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e+e− → e+e−(nγ) e+e− → γγ(nγ) e+e− → µ+µ−(nγ)

Abstract: A series of data samples was collected with the Belle II detector at the SuperKEKB collider from March
2019 to June 2022. We determine the integrated luminosities of these data samples using three distinct methodolo-
gies involving Bhabha ( ), digamma ( ), and dimuon ( ) events. The
total  integrated  luminosity  obtained  with  Bhabha,  digamma,  and  dimuon  events  is  (426.88  ±  0.03  ±  2.61)  fb−1,
(429.28  ±  0.03  ±  2.62)  fb−1,  and  (423.99  ±  0.04  ±  3.83)  fb−1,  where  the  first  uncertainties  are  statistical  and  the
second are systematic. The resulting total integrated luminosity obtained from the combination of the three methods
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I.  INTRODUCTION

LIntegrated luminosity,  denoted  , connects  the  num-
ber of produced events (N) with the cross section (σ) of a
specific physical process, as expressed by the formula 

N =L·σ. (1)

Accurate  measurements  of  integrated  luminosity  are
essential to minimize uncertainties in cross-section meas-
urements of interesting physics processes.

e+e−

Υ(4S )

6×1035 cm−2s−1

4.7×1034

cm−2s−1

In high-energy physics experiments, integrated lumin-
osity is determined using Eq. (1), employing well-known
quantum  electrodynamics  processes.  In  this  paper,  we
present the  results  of  an  integrated  luminosity  measure-
ment conducted by the Belle II experiment [1], which op-
erates at  the SuperKEKB   collider [2] located at  the
High  Energy  Accelerator  Research  Organization  (KEK)
in Japan. SuperKEKB is an asymmetric energy collider in
which  electrons  with  an  energy  of  7  GeV  and  positrons
with an energy of 4 GeV circulate in the high energy ring
(HER) and low energy ring (LER), respectively. The col-
lider mainly operates at the center-of-mass (c.m.) energy
of  10.58  GeV,  which  is  at  the  peak  of  the    reson-
ance.  Belle  II  is  designed  to  measure  the  parameters  of
the Standard Model precisely and search for new physics
beyond the Standard Model with a planned integrated lu-
minosity  of  50  ab−1.  The  instantaneous  luminosity  target
is    .  In  June  2022,  SuperKEKB achieved
an  instantaneous  luminosity  world  record  of 

, with a statistical uncertainty of 2.7% and a sys-
tematic uncertainty of 1.7% [3]. Determination of the in-
tegrated luminosity directly via integration of the instant-
aneous luminosity  therefore carries  a  substantial  system-
atic uncertainty.

e+e−

The Belle II/SuperKEKB project has had three major
commissioning phases. Phase 1 was carried out in Spring
2016 without beam collisions and was prior to the install-
ation  of  the  Belle  II  detector.  Phase  2,  which  began  in
March 2018  and  ended  in  July  2018,  marked  the  begin-
ning of   collisions with the Belle II detector installed,
albeit  without the vertex detector (VXD). The integrated
luminosity of Phase 2 was measured to be (496.3 ± 0.3 ±
3.0)  pb−1  [4]. Phase 3  started in  March 2019 with  a  par-
tial  VXD and  resulted  in  data  for  physics  analyses.  The
data  sample  collected  from March  2019  to  June  2022  is
defined as the Run 1 data.

We  measure  the  integrated  luminosity  of  the  Run  1

e+e− → e+e−(nγ)
e+e− → γγ(nγ)

e+e− → µ+µ−(nγ)

data using  the  following  three  precisely  calculable   pro-
cesses:  Bhabha  scattering  ( ),  digamma
production  ( ),  and  dimuon  production
( ).  These  processes  benefit  from  large
and  well-known production  cross  sections  and  clean   ex-
perimental signatures.

Several  improvements  and  a  new  cross-check  have
been implemented with respect  to  the method developed
for the Phase 2 dataset. In the Run 1 data, along with the
installation of the VXD detector system in the Belle II de-
tector, improvements  were  implemented  in  the   recon-
struction  procedure.  These  improvements  enable  the  use
of tracks to select Bhabha events and implementation of a
new  cross-check with  dimuon  events,  reducing  the   de-
pendence  on  the  electromagnetic  calorimeter  (ECL)
cluster  information.  The  Run  1  data  sample  has  almost
1000 times the integrated luminosity and 10 times the in-
stantaneous luminosity of that in Phase 2. However, high-
er instantaneous luminosities result in increased beam-in-
duced  background [5].  A new analysis  method  has  been
developed  to  assess  the  impact  of  higher  background
levels. To  address  the  larger  background  levels,  a   com-
prehensive  trigger  system  is  implemented  consisting  of
both  a  hardware-based  level  1  trigger  (L1 trigger)  [6, 7]
and  a  software-based  high-level  trigger  (HLT)  [8]  (Sec-
tion V). 

II.  THE BELLE II DETECTOR

The  Belle  II  detector  [1]  has  a  cylindrical  geometry
and includes a two-layer silicon-pixel detector (PXD) sur-
rounded by a four-layer double-sided silicon-strip detect-
or (SVD) [9] and a 56-layer central drift chamber (CDC).
These  detectors  reconstruct  tracks  of  charged  particles.
The  PXD  and  SVD  are  collectively  referred  to  as  the
VXD,  which  is  used  to  locate  the  decay  vertex  of  B
mesons.  Only  one  sixth  of  the  second  layer  of  the  PXD
was  installed  for  the  data  analyzed  here.  The  z  axis  is
along  the  bisector  of  the  angle  between  the  direction  of
the  electron  beam  and  the  direction  opposite  to  the
positron  beam.  The x-axis  is  horizontal  and  points  away
from the center of the accelerator ring. The y-axis is ori-
ented  vertically  upward.  With  respect  to  the  z-axis, ϕ  is
the azimuthal angle and θ is the polar angle. Surrounding
the CDC, which also provides energy-loss measurements,
is  a  time-of-propagation  counter  (TOP)  [10] in  the  cent-
ral  region and an aerogel-based ring-imaging Cherenkov
counter  (ARICH) in  the  forward  region.  These  detectors
provide  charged-particle  identification.  Surrounding  the
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TOP and ARICH is  the ECL, which is  based on CsI(Tl)
crystals and primarily provides energy and timing meas-
urements for photons and electrons. The ECL covers the
polar  angle  region  of  ,  except  for  two
gaps    wide  between  the  barrel  and  endcap  regions.
Outside of  the  ECL  is  a  superconducting  solenoid  mag-
net.  Its  flux  return  is  instrumented  with  resistive-plate
chambers and plastic scintillator modules to detect muons
and    mesons.  The  solenoid  magnet  provides  a  1.5  T
magnetic field that is parallel to the z axis.

1/R

The  Belle  II  trigger  system is  designed  to  determine
whether to retain or discard specific events. The L1 trig-
ger  operates  as  a  hardware-based  logic  system  with  a
maximum  output  rate  of  30  kHz  and  a  fixed  latency  of
4.4 µs [6, 7]. The HLT is a software-based system that re-
constructs  events  and  filters  them  to  a  maximum output
rate of 10 kHz [8]. For each trigger bit in the HLT or L1,
a prescale factor R applies, recording only a fraction 
of the events that would have passed the trigger require-
ments.  These  prescale  factors  are  taken  into  account  in
the analysis. 

III.  DATA SAMPLE AND MONTE CARLO
SIMULATION

√
s Υ(4S )

Υ(4S ) Υ(5S )

Υ(4S )

The Run 1 data sample used in this paper was collec-
ted  from  March  2019  to  June  2022  with  the  L1  trigger
and HLT applied.  Three categories  of  datasets  were col-
lected, corresponding to different collision energies in the
c.m.  frame  ( ),  referred  to  as  “ ”  (10.580  GeV),
“off- ”  (10.517  GeV),  and  “   scan”  (10.657,
10.706,  10.751,  and  10.810  GeV),  where  the  values  in
parentheses  are  the  c.m.  energies  for  each  dataset  type.
While we only present the details of the luminosity meas-
urement for the   dataset in this paper, we apply the
same measurement technique to all other datasets.

Υ(4S )

√
s

σee σγγ
σµµ

To  determine  the  selection  efficiencies,  three  signal
Monte Carlo (MC) samples are generated at the c.m. en-
ergy  corresponding  to  the  peak  of  the    resonance.
The  BABAYAGA@NLO  generator  [11,  12]  is  used  to
produce events equivalent to 36 fb−1 for the Bhabha pro-
cess  and  719 fb−1  for  the  digamma process.  The  KKMC
generator  [13]  is  used  to  generate  1439  fb−1  of  dimuon
events. Taking into account the beam energy variation of
approximately 3.1 MeV for the LER and 4.4 MeV for the
HER, an energy spread of 5 MeV for   is applied in the
generation of Bhabha, digamma, and dimuon events. The
scattering  polar  angles  of  the  final-state  particles  are  set
to be within the range of 10.0° to 170.0° in the lab frame,
fully  covering  the  detector  acceptance.  The  cross-sec-
tions in  this  angular  window obtained  from the  generat-
ors are   = (295.38 ± 0.04 ± 0.42) nb,   = (5.0686 ±
0.0005  ±  0.0071)  nb  and    =  (1.1472  ±  0.0001  ±
0.0051) nb, where the first uncertainties are statistical and
the  second  are  systematic.  To  evaluate  the  impact  of

B+B− B0B̄0

uū dd̄ cc̄ ss̄

τ+τ−

e+e−e+e−

e+e−µ+µ−

background contributions, nine types of background pro-
cesses  are  generated:  200  fb−1  equivalent  samples  of

  and    events  utilizing  the  EvtGen  generator
[14];  200  fb−1  equivalent  samples  of  ,  ,  ,  and 
quark  continuum  events  generated  via  a  combination  of
KKMC  [13]  and  PYTHIA  [15];  a  1  ab−1  equivalent
sample  of    events  generated  with  KKMC  [16,  17];
and  100  fb−1  equivalent  samples  of    and

  events  produced  using  AAFH  [18].  After  MC
event  generation,  the  interactions  of  final-state  particles
with detector material are simulated with GEANT4 [19],
and the subsequent subdetector response and L1 and HLT
triggers are  simulated  with  the  Belle  II  Analysis   Soft-
ware  Framework  (basf2)  [20].  Time-independent  MC
simulations,  incorporating  calibrated  beam  background,
interaction  point  (IP)  position,  and  other  time-dependent
quantities aligned  with  actual  data,  are  employed  to   de-
termine the luminosity.  Time-dependent  MC simulations
are used  to  assess  some  systematic  uncertainties  as   out-
lined in Section VII. 

IV.  EVENT SELECTION

Ec.m.

Ec.m.
1 > 4

Ec.m.
1 > 3

∆θc.m.12 = |θc.m.1 + θ
c.m.
2 −180◦|

Signal  candidate  events  are  selected  following  the
method  outlined  below.  The  digamma  candidate  events
are  reconstructed  from  ECL  clusters,  while  the  Bhabha
and  dimuon  candidate  events  are  required  to  have  two
tracks  with  opposite  charge.  For  Bhabha  and  dimuon
events we select the two tracks with the highest momenta,
and  for  digamma  events  we  select  the  two  clusters  with
the highest energies. We then require that the energies of
the selected tracks or clusters fall within the range of 2.50
to  5.82  GeV.  Here,  energies  ( )  associated  to  tracks
are  determined  from  the  particle  momenta  measured  in
the tracking system combined with an assumed mass hy-
pothesis of electron or muon, while the energies of ECL
clusters from photon candidates are obtained from the en-
ergy depositions in  the ECL. To minimize potential  sys-
tematic uncertainties  from  trigger  (L1  and  HLT)   effi-
ciency  corrections,  the  selection  criteria  in  the  analysis
are chosen to be tighter  than those in  the trigger  (details
are in Section V). We require the energy of the higher-en-
ergy particle in the two final-state particles to be greater
than 4 GeV (  GeV) in Bhabha and digamma can-
didate events, and greater than 3 GeV (  GeV) in
dimuon candidate events. We require that the energy de-
posited  in  the  ECL  for  a  muon  candidate  track  be  less
than  0.5  GeV.  The  average  ionization  energy  loss  of  a
muon in the ECL is about 0.2 GeV: therefore a larger en-
ergy  deposition  is  likely  to  be  either  an  electromagnetic
shower produced  by  an  electron,  or  a  hadronic   interac-
tion  of  a  pion.  This  criterion  effectively  rejects  Bhabha
events from the dimuon processes. To ensure that the two
final-state  particles  are  emitted  back to  back,  we require
the polar opening angle ( ) to be
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∆θc.m.12 < 5
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37.8◦ < θcluster1 ,
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  and  the  azimuthal  opening  angle  (
) to be  . We set a tighter re-

quirement for digamma events,  . Here, the sub-
script  ''1''  (''2'')  refers  to  the  final-state  particle  with  the
largest (second  largest)  energy.  All  clusters  must  be   re-
constructed  in  the  ECL  with  polar  angles 

 in the laboratory frame, which ensures op-
timal calorimeter energy resolution, avoids detector gaps,
and  minimizes  beam  background  levels  [21].  To  further
suppress background contamination in the dimuon meas-
urement,  we  require  the  invariant  mass  of  the  dimuon
system (M( )) to be greater than 9 GeV .

The total contaminations of background processes are
0.02%,  0.66%,  and  0.23%  for  Bhabha,  digamma,  and

dimuon channels, respectively. In the digamma channel, a
significant contamination of Bhabha events, amounting to
(0.55 ± 0.02)%, remains even after applying all selection
criteria. Thus, we treat both Bhabha and digamma events
as  signal  in  the  measurement  with  digamma  events,
which is hereafter referred to as the digamma-dominated
channel.  The  remaining  backgrounds  are  not  accounted
for the signal MC samples and considered as a part of the
systematic  uncertainties  in  each  channel,  as  described  in
Section VII.

The  observables  used  in  the  selection  criteria  are
shown  in  Figs.  1,  2  and  3.  In  these  figures,  signal  and
background MC  samples  are  initially  scaled  to  a   com-
mon reference luminosity, and then the total MC samples

 

∆θc.m.12 = |θc.m.1 + θc.m.2 −180◦ | ∆ϕc.m.12 = ||ϕc.m.1 −ϕc.m.2 |−
180◦ |

Υ(4S )

Fig. 1.    (color online) Kinematic distributions of Bhabha signal candidates in data and MC. The first row contains distributions of the
c.m. energy of the higher-energy final-state particle (a), the lower-energy final-state particle (b), and each of the two final-state particles
(c). The second row represents distributions of polar angle of ECL clusters of the higher-energy final-state particle (d), the lower-en-
ergy particle (e), and each of the two final-state particles (f) in the lab frame. Subfigure (g) shows the distribution of the polar opening
angle  ( ),  while  subfigure  (h)  shows  the  distribution  of  the  azimuthal  opening  angle  (

). Each subfigure shows one parameter from the event selection criteria where all other criteria have been applied except for that
shown in the figure. All the criteria are applied in subfigures (c) and (f). ''Data'' in the legend signifies the collision data from the 
dateset, while ''Sig MC'', ''Bkg MC'', and ''Tot MC'' correspond to the signal (MC Bhabha events), background (MC samples except for
signal events), and total MC samples (the sum of both the signal and background samples), respectively. The error bars are invisible
due to the large size of the sample. The dashed histogram for ''Tot MC'' overlaps with the solid histogram of ''Sig MC'', making the ''Tot
MC'' histogram invisible. The vertical black dashed lines represent the selection criteria for signal events. Events in the shaded regions
are removed by the selection criteria.
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are normalized to the number of events in the data in each
figure.  The  data  sample  shows  good  agreement  with  the
MC simulations in most cases, while some discrepancies
are  observed.  In  the  Bhabha  scattering  distributions,  an
excess is observed in   below 4 GeV in Fig. 1(a). This
excess  is  due  to  the  imperfect  calibration  of  the  data
sample. The discrepancies in the energy distribution have
little impact on the luminosity measurement, as the selec-
tion criteria require   4 GeV. The shapes of the data
sample do not match those of the MC simulations in the

 and   distributions of Figs. 1, 2, and 3. The ob-
served discrepancies  suggest  a  difference  in  energy   re-
construction  between  data  and  MC  samples.  Since  the
combined    distributions  exhibit  good  agreement
between  the  data  and  the  MC,  the  discrepancies  in  the

  and    distributions have  no  impact  on  the   lu-
minosity  measurement.  Discontinuities  observed  at

  73°,  85°,  97°,  and  107°  in  Figs.  3(d),  3(e),  and
3(f),  can  be  attributed  to  specific  characteristics  of  the
ECL  energy  cluster  reconstruction  process.  The  average
ionization  energy  loss  by  a  muon  is  approximately  200
MeV, while the minimum value required to form an ECL
energy cluster is 30 MeV [22]. Consequently, each muon

track typically results in only one ECL cluster associated
with a  crystal  hit.  The  ECL  cluster  reconstruction   al-
gorithm assigns the position of the cluster to the center of
the  hit  crystal,  rather  than  the  actual  location  of  the  hit.
Additionally, if muons deposit energy at or near the posi-
tions of the thin aluminum fins that mechanically support
the  crystals,  there  is  a  higher  likelihood  of  producing
single-crystal  clusters  with  energies  below  the  30  MeV
threshold, which are not recorded by the data acquisition
system.  These two phenomena,  along with  the  choice  of
histogram bins, result in the observed discontinuities.

After applying all the selection criteria to each signal
channel,  the  selection  efficiency  for  Bhabha  channel  is
found to  be  (1.88  ±  0.01)%.  This  relatively  low   effi-
ciency is attributed to: (i) the combined requirement of at
least two tracks matched with ECL clusters with energies
greater than 1 GeV, which leads to a selection efficiency
of (16.27 ± 0.01)%; and (ii) for the generated events, lim-
iting electron or positron scattering angles within the de-
tector  region  of  interest,  results  in  a  selection  efficiency
of (16.03 ± 0.01)% after the application of the combined
requirement  in  (i).  For  the  digamma-dominated  channel,
the selection efficiencies are (16.79 ± 0.01)% and (0.0016
± 0.0001)% for digamma and Bhabha processes, respect-

 

◦ ∆ϕc.m.12

Fig. 2.    (color online) Kinematic distributions of digamma-dominated signal candidates in data and MC. The convention in the figure
is the same as in Fig. 1 except the signal processes are Bhabha and digamma events here. The edge at 3  in the   distribution is due
to the HLT requirements for digamma-dominated channel discussed in the text.
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ively. The selection efficiency is (29.84 ± 0.01)% for the
dimuon channel. 

V.  CORRECTIONS OF THE L1 TRIGGER AND
HLT EFFICIENCIES

The  Run  1  data  set  was  collected  with  an  active  L1
trigger  and  HLT.  The  MC samples  are  produced  with  a
simulation of  the  trigger  system.  The trigger  efficiencies
are corrected to those measured in data. Trigger efficien-
cies of the Run 1 data sample are measured by use of the
following equation: 

ϵtest =
N(test∩ ref)

N(ref)
, (2)

N(test∩ ref)

N(ref)

where '' '' is the number of events that fire both
the  trigger  to  be  tested  and  the  reference  trigger,  and
'' '' is  the  number  of  events  that  activate  the   refer-
ence trigger. The test and reference triggers must be inde-
pendent from each other.  Hence, to estimate the L1 trig-
ger efficiency, we choose test triggers solely based on in-

formation from the ECL, while reference triggers rely ex-
clusively on CDC information. The test trigger bits selec-
ted  from  the  HLT  combine  information  extracted  from
different subdetectors. We choose reference triggers with
looser criteria than those used in the primary analysis so
that the reference trigger is 100% efficient with respect to
the  analysis  selection  criteria.  These  triggers  have  non-
unity  prescale  factors,  which  are  taken  into  account.  All
uncertainties in this section are statistical only.

Ecluster > 2 GeV
32.2◦ < θcluster < 124.6◦

|θcluster1 + θcluster2 −
180◦| < 20◦ ||ϕcluster1 −ϕcluster2 | −180◦| < 40◦

For  the  Bhabha  channel,  events  are  required  to  pass
an L1 trigger bit, which requires at least one ECL cluster
with energy   in the c.m. frame falling with-
in  the  polar  angle  range  of    in  the
lab frame.  Additionally,  after  May  2021,  a  new L1   trig-
ger bit was introduced to the HLT, incorporating a series
of  criteria  to  select  Bhabha  events.  In  the  additional  L1
trigger  bit,  the  polar  angles  and azimuthal  angles  of  two
ECL  clusters  are  required  to  satisfy 

  and    in  the  c.m.
frame.  The  two  ECL clusters  should  both  have  energies
greater  than  2.5  GeV,  with  at  least  one  of  them  greater
than 4 GeV. The L1 trigger efficiencies are calculated to

 

µµ

Fig. 3.    (color online) Kinematic distributions of dimuon signal candidates in data and MC. The convention in the figure is the same as
in Fig. 1 except the signal process is dimuon events here. In addition, subfigure (i) shows the invariant mass distribution of the dimuon
system (M( )).
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30◦ < θcluster <
180◦

be (99.97 ± 0.01)% and (99.69 ± 0.19)% for data samples
before  and  after  May  2021,  respectively.  The  L1  trigger
efficiencies for the MC samples are (98.63 ± 0.01)% and
(98.15  ±  0.01)%.  Consequently,  correction  factors  of
1.0136 ± 0.0001 and 1.0157 ± 0.0021 are applied to ad-
just  the  selection  efficiencies  of  the  MC samples  for  the
Bhabha channel.  The  HLT test  trigger  requires  the  elec-
tron to fall  within the polar  angle range of 

 in the lab frame. The HLT efficiencies are (99.98 ±
0.01)%  and  (99.99  ±  0.01)%  for  the  data  and  MC
samples,  respectively.  The  HLT  efficiency  correction  is
estimated to be 0.9999 ± 0.0001 for MC simulation.

Ecluster > 4 GeV

2 GeV < Ecluster
2 < Ecluster

1 32◦ < θcluster1 ,

θcluster2 < 130◦ ||ϕcluster1 −ϕcluster2 | −180◦| < 3◦

For  the  digamma-dominated  channel,  the  L1  trigger
efficiency of the data sample is determined to be (99.97 ±
0.01)%. This value is obtained from the Bhabha channel
with the  L1  trigger  bit  before  May  2021,  as  both   chan-
nels  utilize  the  same  L1  trigger  in  this  context.  The  L1
trigger efficiency for the MC samples is (98.59 ± 0.01)%.
Thus, the  correction  factor  for  the  L1  trigger  is   determ-
ined to  be  1.0140  ±  0.0001.  The  HLT  bit  to  select   di-
gamma events requires at least one ECL cluster with en-
ergy  .  In  addition,  the  energies,  polar
angles, and  azimuthal  angles  of  the  two  clusters  are   re-
quired  to  satisfy  , 

,  and  .  Here,  the
polar  angles  are  defined  in  the  lab  frame,  while  other
quantities are in the c.m. frame. The HLT efficiencies for
the  data  and  MC  samples  are  calculated  to  be  (99.70  ±
0.01)% and (99.99 ± 0.01)%, respectively. Consequently,
the efficiency correction factor for the HLT is found to be
0.9971 ± 0.0001.

Ecluster
1 ,Ecluster

2 < 2 GeV
165◦ < θcluster1 + θcluster2 < 190◦ 160◦ < |ϕcluster1 −ϕcluster2 | <
200◦

pc.m.1 > 3 GeV pc.m.2 > 2.5 GeV

Dimuon events  are  selected  by an  L1 trigger  bit  that
requires  the energies,  polar  angles,  and azimuthal  angles
of  the  two  ECL  clusters  satisfy  ,

,  and 
. Due to a misconfiguration in the L1 trigger for data,

the calculated L1 trigger efficiencies are (97.33 ± 0.01)%
for  samples  collected  before  August  2020  and  (89.48  ±
0.01)% for  those  obtained  after.  The  L1  trigger   effi-
ciency  for  the  MC  samples  is  found  to  be  (77.12  ±
0.01)%. Thus, the efficiency correction factors for the L1
trigger  are  determined  to  be  1.2621  ±  0.0001  for  data
samples before August 2020 and 1.1604 ± 0.0001 for data
samples after August 2020. The Belle II experiment col-
lects  data  with  a  redundant  set  of  parallel  L1  triggers,
however they are  not  used in  this  analysis.  This   redund-
ancy ensures that  no physics  events  were lost  due to the
misconfiguration  issue.  The  HLT  requires  momentum
thresholds of   and  . Addition-
ally, the energy deposited in the ECL for each muon can-
didate should be greater than 0 GeV and less than 1 GeV.
The  HLT  efficiencies  for  the  data  and  MC  samples  are
calculated to be (99.78 ± 0.01)% and (99.91 ± 0.01)%, re-
spectively. The efficiency correction factor for the HLT is
found to be 0.9987 ± 0.0001. 

VI.  DETERMINATION OF INTEGRATED
LUMINOSITIES

Taking into the account the selection efficiencies and
their  correction  factors,  the  expression  for  the  integrated
luminosity becomes 

L = Nobs
data

σsigϵsig fL1 fHLT
. (3)

Nobs
data

σsig

ϵsig

fL1 fHLT

For all three channels, after applying their specific selec-
tion  criteria,  we  obtain  the  numbers  of  signal  events
( ) in the data sample. The cross sections for the sig-
nal processes ( ) are provided by the event generators,
while  the  selection  efficiencies  of  these  signal  processes
( )  are  estimated  using  their  corresponding  MC
samples. The correction factors for the L1 trigger and the
HLT  efficiencies  (   and  ) are  evaluated  as   de-
scribed  in  Section  V.  All  these  quantities  are  listed  in
Table 1.

Υ(4S )The integrated luminosity of the   data sample is
determined  to  be  (364.48  ±  0.03)  fb−1,  (366.57  ±  0.03)
fb−1, and (361.97 ± 0.04) fb−1 with the Bhabha, digamma-
dominated, and  dimuon  channels,  respectively.  The   un-
certainties are statistical only and obtained from data. The
uncertainties due to the limited sizes of  the MC samples
are treated as a part of the systematic uncertainties in this
paper. 

VII.  SYSTEMATIC UNCERTAINTIES

Υ(4S )

Table  2  lists  eighteen contributions  to  the  systematic
uncertainties. Here, we provide a complete description of
the systematic uncertainties for the   sample, and the
procedure  is  the  same  for  the  other  samples.  We  find
small changes  in  the  calculated  luminosity  when  the   se-
lection  criteria  or  the  generation  parameters  within  MC
samples are  adjusted.  The  difference  between  the  modi-
fied luminosity and the nominal luminosity is taken as the
systematic uncertainty, unless otherwise stated.

The BABAYAGA@NLO generator provides a theor-
etical  cross-section  uncertainty  of  0.20% for  the  Bhabha
process  and 0.10% for  the  digamma process  [11, 12].  A
small  fraction  of  generated  events  exceeds  the  phase
space,  impacting  the  cross  sections  by  0.10%.  Thus,  the
total cross-section uncertainties for Bhabha and digamma
processes  are  conservatively  estimated  to  be  0.23%  and
0.15%, respectively. The precision of the dimuon process
is computed by the KKMC generator as an uncertainty of
0.44% [13, 23].

To  assess  the  impact  of  the  input  parameters  of  the
generators, we  vary  each  parameter  and  measure  the   lu-
minosity difference  relative  to  the  nominal  value,   treat-
ing  each  change  as  a  systematic  uncertainty  associated
with  that  parameter.  The  c.m.  energy  fluctuates  around
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Υ(4S )the    peak  with  less  than  a  5  MeV  variation  over
time. To cover the impact of this potential  deviation, we
vary  the  c.m.  energy,  increasing  or  decreasing  it  by  5
MeV in the signal MC samples. These adjustments result
in uncertainties of 0.15%, 0.25%, and 0.29% for the Bh-
abha,  digamma-dominated, and  dimuon  channels,   re-
spectively.

The angular range of the primary final-state particles

35◦ 145◦

is an important input for generators. To improve compu-
tational  efficiency,  low multiplicity  events  are  simulated
only if the final-state particles are expected to interact in
the  active  volume of  the  detector.  To  estimate  boundary
effects  from scattering,  we change the  polar  angle  range
to  – .  The  uncertainties  are  estimated  as  0.08%,
0.01%,  and  0.03% for  the  Bhabha,  digamma-dominated,
and dimuon channels, respectively.

Following the alignment of ECL crystal positions us-
ing dimuon events, uncertainties of 0.04 mm in the x dir-
ection, 0.08 mm in the y direction, and 0.11 mm in the z
direction  have  been  determined.  These  uncertainties  are
equivalent  to  uncertainty  in  the  position  of  the  IP.  We
generate a series of new MC samples for the three chan-
nels, incorporating this uncertainty in the IP position. The
uncertainties related to the alignment of the ECL location
are estimated to be approximately 0.02% for the Bhabha,
digamma-dominated, and dimuon channels.

The limited MC sample sizes lead to uncertainties in
the measurement of the selection efficiencies. The uncer-
tainties are determined to be 0.03% for the Bhabha chan-
nel and 0.02% for digamma-dominated and dimuon chan-
nels, respectively.

As the instantaneous luminosity increases, the impact
of beam background becomes a larger component of  the
systematic uncertainty. To assess this uncertainty, we cal-
culate  the  weighted  average  of  the  differences  between
the  luminosities  computed  using  time-dependent  MC
samples,  which  includes  realistic  beam background,  and
time-independent MC samples  characterized  by   signific-
antly lower  beam  background,  calculated  from   simula-
tion.  Since the time-dependent  MC samples  describe the
data well,  we consider half of the differences as the sys-
tematic  uncertainties  associated  with  beam  background,
amounting to  0.13%, 0.19%, and 0.26% for  the Bhabha,
digamma-dominated, and dimuon channels, respectively.

Uncertainties in track reconstruction efficiencies arise
during the track reconstruction procedure, where the dif-
ference  between  the  data  and  the  MC  simulations  may
reach  0.24%  per  track  [24].  As  Bhabha  and  dimuon
events each  have  two tracks,  and  assuming a  100% cor-

 

Υ(4S )

σγγ σee ϵγγ ϵee

f TotL1

Υ(4S )
fHLT

Table 1.    Key parameters for the measurement of the integrated luminosity of the   data sample in the three measurement chan-
nels. Within the digamma-dominated channel,   ( ) signifies the cross section of the digamma (Bhabha) process, while   ( )
represents the selection efficiency of the digamma (Bhabha) process. Here   is the efficiency correction factor for the L1 trigger ap-
plied to the entire   sample,  which is calculated as a weighted average based on luminosities accumulated during different time
periods, as detailed in Section V and   is the efficiency correction factor for the HLT. The values in parentheses are the statistical
uncertainties, for example, 20.5376 (1) = 20.5376 ± 0.0001.

Channel Nobs
data (×108)  σsig /nb ϵsig  (%) f TotL1 fHLT L/fb−1

Bhabha 20.5376 (1) 295.38 (4) 1.88 (1) 1.0148 (17) 0.9999 (1) 364.48 (3)

Digamma-dominated 3.1228 (2)
σγγ

σee

: 5.0686 (5)
: 295.38 (4)

ϵγγ

ϵee ×10−2
: 16.53 (1)

: 0.16 (1) 
1.0140 (1) 0.9971 (1) 366.57 (3)

Dimuon 1.2344 (1) 1.1472 (1) 25.40 (1) 1.1719 (1) 0.9987 (1) 361.97 (4)

 

Υ(4S )
Table 2.    Contributions to the systematic uncertainties of the
measured integrated luminosities at   for the Bhabha, di-
gamma-dominated,  and  dimuon  channels.  The  uncertainties
denoted  with  a  superscript  *  represent  estimations  based  on
time-independent MC samples,  while the others are based on
time-dependent samples.

Source e+e− (%) γγ(%) µ+µ− (%)

Cross section ±0.23 ±0.15 ±0.44
√
s (c.m. energy)* ±0.15 ±0.25 ±0.29

Input angular range* ±0.08 ±0.01 ±0.03
ECL alignment* ±0.02 ±0.02 ±0.02
MC statistics ±0.03 ±0.02 ±0.02

Beam background* ±0.13 ±0.19 ±0.26
Track reconstruction ±0.48 — ±0.48
Cluster reconstruction — ±0.41 —

Charge misassignment ±0.03 — ±0.01

Ec.m.  criteria ±0.04 ±0.07 ±0.09

θcluster  criteria ±0.08 ±0.06 ±0.11

∆θc.m.12  criteria ±0.05 ±0.07 ±0.29

∆ϕc.m.12  criteria ±0.01 ±0.04 ±0.26
Cluster veto criteria — — ±0.03
Material effects* ±0.05 ±0.20 —

Overlapping clusters — ±0.01 —

Background processes ±0.02 ±0.11 ±0.23
L1Trigger ±0.16 ±0.03 ±0.01

Quadrature sum ±0.61 ±0.60 ±0.90
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relation between  them,  we  obtain  a  conservative   uncer-
tainty of 0.48% for the Bhabha and dimuon channels. The
uncertainty of the cluster reconstruction for the digamma-
dominated channel is estimated to be 0.41%. A measure-
ment  without  any  requirements  on  the  cluster  finds  that
the  uncertainty  associated  with  cluster  reconstruction  is
negligible for the Bhabha channel.

Two tracks with opposite  charges are required in the
Bhabha and dimuon channels. To determine the impact of
potential charge  misassignment,  we  perform  new  meas-
urements by removing the criterion related to charge and
obtain uncertainties of 0.03% and 0.01% for the measure-
ments with Bhabha and dimuon events, respectively.

The criteria for selecting signal events may introduce
uncertainties.  We  vary  the  selection  requirements  by
tightening or loosening them as follows:
 

2.50+0.25−0.25 < Ec.m.
2 < Ec.m.

1 < 5.82+0.25−0.25●   GeV     GeV;
 

37.8◦+1.6
◦

−2.8◦ < θ
cluster
1 , θcluster2 < 120.5◦+4.1

◦

−2.1◦●  ;
 

∆θc.m.12 < 5
◦+2.5◦
−2.5◦●  ;

 
∆ϕc.m.12 < 5

◦+2.5◦
−2.5◦●  ;

 
∆ϕc.m.12 < 2.5

◦+1.0◦
−1.0◦●    (Only  for  digamma-dominated

channel);
 

0 < Ecluster
2 , Ecluster

1 < 0.50+0.02−0.02●    GeV (cluster  veto   cri-
teria for dimuon channel).
 

Ec.m.

θcluster

∆θc.m.12 ∆ϕc.m.12

The energy resolution of the final-state particles at an
energy of about 5.29 GeV is determined to be approxim-
ately  0.08  GeV.  To  estimate  the  systematic  uncertainty
arising  from  the    criteria, we  roughly  triple  the   en-
ergy resolution. This method is also used to estimate the
uncertainty  associated  with  cluster  veto  criteria.  For  the

 criteria, we change the polar angle range by adding
or removing ECL crystal rings. The adjustments to the re-
quirements on   and   are approximately expan-
ded or reduced by half from the original range. When we
change  each  selection  criterion,  the  larger  difference  in
integrated  luminosity  compared  to  our  standard  result  is
taken as  the  systematic  uncertainty.  The  systematic   un-
certainties from all sources are tabulated in Table 2.

Photons,  electrons,  and  positrons  may  interact  with
the material in the VXD, which causes the production and
absorption of photons, electrons and positrons. To invest-
igate the size of this effect, we remove the simulation of
the  VXD material  in  MC samples.  The  uncertainties  are
approximately 0.05% for the Bhabha channel and 0.20%
for the digamma-dominated channel.

After a photon interacts with the detector material,  it
may convert into two nearby clusters in the ECL. Select-

ing only  one  cluster  per  photon  introduces  bias.  To   ad-
dress this issue, we employ additional criteria to treat the
cluster with the smallest opening angle within a 5° range
in both polar and azimuthal angles relative to each selec-
ted cluster as a single overlapping cluster. The difference
in luminosity, including the presence or absence of over-
lapping clusters, serves as a measure of systematic uncer-
tainty. This uncertainty of approximately 0.01% is specif-
ic to the digamma-dominated channel, since the energies
of  Bhabha and dimuon tracks are  obtained in  a  different
manner.

9.3×10−5 uū 8.3×10−4 e+e−µ+µ− 2.0×10−3

As described in  Section III,  various background pro-
cesses  are  produced  and  analyzed  to  assess  their  impact
on the  luminosity  measurement.  The  primary   back-
ground  channels  (background  levels)  are  digamma
( ),    ( ),  and    ( )
events  for  the  measurements  with  Bhabha,  digamma-
dominated, and dimuon channels, respectively. Given that
the size of the contributions are relatively low, we assign
a 100% uncertainty on the contribution from these back-
ground  processes.  Consequently,  the  total  uncertainties
due  to  background  processes  are  0.02%,  0.11%,  and
0.23% for these three channels, respectively.

Uncertainties arising  from the  trigger  efficiency   cor-
rection  procedures  are  due  to  the  limited  sizes  of  the
samples with the reference trigger applied. The uncertain-
ties are measured to be 0.16%, 0.03%, and 0.01% for the
Bhabha,  digamma-dominated,  and  dimuon  channels  for
the L1 trigger  efficiency corrections,  respectively.  These
statistical uncertainties  are  treated  as  the  systematic   un-
certainties corresponding to the relative trigger bits.

Υ(4S )

Υ(4S ) Υ(4S )

Ec.m.

The combined relative uncertainties are calculated by
adding the individual uncertainties in quadrature, assum-
ing that they are uncorrelated. The resulting total relative
uncertainties of the   sample are 0.61%, 0.60%, and
0.90% for the Bhabha, digamma-dominated, and dimuon
channels, respectively.  Most of the systematic uncertain-
ties are positively correlated for the   and off-
samples,  except  for  those  associated  with  ''c.m.  energy'',
''MC  statistics'',  ''beam  background'',  and  ''   criteria''.
The Run 1 luminosity is measured to be (426.88 ± 0.03 ±
2.61) fb−1, (429.28 ± 0.03 ± 2.62) fb−1, and (423.99 ± 0.04
±  3.83)  fb−1  with  the  Bhabha,  digamma-dominated,  and
dimuon channels, respectively.

L ∆L

The integrated luminosities of the data sample at vari-
ous energy points are given in Table 3. The measured lu-
minosities  with  Bhabha,  digamma-dominated,  and
dimuon  channels  are  consistent  within  1.3σ  after the   re-
moval of  correlated  uncertainties.  The  luminosities   ob-
tained with the three channels are combined by consider-
ing the correlation of the uncertainties among them. The
mean  values  ( )  and  the  uncertainties  ( ) are   calcu-
lated with [25] 
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L̄±∆L = ΣiLi ·Σ jωi j

ΣiΣ jωi j
±
 

1
ΣiΣ jωi j

, (4)

wi j

W = V−1

where i and j are summed over Bhabha, digamma-domin-
ated,  and  dimuon  channels,    is  the  element  of  the
weight  matrix  ,  and  V  is  the  covariance  error
matrix calculated according to the statistical and system-
atic uncertainties in Table 3. Combining the results of all
three channels, the error matrix can be calculated as 

V =

Ü
∆L2

ee LeeLγγδ2eeγγ LeeLµµδ2eeµµ
LeeLγγδ2eeγγ ∆L2

γγ LγγLµµδ2γγµµ
LeeLµµδ2eeµµ LγγLµµδ2γγµµ ∆L2

µµ

ê
, (5)

L ∆L
ee γγ µµ

δeeγγ = 0.26 δeeµµ = 0.52 δγγµµ = 0.32

where the luminosity   (total uncertainty  ) with sub-
scripts  ,  , or   represent the luminosity (total uncer-
tainty) is obtained from Bhabha, digamma-dominated, or
dimuon  channels.  The  symbol  δ  with  a  combination  of
two  subscripts  denotes  the  common  relative  systematic
uncertainties between two corresponding channels. Here,

%,  %,  and  %. The   res-
ults  from this  averaging  procedure  are  given  in Table  3.
The  total  uncertainty  of  the  average  luminosity  is  about
0.47%. 

VIII.  CONCLUSIONS

The  integrated  luminosity  of  the  Run  1  data  sample

collected from March 2019 to June 2022 with the Belle II
detector at  SuperKEKB  is  measured  with  Bhabha,   di-
gamma, and dimuon events. We determine the total integ-
rated luminosity of the data sample to be (426.88 ± 0.03 ±
2.61) fb−1, (429.28 ± 0.03 ± 2.62) fb−1, and (423.99 ± 0.04
±  3.83)  fb−1  with  the  Bhabha,  digamma-dominated,
dimuon channels, where the first uncertainties are statist-
ical and  the  second  are  systematic.  The  luminosity   res-
ults  obtained  from  three  channels  are  consistent  within
1.3σ. The combined luminosity obtained from these three
luminosity results is (427.87 ± 2.01) fb−1.  The integrated
luminosities of individual data samples at  different ener-
gies are summarized in Table 3. These integrated lumin-
osities,  measured  in  this  work,  serve  as  basic  inputs  for
many analyses at Belle II. 
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