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We present a search for the baryon number B and lepton number L violating decays t~ — Az~ and

7~ — Az~ produced from the e* e~ — 77~ process, using a 364 fb~! data sample collected by the Belle II
experiment at the SuperKEKB collider. No evidence of signal is found in either decay mode, which have
|A(B — L)| equal to 2 and 0, respectively. Upper limits at 90% credibility level on the branching fractions of
7= — Az~ and 7~ — Az~ are determined to be 4.7 x 107® and 4.3 x 1073, respectively.

DOI: 10.1103/PhysRevD.110.112003

Baryon number violation (BNV) is necessary to explain
a dynamical generation of the asymmetry of matter and
antimatter in the universe [1-4]. For standard model (SM)
processes, at perturbative level, lepton number L and
baryon number B are conserved. However, nonperturbative
effects, such as sphaleron processes, could lead to viola-
tions of B and L separately at high temperatures, while
conserving their difference B — L [5-8]. Several beyond-
the-SM theories predict BNV, such as supersymmetry
models with R-parity violation [9], a black hole model
[10], superstring models [11], and grand unification models
[12]. Most of the models require B — L conservation, while
|A(B—L)| =2 is allowed in some scenarios [12—-14].
Thus, BNV processes can be accompanied by lepton
number violation. Discoveries of such BNV processes
would reveal the existence of physics beyond the SM
and shed light on matter-antimatter asymmetry.

Over the last few decades, several experiments have
searched for BNV, but no evidence has been found [15].
Proton decays have been extensively studied by Super-
Kamiokande [16], with lower limits on the lifetime of the
proton on the order of 103 years at the 90% confidence
level, while baryon-number-violating decays of charmed
and bottom hadrons, 7 leptons, and Z bosons were studied
by the CLEO [17,18], BABAR [19,20], OPAL [21], Belle
[22,23], and LHCDb collaborations [24], with upper limits
on the branching fractions in the range 1078 — 107> at the
90% confidence level.

We use a sample of e e~ collisions collected at a center-
of-mass (c.m.) energy +/s of 10.58 GeV corresponding to
the mass of the T'(45) resonance to search for BNV decays
7= - Az~ and 7= — Az~. The data, recorded by the
Belle II detector [25] operating at the SuperKEKB [26]
asymmetric-energy collider, have an integrated luminosity
L of (364 4 2) fb~! [27]. Searches for 7~ — Az~ and Az~
were performed by Belle [22] using a 154 fb~! data sample
yielding upper limits of 0.72 x 1077 and 1.4 x 1077,
respectively, at the 90% confidence level. With an upgraded

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

detector and a larger data sample, the Belle II experiment
can investigate these decays with improved sensitivity.

We select e e~ — 77~ events in which one of the two 7
leptons decays into three charged particles (3-prong) and the
other into one charged particle (1-prong) and one or more
neutrinos. We search for a signal on the 3-prong (signal) side
via the decay 1~ — A(— pa~)n~ or = — A(— pat)n~,
while we require that the other 7 (tag) decays into etv,7,,
Wby, 0, or 17’0, final states. Inclusion of charge-
conjugate states is always implied. A search region is defined
in a plane formed by the energy difference AE = E(Ax) —
\/5/2 and the invariant mass M (Ax), where A means A or A,
and signal is identified as an excess over background
expectations.

In the following, all variables are defined in the eTe™
c.m. system unless otherwise specified. The analysis is
optimized using simulated events, and data events outside
the signal region, before examining data in the signal
region.

The Belle II detector has a cylindrical geometry with the
axis of symmetry along the beamline (z axis) [25]. The
innermost component is a two-layer silicon-pixel detector
surrounded by a four-layer double-sided silicon-strip detec-
tor and a 56-layer central drift chamber (CDC). These
detectors reconstruct trajectories of charged particle
(tracks). Only one sixth of the second layer of the
silicon-pixel detector was installed for the data analyzed
here. Surrounding the CDC, which also provides dE/dx
energy-loss measurements, is a time-of-propagation detec-
tor in the central region and an aerogel-based ring-imaging
Cherenkov detector in the forward region. These detectors
provide particle identification (PID) for charged hadrons.
Surrounding them is an electromagnetic calorimeter (ECL)
composed of CsI(Tl) crystals that primarily provides
energy and timing measurements for photons and electrons.
Outside of the ECL is a superconducting solenoid magnet.
Its flux return is instrumented with resistive-plate chambers
and plastic scintillator modules to detect muons, K9
mesons, and neutrons. The solenoid magnet provides a
1.5 T magnetic field parallel to the z axis. The longitudinal
direction and the polar angle 0 are defined with respect to
the z axis, whose positive direction is that of the elec-
tron beam.

Simulated samples are used to estimate signal efficien-
cies and the number of expected background events [28].
We use the KKMC software package to generate 2 x 107
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ete” — vt (y) signal events [29]. The subsequent 7
decays are simulated by the TAUOLA software package
[30], with one 7 decaying to Az or Az according to a phase-
space model and the other decaying according to known
branching fractions. [15,29]. We use KKMC and TAUOLA
also to simulate backgrounds.

The KKMC generator is also used for ete™ — utu=(y)
and gg processes, where ¢ indicates u, d, s, or ¢ quarks,
with the gg pair fragmentation being simulated by the
PYTHIAS software package [31]. The PYTHIAS and EvtGen
[32] software packages are used to simulate the e*e™ — bb
process. The BabaYaga@NLO software package is used to
simulate the eTe™ — e e (y) processes [33-37]; the AAFH
[38—40] and TREPS [41] software packages are used for
simulations of ete™ —» £~ ¢"¢~ and eTe"h"h™ proc-
esses, respectively, where ¢ indicates an electron, muon, or
7 lepton, and / indicates a pion, kaon, or proton.

The size of each simulated sample is four times the size
of the corresponding component in data, except for the
ete” > ¢ ¢T¢ and ete”h"h™ samples, which are the
same size as expected in data, and the eTe™ — eTe (y)
sample, which is 10% of that expected in data. EvtGen is
used to simulate the decay of hadrons [32]. The PHOTOS
software package is used for the simulation of final state
radiation [42]. The Belle II software [43] uses the Geant4
[44] software package to simulate the response of the
detector to the interactions of particles.

The hardware trigger relies on energy deposits (clusters
with energy larger than 100 MeV) and their topologies in
the ECL, and on the number of reconstructed tracks in the
CDC. Events are required to satisfy one of the following
criteria: three ECL clusters with a topology inconsistent
with a Bhabha process, where at least one cluster has an
energy greater than 500 MeV; the sum of clusters exceeding
1 GeV; at least one charged particle with a momentum
greater than 0.7 GeV/c. The trigger efficiency for the 7~ —
Az~ (7= = Az~) channel, estimated on simulated signal
samples, is 99.5% (99.6%).

Both charged and neutral particles are required to be
within the acceptance of the CDC, i.e., —0.866 < cos 8 <
0.956. The transverse momentum of each charged particle
is required to exceed 0.1 GeV/c. Photons are identified as
clusters with energies greater than 0.1 GeV not associated
to any track. The thrust axis 7 is defined such that the
value of

A
r_ Silpi i o
>[5

is maximized. Here, p; is the momentum of the ith particle
and the sum runs over all tracks and clusters. Events are
geometrically split into two opposite hemispheres with a
plane perpendicular to the thrust axis. The hemispheres
corresponding to the signal and tag sides are required to
contain exactly three tracks and one track, respectively. In

Belle Il Simulation Tt~ - An~ signal Belle Il Simulation T~ = An~ signal

04| —— Signal region ----- Sideband —— Signal region -~ Sideband 1400
(a) (b)
1200
0.2
—_ 1000
>
& oo 800
b 600
-0.2
400
-0.4 - 200
1.701.721.741.761.781.801.821.84 1.701.721.741.761.781.801.821.84
M(Am) [GeV/c?] M(Am) [GeV/c?]
FIG. 1. Distributions of AE as a function of M(Ax) for

simulated (a) 7~ — Az~ and (b) 7~ — Az~ signal samples.
The red solid ellipses identify the signal regions, while the areas
between the dashed black boxes and the corresponding ellipses
are the sideband regions.

the following, we refer to the pion from the A or A decays
as 7y, the pion from the signal 7 decays as z,, and the pion
from the tag 7 decays as 7,,. We require that the numbers

of photons N32 and N2 on the signal and tag sides each be

less than four, and that the energy E;* of the most energetic
photon on the signal side be less than 1.0 GeV. These
requirements take into account the possibility of photons
radiated from the initial state and photons from z° decays
on the tag side.

A signal region is defined in the plane of the AE versus
M (Ar), in which signal is expected to peak at AE ~ 0.0 and
at M(Arx)~1.78 GeV/c?. The signal region, shown in
Fig. 1, has an elliptical shape whose size is defined so as
to include 90% of all reconstructed signal events. The
distribution of signal in the AE versus M(Ax) plane is
broadened by detector resolution and radiative effects.
Photons radiated from the initial state lead to a tail at low
values of AE. A sideband region is also defined as the
complements of the signal regions enclosed in the ranges
1.70GeV/c* < M(Ax) < 1.85GeV/c? and —0.35 GeV <
AE < 0.25 GeV, indicated by the rectangular boxes in
Fig. 1. Only candidates falling within the rectangular boxes
in Fig. 1 are analyzed.

We require that charged particles on the signal and tag
sides be identified by combining information from various
subdetectors to form the likelihood L£; for particle species i.
The ratio R; = L;/Z,L; is used to identify protons and
muons, where i indicates proton or muon, and j indicates
electron, moun, pion, kaon, proton, and deuteron. We
require R, > 0.5 and R, > 0.9, with efficiencies of
98.5% and 95%, respectively; 3.4% (6.5%) probability
for misidentifying a proton as a pion (kaon); and 4.1% for
misidentifying a muon as a pion. The electron identification
relies on a boosted decision tree classifier trained with
information from all subdetectors except the silicon vertex
detectors. We require the boosted decision tree output
P¢ > 0.9, with an efficiency of 99.4%, and the rate for
misidentifying an electron as a pion is 0.7%. Pion iden-
tification relies on the ratio for particle types m and n/,
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FIG. 2. Distributions of (a) M(pzn~) for = — Az~ candidates,
(b) M(pr™) for == — Az~ candidates, (c) L/o of A candidates
for 7= — Az~ and (d) L/c of A candidates for 7~ — Az~. The
red open histograms show the simulated signal distributions, the
filled histograms are stacked to show the simulated background
distributions, with statistical uncertainties displayed as hatched
areas, and the points with error bars show the distributions of the
data in the sideband regions. The simulated signal distribution is
arbitrarily scaled. The blue vertical lines and arrows indicate the
selected ranges. Beneath (a) and (b) we show the difference
between the observed number of candidates N and the expect-
ation from simulation N, in each bin.

R(m|m')=L,,/(L,, + L), where m and m’ represent
proton, pion, and kaon. For z, and =z, we require
R(p|r) < 0.6 and R(K|rx) < 0.4, with identification effi-
ciencies of 98.2% and 99.9%, and the rates for misidentify-
ing a pion as a proton or a pion as a kaon are 9.4% and
8.6%, respectively. The charged particle on the tag side is
required to be identified as e, p, or m.

We reconstruct A and A candidates by combining an
identified p or p with an oppositely charged particle for
which no particle identification is required. The resulting
pr~ and pr" invariant mass distributions are shown in
Figs. 2(a) and 2(b). Candidates within a 6 MeV/c? range
around the known A mass are selected [15]. The flight
significance of A and A candidates, defined as the ratio L /o
of the flight distance L to its uncertainty o, is required to be
larger than 2.0, as shown in Figs. 2(c) and 2(d). After
applying these selections, 83% (88%) of the remaining
candidates are correctly identified as A (A), while the
remaining 17% (12%) are due to random combinations of
tracks, according to simulation.

The missing momentum p ;. is defined as the difference
between the total initial momentum and the sum of the
momenta of all charged particles and photons. To suppress

backgrounds from efe™ — ete (y), eTe™ = utu(y),
ete™ > £T¢~¢T¢~, and eTe” — ete hTh™ processes,
the cosine of the angle between p,,. and the track on
the tag side is required to be greater than 0.15. The angle
O—r, between the momenta of the A candidates and 7, is
required to be greater than 0.1 radians. We also require
Trax > 0.9, where T, is the maximized value of T which
was defined in Eq. (1). After these selections are applied,
contributions from efe” - £T£ T and etem —
ete”h™h™ processes are negligible. At this stage of the
analysis, 99.2% (99.3%) of the background is removed,
with a signal efficiency of 74.3% (74.7%) for the 7= —
A(A)z~ decay modes. The remaining background is
dominated by e*e™ — 777 (y) and e"e™ — gg processes.

To further suppress the remaining background, a gradient
boosted decision tree (GBDT) classifier is used [45]. We
use 15 discriminating observables defined at the event
level, on the signal side, and on the tag side as inputs to the
classifier. The observables at event level are the sum of
the energies of all visible particles E,;; the magnitude
of the missing momentum; the square of the missing
mass M2, = E2. — p2. ., where E; is the difference
between the total initial energy and E,;; the cosine of the
polar angle of the missing momentum; the cosine of the
angle between the missing momentum and 7; and the cosine
of the angle between the missing momentum and the Az
(Ar) system. The observables related to the signal side are
Ny®; Ey®; O5_, ; the angle between the momenta of 7, and
zs; and the momentum of the Az (Az) system. The
observables related to the tag side are N;ag; the energy
of the most energetic photon on the tag side; the mass of the
system recoiling against the track on the tag side; and an
identification code assigned to the track’s particle-identi-
fication information to distinguish between e, i, and 7. We
train the GBDT classifier with samples of simulated signal
and background events satisfying the selections described
above. The GBDT for the two decay channels are trained
separately. Signal and background events are divided into
training and test samples in a 1:4 ratio. For training the
GBDT, we use 360800 (360900) signal and 3900 (5400)
background events for the 7~ — Az~ (7~ — Az~) decay
mode.

The distributions of the GBDT outputs are shown in
Fig. 3. To optimize the requirements on the GBDT output
values, we minimize the expected upper limits at 90%
credibility level [46] on B(z~ — Az~) and B(z~ — Azn™)
(as described later in the paper) estimated with a simulated
sample independent of those used for training and testing.
The optimized GBDT selection results in a signal efficiency
of 78.8% (82.3%) and background rejection rate of
98.9% (98.8%) for the v~ — Az~ (t~ — Ax~) decay
mode. These values are consistent for both the training
and test samples. The final signal efficiencies are 9.5% and
9.9% for 7~ — Azx~ and 7~ — Az~ decays, respectively,
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FIG. 3. Distributions of GBDT outputs for (a) 7~ — Az~ and
(b) 7~ — Az~ samples. The red open histograms show the
simulated signal distributions, the filled histograms are stacked
to show the simulated background distributions, with statistical
uncertainties displayed as hatched areas, and the points with error
bars show the distributions of the data in the sideband regions.
The simulated signal distribution is arbitrarily scaled. The blue
vertical lines and arrows indicate the selected ranges.

which include corrections for PID, trigger, and A selection,
as described below.

The branching fraction of the 7= — Az~ decay channel
is calculated using

N..

B(zm - Ar™) = = , 2

(T oo ) zgsigﬁgrrB(A - pﬂ'_) ( )

where N, is the signal yield, &, is the signal efficiency, £

is the integrated luminosity, o,, = 0.919 £ 0.003 nb is the
cross section of eTe™ — 77 (y) [48], and B(A - pz~) =
0.641 £ 0.005 is the known branching fraction of A —
pr~ [15]. This formula also applies to the 7~ — Az~
decay mode.

Several corrections and systematic uncertainties affect
the terms in Eq. (2) and therefore the determination of the
branching fraction. The sources are from signal efficiency,
luminosity, o,,, B(A — pz~), and signal yield.

Sources of systematic uncertainties for the signal effi-
ciency include uncertainties in the efficiencies of the A
selection, GBDT selection, tracking, PID, and trigger. The
uncertainty due to the requirement on the flight significance
for the A selection is studied using a A7 — Azt control
channel. The ratio of A selection efficiencies in data and
simulation is 0.977 £0.002 (0.976 &+ 0.002) for 7= —
A(A)z~ channel. These values are used to correct the
signal efficiencies, and the corresponding uncertainties are
taken as systematic uncertainties. The systematic uncer-
tainties on the signal efficiency from the GBDT selection
are studied by splitting the training samples into two equal
size parts and training the GBDTs separately. The
differences between the resulting signal efficiencies after
applying the same requirements on the output values as in
the nominal analysis are both 0.50% for the two decay
channels, which are taken as systematic uncertainties due to
the GBDT. The uncertainty due to tracking efficiency is
0.24% per track, estimated with ete™ — 77~ events,

leading to a systematic uncertainty of 0.96%. The system-
atic uncertainties from charged-particle identification are
studied in A — pz, D*" - D°(— K=z")z", and K9 —
xtn~ decays for protons and pions, and in
J/w —ete(r), wu(y), etecete”, and etepyu”
processes for muons and electrons. Correction factor to

the signal efficiency for the 7= — A(A)z~ decay mode is
0.953 4 0.021 (0.954 £ 0.022) for the 7= — A(A)z~ chan-
nel. The quadratic sum of the individual charged-particle
contributions is taken at the systematic uncertainty from
charged particle identification. The systematic uncertainty
on the trigger efficiency is studied using ete™ -z~
events with 7~ — 7~z 7" v, and " decaying into the same
final states as in the tag side of this analysis [49]. The
trigger efficiency measured in data differs by 0.7% from
that in simulation; this difference is taken as the systematic
uncertainty due to the trigger.

The uncertainty in the branching fraction B(A — pz~) is
0.78% [15]. The uncertainty of the eTe™ — 777 (y) cross
section, estimated with KKMc, is 0.33% [48]. The uncer-
tainty in the integrated luminosity is 0.60%, determined
from the large-angle Bhabha scattering process [50]. The
quadratic sum of all the above uncertainties, summarized in
Table 1, is 6 =2.77% (2.82%) for the 7= — A(A)z~
channel.

The estimate of Ng, depends on the expected back-
ground yield. Systematic uncertainties affecting the
expected background yield and due to data-simulation
discrepancies are evaluated from the sideband regions.
There are N3i@ = 7 (6) data events in the sideband region
for the 7= — A(A)z~ channel, while the corresponding
number of events observed in simulated background
samples is Nim = 3.27/-] (5.517:)), where the uncertainties
are due to the limited size of the simulated samples. The
data-simulation ratios fi, = N§5'/ NS are used as cor-
rection factors for the background estimated in the signal
region: they are 2.2717 (1.1790%) for the 7~ — A(A)z~
channels, where the uncertainties are statistical only. The
relative uncertainties in fy, are treated as systematic

TABLE I. Summary of fractional systematic uncertainties.
Uncertainty (%)
Source T = An~ = A
A selection 0.20 0.20
GBDT selection 0.50 0.50
Tracking efficiency 0.96 0.96
Particle identification 221 2.28
Trigger efficiency 0.70 0.70
B(A - pr™) 0.78 0.78
T-pair cross section 0.33 0.33
Luminosity 0.60 0.60
Total 2.77 2.82
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FIG. 4. Distributions of the events for data and simulated
background in the AE versus M(Ax) plane for (a) 7~ - Azn~
and (b) 7~ — Az~ candidates after applying all selections.

uncertainties on the expected background yield, being 4_”57;%

(ﬂgfyyj ) for the 7= — A(A)z~ channel. Some of the sources
of uncertainty listed in Table I also affect the expected
background yield. Their contributions are negligible com-
pared to those affecting the correction factors estimated in
the sidebands and are not taken into account.

Figure 4 shows the two-dimensional AE vs M(Arn)
distributions for both Belle I data and simulation. The signal
excess is calculated by comparing the data yield in the signal
region over the expected yield from simulation which is
corrected by the data/simulation ratio in the sideband region.
From simulation, the expected background yields for
7= = Az~ and v~ — Az~ within the signal region, after
applying the correction factor fy,, are Ney, = 1.01’11"13 and
0.5 £ 0.6, respectively, where the uncertainties include both
statistical and systematic uncertainties. In the data sample,
no events are observed in the signal region in both modes.

Since no signal is observed, we compute upper limits on
the signal yields for the 7~ — Az~ and 7~ — Az~ chan-

nels. We assume that the signal yields N, and the expected

background yields N, in the signal region follow a
Poisson distribution. We use the prior probability density
function 1/,/Ng, + Ny, to estimate the expected upper
limits of signal yields based on a Bayesian approach [51].
The uncertainty in N, and o are treated as two indepen-
dent parameters when estimating the upper limits on the
signal yields [51]. The upper limits on the signal yields
at 90% credibility level are found to be 1.92 and 1.81, for
the 7~ — Az~ and 7~ — Az~ channels, respectively. The
corresponding upper limits on the branching fractions are
4.7 x 1078 and 4.3 x 1078, respectively, while the expected
upper limits based on background simulated samples are
7.2 x 1078 and 5.5 x 1078, respectively. If we use the flat
prior probability density function, although it is not advised
in Ref. [51], the corresponding upper limits on the
branching fractions will be 5.7 x 107® and 5.5 x 1078,
These upper limits do not appreciably change if we do not
include systematic uncertainties.

In summary, we present a search for the BNV and lepton
number violation decays 7~ — Az~ and 7~ — Az~ using a
364 fb~! data sample collected by the Belle I experiment
at /s = 10.58 GeV. No evidence of signal is observed,
and upper limits at 90% credibility level on the branching
fractions B(z~ — Az~) and B(z~ — Ax~) are estimated to
be 4.7 x 1078 and 4.3 x 1073, respectively. These are the
most stringent constraints to date on the branching fraction
of 77— Az~ with [A(B—L)| =2 and 7~ — Az~ with
|A(B—L)|=0.
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