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I. INTRODUCTION

Integrated luminosity, denoted £, connects the num-
ber of produced events (V) with the cross section (o) of a
specific physical process, as expressed by the formula

N=L-o. (M

Accurate measurements of integrated luminosity are
essential to minimize uncertainties in cross-section meas-
urements of interesting physics processes.

In high-energy physics experiments, integrated lumin-
osity is determined using Eq. (1), employing well-known
quantum electrodynamics processes. In this paper, we
present the results of an integrated luminosity measure-
ment conducted by the Belle II experiment [1], which op-
erates at the SuperKEKB e*e™ collider [2] located at the
High Energy Accelerator Research Organization (KEK)
in Japan. SuperKEKB is an asymmetric energy collider in
which electrons with an energy of 7 GeV and positrons
with an energy of 4 GeV circulate in the high energy ring
(HER) and low energy ring (LER), respectively. The col-
lider mainly operates at the center-of-mass (c.m.) energy
of 10.58 GeV, which is at the peak of the T(4S) reson-
ance. Belle II is designed to measure the parameters of
the Standard Model precisely and search for new physics
beyond the Standard Model with a planned integrated lu-
minosity of 50 ab'. The instantaneous luminosity target
is 6x10* c¢cm™2s7!. In June 2022, SuperKEKB achieved
an instantaneous luminosity world record of 4.7 x 10*
cm~2s7!, with a statistical uncertainty of 2.7% and a sys-
tematic uncertainty of 1.7% [3]. Determination of the in-
tegrated luminosity directly via integration of the instant-
aneous luminosity therefore carries a substantial system-
atic uncertainty.

The Belle 1I/SuperKEKB project has had three major
commissioning phases. Phase 1 was carried out in Spring
2016 without beam collisions and was prior to the install-
ation of the Belle II detector. Phase 2, which began in
March 2018 and ended in July 2018, marked the begin-
ning of e*e~ collisions with the Belle II detector installed,
albeit without the vertex detector (VXD). The integrated
luminosity of Phase 2 was measured to be (496.3 + 0.3 =
3.0) pb ' [4]. Phase 3 started in March 2019 with a par-
tial VXD and resulted in data for physics analyses. The
data sample collected from March 2019 to June 2022 is
defined as the Run 1 data.

We measure the integrated luminosity of the Run 1

CSTR: 32044.14.ChinesePhysicsC.49013001

data using the following three precisely calculable pro-
cesses: Bhabha scattering (e*e™ — e*e (ny)), digamma
production (e*e” — yy(ny)), and dimuon production
(efe” - utu (ny)). These processes benefit from large
and well-known production cross sections and clean ex-
perimental signatures.

Several improvements and a new cross-check have
been implemented with respect to the method developed
for the Phase 2 dataset. In the Run 1 data, along with the
installation of the VXD detector system in the Belle II de-
tector, improvements were implemented in the recon-
struction procedure. These improvements enable the use
of tracks to select Bhabha events and implementation of a
new cross-check with dimuon events, reducing the de-
pendence on the electromagnetic calorimeter (ECL)
cluster information. The Run 1 data sample has almost
1000 times the integrated luminosity and 10 times the in-
stantaneous luminosity of that in Phase 2. However, high-
er instantaneous luminosities result in increased beam-in-
duced background [5]. A new analysis method has been
developed to assess the impact of higher background
levels. To address the larger background levels, a com-
prehensive trigger system is implemented consisting of
both a hardware-based level 1 trigger (L1 trigger) [6, 7]
and a software-based high-level trigger (HLT) [8] (Sec-
tion V).

II. THE BELLE II DETECTOR

The Belle II detector [1] has a cylindrical geometry
and includes a two-layer silicon-pixel detector (PXD) sur-
rounded by a four-layer double-sided silicon-strip detect-
or (SVD) [9] and a 56-layer central drift chamber (CDC).
These detectors reconstruct tracks of charged particles.
The PXD and SVD are collectively referred to as the
VXD, which is used to locate the decay vertex of B
mesons. Only one sixth of the second layer of the PXD
was installed for the data analyzed here. The z axis is
along the bisector of the angle between the direction of
the electron beam and the direction opposite to the
positron beam. The x-axis is horizontal and points away
from the center of the accelerator ring. The y-axis is ori-
ented vertically upward. With respect to the z-axis, ¢ is
the azimuthal angle and 6 is the polar angle. Surrounding
the CDC, which also provides energy-loss measurements,
is a time-of-propagation counter (TOP) [10] in the cent-
ral region and an aerogel-based ring-imaging Cherenkov
counter (ARICH) in the forward region. These detectors
provide charged-particle identification. Surrounding the
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TOP and ARICH is the ECL, which is based on CsI(TI)
crystals and primarily provides energy and timing meas-
urements for photons and electrons. The ECL covers the
polar angle region of 12.4° <9< 155.1°, except for two
gaps ~ 1° wide between the barrel and endcap regions.
Outside of the ECL is a superconducting solenoid mag-
net. Its flux return is instrumented with resistive-plate
chambers and plastic scintillator modules to detect muons
and K) mesons. The solenoid magnet provides a 1.5 T
magnetic field that is parallel to the z axis.

The Belle II trigger system is designed to determine
whether to retain or discard specific events. The L1 trig-
ger operates as a hardware-based logic system with a
maximum output rate of 30 kHz and a fixed latency of
4.4 us [6, 7]. The HLT is a software-based system that re-
constructs events and filters them to a maximum output
rate of 10 kHz [8]. For each trigger bit in the HLT or L1,
a prescale factor R applies, recording only a fraction 1/R
of the events that would have passed the trigger require-
ments. These prescale factors are taken into account in
the analysis.

III. DATA SAMPLE AND MONTE CARLO
SIMULATION

The Run 1 data sample used in this paper was collec-
ted from March 2019 to June 2022 with the L1 trigger
and HLT applied. Three categories of datasets were col-
lected, corresponding to different collision energies in the
c.m. frame (+/s), referred to as “Y(4S)” (10.580 GeV),
“off-v(4S5)” (10.517 GeV), and “T(5S) scan” (10.657,
10.706, 10.751, and 10.810 GeV), where the values in
parentheses are the c.m. energies for each dataset type.
While we only present the details of the luminosity meas-
urement for the Y(4S) dataset in this paper, we apply the
same measurement technique to all other datasets.

To determine the selection efficiencies, three signal
Monte Carlo (MC) samples are generated at the c.m. en-
ergy corresponding to the peak of the Y(4S) resonance.
The BABAYAGA@NLO generator [11, 12] is used to
produce events equivalent to 36 fb~' for the Bhabha pro-
cess and 719 fb™' for the digamma process. The KKMC
generator [13] is used to generate 1439 fb™' of dimuon
events. Taking into account the beam energy variation of
approximately 3.1 MeV for the LER and 4.4 MeV for the
HER, an energy spread of 5 MeV for +/s is applied in the
generation of Bhabha, digamma, and dimuon events. The
scattering polar angles of the final-state particles are set
to be within the range of 10.0° to 170.0° in the lab frame,
fully covering the detector acceptance. The cross-sec-
tions in this angular window obtained from the generat-
ors are o,, = (295.38 £ 0.04 £ 0.42) nb, o, = (5.0686 =
0.0005 £ 0.0071) nb and o, = (1.1472 £ 0.0001 =+
0.0051) nb, where the first uncertainties are statistical and
the second are systematic. To evaluate the impact of

background contributions, nine types of background pro-
cesses are generated: 200 fb™' equivalent samples of
B*B~ and B°B° events utilizing the EvtGen generator
[14]; 200 fb™! equivalent samples of ui, dd, c¢, and s5
quark continuum events generated via a combination of
KKMC [13] and PYTHIA [15]; a 1 ab™' equivalent
sample of 77~ events generated with KKMC [16, 17];
and 100 fb™' equivalent samples of e*e e*e” and
ete utu~ events produced using AAFH [18]. After MC
event generation, the interactions of final-state particles
with detector material are simulated with GEANT4 [19],
and the subsequent subdetector response and L1 and HLT
triggers are simulated with the Belle II Analysis Soft-
ware Framework (basf2) [20]. Time-independent MC
simulations, incorporating calibrated beam background,
interaction point (IP) position, and other time-dependent
quantities aligned with actual data, are employed to de-
termine the luminosity. Time-dependent MC simulations
are used to assess some systematic uncertainties as out-
lined in Section VII.

IV. EVENT SELECTION

Signal candidate events are selected following the
method outlined below. The digamma candidate events
are reconstructed from ECL clusters, while the Bhabha
and dimuon candidate events are required to have two
tracks with opposite charge. For Bhabha and dimuon
events we select the two tracks with the highest momenta,
and for digamma events we select the two clusters with
the highest energies. We then require that the energies of
the selected tracks or clusters fall within the range of 2.50
to 5.82 GeV. Here, energies (E“™) associated to tracks
are determined from the particle momenta measured in
the tracking system combined with an assumed mass hy-
pothesis of electron or muon, while the energies of ECL
clusters from photon candidates are obtained from the en-
ergy depositions in the ECL. To minimize potential sys-
tematic uncertainties from trigger (L1 and HLT) effi-
ciency corrections, the selection criteria in the analysis
are chosen to be tighter than those in the trigger (details
are in Section V). We require the energy of the higher-en-
ergy particle in the two final-state particles to be greater
than 4 GeV (ES™ >4 GeV) in Bhabha and digamma can-
didate events, and greater than 3 GeV (E{™ >3 GeV) in
dimuon candidate events. We require that the energy de-
posited in the ECL for a muon candidate track be less
than 0.5 GeV. The average ionization energy loss of a
muon in the ECL is about 0.2 GeV: therefore a larger en-
ergy deposition is likely to be either an electromagnetic
shower produced by an electron, or a hadronic interac-
tion of a pion. This criterion effectively rejects Bhabha
events from the dimuon processes. To ensure that the two
final-state particles are emitted back to back, we require
the polar opening angle (A65™ = [65™ +65™ —180°|) to be
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A6 <5° and the azimuthal opening angle (Ag¢§3™ =
lpS™ — 5™ — 180°]) to be AgS™ < 5°. We set a tighter re-
quirement for digamma events, ¢{3™ <2.5°. Here, the sub-
script "1" ("2") refers to the final-state particle with the
largest (second largest) energy. All clusters must be re-
constructed in the ECL with polar angles 37.8° < ggluster,
g5ser < 120.5° in the laboratory frame, which ensures op-
timal calorimeter energy resolution, avoids detector gaps,
and minimizes beam background levels [21]. To further
suppress background contamination in the dimuon meas-
urement, we require the invariant mass of the dimuon
system (M(uu)) to be greater than 9 GeV/c?.

The total contaminations of background processes are
0.02%, 0.66%, and 0.23% for Bhabha, digamma, and

dimuon channels, respectively. In the digamma channel, a
significant contamination of Bhabha events, amounting to
(0.55 £ 0.02)%, remains even after applying all selection
criteria. Thus, we treat both Bhabha and digamma events
as signal in the measurement with digamma events,
which is hereafter referred to as the digamma-dominated
channel. The remaining backgrounds are not accounted
for the signal MC samples and considered as a part of the
systematic uncertainties in each channel, as described in
Section VII.

The observables used in the selection criteria are
shown in Figs. 1, 2 and 3. In these figures, signal and
background MC samples are initially scaled to a com-
mon reference luminosity, and then the total MC samples
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Fig. 1. (color online) Kinematic distributions of Bhabha signal candidates in data and MC. The first row contains distributions of the

c.m. energy of the higher-energy final-state particle (a), the lower-energy final-state particle (b), and each of the two final-state particles
(c). The second row represents distributions of polar angle of ECL clusters of the higher-energy final-state particle (d), the lower-en-
ergy particle (e), and each of the two final-state particles (f) in the lab frame. Subfigure (g) shows the distribution of the polar opening
angle (A653™ = [67™ +65™ —180°|), while subfigure (h) shows the distribution of the azimuthal opening angle (AgS;™ = [l{™ — ¢5™ |-
180°]). Each subfigure shows one parameter from the event selection criteria where all other criteria have been applied except for that
shown in the figure. All the criteria are applied in subfigures (c) and (f). "Data" in the legend signifies the collision data from the Y(4S)
dateset, while "Sig MC", "Bkg MC", and "Tot MC" correspond to the signal (MC Bhabha events), background (MC samples except for
signal events), and total MC samples (the sum of both the signal and background samples), respectively. The error bars are invisible
due to the large size of the sample. The dashed histogram for "Tot MC" overlaps with the solid histogram of "Sig MC", making the "Tot
MC" histogram invisible. The vertical black dashed lines represent the selection criteria for signal events. Events in the shaded regions
are removed by the selection criteria.
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Fig. 2. (color online) Kinematic distributions of digamma-dominated signal candidates in data and MC. The convention in the figure

is the same as in Fig. 1 except the signal processes are Bhabha and digamma events here. The edge at 3° in the A¢§;™ distribution is due
to the HLT requirements for digamma-dominated channel discussed in the text.

are normalized to the number of events in the data in each track typically results in only one ECL cluster associated
figure. The data sample shows good agreement with the ~ witha crystal hit. The ECL cluster reconstruction al-
MC simulations in most cases, while some discrepancies gorithm assigns the position of the cluster to the center of
are observed. In the Bhabha scattering distributions, an the hit crystal, rather than the actual location of the hit.
excess is observed in E5™ below 4 GeV in Fig. 1(a). This ~ Additionally, if muons deposit energy at or near the posi-
excess is due to the imperfect calibration of the data  tions of the thin aluminum fins that mechanically support

sample. The discrepancies in the energy distribution have
little impact on the luminosity measurement, as the selec-
tion criteria require ES™ > 4 GeV. The shapes of the data
sample do not match those of the MC simulations in the
gsluster and ggtvster distributions of Figs. 1, 2, and 3. The ob-
served discrepancies suggest a difference in energy re-

the crystals, there is a higher likelihood of producing
single-crystal clusters with energies below the 30 MeV
threshold, which are not recorded by the data acquisition
system. These two phenomena, along with the choice of
histogram bins, result in the observed discontinuities.
After applying all the selection criteria to each signal
channel, the selection efficiency for Bhabha channel is

construction between data and MC samples. Since the found to be (1.88 + 0.01)%. This relatively low effi-

combined ¢ distributions exhibit good agreement
between the data and the MC, the discrepancies in the
guser and gsuser distributions have no impact on the lu-
minosity measurement. Discontinuities

ciency is attributed to: (i) the combined requirement of at
least two tracks matched with ECL clusters with energies
greater than 1 GeV, which leads to a selection efficiency

observed at  of (16.27 + 0.01)%; and (ii) for the generated events, lim-
gelter = 73°, 85°, 97°, and 107° in Figs. 3(d), 3(e), and  jting electron or positron scattering angles within the de-
3(f), can be attributed to specific characteristics of the  tector region of interest, results in a selection efficiency
ECL energy cluster reconstruction process. The average of (16.03 + 0.01)% after the application of the combined
ionization energy loss by a muon is approximately 200 requirement in (i). For the digamma-dominated channel,
MeV, while the minimum value required to form an ECL the selection efficiencies are (16.79 £ 0.01)% and (0.0016
energy cluster is 30 MeV [22]. Consequently, each muon +0.0001)% for digamma and Bhabha processes, respect-
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Fig. 3. (color online) Kinematic distributions of dimuon signal candidates in data and MC. The convention in the figure is the same as

in Fig. 1 except the signal process is dimuon events here. In addition, subfigure (i) shows the invariant mass distribution of the dimuon

system (M(pys)).

ively. The selection efficiency is (29.84 = 0.01)% for the
dimuon channel.

V. CORRECTIONS OF THE L1 TRIGGER AND
HLT EFFICIENCIES

The Run 1 data set was collected with an active L1
trigger and HLT. The MC samples are produced with a
simulation of the trigger system. The trigger efficiencies
are corrected to those measured in data. Trigger efficien-
cies of the Run 1 data sample are measured by use of the
following equation:

N(test Nref)

N(ref) @)

€est =

where "N(test Nref)" is the number of events that fire both
the trigger to be tested and the reference trigger, and
"N(ref)" is the number of events that activate the refer-
ence trigger. The test and reference triggers must be inde-
pendent from each other. Hence, to estimate the L1 trig-
ger efficiency, we choose test triggers solely based on in-

formation from the ECL, while reference triggers rely ex-
clusively on CDC information. The test trigger bits selec-
ted from the HLT combine information extracted from
different subdetectors. We choose reference triggers with
looser criteria than those used in the primary analysis so
that the reference trigger is 100% efficient with respect to
the analysis selection criteria. These triggers have non-
unity prescale factors, which are taken into account. All
uncertainties in this section are statistical only.

For the Bhabha channel, events are required to pass
an L1 trigger bit, which requires at least one ECL cluster
with energy E"®" > 2 GeV in the c.m. frame falling with-
in the polar angle range of 32.2° < 67" < 124.6° in the
lab frame. Additionally, after May 2021, a new L1 trig-
ger bit was introduced to the HLT, incorporating a series
of criteria to select Bhabha events. In the additional L1
trigger bit, the polar angles and azimuthal angles of two
ECL clusters are required to satisfy [gluster 4 ggluster—
180°| <20° and || — 5| - 180°| < 40° in the c.m.
frame. The two ECL clusters should both have energies
greater than 2.5 GeV, with at least one of them greater
than 4 GeV. The L1 trigger efficiencies are calculated to
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be (99.97 £ 0.01)% and (99.69 £ 0.19)% for data samples
before and after May 2021, respectively. The L1 trigger
efficiencies for the MC samples are (98.63 £ 0.01)% and
(98.15 £ 0.01)%. Consequently, correction factors of
1.0136 £ 0.0001 and 1.0157 £+ 0.0021 are applied to ad-
just the selection efficiencies of the MC samples for the
Bhabha channel. The HLT test trigger requires the elec-
tron to fall within the polar angle range of 30° < g°"tr <
180° in the lab frame. The HLT efficiencies are (99.98 +
0.01)% and (99.99 £+ 0.01)% for the data and MC
samples, respectively. The HLT efficiency correction is
estimated to be 0.9999 + 0.0001 for MC simulation.

For the digamma-dominated channel, the L1 trigger
efficiency of the data sample is determined to be (99.97 +
0.01)%. This value is obtained from the Bhabha channel
with the L1 trigger bit before May 2021, as both chan-
nels utilize the same L1 trigger in this context. The L1
trigger efficiency for the MC samples is (98.59 + 0.01)%.
Thus, the correction factor for the L1 trigger is determ-
ined to be 1.0140 £ 0.0001. The HLT bit to select di-
gamma events requires at least one ECL cluster with en-
ergy E™ >4GeV. In addition, the energies, polar
angles, and azimuthal angles of the two clusters are re-
quired to satisfy 2 GeV < Eguster < peluster 390  gluster,
gglusler < 13009 and ||¢(l:lusler_¢(2;luster|_ 1800| < 3°, Here, the
polar angles are defined in the lab frame, while other
quantities are in the c.m. frame. The HLT efficiencies for
the data and MC samples are calculated to be (99.70 +
0.01)% and (99.99 + 0.01)%, respectively. Consequently,
the efficiency correction factor for the HLT is found to be
0.9971 £ 0.0001.

Dimuon events are selected by an L1 trigger bit that
requires the energies, polar angles, and azimuthal angles
of the two ECL clusters satisfy EStster, ESuster <2 GeV,
165° < ggluster_{_ggluster < 19005 and 160° < |¢§luster_¢§luster| <
200°. Due to a misconfiguration in the L1 trigger for data,
the calculated L1 trigger efficiencies are (97.33 + 0.01)%
for samples collected before August 2020 and (89.48 +
0.01)% for those obtained after. The L1 trigger effi-
ciency for the MC samples is found to be (77.12 +
0.01)%. Thus, the efficiency correction factors for the L1
trigger are determined to be 1.2621 + 0.0001 for data
samples before August 2020 and 1.1604 + 0.0001 for data
samples after August 2020. The Belle II experiment col-
lects data with a redundant set of parallel L1 triggers,
however they are not used in this analysis. This redund-
ancy ensures that no physics events were lost due to the
misconfiguration issue. The HLT requires momentum
thresholds of p§™ >3 GeV and p§™ > 2.5 GeV. Addition-
ally, the energy deposited in the ECL for each muon can-
didate should be greater than 0 GeV and less than 1 GeV.
The HLT efficiencies for the data and MC samples are
calculated to be (99.78 + 0.01)% and (99.91 + 0.01)%, re-
spectively. The efficiency correction factor for the HLT is
found to be 0.9987 + 0.0001.

VI. DETERMINATION OF INTEGRATED
LUMINOSITIES

Taking into the account the selection efficiencies and
their correction factors, the expression for the integrated
luminosity becomes

N
L _ data (3)

B O—SigesiglefHLT.

For all three channels, after applying their specific selec-
tion criteria, we obtain the numbers of signal events
(NS ) in the data sample. The cross sections for the sig-
nal processes (o) are provided by the event generators,
while the selection efficiencies of these signal processes
(&ig) are estimated using their corresponding MC
samples. The correction factors for the L1 trigger and the
HLT efficiencies (fi; and fur) are evaluated as de-
scribed in Section V. All these quantities are listed in
Table 1.

The integrated luminosity of the Y(4S) data sample is
determined to be (364.48 + 0.03) fb', (366.57 + 0.03)
fb™', and (361.97 + 0.04) fb™' with the Bhabha, digamma-
dominated, and dimuon channels, respectively. The un-
certainties are statistical only and obtained from data. The
uncertainties due to the limited sizes of the MC samples
are treated as a part of the systematic uncertainties in this

paper.

VII. SYSTEMATIC UNCERTAINTIES

Table 2 lists eighteen contributions to the systematic
uncertainties. Here, we provide a complete description of
the systematic uncertainties for the Y(4S) sample, and the
procedure is the same for the other samples. We find
small changes in the calculated luminosity when the se-
lection criteria or the generation parameters within MC
samples are adjusted. The difference between the modi-
fied luminosity and the nominal luminosity is taken as the
systematic uncertainty, unless otherwise stated.

The BABAYAGA@NLO generator provides a theor-
etical cross-section uncertainty of 0.20% for the Bhabha
process and 0.10% for the digamma process [11, 12]. A
small fraction of generated events exceeds the phase
space, impacting the cross sections by 0.10%. Thus, the
total cross-section uncertainties for Bhabha and digamma
processes are conservatively estimated to be 0.23% and
0.15%, respectively. The precision of the dimuon process
is computed by the KKMC generator as an uncertainty of
0.44% [13, 23].

To assess the impact of the input parameters of the
generators, we vary each parameter and measure the lu-
minosity difference relative to the nominal value, treat-
ing each change as a systematic uncertainty associated
with that parameter. The c.m. energy fluctuates around
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Table 1.

Key parameters for the measurement of the integrated luminosity of the Y(4S) data sample in the three measurement chan-

nels. Within the digamma-dominated channel, o, (o) signifies the cross section of the digamma (Bhabha) process, while ¢, (ec)

represents the selection efficiency of the digamma (Bhabha) process. Here fT* is the efficiency correction factor for the L1 trigger ap-

plied to the entire T(4S) sample, which is calculated as a weighted average based on luminosities accumulated during different time

periods, as detailed in Section V and fyrr is the efficiency correction factor for the HLT. The values in parentheses are the statistical

uncertainties, for example, 20.5376 (1) =20.5376 = 0.0001.

Channel NS (x10%) Tsig/nb &ig (%) filot faLt L/
Bhabha 20.5376 (1) 295.38 (4) 1.88 (1) 1.0148 (17) 0.9999 (1) 364.48 (3)
‘ _ Tyt 5.0686 (5) 611653 (1)
Digamma-dominated 3.1228 (2) 1.0140 (1) 0.9971 (1) 366.57 (3)
Oee: 295.38 (4) €ee: 0.16 (1) x1072
Dimuon 1.2344 (1) 1.1472 (1) 25.40 (1) 1.1719 (1) 0.9987 (1) 361.97 (4)
Table 2. Contributions to the systematic uncertainties of the is an important input for generators. To improve compu-

measured integrated luminosities at Y(4S) for the Bhabha, di-
gamma-dominated, and dimuon channels. The uncertainties
denoted with a superscript * represent estimations based on
time-independent MC samples, while the others are based on
time-dependent samples.

Source ete™ (%) vy (%) whum (%)
Cross section +0.23 +0.15 +0.44
/s (c.m. energy)* +0.15 +0.25 +0.29
Input angular range* +0.08 +0.01 +0.03
ECL alignment* +0.02 +0.02 +0.02
MC statistics +0.03 +0.02 +0.02
Beam background* +0.13 +0.19 +0.26
Track reconstruction +0.48 — +0.48
Cluster reconstruction — +0.41 —
Charge misassignment +0.03 — +0.01
E©™ criteria +0.04 +0.07 +0.09
1S criteria +0.08 +0.06 +0.11
AG53™ criteria +0.05 +0.07 +0.29
AgS™ criteria +0.01 +0.04 +0.26
Cluster veto criteria — — +0.03
Material effects* +0.05 +0.20 —
Overlapping clusters — +0.01 —
Background processes +0.02 +0.11 +0.23
L1Trigger +0.16 +0.03 +0.01
Quadrature sum +0.61 +0.60 +0.90

the Y(4S) peak with less than a 5 MeV variation over
time. To cover the impact of this potential deviation, we
vary the c.m. energy, increasing or decreasing it by 5
MeV in the signal MC samples. These adjustments result
in uncertainties of 0.15%, 0.25%, and 0.29% for the Bh-
abha, digamma-dominated, and dimuon channels, re-
spectively.

The angular range of the primary final-state particles

tational efficiency, low multiplicity events are simulated
only if the final-state particles are expected to interact in
the active volume of the detector. To estimate boundary
effects from scattering, we change the polar angle range
to 35°—145°. The uncertainties are estimated as 0.08%,
0.01%, and 0.03% for the Bhabha, digamma-dominated,
and dimuon channels, respectively.

Following the alignment of ECL crystal positions us-
ing dimuon events, uncertainties of 0.04 mm in the x dir-
ection, 0.08 mm in the y direction, and 0.11 mm in the z
direction have been determined. These uncertainties are
equivalent to uncertainty in the position of the IP. We
generate a series of new MC samples for the three chan-
nels, incorporating this uncertainty in the IP position. The
uncertainties related to the alignment of the ECL location
are estimated to be approximately 0.02% for the Bhabha,
digamma-dominated, and dimuon channels.

The limited MC sample sizes lead to uncertainties in
the measurement of the selection efficiencies. The uncer-
tainties are determined to be 0.03% for the Bhabha chan-
nel and 0.02% for digamma-dominated and dimuon chan-
nels, respectively.

As the instantaneous luminosity increases, the impact
of beam background becomes a larger component of the
systematic uncertainty. To assess this uncertainty, we cal-
culate the weighted average of the differences between
the luminosities computed using time-dependent MC
samples, which includes realistic beam background, and
time-independent MC samples characterized by signific-
antly lower beam background, calculated from simula-
tion. Since the time-dependent MC samples describe the
data well, we consider half of the differences as the sys-
tematic uncertainties associated with beam background,
amounting to 0.13%, 0.19%, and 0.26% for the Bhabha,
digamma-dominated, and dimuon channels, respectively.

Uncertainties in track reconstruction efficiencies arise
during the track reconstruction procedure, where the dif-
ference between the data and the MC simulations may
reach 0.24% per track [24]. As Bhabha and dimuon
events each have two tracks, and assuming a 100% cor-
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relation between them, we obtain a conservative uncer-
tainty of 0.48% for the Bhabha and dimuon channels. The
uncertainty of the cluster reconstruction for the digamma-
dominated channel is estimated to be 0.41%. A measure-
ment without any requirements on the cluster finds that
the uncertainty associated with cluster reconstruction is
negligible for the Bhabha channel.

Two tracks with opposite charges are required in the
Bhabha and dimuon channels. To determine the impact of
potential charge misassignment, we perform new meas-
urements by removing the criterion related to charge and
obtain uncertainties of 0.03% and 0.01% for the measure-
ments with Bhabha and dimuon events, respectively.

The criteria for selecting signal events may introduce
uncertainties. We vary the selection requirements by
tightening or loosening them as follows:

+0.25 c.m. c.m. +0.25 .
® 2.501)32 GeV < ES™ < ES™ < 5.82%4352 GeV;
e 37 80+1A6D < ecluster chuster <120 50+4.1° .
+Q -2.8° 1 > Y2 =200
C.m. 0+2.5%,

® AGT™M < 5°75%,;
c.m. 0+2.5%.,

® Adiy" <5°35;

o Ag <2570 (Only for digamma-dominated
channel);

o () < Egluster | eluster < 050092 GeV (cluster veto cri-
teria for dimuon channel).

The energy resolution of the final-state particles at an
energy of about 5.29 GeV is determined to be approxim-
ately 0.08 GeV. To estimate the systematic uncertainty
arising from the E°™ criteria, we roughly triple the en-
ergy resolution. This method is also used to estimate the
uncertainty associated with cluster veto criteria. For the
geluster criteria, we change the polar angle range by adding
or removing ECL crystal rings. The adjustments to the re-
quirements on A673™ and Ag¢f{y™ are approximately expan-
ded or reduced by half from the original range. When we
change each selection criterion, the larger difference in
integrated luminosity compared to our standard result is
taken as the systematic uncertainty. The systematic un-
certainties from all sources are tabulated in Table 2.

Photons, electrons, and positrons may interact with
the material in the VXD, which causes the production and
absorption of photons, electrons and positrons. To invest-
igate the size of this effect, we remove the simulation of
the VXD material in MC samples. The uncertainties are
approximately 0.05% for the Bhabha channel and 0.20%
for the digamma-dominated channel.

After a photon interacts with the detector material, it
may convert into two nearby clusters in the ECL. Select-

ing only one cluster per photon introduces bias. To ad-
dress this issue, we employ additional criteria to treat the
cluster with the smallest opening angle within a 5° range
in both polar and azimuthal angles relative to each selec-
ted cluster as a single overlapping cluster. The difference
in luminosity, including the presence or absence of over-
lapping clusters, serves as a measure of systematic uncer-
tainty. This uncertainty of approximately 0.01% is specif-
ic to the digamma-dominated channel, since the energies
of Bhabha and dimuon tracks are obtained in a different
manner.

As described in Section III, various background pro-
cesses are produced and analyzed to assess their impact
on the luminosity measurement. The primary back-
ground channels (background levels) are digamma
(9.3%x107), uir (8.3x10™), and ete utu~ (2.0x107%)
events for the measurements with Bhabha, digamma-
dominated, and dimuon channels, respectively. Given that
the size of the contributions are relatively low, we assign
a 100% uncertainty on the contribution from these back-
ground processes. Consequently, the total uncertainties
due to background processes are 0.02%, 0.11%, and
0.23% for these three channels, respectively.

Uncertainties arising from the trigger efficiency cor-
rection procedures are due to the limited sizes of the
samples with the reference trigger applied. The uncertain-
ties are measured to be 0.16%, 0.03%, and 0.01% for the
Bhabha, digamma-dominated, and dimuon channels for
the L1 trigger efficiency corrections, respectively. These
statistical uncertainties are treated as the systematic un-
certainties corresponding to the relative trigger bits.

The combined relative uncertainties are calculated by
adding the individual uncertainties in quadrature, assum-
ing that they are uncorrelated. The resulting total relative
uncertainties of the T (4S) sample are 0.61%, 0.60%, and
0.90% for the Bhabha, digamma-dominated, and dimuon
channels, respectively. Most of the systematic uncertain-
ties are positively correlated for the (4S) and off-1(4S)
samples, except for those associated with "c.m. energy",
"MC statistics", "beam background", and "E*™ criteria".
The Run 1 luminosity is measured to be (426.88 = 0.03 +
2.61)fb", (429.28 £ 0.03 £2.62) fb ', and (423.99 + 0.04
+ 3.83) fb! with the Bhabha, digamma-dominated, and
dimuon channels, respectively.

The integrated luminosities of the data sample at vari-
ous energy points are given in Table 3. The measured Iu-
minosities with Bhabha, digamma-dominated, and
dimuon channels are consistent within 1.3¢ after the re-
moval of correlated uncertainties. The luminosities ob-
tained with the three channels are combined by consider-
ing the correlation of the uncertainties among them. The
mean values (L) and the uncertainties (AL) are calcu-
lated with [25]

013001-10



Measurement of the integrated luminosity of data samples collected during 2019-2022 by...

Chin. Phys. C 49, 013001 (2025)

Table 3. The integrated luminosities of the data sample at different energy points. The quantities Le., £,, and £, are the integrated
luminosities obtained with the Bhabha, digamma-dominated, and dimuon channels, respectively. In the last column £ denotes the com-
bined results of the three luminosity measurement channels. The first uncertainties represent statistical uncertainties, while the second
are systematic uncertainties. The uncertainties of combined luminosities are the total uncertainties, which include both statistical and
systematic uncertainties.

Type Vs5/GeV Lo/ Ly,/fo! L, /67! L/t
T(4S) 10.580 364.48 £0.03 £2.23 366.57 +0.03 £2.20 361.97 £0.04+3.26 365.37+ 1.70
of - 1(4S) 10.517 42.60+0.01 £0.26 42,90 +£0.01 £0.26 42.41£0.02£0.39 42.74+0.20
10.657 3.55+0.01 +£0.03 3.55+0.01 % 0.03 3.51+0.01 +0.04 3.54+£0.03
10.706 1.64 +0.01 +0.02 1.64 £0.01 +0.02 1.62 +0.01 +0.02 1.63 +0.02
(58 sean 10.751 9.88+0.01 +0.07 9.91+0.01+0.08 9.78 £0.01 £ 0.10 9.88 +0.06
10.810 4.72+0.01+0.04 4.71+0.01+0.04 4.69 £ 0.01 £ 0.05 4.71+0.03
Total — 426.88 +0.03 £ 2.61 429.28 +0.03 £ 2.62 423.99+0.04 +3.83 427.87 +2.01
T+AL = %L Tjwg; N 1 @) collected from March 20 1.9 to June 2022 'With the Belle I.I
2w X wi] detector at SuperKEKB is measured with Bhabha, di-

where i and j are summed over Bhabha, digamma-domin-
ated, and dimuon channels, w;; is the element of the
weight matrix W=V~!, and V is the covariance error
matrix calculated according to the statistical and system-
atic uncertainties in Table 3. Combining the results of all
three channels, the error matrix can be calculated as

ALge -Eee ‘1:77 6§eyy -Eee ‘Eﬂll 635;1/1

V= 'EeeLdeew AL?’Y LVVL”“(S?’VIJIJ E)
‘Lee‘Eﬂﬂégeuﬂ ‘L77‘£””6$’7#H AL;ZW

where the luminosity £ (total uncertainty AL) with sub-
scripts ee, yy, or uu represent the luminosity (total uncer-
tainty) is obtained from Bhabha, digamma-dominated, or
dimuon channels. The symbol ¢ with a combination of
two subscripts denotes the common relative systematic
uncertainties between two corresponding channels. Here,
Oeeyy = 0.26%, ey = 0.52%, and 6,,,, = 0.32%. The res-
ults from this averaging procedure are given in Table 3.
The total uncertainty of the average luminosity is about
0.47%.

VIII. CONCLUSIONS

The integrated luminosity of the Run 1 data sample

gamma, and dimuon events. We determine the total integ-
rated luminosity of the data sample to be (426.88 + 0.03 +
2.61)fb ", (429.28 £ 0.03 £2.62) fb !, and (423.99 + 0.04
+ 3.83) fb! with the Bhabha, digamma-dominated,
dimuon channels, where the first uncertainties are statist-
ical and the second are systematic. The luminosity res-
ults obtained from three channels are consistent within
1.30. The combined luminosity obtained from these three
luminosity results is (427.87 + 2.01) fb™'. The integrated
luminosities of individual data samples at different ener-
gies are summarized in Table 3. These integrated lumin-
osities, measured in this work, serve as basic inputs for
many analyses at Belle II.
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