present derivations that reduce the diffusivity to
a delta function representation of the resonant manifold, rep-
resented as the solid lines in Fig. 1. Those derivations implic-
itly assume the background is statistically homogeneous in the
spectral domain and omit an explicit reference to an ensemble
averaging process and associated time-dependent ensemble
average drift hṁi in (37). They then utilize a Taylor series ex-
pansion about a time-invariant resonance after representing
the vertical wavenumber tendency ṁ in terms of its inverse
Fourier transform [(30)].

4. Numerical results

Our diagnostics include numerical evaluations of probabil-
ity distributions of inertial wave phase sampled by the high-
frequency waves, moments of test-wave vertical wavenumber,
and lag correlation analyses in test-wave vertical wavenum-
ber. The probability distributions demonstrate phase locking
about the resonant phase velocity equals group velocity condi-
tion even at oceanic amplitudes. The moment analysis quanti-
fies an inhibition of the second moment at oceanic amplitudes.
The first moment, upon which the ray-tracing closure [(28)]
hinges, is less sensitive, but departures are still noted. The lag
correlation analysis quantifies the departure of the second mo-
ment from its resonant prediction as being a competition be-
tween the mean drift and the correlation time scale imposed
by an ad hoc scale separation criterion [(20)].

a. Phase locking

1) PHASE PROBABILITY DISTRIBUTIONS

Kinetic equations assume a zeroth-order description in
which wave phases are uncorrelated and then predict action
transfer associated with phase locking at first order. The infer-
ence of phase locking is indirect as one is closing out a hierar-
chy of moments.

In ray tracing, phase locking can be much more directly as-
sessed (Fig. 7). In this one-dimensional system, the probability
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FIG. 6. Example of a frequency spectrum of vertical shear follow-
ing a ray path for backgrounds with GM3 1023, converted to an en-
counter wavenumber using the group velocity. Results for scale sepa-
ration factors ss5 [p, 1, p21] are indicated using red, black, and blue
traces. The spectra are collapsed after rescaling the frequency by ss
(indicated by arrows), and the black trace is buried. Such spectra are
bandwidth-limited and white with a 1/2 power point at m(t 5 0) for
ss 5 1 denoted by the pentagram. The black horizontal line repre-
sents one side of the GM vertical wavenumber shear spectrum,
0.001e0m*N

22 5 0.53 1023 m. This spectral description is essentially
consistent with using the time domain Fourier transform partner
[(20), (40)] of an exponential autocorrelation function [(41)].
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density p̂ of background phase qi [(19)] is estimated as a func-
tion of background wavenumberMi:

qi 5 Miz 2 ft 1 fi:

When the test wave has the valuem0 2 d #m#m0 1 d,

p̂ 5 p[(q, M)|m 5 m0 6 d],

with m0 being equal to the equivalent of mode 100. Since
the background shear Uz is specified as a sum of cosines in
(19), a probability density maximum centered about either
q 5 p/2 or q 5 3p/2 implies a bound wave behavior in
which the test wave preferentially occupies a background
crest or trough and oscillates about the crest/trough. Prob-
ability extrema centered on q 5 0 or q 5 p weight [(19)] to
return a nonzero average shear and drift to either larger or
small scales. In all our runs, the probability extrema occur
in association with the resonance MCz

g 5 f , and maxima are
located about p/2 , q , 3p/2, indicating a net drift of test
waves to smaller scales (Fig. 7). The shoulders of the

resonance appear more representative of a bound wave
behavior.

2) BANDWIDTH AND MEAN SHEAR

A quantitative measure of the downscale transport ensem-
ble average hṁi52khUzi can be obtained from the phase
distributions in Fig. 7. The ensemble-averaged shear is

hUzi ~
�1‘

2‘
dM

�2p

0
p̂(q, M) cos(q)dq, (43)

so that the phase average,

�2p

0
p̂(q, M) cos(q)dq, (44)

provides a metric of the amplitude and bandwidth of the en-
ergy transfer process. These phase-averaged distributions
(Fig. 8) are neither peaked precisely at the nominal resonance
nor are the distributions symmetric about the peak. However,
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the half-widths gM are reasonably well predicted by Polzin
and Lvov (2017, their Fig. 9 and our appendix D):

gM
Mr

ffi 3p
v

Nf

( )2
e0m*Mr

[ ]1/3
: (45)

This scaling of the resonant well differs from the small-
amplitude limit of the kinetic equation, g ~ eo/e

GM
o , and the

finite-amplitude degradation into the rms Doppler shift, g ~

(eo/eGM
o )1/2 (Polzin and Lvov 2017). These differences in scal-

ing underscore the fact that ray tracing is an FM paradigm
and the kinetic equation represents nonlinear transfers as an
AM process.

Estimates of the mean shear can be obtained by integrating
(43) over phase q (Fig. 8) and subsequently integrating over
background wavenumber M (Fig. 9). We anticipate a scaling
for the downscale energy transport P (section 5a) in which
P5 2

�N
f
hṁie(m, s)ds ~ e20. Since e(m, s) ~ e0 and the root-

mean-square inertial shear Urms
z scales as e1/20 , we anticipate

hUzi/Urms
z to scale as e1/20 . Starting at a level of 0.1 GM, we find

a factor of 2 departure from this scaling at oceanic amplitudes
(Fig. 9), with larger scale separation factors ss associated with
greater departures from the scaling. This factor of 2 decrease
is insufficient to overcome the order of magnitude disparity
between predicted transports (section 5a) and observations.

Contributions to the mean shear [(43)] can come from ei-
ther an increasing bandwidth gM and/or increasing peak prob-
ability density. Given that the bandwidth of the probability

distribution [(45)] scales as e1/30 , implied in the scaling
huzi/urms

z ~ e1/20 is that the peak amplitude of the phase-
averaged distributions scale is e1/60 . Indeed, we find a factor of
2 increase in peak probability density as the background in-
creases from 0.001 to 0.1 GM (Fig. 8).

b. Moments and correlation functions

In this subsection, we use the numerical output to quantify
lag correlation functions [(37)] (Fig. 10) and the evolving mo-
ments in the vertical wavenumber of a test-wave distribution
[(28)] (Fig. 11). There are contrasts between the wave turbu-
lence and ray-tracing paradigms. From a wave turbulence per-
spective, everything is subsumed into the resonant process.
From a ray path perspective, the correlation time-scale results
from the nonresonant parts of the problem, whereas the
mean drift is related to zero encounter frequency in which in-
ertial phase velocity equals internal wave group velocity.

The lag correlation functions (Fig. 10) are suggestive of a
two-time-scale process. There is rapid evolution of the time-
integrated correlation functions on a short time scale of ap-
proximately 1/hvi and a slower evolution on a longer time
scale. Note that, although correlations are small at large lag,
integration demonstrates these large lags have nonzero contri-
butions. From our discussion of transport metrics linking
(37)–(42), we identify the fast time-scale process as the nonre-
sonant response and dispersion about the mean drift. This fast
time scale is controlled by the scale separation factor ss [(41)]
with greater scale separation leading to diminished transport
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FIG. 8. Phase-averaged energy transfer distributions [(44)], eo/eGM5 [1, 0.1, 0.01, 0.001] (black,
cyan, red, and green, respectively). The widths of the distributions vary more than the peak
height, consistent with the scaling described in section 4a(2) and appendix D. The vertical line
represents the resonanceMr 5 f /Cz

g associated with the group velocity Cz
g at time t5 0.
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metrics at smaller inertial amplitudes. We intuit the slow time
scale to be associated with the resonant response and mean
drift. Such contributions at large lags are robust in the sense
that we have subtracted the sample mean, consistent with
(37). Rescaling Uz(t) to account for nonstationary statistics
does not eliminate the increasing trend in the time-integrated
correlation. A possible metric of this time scale is the width of
the resonant well [(45)], divided by the mean drift hṁi
projected onto the resonant wavenumber Mr 5 fm/v. We are
unable to further elucidate this long time scale as our simula-
tions terminate before it is resolved.

Deviations from the nominal scalings [(28)] for both the
first and second moments are discernible in all model runs
(Fig. 11, compare green and red traces). Such departures are
much more subtle at small amplitude, and further diagnostics
demonstrate that these departures occur in the latter half of
the simulations. We suspect deviations from this scaling at
small amplitude are related to the use of (v2 2 f2)1/2 5 kN/m
as a dispersion relation associated with the ray (18) rather
than the scale-invariant v 5 kN/m. We have terminated the
analysis such that less than 1% of waves have v,

��
2

√
f , but

this might not be sufficiently stringent. The deviations at oce-
anic amplitudes are of greater importance. At oceanic ampli-
tudes, the evolution rates of wavenumber and frequency are
of a similar order of magnitude to the wave frequency, with
the consequence that the long time approximation in (41) is
no longer accurate. That is, we find an inhibition of the second
moment when the drift time scale m/hṁi is similar to the cor-
relation time scale. Consistently, larger scale separations ss
lead to earlier onset of departures from the nominal scaling at
smaller background amplitudes (Fig. 9). The long time limit
in which hvi can be considered to be constant in (41) is known

as the Markov approximation, and the suppression of first
and second moments occurs in connection with the transition
to a non-Markovian limit. That this should impact the second
moment is obvious from (41), but the rationale for departures
in the mean drift is less obvious. An explanation likely lies in
higher-order contributions to the stationary phase analysis in
section 3b(2).

c. Reprise

In this section, we have presented quantitative diagnostics
from one-dimensional ray-tracing simulations. This presentation
documents that ray theory brings results that differ from the ki-
netic equation. Scalings for the resonant bandwidth are different,
ray tracing has a mean drift absent from the kinetic equation, and
dispersion about that mean drift results from a nonresonant pro-
cess in ray theory. Similar behavior should be recoverable from
“kitchen sink” treatments (Henyey et al. 1986; Sun and Kunze
1999b; Ijichi and Hibiya 2017) if those numerics were executed in
an appropriate small-amplitude parameter regime.

5. Discussion

In this section, we compare a prediction for the rate at which
energy is supplied to internal wave-breaking processes with an
observational metric. The prediction is an order of magnitude
larger than the observations. We then discuss this overpredic-
tion in the context of kitchen sink treatments of ray tracing and
reflect on the overprediction in the context of extreme scale-
separated physics discarded by the ray-tracing approximation.

a. Energy transport

In Polzin and Lvov (2011, 2017), we noted the tension be-
tween an apparent pattern match between observed spectral
power laws being in apparent agreement with stationary
states of the Fokker–Planck equation (Polzin and Lvov 2011)
and this result being inconsistent with what is observationally
understood about the energy sources and sinks (Polzin and
Lvov 2017; Dematteis et al. 2022), in particular the status of
GM76 being a no-flux stationary state due to there being no
gradients in action in vertical wavenumber. The ray path per-
spective moves away from this interpretation so that downscale
transport is closed as an advective transport [(28)]. We evaluate
(28) by equating the mean drift hṁi with the gradient of the
vertical–vertical component of the diffusivity tensor,­D33/­m.

After identifying np1 in (24) with the GM76 spectrum, inte-
grating over horizontal azimuth, changing variables from the
horizontal wavenumber magnitude to wave frequency, and in-
tegrating over vertical wavenumber, in the limit that m..m*
and s .. f, (24) becomes

DGM
33 5 k2fe0m*

m2
1

m2
* 1 m2

1

m
s

�s

f

2f
p

ds1

s2
1

�����������
s2
1 2 f 2

√

"
2
p

km2e0m*

N
, (46)

to be compared with (25). Here, as in (25), k is the horizon-
tal wavenumber magnitude, e0 is the total energy, m* is a
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FIG. 9. Normalized version of the mean drift rates [(43)] esti-
mated from the phase distributions in Fig. 7, as a function of
eo/eGM. The normalized values would appear as a constant if
hṁi ~ eo. Scale separations ss 5 [1, 1/p, p] are visualized in black,
cyan, and red, respectively. Greater scale separations imply larger
correlation time scales, hence smaller differences between mean
drift and correlation time scales, and thus larger departures from
the resonant scaling of the mean drift [(36)].
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bandwidth parameter, and N is the buoyancy frequency.
In the GM models, frequency and vertical wavenumber
energy spectra are regarded as separable, and normaliza-
tion constants are incorporated. Thus, in (46), we have

(2f /p)�N
f
ds/ s

����������
s2 2 f 2

√( )
ffi 1. After including a factor of 2 to

account for the two-sided spectral representation, the
downscale energy transport is

P 5 2
�N

f
hṁie(m, s)ds 5

8
p

2
p

( )2 e0m*

N

( )2
f log

N
f

( )

ffi 1:0 3 1028(Wkg21), (47)

which, apart from the prefactor of 1.0 3 1028 being an order
of magnitude too large, is virtually identical to the finescale
parameterization [Polzin et al. 2014, their Eqs. (27) and (40)].

We believe that this one-dimensional treatment is a reason-
able representation of high-frequency wave refraction in
near-inertial shear. The one-dimensional version dates to
the dawn of modern oceanography and is supported by a ba-
sic scale analysis of the eikonal relations (McComas and
Bretherton 1977; Sun and Kunze 1999a). It is underpinned by
the integrable singularity of the inertial peak in the internal
wave frequency spectrum and the lack of horizontal velocity
gradients in that peak that is encoded in the dispersion rela-
tion. Assessments of extreme scale-separated interactions in
a nonrotating approximation (Dematteis et al. 2022) assign
diffusive transports associated with horizontal and off-diagonal
components of the diffusivity tensor that are two orders of mag-
nitude smaller than this advective transport associated with the
vertical–vertical component. The nonrotating analysis overesti-
mates the importance of horizontal and off-diagonal transports
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FIG. 10. (left) Lagged autocorrelation functions (C33) and (right) their time integrals [(29)]. Upper-left, upper-right, lower-left, and
lower-right panels are 100GM, 1021GM, 1022GM, and 1023GM, respectively. The red vertical line represents the wave frequency v

at t 5 0, which, in turn, represents the nonresonant correlation time scale. Time integration reveals tertiary contributions at times much
larger than the nonresonant correlation time scale. Our hypothesis is that this tertiary contribution comes from the time-changing struc-
ture of the resonant well.
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in a rotating system due to the relative lack of horizontal veloc-
ity gradients in the inertial peak. Our model is idealized but not
unrealistic.

b. Kitchen sink numerics

Ray methods have also been used in a kitchen sink manner
in which test waves are traced in a background consistent
with a spectrally filtered version of the Garrett and Munk
frequency–vertical wavenumber spectrum (Henyey et al.
1986; Sun and Kunze 1999b; Ijichi and Hibiya 2017). These
studies regard the scale separation as a tunable parameter to
arrive at advective estimates of downscale transport that, un-
like our one-dimensional model, are in sensible agreement
with the finescale parameterization. We offer two insights.

The first is that ray tracing is an asymptotic method requir-
ing a scale separation in horizontal wavenumber in addition

to the spatial averaging implied in the envelope structure of a
wave packet and a small-amplitude assumption (LP). These
kitchen sink numerical assessments consistently document
sensitivity to the specification of the scale separation and
consistently find that the observed finescale metric of energy
sourced to turbulent dissipation (Polzin et al. 2014) requires a
scale equivalence, i.e., the small parameter of an asymptotic
expansion must be ;O(1). This is the hallmark of interactions
that are spectrally local in wavenumber and best treated by
other methods such as those in Dematteis and Lvov (2021)
and Dematteis et al. (2022).

The second insight is that (47) and associated scaling is a
fundamental metric that should be recoverable by kitchen
sink efforts as a small-amplitude limit using a scale separation
that aligns with the assumptions underpinning ray tracing. De-
partures from this scaling are likely understood as a stochastic
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FIG. 11. First and second moments vs time (red and black) with prediction based upon kinetic theory [(28)] (green). The two black lines
are ensemble averages conditioned on the sign of the wavenumber tendency (velocity in wavenumber space) at t 5 0. The red line repre-
sents the ensemble average of the conditional moments. The difference between the conditioned estimates relates to the lag correlation
time scale [(41)]. The blue line represents a constant diffusivity model. Upper-left, upper-right, lower-left, and lower-right quadrants are
100, 1021, 1022, and 1023 times GM, respectively. (left) The first moment. (right) The second moment. The cyan vertical line represents
the inverse wave frequency at t5 0.
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forcing that results in “large” amplitude jumps on a “short”
time scale over the extent of the resonant well [(45)] that ef-
fectively destroys the phase velocity equals group velocity res-
onance (Polzin and Lvov 2017), parallel to the cleanly
articulated Markov approximation for the one-dimensional
model captured in (42). The diagnostics presented in section 3
provide the wherewithal to assess this.

c. The closure problem

The Fokker–Planck equation derived from kinetic theory
[(14)] represents spectral transports as a diffusive process.
The 3D action spectrum of GM76 is independent of the verti-
cal wavenumber, and thus, there is no diffusive transport of
action in the vertical wavenumber. Ray theory provides a
wave packet ensemble transport [(15)] with an advective con-
tribution. The advective contribution changes the no-flux
character obtained with the kinetic equation, as we now have
a rationale for the GM76 internal wave spectrum to support
turbulent mixing by supplying energy for a wave-breaking
process. However, the predicted supply rate [(47)] is an order
of magnitude too large.

To interpret why we have arrived at this end result, we find
it useful to engage in a high-level discussion of the generic clo-
sure problem, motivated by, for example, Orzag (1973) and
Holloway and Hendershott (1977), and in textbooks, e.g.,
Lesieur (1997). In the context of Hamilton’s equation for the
time evolution of ap, one multiplies by a*p, multiplies the com-
plex conjugate of Hamilton’s equation by ap, subtracts the
two equations, and then averages to obtain an evolution
equation for the second-order wave action np 5 a*pap in terms
of the third-order correlation function (e.g., Lvov et al. 2012).
The process continues iteratively, deriving an equation for the
third-order correlation function that involves fourth-order
correlations, building up a hierarchy of unclosed equations. If
we eliminate all subscripts, coefficients, and summations, the
structure can be schematically represented as

dhffi/dt 5 hffi 1 hfffi, (48a)

dhfffi/dt 5 hfffi 1 hffihffi 1 hffffiC, (48b)

dhffffi/dt 5 hffffi 1 hffihfffi 1 hfffffiC

… , (48c)

in which the superscript C denotes the nonreducible cumu-
lant. The intent of a closure is to truncate the hierarchy.

In (decaying) turbulence, the right-hand side of (48b) reads
hffihffi 1 hffffiC. Discarding the fourth-order cumulant
in this equation is referred to as the quasi-normal (QN)
approximation. This is not a statement that the statistics of
turbulence are Gaussian; rather, it is a statement that the
fourth-order cumulant can be neglected at all times in com-
parison to the remaining terms. This approximation leads to a
prediction of negative energy in the energy-containing range
of the turbulent spectrum (Ogura 1963). Orzag (1973) ad-
dressed this by proposing the fourth-order cumulant be ap-
proximated as a linear damping term in the third-order

equation. This approximation is referred to as the eddy-
damped QN (EDQN) approximation: eddy energy (a second-
order moment) is not damped; it is the third-order moment
that represents energy exchange that is damped. A final ap-
proximation, that the damping time scale varies on a time
scale much longer than the time over which hffihffi
evolves, represents a Markov approximation, and one obtains
the EDQNMarkovian (EDQNM) approximation.

The parsing of the hierarchy [(48)] in wave turbulence is
slightly different. Equation (48) represents the slow time evo-
lution of wave amplitudes rather than the immediate conse-
quence of linear wave propagation. In the long time limit, the
third moments become indefinitely large over a vanishingly
small subset of the possible interactions. That subset is the
resonant manifold (Fig. 1). This long time limit leads to a self-
consistent description of nearly resonant interactions, i.e., the
broadened kinetic equation [Eq. (2.16)] and mass operator
[Eq. (2.18)] of LP. The representation obtained by identifying
hfffi with hffihffi and substituting in (48a) is the resonant
interaction approximation.

It is from this perspective that we can understand Holloway’s
commentary (Holloway 1980, 1982) in a brighter light. The
early work on internal wave kinetic equations [reviewed in
Müller et al. (1986)] took the tack of simply deriving the scatter-
ing cross sections and asserting the resonant limit without con-
sidering the construction of a broadened kinetic equation. We
paraphrase as follows:

1) In constructing a self-consistent kinetic equation, one
wants a system of field coordinates for which a simple
linear combination results in canonical coordinates. Oth-
erwise, one needs to express the wave basis in a Taylor se-
ries expansion in wave amplitude, and a lack of clarity in
interpreting the broadened equations will ensue. Lagrang-
ian field coordinates (Olbers 1973; McComas 1975; Meiss
et al. 1979, not to be confused with ray path coordinates) re-
quire a Taylor series expansion about the assumed smallness
of the amplitude to arrive at canonical coordinates.

2) Attempts at deriving a self-consistent internal wave
kinetic equation from the standpoint of a stationary ob-
server are doomed to failure for the same reason that af-
flicted Kraichnan (1959) in the context of 3D turbulence:
Doppler shifting of the small scales by the large.
Kraichnan (1965) deals with this by effectively using only
terms in the scattering cross sections related to pressure
and viscosity and thus, in some manner, references
Lagrangian estimates of correlation time scales.

3) One really wants to know the time scale G21 [the inverse
resonant bandwidth, Eq. (2.18) of LP] because the closure
of the third-order moment [(48b)] ultimately rests upon
an assumption that the time integration has converged.
Substitution of possible relevant time scales challenges
the underpinning assumption that the kinetic equation de-
scribes a slow time evolution, but there are only guesses
about the relevant time scales. See points 1 and 2 above.

Item 1 is accomplished in Lvov and Tabak (2004): isopycnal
field coordinates lead directly to canonical coordinates. Items 2
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and 3 are addressed in Polzin and Lvov (2017). Using a self-con-
sistent kinetic equation for isopycnal coordinates presented in
Lvov et al. (2012), Polzin and Lvov (2017) demonstrate that the
resonant bandwidth G suffers from the Doppler shift defect
and, moreover, demonstrate that a frequency renormalization
does not alter the transport estimate. We therefore conceived
of the one-dimensional ray-tracing model (Polzin and Lvov
2017 and section 2) to investigate. This has led to the articula-
tion of a master equation [(28)] for the ray path formalism
(LP), which in turn overpredicts the finescale parameterization
metric for downscale transports by an order of magnitude!

We propose the following two-part interpretation for that
overprediction.

First, the action conservation of a single packet and the re-
sulting ensemble average [(28)] are incomplete expressions of
extreme scale-separated dynamics. The ray-tracing paradigm
reveals a phase locking of high-frequency waves with inertial
shear along a phase velocity equals group velocity condition
(Fig. 2) that implies the creation of statistically inhomoge-
neous conditions in which regions of large inertial shear host
accumulations of high-frequency wave stress (Fig. 7). These
conditions are just those that are subject to relaxation by the
elastic scattering triad (Fig. 3), which we present as a Bragg
scattering process. In Fig. 1, we schematically represent the
refractive mechanism of induced diffusion using waves “1”
and “B.” For a given high-frequency wave p1 5 (k, 0, m), the
Bragg scattering mechanism concerns a wave p2 5 (k, 0, 2m)
and a low-frequency wave at p 5 (0, 0, 2m), skematicized as
transfers between waves 1, “2,” and “A.” The wave stress
(momentum flux density) is u′w′ ~ kCz

gE(p) [(7)]. Thus, wave
2 has the opposite sign of energy transfer from the inertial
wave than wave 1. Bragg scattering therefore damps the accu-
mulation of wave momentum by transferring wave energy
into another high-frequency wave of opposite sign vertical
wavenumber, and hence vertical group velocity, at constant
horizontal wavenumber.

The importance of this damping can be inferred from the
spatially homogeneous kinetic equation. Action balances for
the Bragg scattering triad lead to (McComas and Müller
1981a)

­[n(p1) 2 n(p2)]
­t

5 t21
r [n(p2) 2 n(p1)], (49)

with p1 and p2 interpreted as in Fig. 1. For the GM76 spec-
trum, the Bragg scattering relaxation time scale tr is equal to
the slow induced diffusion time scale (McComas and Müller
1981a), which we have identified as ­D33/­m and demon-
strated to be equal to the drift time scale hṁi/m. In short, we
intuit that refraction and scattering are exquisitely balanced
in this problem. The essence of this, an exponential diminu-
tion of the ID coupling, is potentially recoverable using lay-
ered media theory (e.g., Fouque et al. 2007).

The result [(49)] is for the spatially homogeneous kinetic
equation. Quantifying the coupling and consequent diminish-
ment of downscale transports implies including the Bragg
scattering term while integrating along a ray. Methods for in-
corporating such effects in an ensemble transport equation

exist in literature concerning open quantum systems. On an
intuitive level, one is trying to describe the interaction of a
“system” (the phase velocity–group velocity interaction)
with a “bath” (a homogeneous isotropic field of other high-
frequency waves), through an “interaction” (Bragg scatter-
ing). The system is simply the first-order differential ṅ(p1)5 0
expression of action spectral density conservation. We present
further information about setting up a density matrix from a
Hamiltonian perspective in appendix C. If the interaction
term presents itself as in (49), one has a system of coupled
first-order inhomogeneous differential equations:

ṅ(p1) 5 [n(p2) 2 n(p1)]/2t21
r ,

ṅ(p2) 5 [n(p1) 2 n(p2)]/2t21
r ,

and an obvious path forward is to solve this first-order inho-
mogeneous differential equation by using an integrating fac-
tor. Physically, this implies integration in time along a ray
path. We intuit that a fundamental parameter will be the
amount of time a wave packet spends in a single resonance,
which depends upon the resonant bandwidth [(45)] and mean
drift [(36)], relative to the Bragg relaxation time scale tr. This
characterizes the ray path formalism’s equivalent of an
EDQN closure.

Second, the limit of t" ‘ as the lower bound of integration
in (37) is the signature Markov approximation. Whether such
a replacement is reasonable, though, requires justification.
The results of our one-dimensional model at oceanic ampli-
tudes suggest otherwise, but this requires defining the relevant
time scale for the sake of comparison. We believe this time
scale to bem/hṁi since the wave frequency enters into the lag
autocorrelation time scale [(42)] and vertical wavenumber
and frequency are related through the dispersion relation.
This is a by-product of the ad hoc construction of a spatial
scale separation [(20)] criterion in our one-dimensional model
to supplant a dynamically self-consistent specification of the
wave packet envelope. On the other hand, if downscale trans-
ports are reduced by an order of magnitude by Bragg scatter-
ing, which is entirely reasonable considering the disparity
between the prediction [(47)] and community wisdom articu-
lated in Polzin et al. (2014), then an extended one-dimensional
closure could fit within the domain of an EDQNM scheme.

A schematic ordering of relevant time scales at oceanic am-
plitudes is contained in Table 2 rendered in Fig. 12. After av-
eraging over mesoscale eddy time scales, we represent the
long time variations in action spectral density as seasonal.
Spectral transports occur within a phase velocity–group veloc-
ity velocity resonance that has an event time scale tevent which
we estimate as the ratio of the resonant bandwidth gM [(45)]
and the projection of the average drift rate hṁi onto the iner-
tial field, Ṁr, with Ṁr/Mr 5 2hṁi/m; see section 2. Mean drift
ti and Bragg scattering tr operate on identical slow ID time
scales. At oceanic amplitudes, these are somewhat shorter
time scales than those characterizing resonant events. A scale
separation between tevent and ti implies the creation of local
conditions that are vertically anisotropic and prone to relaxa-
tion by Bragg scattering. At oceanic amplitudes, mean drift

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 5520

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 06/09/25 01:56 PM UTC



rates are comparable to the correlation time scale tc 5 ss/hvi
for nonresonant forcing and challenge a Markov approxima-
tion upon which a diffusive closure is predicated. The band-
width of the self-consistent kinetic equation is the inverse of
the fast ID time scale, G.

We are aware of rigorous proof (Deng and Hani 2021) that
fourth-order cumulants are subleading-order terms in the ex-
pansion [(48)] under weak linearity for spatially homogeneous
systems. Our efforts demonstrate that there are fundamental
differences in the statistics of the resonances accumulated
along ray paths rather than as a stationary observer. This line
of argument is further sustained by the finding in Polzin and
Lvov (2017) that the resonant bandwidth G tends to the rms
Doppler shift at finite amplitude, while the underpinning dy-
namics of ray tracing are to represent the variations in the

Doppler shift. Individually, Bragg scattering and inertial
phase velocity–internal wave group velocity resonances are,
in the ray path analysis, the leading-order extreme scale-
separated processes and have time scales shorter than those
associated with local interactions that we intuitively character-
ize as having a dimension greater than one. Our proposition is
that these leading-order extreme scale-separated processes
are coupled with a resulting diminishment of transports. We
draw upon 3D turbulence to present this coupling as a fourth-
order cumulant in the context of an EDQNM closure. We re-
gard this as a physically reasonable justification for the 1D
system in the face of the rigorous 3D proof in Deng and Hani
(2021).

Finally, we note that there is an indirect analogy concerning
the propagation of electrons in a lattice known as Anderson

TABLE 2. Time scale definitions for Fig. 12.

G Resonant bandwidth (fast ID; rms Doppler shift)
tc

� t
t2t

h[ṁ(t)2 hṁ(t)i][ṁ(t2 t)2 hṁ(t2 t)i]idt
h[ṁ(t)2 hṁ(t)i]2i

Correlation time scale

ti m
hṁi

Mean drift (slow ID)

tr ti Bragg scattering

tevent 1
2
m
ṁ

3 3p
v

Nf

( )2
e0m*Mr

[ ]1/3 width of resonant well
mean drift projected onto M

FIG. 12. A schematic ordering of time scales. Time scales decrease from left to right, and wave
amplitude increases from top to bottom. The shortest time scale is associated with the resonant
bandwidth G21 and can be identified as the fast ID time scale of kinetic theory. At oceanic ampli-
tudes, this bandwidth degenerates into the rms Doppler shift. The phase velocity equals group
velocity tI, and Bragg scattering resonances tr operate on similar time scales and can be identi-
fied as the slow ID time scale of kinetic theory. These interaction time scales decrease with in-
creasing wave amplitude. A correlation time scale tc associated with nonresonant forcing pro-
vides the shortest time scale for the ray-tracing simulation. At oceanic amplitudes, the
interaction time scales are similar to the correlation time scales and provide an issue for the clo-
sure of ensemble-averaged transports. At oceanic amplitudes, the breadth of the phase velocity
equals group velocity resonance in the spectral domain is such that ensemble average transit times
through the resonance tevent are longer than the drift time scale ti. The longest depicted time scale
relates to climatological patterns of forcing. The characterization of AM denotes the AM basis of
kinetic theory; FM applies to the FM paradigm of ray tracing (Polzin and Lvov 2017). The time
scale tlocal represents local interactions in the kinetic equation (Dematteis et al. 2022).
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localization. As the impurities in that lattice become greater,
electrical resistance increases in proportion. When the impuri-
ties reach a density of two per unit wavelength of the electron,
the material suddenly becomes an electrical insulator. Our as-
sessment of the internal wave problem has the same charac-
ter. A path integral assessment leads us to a description that
predicts downscale energy transfer in an order of magnitude
greater than supported by observations. We forward the hy-
pothesis that the inclusion of Bragg scattering physics associ-
ated with a background inertial wavefield at half the vertical
wavelength of the high-frequency internal wave will similarly
shut down mean drifts to higher wavenumber. Localization
occurs in many different physical systems (Lagendijk et al.
2009) with similar concerns about the dimensionality of the
system impacting the potential for localization (e.g., Sheng
and van Tigglen 2007).

6. Summary

As we look back over the landscape of this endeavor,
what we have is a well-established metric for ocean mixing
(Polzin et al. 2014) which, prior to Dematteis et al. (2022),
did not have a first principles support. At best, the finescale
parameterization was underpinned by a heuristic descrip-
tion as an advective spectral closure (Polzin 2004a) in the
context of an energy transport equation that eschews action
conservation. Application of classical wave turbulence to
extreme scale-separated interactions arrives at a Fokker–
Planck equation expressing wave action diffusion that pre-
dicts no downscale spectral transports in vertical wavenum-
ber [(24)]. This result is a consequence of the fact that the
GM 3D action spectrum is independent of vertical wave-
number in its high-wavenumber power-law regime: there
are no gradients of action to support a diffusive transport.
Application of ray path techniques in LP arrives at a com-
bined advection/diffusion transport [(28)] that supports
downscale vertical wavenumber transports of energy and ac-
tion for the GM spectrum. In this paper, we utilize an ideal-
ized representation of high-frequency oceanic internal
waves propagating in a background of inertial waves to ob-
tain concrete closures for the ray path formulation. These
closures recover the wave turbulence kinetic equation
diffusivity and identify the mean drift of wave packets as the
gradient of the kinetic equation diffusivity in vertical wave-
number. This represents qualitative progress in reconciling
observations with theory. However, predictions for energy
transport associated with the mean drift are an order of
magnitude larger than the observations. Ray-tracing simula-
tions are conducted to assess these closures. There is a
tendency for the mean drift to be reduced from these small-
amplitude scalings at oceanic amplitude, but this reduction
is insufficient to ameliorate the glaring order of magnitude
discrepancy between prediction and observation. There is a
wealth of information available in the ray-tracing simula-
tions concerning phase locking and correlation time scales
that enable us to effectively order the time scales of a cumu-
lant hierarchy [(48a)–(48c)].

Meditation upon this hierarchy in the context of 3D tur-
bulence produces some parallels. The distinction between
wave turbulence and ray path techniques invites a compari-
son between Eulerian (Kraichnan 1959) and Lagrangian
(Kraichnan 1965) formulations of 3D turbulence, with
Eulerian formulations being prone to contamination by
Doppler shifting. The wave kinetic equation represents nonlin-
ear interactions as an amplitude modulation of spatially infi-
nite plane waves and predicts a very rapid adjustment of a
spike inserted into an otherwise smooth spectrum (McComas
1977). At oceanic amplitudes, this adjustment time scale tends
to an aphysical rms Doppler shift (Polzin and Lvov 2017). The
ray path derivation invokes a Wigner transform that integrates
the evolution of this spectral spike with its interaction partners
and explicitly represents variations in Doppler shifting as the
underpinning dynamics. In 3D turbulence, the change from
Eulerian to Lagrangian perspectives changes predicted power
laws from k23/2 and k25/3. In the internal wave problem, the
concept of ensemble averaging wave packets following ray tra-
jectories provides motivation to include a mean drift term in
the transport equation. This is a qualitative difference, and re-
vised estimates of downscale transport overshoot the mark by
an order of magnitude. These quantitative differences are po-
tentially resolved by parallels concerning the role of fourth-
order cumulants. In 3D turbulence, fourth-order cumulants
are understood to provide a systematic damping of downscale
transports associated with third-order terms (Orzag 1973).
Here, we propose a Bragg scattering process that reduces the
downscale transports associated with a phase velocity–group
velocity resonance. We interpret Bragg scattering as a fourth-
order cumulant playing the role of a third-order damping. We
find that Bragg scattering and the mean drift have essentially
identical time scales.

We identify the Bragg scattering process in terms of
the time evolution of the correlation between the two
high-frequency wave amplitudes having similar horizontal
wavenumber and oppositely signed vertical wavenumber. In-
corporating such effects into a wave packet action balance and
deriving a corresponding transport equation are subjects of
current research. Similarly, the dynamics that control the enve-
lope structure of the wave packet and interactions of a wave
packet with the residual flow associated with the packet’s en-
velope structure (Bühler and McIntyre 2005) have been dis-
carded in the ray-tracing paradigm (Gershgorin et al. 2009).
Accounting for the latter requires loosening the specification
of layerwise constant potential vorticity (Lvov and Tabak
2004) which is a key piece of isopycnal coordinates represent-
ing a canonical Hamiltonian system. This, again, is a topic of
current research.
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APPENDIX A

Horizontal Stress–Strain Relations

We start thinking about the coupling of internal waves
with mesoscale eddies in an extreme scale-separated limit
by assuming a quasigeostrophic scaling for the eddies:

Sn 5 Ux 2 Vy

Ss 5 Vx 1 Uy

z 5 Vx 2 Uy

D 5 Ux 1 Vy 5 0,

where Sn and Ss are the components of the deformation
rate of the strain tensor, z is the relative vorticity, and D is
the horizontal divergence, assumed small.

Horizontal stresses are the projection of the horizontal
wavevector onto the deformation tensor [Fig. 1 of Polzin
(2010)]. We use the polarization relations [(2)] to make this
explicit in the energy equation:

2u′u′Ux 2 y ′y ′Vy 52(kCx
g 2 lCy

g) aa
*

v
Sn/2

52(k2 2 l2) N2

m2v2 Sn/2

2u′y ′Uy 2 y ′u′Vx 52(kCy
g 2 lCx

g)
aa*

v
Ss/2

52(kl) N2

m2v2 Ss: (A1)

Assuming that the time dependence of the horizontal wave-
number exceeds that of the background gradients along a ray,
upon differentiation with respect to the time of the eikonal
[(5)], one (Jones 1969) arrives at

[k̈, l̈] 5 [k, l](S2n 1 S22 2 z2), (A2)

which implies the exponential growth and decay of horizon-
tal wavenumber along the ray if the rate of strain dominates
the relative vorticity and oscillatory solutions otherwise.
While one might quibble regarding the amount of time the
deformation rate of strain can be considered constant along
the ray, one has arrived at an intuitive understanding of hori-
zontal stress and horizontal strain correlations. See Figs. 3
and 4 and Figs. 4 and 5 of Polzin (2010) for observations
documenting the horizontal stress–strain and vertical stress–
shear relations, respectively.

We next want to enhance our dynamical understanding,
which we find in appendix B.

APPENDIX B

Parsing Extreme Scale-Separated Wave–Mean
Interactions

In Polzin and Lvov (2011), we provide a catalog of para-
metric spectral fits to deep ocean vertical wavenumber and

frequency data and articulate the existence of, in comparison
to the universal model (Munk 1981), regional variability.
The parameters include power laws, vertical wavenumber
bandwidth, and amplitude. We also examine seasonal vari-
ability in time series of near-inertial and high-frequency
bands. We forward the hypothesis that the resulting spatial–
temporal variability reflects the regional variability in the
forcing mechanisms: winds, tides, and eddies, mediated by
regional variations in nonlinear transfers. We then attempted
to align that parametric variability with spatial–temporal var-
iability in the forcing mechanisms. We also articulate a prior-
itization of efforts to understand the regional variability: that
the leading-order ignorance concerns nonlinear transforma-
tions, specifically the issue of Doppler shifting in induced dif-
fusion and the obvious importance of hitherto neglected
transports in horizontal wavenumber associated with “local
interactions.”

This effort has required us to express the fundamental
differences between ray tracing, which deals explicitly with
Doppler shifting, and the kinetic equation, which has a
Doppler shift defect in the induced diffusion limit. The
most fundamental difference is that the kinetic equation
represents a system of amplitude-modulated plane waves
and ray tracing represents a system in which the amplitude
(the action spectral density) is constant and the constituents
of wave phase are modulated according to the eikonal
relations.

This effort results in original developments concerning
the bandwidth of amplitude-modulated vs phase-modulated
signals, which have corollaries as AM and FM signals on
your radio (Cohen and Lee 1990; Polzin and Lvov 2017).
This effort also produces original results concerning mean
drift terms in wave packet ensemble average representa-
tions of action transport, which returns an absurd prediction
of 10 times too much mixing (section 5a). This absurdity
then launches us into a discussion of representing Bragg
scattering as an eddy-damped quasi-normal Markovian pro-
cess to cancel that absurdity. This is an affirmation that the
Bragg scattering time scale is the leading-order (shortest
time scale) nonlinear process with its primary mission being
a return to vertically isotropic conditions. This leaves local
interactions operating in both vertical and horizontal wave-
number (Dematteis et al. 2022) and the parametric subhar-
monic instability (MacKinnon et al. 2013; Olbers et al.
2020) as the leading players affecting downscale energy
transport by nonlinear wave–wave interactions.

Given a geometric understanding of energy exchanges via
internal wave stress–mesoscale strain relations (appendix A),
the implications of our results for the coupling of mesoscale
eddies and internal waves are greatly clarified.

In Müller (1976), mesoscale eddy–internal wave coupling
is represented using a single-scale eddy and a multichro-
matic wavefield. That analysis starts from an expression of
action spectral density conservation and introduces small
perturbations in wave phase speed associated with ray trac-
ing at higher order. The zeroth-order wavefield is assumed
to be homogeneous and isotropic, with perturbations being
returned to an isotropic state by nonlinear wave–wave
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interactions in a relaxation time-scale approximation. It is
this relaxation process that makes energy exchanges be-
tween the two systems permanent: otherwise, the wave
packet can wander around about its initial trajectory with
no net exchange in the single-scale eddy field. Energy ex-
changes in this problem concern internal wave momentum
(i.e., wave stresses) acting against the mesoscale gradients.
The key role of the nonlinearity is to return the momentum
flux perturbations to an isotropic state. For the vertical
stresses coupling with thermal wind shear, this concerns
Bragg scattering on a fast time scale as the sign of the verti-
cal wavenumber is flipped and the horizontal wavenumber
is unchanged. For horizontal stresses coupling with the me-
soscale rate of strain, changing the sign of the horizontal
wavenumber does not change the sign of the horizontal
stress, e.g., (A1) and Fig. 1 of Polzin (2010). Relaxing per-
turbations in horizontal stress requires modifying either
horizontal azimuth or horizontal wavenumber magnitude.
Modifying horizontal wavenumber magnitude is likely to be
more effective as nonlinear interactions have a distinct ten-
dency to be colinear with parallel or antiparallel horizontal
wavevectors [Fig. 2 of Dematteis and Lvov (2021)]. Intui-
tively, the time scale for modifying horizontal wavenumber
magnitude is associated with downscale transports in the
finescale parameterization, which this contribution docu-
ments as an order of magnitude longer than the Bragg scat-
tering time scale.

Changes in momentum flux following changes in wave-
number magnitude at the nominal finescale parameteriza-
tion imply a far less efficient relaxation process than in the
vertical coordinate associated with Bragg scattering. This
represents a plausible hypothesis for why the vertical
stress–thermal wind shear coherences are typically smaller
than the horizontal stress–mesoscale rate of strain coher-
ence estimates; see Figs. 3 and 4 and Figs. 4 and 5 of Polzin
(2010). See section 5.2 and Figs. 42 and 43 of Polzin and
Lvov (2011) for estimates of the energy source functions us-
ing formulas in Müller (1976). These estimates are consis-
tent with the conclusions of Polzin (2010) that mesoscale
eddy–internal wave coupling, amplifying a pre-existing
wavefield, is the dominant source mechanism south of the
Gulf Stream. The tertiary forcing is plausibly related to en-
ergy flux divergences associated with low-mode internal
tides and low-mode near-inertial waves sourced from the
north of the Gulf Stream (Zhao et al. 2016; Alford and
Zhao 2007).

Muller’s derivation is incomplete in that it is an assess-
ment of higher-order balances in a perturbation expansion
of action conservation in a multichromatic wavefield. This
action balance is only the leading-order expression for a
single wave packet at its carrier frequency; see section 3.2
of LP. The leading-order wave packet balance neglects the
residual flow associated with the momentum flux divergen-
ces on the envelope scale and the potential for the wave to
interact with its envelope structure. The wave packet struc-
ture carries information about a potential vorticity anomaly
(Bühler and McIntyre 2005) that directly concerns whether/
how this coupling interacts with deformation scale eddies

(Arbic et al. 2013) to possibly truncate an enstrophy cas-
cade regime. The issue of potential vorticity laundering in
the ocean interior is fundamental to understanding global
ocean behavior on long time scales (e.g., Rhines and Young
1982; Treguier et al. 1997) and needs to be explored.

A second line of inquiry, distinct from Müller (1976),
casts the coupling as a single internal wave interacting with
a multiscale eddy field. This interpretation originates in
Watson (1985) and appears, most lately, in Savva and
Vanneste (2018), Kafiabad et al. (2019), Dong et al. (2020),
Savva et al. (2021), Dong et al. (2023), and Cox et al.
(2023). The key concept in the ray-tracing limit is decorre-
lation and dispersion of wavenumber [(9)] and, following
statements about action conservation in Bretherton (1966),
energy exchange associated with net trends in intrinsic fre-
quency. We point out above how problematic the action
conservation assumption is with regard to Bragg scattering
acting on a fast time scale. The kinetic equations and wave
packet ensemble action transport expressions in this body
of literature are subject to the same criticisms as the wave–
wave interaction problem addressed here: kinetic equations
can suffer from Doppler shift defects for extreme scale-
separated interactions and wave packet ensemble-averaged
action transport equations are generically missing a drift
term associated with inhomogeneity in the spectral domain.
Our interpretation of the net drift term is that of a resonant
interaction. This is a plausible interpretation of a coherent
feature analysis of Tom Sanford’s original Mid-Ocean Dy-
namics Experiment data (Polzin 2008; Sanford 1975) origi-
nally parsed as downward near-inertial wave propagation
associated with local atmospheric forcing (Leaman and
Sanford 1975): The three-dimensional wavevector resulting
from the coherent feature analysis implies a westward group
velocity of 1.5 cm s21 that roughly matches the 2 cm s21

westward phase velocity of the Mid-Ocean Dynamics Experi-
ment (MODE) eddy (McWilliams 1976).

Theoretical developments appear to be wanting an em-
pirical ground truth parallel to the “10 times too much
mixing” that motivated our work on the induced diffusion
problem. Idealized numerical simulations in realistic geome-
tries such as Yang et al. (2023) are a start. However, there
is a wealth of ocean observations to test such ideas that be-
gin with the Mid-Ocean Dynamics Experiment (Leaman
and Sanford 1975), the internal wave experiment (Briscoe
1975; Frankignoul and Joyce 1979), PolyMODE I and II
(Ruddick and Joyce 1979), and the local dynamics experi-
ment of PolyMODE III (Brown and Owens 1981; Polzin
2010), all obtained four decades ago. Section 5.2 of Polzin
and Lvov (2011) summarizes the observational metrics for
mesoscale eddy–internal wave coupling, and section 3 pro-
vides a catalog of parametric fits to frequency and vertical
wavenumber spectra that document regional variability in
the background internal wave spectrum. A focal point of
future theoretical developments should be on whether an
assumption of small perturbations to wave phase speed is
accurate over the energy-containing part of the vertical
wavenumber spectrum at the bandwidth parameter j*,
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which is characteristically O(10), rather than assuming a
mode-1 character and that one-size-fits-all.

APPENDIX C

Bragg Scattering along a Ray Path

This begins with Hamilton’s equation for the evolution of
wave amplitude:

iȧp 5
dH
da*p

and iȧ*p 52
dH
dap

H 5

�
dp1dp2A(p1, p2)ap1a

*
p2
: (C1)

In order to promote this from the status of simple conjec-
ture, we point the reader to a step-by-step derivation of ray
tracing and associated action density conservation presented
in LP using an extreme scale-separated Hamiltonian struc-
ture. The underpinning assumptions are that (i) there are
three waves, one of which has much larger amplitude than
the others; (ii) the small-amplitude waves have similar
frequencies that are both greater than that of the large
amplitude wave; and (iii) the small-amplitude waves have sig-
nificantly greater horizontal wavenumber than the large ampli-
tude wave. Note that the specification on wave frequency
conditions the aspect ratio (k/m) of the waves. No constraint
on vertical wavenumber is implied. Thus, both phase velocity
equals group velocity and Bragg scattering resonances in Fig. 1
are retained. This reduces the Hamiltonian density [Eq. (3.12)
of LP] to a manageable

A(p1, p2) ffi spd(p1, p2) 1 i
1
2
s

N
Yz(Aor B) 1 1

2
s

P0
P̂(Aor B):

(C2)

This setup applies to both resonances, which we have indi-
cated by replacing the arguments of Yz/N and P̂/P0 with
(A or B).

The factors Yz/N and P̂/P0 are the Fourier coefficients
describing the vertical shear and isopycnal separation vari-
ability (what the oceanographic community refers to as
“strain”) as vertical gradient analogs of kinetic and poten-
tial energy. Ray tracing and action spectral density conser-
vation are obtained by operating on the evolution [(C3)]
with a Wigner transform and subsequent Taylor series
expansion that focuses upon the B half of the spectral do-
main. Although the Bragg resonance A and the group
velocity–phase velocity resonance B imply an evaluation of
the Fourier coefficients at vastly different vertical wavenum-
ber magnitudes, the oceanic vertical wavenumber spectrum
for these vertical gradients is independent of vertical wave-
number in its power-law subrange. Thus, the Fourier coeffi-
cients at these dissimilar scales have similar magnitudes.

The next step is to derive an evolution equation for the time
evolution of the correlation function N1,2 5 ha(p1)a*(p2)i, in
which a(p) are the canonical amplitudes at wavenumbers p1
and p2:

iṄ1,2 5

�
(A3,p1

N3,p2
2 Ap2,3

Np1,3
)d3, (C3)

with wavenumber “3” representing a variable of integration.
This permits filling out both diagonal and off-diagonal ele-
ments of a density matrix. The diagonals represent ray trac-
ing, and the off-diagonals represent transition probabilities.

APPENDIX D

The Resonant Bandwidth for Ray Tracing

This appendix repeats an argument in Polzin and Lvov
(2017) that results in a scaling for the resonant bandwidth
of ray-tracing gM. For a single-wave background, the ampli-
tude of the test-wave response can be estimated from the
eikonal relation:

dgm
dt

52kUz cos(Mz 2 ft 1 f): (D1)

In the off-resonant case, ray trajectories are perturbed by
only small amounts from straight lines. Thus, z5

�
Cz

gdtffi
Cz

g(t5 0)t, and integration of (D1) provides

[m 2 m(t 5 0)]2 5 1
2

k2U2
z

(MCz
g 2 f )2 : (D2)

This obviously fails at resonance, for which MCz
g 5 f .

“Near” resonance we consider the happy state in which
MCo

g 2 f 5 0 and perturbations in vertical wavenumber suffi-
ciently small as to expand the group velocity in a Taylor series:

dgm′

dt
ffi 2kUz cos MCo

g
2
mo

�
m′dt

( )
: (D3)

With f 5 0 and an initial condition that m′(t 5 0) 5 0,

m ffi 2kUzt,

so that an iterative solution to (D3) suggests

dgm′

dt
52kUz cos(MCo

gkUzt
2/mo):

We recognize that the implication for the next iterate is
one of growth until the argument of the cosine function at-
tains a value of p/2:

tgrowth 5
p

2
mo

MCo
gkUz

( )1/2
,

so that the root-mean-square deviation can be estimated as
the product of the amplitude kUz and this time scale:

[m 2 m(t 5 0)]2 ffi pmokUz

2f

( )
, (D4)

which provides an effective stepping stone to define the
resonance bandwidth in the higher dimensional problems.
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In Polzin and Lvov (2017), this is accomplished by casting
the left-hand side of (D4) as a bandwidth g2m and noting
that the projection of this bandwidth onto the background
field at resonance f /M52(kN/m2) implies

gm
gM

5
dm
dM

52
v

2f
:

The next step is to scale the background shear of a single
wave Uz with the shear associated with the resonance
Uz $ [gMM2ek(M)]1/2, obtaining the GM spectrum:

gM
M

5 3p
v

Nf

( )2
eom*M

[ ]1/3
: (D5)

There are parallels with the stationary phase calculation of
section 3b(2), but we have not been able to elevate this ar-
gument beyond a scaling estimate.
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