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Reduction of Joule Losses in Memristive Switching
Using Optimal Control
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Abstract—This theoretical study investigates strategies for min-
imizing Joule losses in resistive random access memory (ReRAM)
cells, which are also referred to as memristive devices. Typically, the
structure of ReRAM cells involves a nanoscale layer of resistance-
switching material sandwiched between two metal electrodes. The
basic question that we ask is what is the optimal driving protocol
to switch a memristive device from one state to another. In the
case of ideal memristors, in the most basic scenario, the optimal
protocol is determined by solving a variational problem without
constraints with the help of the Euler-Lagrange equation. In the
case of memristive systems, for the same situation, the optimal
protocol is found uvsing the method of Lagrange multipliers. We
demonstrate the advantages of our approaches through specific
examples and compare our results with those of switching with
constant voltage or current. Our findings suggest that voltage or
current control can be used to reduce Joule losses in emerging
memory devices.

Index Terms—Memristors, memristive systems, switching,
optimal control, functional optimization.

1. INTRODUCTION

HE problem of memristive switching optimization has a

few facets. Minimizing Joule heat, switching time, or a
combination of the two are possibilities. Furthermore, mem-
ristive devices can be described using ideal models [1], mem-
ristive models [2], [3], [4], or probabilistic models [5], [6],
[7]. [8]. Lastly, the optimization problem can be formulated
with application-specific constraints and/or physics-based con-
straints. The highest voltage that can be used in the circuit or the
compliance current to prevent the device from being damaged
are the constraint examples.

To proceed, we shall first introduce the memristive devices [2]
and their certain subset known as ideal memristors [1]. The
voltage-controlled memristive devices are defined by the set of
equations [2]

I(t) = Ry (2, V)V (2), (1)
&= f(z,V), )
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where V and I are the voltage across and current through the
device, respectively, Ry (x, V) is the memristance (memory
resistance), « is a vector of n internal state variables, and
f(x,V) is a vector state evolution function. Current-controlled
memristive devices are defined similarly [2]. In the above set,
(1) is the generalized Ohm’s law, while (2) is the state equation.
The latter defines the evolution of the internal state variable or
variables.

In ideal memristors [1], the state evolution function is often
proportional to the current. Consequently, the internal state vari-
able x is proportional to the charge g. In addition, it is common to
set the proportionality coefficient to one. In this case, the internal
state variable is simply the charge flown through the device from
an initial moment of time. In what follows, the response of such
ideal devices is described in terms of a generalized Ohm’s law

V = Ru(q)I(t), 3)

where the memristance, Ry, is a function of charge. Although
this model is quite abstract (physical devices behave substan-
tially differently from the ideal ones [9], [10], [11]), its straight-
forward structure is advantageous for analytical calculations.

In this paper, we apply the calculus of variations and optimal
control theory to the problem of memristive switching. We
have derived the optimal driving protocols for the following
optimization problems:

® unconstrained switching of ideal memristors within a fixed

interval of time (Section II-A1);

® unconstrained switching of ideal memristors within a vari-

able interval of time (Section 1I-A3);

® unconstrained switching of memristive systems within a

fixed interval of time (Section II-B1);

® switching of ideal memristors within a fixed interval of

time in the presence of a constraint (Section III-A).

An interesting finding is that, in unconstrained ideal memris-
tor problems, the optimal trajectory corresponds to Joule losses
occurring at a consistent rate (see Theorems 1 and 2 below). We
compare our derived switching protocols to the cases of constant
voltage or current. Our results show that the voltage or current
control can be used to reduce Joule losses in emerging ReRAM
circuits and systems.

The numerical simulations reported in this work were per-
formed using Mathematica ver. 14.0.0.0. The comparison of
optimal switching protocols is made with switching by constant
voltage and current, which are included solely for comparative

purposes.

1536-125X © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: University of South Carolina. Downloaded on February 18,2025 at 19:10:11 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0365-8978
https://orcid.org/0000-0003-0604-5659
mailto:vslipko@uni.opole.pl
mailto:pershin@physics.sc.edu

SLIPKO AND PERSHIN: REDUCTION OF JOULE LOSSES IN MEMRISTIVE SWITCHING USING OPTIMAL CONTROL 9

(gpt)

t

Fig. 1. Schematics of the optimal trajectory (blue curve labeled by g, (t))
and few non-optimal trajectories (grey curves) for the optimization problem in
Section I1-A1. The optimal trajectory minimizes the Joule heat functional given
by (4).

This paper is structured as follows. Section II is devoted
to unconstrained optimization problems. Within Section II,
Section II-A focuses on ideal memristors, while Section II-B is
dedicated to memristive systems. Constrained switching is dis-
cussed in Section III. Examples of optimal switching are given
in Sections II-A2, 11-A3, II-B2, and Section III-A2 where the
calculus of variations and optimal control theory are applied to
linear ideal memristors and memristive systems with a threshold.
The paper concludes with a discussion of our results and future
work.

II. UNCONSTRAINED OPTIMIZATION PROBLEMS
A. Ideal Memristors

1) Minimization of Joule Losses: Let us first consider the
problem of minimization of Joule losses in the switching of ideal
memristors. Without loss of generality, the ideal memristors are
described by (3). In this case, the energy cost to switch from
one state to another is a functional [12] with respect to the
charge trajectory g(¢). This trajectory links the initial state of
the memristor, I;, at the initial moment of time, ¢,, with its final
state, R ¢, at the final moment of time, ¢ = t;. For a given g(%),
the Joule heat, Q[q(t)], is expressed by

(g5.ts)

Qla(®)] = / ¢ Rar(q)dt, @
(qi.t:)

where g, ; is the initial/final charge (Rar(g;/5) = R;/f), and it

is assumed that R (g)isknown.! Our goal is to find the optimal

trajectory, gop:(t), that minimizes the Joul heat functional, (4),

see the illustration in Fig. 1.

In principle, this problem is similar to the principle of least
action in classical mechanics [13]. Therefore, to determine the
optimal trajectory we use the Euler-Lagrange equation that leads
to the equation of motion

1 .,dRu(q) _

GRn(g) + 54 a7 0. (3)

! Equation (4) establishes a functional, which is an entity that produces a
number when provided with a function.

The first integral of (5), corresponding to the energy conser-
vation law in mechanics,

gV Ru(q) = Ch, (6)

can be integrated leading to

/ VERa(@)dg = Cy / dt = Cyt + Cs, %

where C; and C5 are constants.

Note that the first integral, (6), is nothing else than the con-
served “kinetic energy”, Ras(g)4?, for the Joule heat functional,
(4). In the present context, it represents the power that is constant
along the optimal trajectory. This observation is formulated in
the following theorem.

Theorem 1: The optimal trajectory minimizing Joule losses
in ideal memristors is characterized by constant power (in un-
constrained problems).

2) Joule Losses in Linear Memristors: As an example of the
above equations, consider the minimization of Joule losses in
linear memristors. Let us assume that in the region of interest, the
memristance Fys(g) can be approximated by a linear function,

Ry(q) = a+ bg. (8)

Here, a and b are constants. In this case, the integral in (7) can
be easily evaluated and (7) is rewritten as

3_25 (a+bq(t)? = Cit + . ©)

Next, the integration constants C; and C', are found using
the initial and final point of the trajectory (see (4) and Fig. 1).
Explicitly, the charge trajectory minimizing the Joule losses is

2
3

qut(t) = % I:%b (Clt - CZ)] - E —

b
2 3 3
1 Rﬂz(tf_t)—’_R?(t_tf_) a
== ——=. (10)
b tr —t b
The current corresponding to gop;(t) is
§ Tl 3 -3
i 2 R —R? |Rf(ty — 1)+ R} (t —ts)
() =35 tr — s tr—ts
(11)
and total Joule heat generated during the switching is
r? R}’
2 .
2y (8- 1)
== ! 12
Qopt (35) tr—t; 12

Using (6) it is not difficult to verify that Theorem 1 is satisfied
bY qopi ().

It is interesting to compare (), for the optimal trajectory
(12) to the Joule heat for the trajectory connecting (g;,t;) to
(g7, ty) linearly,

tg—1 t—=1;
f +q5 i

; 13
tr—t; Ut —t (13)

Q'I=const(t) =g
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Minimization of Joule losses in the ideal linear memristors (for the model see (8)). (a) Memristance as a function of time for the cases of optimal current

and constant current. The control currents are shown in the inset. This plot was obtained using Ry /H; = 100 and ¢; = 0. (b) Total Joule heat as a function of

Ry /R;. Asymptotically, Qopt /Q (v y=const — 8/98s Rf/R; — 0 or oo.

We note that this case corresponds to driving by a constant
current. Using (4) one finds

3 i (R? - Rf) (R; — Ry)
T—oomt =572 b —H

(14)

It can be directly verified that the heat Q7—cons is always
greater than the optimal Joule heat, Qr—const > Qop:. for all
values Ry # R; and t; > ¢; as it should be.

When the memristor is driven by a constant voltage V', the
Ohm’s law is simply the differential equation ¢Ry(g) =V
having the solution

—a+/RZ+2bV(t—t;)
2 s
Interestingly, in this case the total Joule heat is the same as in

the case of constant current, (14). As the voltage as a function
of switching time interval can be written as

(15)

W=consl(t) =

R2 _ R?
_1 = M (16)
2b t; —t;
another expression for Qv —const i8
V(R; — R;
D iain = % (17)

Certain results found for linear memristors are shown graph-
ically in Fig. 2. In particular, switching linear memristors using
optimal control reduces Joule losses by up to a factor of 8/9
or approximately 11% compared to switching with constant
voltage or current. Fig. 2(a) shows that reducing Joule losses
is achieved by increasing the current I when the resistance Ry
is smaller, and vice versa.

3) Simultaneous Minimization of Joule Losses and Switching
Time: Equations (12) and (14) suggest that Joule losses can be
minimized by increasing the switching time. However, in nu-
merous applications, a high operating frequency is essential. In

this part of the paper, we explore how to reconcile the conflicting
demands of low losses and rapid switching.

Thus, we would like to find the trajectory that minimizes Joule
losses and switching time simultaneously. For this purpose, the
cost functional can be selected as

F=f(Qlg®)])+g(tr —t),

where f(z) and g(r) are monotonously increasing functions,
and Q[q(t)] is given by (4). In the linear case, the cost functional
is simply

(18)

F = w1Qlg(t)] +w2 - (t5 —t:),

where w; are the positive weights (distinct units).

To find the minimum value of the cost functional, we inde-
pendently vary ¢(t) and ¢ ;. The variation of g(¢) gives the same
(5). and the variation of ¢ gives the additional equation

(19)

(w2 — w1d*Rae(0)) | —,, =0, 0)
which, according to (6), can be simplified to wy = w; Clz. Asthe
first integral of (5) is given by the same (6), the power is constant
along the optimal trajectory. Therefore, we state the following
theorem.

Theorem 2: The optimal trajectory minimizing Joule losses
and switching time in ideal memristors is characterized by
constant power (in unconstrained problems).

Returning to the example in Section II-A2, we can use (12)
to express the power in (20) and eventually obtain the optimal

time
w2 (pd  pd
(tr ~t)ope = | g (Rf R ) @1)
At this value of £; — {;,
w22 (p3_ g3
Qopt = u—ﬂlg (Rf = Ri ) B (22)
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B. Memristive Systems

1) Lagrangian Function: Next, we consider a voltage-
controlled memristive device satisfying (1)—(2). In the following
discussion, we focus on a scenario with a single internal state
variable. However, our primary equations can be adapted to more
complex situations.

Our aim is to identify the most efficient driving protocol that
minimizes Joule losses when the device switches from z(#;) =
z; to z(ty) = = ;. Mathematically, we consider a model with the
Joule heat functional defined by

tr V?
dt — min,
9= /, Rp(x)

where z is the function of time according to (2).
According to the general scheme [14], the Lagrangian func-
tion is written as

tr V2(t) ty o
| Falyt [, A0 f(aV)]dtJr(;)

where Aq and [ are constants, and A(¢) is a function of time
known as the Lagrange multiplier. From (24), the Lagrangian is

(23)

L=k

V2(t)
Ru(z)

L(z,z,V,A)=2p + At) [£(2) — f(z,V)]. (29)

The necessary conditions for an extrema are the follow-
ing [14]:

e Euler-Lagrange equation: d(9L/8+)/dt = 0L /dx;

® Stationary condition with respectto V: 8L /dV =0,

* Transversality conditions Lj(#;) =}, and Lg(tf) =

Ix(m, where [ = A;z(t;) + Apx(ty) is the terminant.

The last condition leads to A(f;) = A; and A(t;) = —Af.
As X; and A, are arbitrary constants, these conditions can be
omitted. Therefore, our optimization problem is defined by the
following set of equations:

B 2V (t)

A =M R GV ¢
dA(t) A ..
RO v 2 [ — (I)] _ADL(Y), @)
dz(t) .

= =1=V), (28)
I(ti) —Tq 4 I(tf) =Iy. (29)

2) Derivation of Ideal Memristor Equations: Here, we show
that (5) for ideal memristors in Section II-A1 can be derived
directly from (26)—(29). For this purpose, using f(z,V) =
V/ Ry (x) we first obtain the partial derivatives f{, = 1/Rps(x)

and f, = —R;(x)V/R2,(x). Substituting these partial deriva-
tives into (26) yields
V)
A(t) =2hp=————— =240V (1). 30
5 o ruy = 30)

Using (30), (27) can be rewritten as

. 1 Ry (x)
Vi) =V2 ) 2. (31)
9= Ve
Taking into account that V' (¢) = Rar(g)g, (31) leads to
dR
iR (q) +—( )} —==0, (32)

which is precisely (5) in Section II-A1. Therefore, the results
presented in Section II-A1 and II-A1 remain consistent when
applying our comprehensive optimization theory formulated for
the memristive devices in the current subsection.

3) Optimal Control of a Threshold-Type Memristive De-
vice: Traditional experimental memristive devices [15], [16]
demonstrate switching with a threshold, which is essential for
nonvolatile information storage. In the following, we apply
the optimization approach from Section II-B1 to a memristive
device described by a model featuring a threshold. Specifically,
we consider a device described by the equations [3]

RM(I) :Ron+I(Roff _Rcm-): (33)
d k(V—Voff), V)Voff>0,
T
E: D: VO‘RSVSVfo: (34)
E(V —Von), V <V <0,

where k > 0 is the constant, R,, and R,s; are the on-state
and off-state resistances, and V,,, and Vs are the thresholds.
According to the above equations, when the voltage is greater
than V,; ¢, the memristive system switches to the high-resistance
state, Fofy.

For the sake of definiteness, let us consider the transition

z; — xgassumingthatV > Vorr As f(z,V) = E(V — Vo5 y),
(26)—(28) take the form
Vit
At) = 210#&), (35)
dA(®) . o, Ru(z)
—— = AV(t)RiI( 1 (36)
dx(t
“”;(t) (V — Vo). (37)

Next, without the loss of generality, we set Ap = 1. Substitut-
ing V(¢)/Rps(x) from (35) into (36) we arrive at

2
2 =Ry (5) 0. 38)

The solution of (38) can be expressed as
AW) = (39)

TRy ()t +Cy

where ] is the integration constant.
Using (35) we obtain the following expression for the voltage

k  Ru(z)

V(t)_ 2 sz.r ( )t-I—C1

(40)
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that can be further simplified using the linear dependence of
Ry on x, (33). The substitution of (40) and (33) into the state
equation (37) leads to

dr 2R

dt Ry, (z)(t+to)
where ty = 4C; /(k® Ry, (x)) is employed for compactness in

place of C;.
The solution of (41) can be written as

—kVoff—i— z, (4])

t+1p

Ran
I(i} = C(f = t(})2 S e kVoff(t =+ tU) =7 i (:E).'
‘M

where C is an arbitrary constant. Consequently,
R (t) = CRy(x)(t +to)® + kR (z)Voss(t +t0). (43)

The values of the arbitrary constants C' and ¢, can be deter-
mined by setting R (t;) equal to R; and Rz (t7) equal to Ry.

The voltage as a function of time is found by utilizing (40),
which yields

(42)

2C

V(t) :QVD” + T(t‘f‘t{))a (44)
2 1

= mire s

According to (44) the control voltage is a linear function of
time.
Using the initial and final resistances, one can obtain

_ By + Ri — \JARR; + [kVos Ry (z)(ty — )]
Ry (z)(ty —t:)?

2
c (46)

and
_ 1 Ry — R i tr +t
“‘ﬁfhw—nm@wJ‘M“} P

It should be noted that the solution involving the positive
root in (46) has been discarded, as it does not meet the condi-
tion V() > Vo s, which we have assumed from the beginning
of this subsection. Furthermore, the sum ¢y +¢; > 0, since
we are operating under the assumption that Ry > R; in all
cases. That is important because it guarantees the finiteness
of the switching current I(¢) defined by (45) for all moments
of time.

It is also observed that C' is positive if R; > R; +
kVys g Ry (x)(ty — ;). According to (44), this implies that the
optimal control voltage rises over time, surpassing the double
threshold voltage 2V, ;s even at the initial moment ¢;. When
Ry = R; + kV,p R, (z)(tf —t;), the parameter C' becomes
zero, and as per (44), the optimal control voltage remains con-
stant at V (t) = 2V, throughout the entire switching interval,
from ¢; to ty.

In the parameter domain Ry < R; + kV, 5y Ry, (x)(t — t:),
the solution given by (43)—(47), ceases to be optimal. In ad-
dition, this solution does not even satisfy the assumption that
V(ts) > V,55, when Ry — R;. Itis clear that in this case, the
optimal strategy is to quickly switch the memristor from the
initial state R; to the final state R during a finite time interval

(47)

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 24, 2025

At by applying the voltage exceeding the threshold voltage V,, s 1
and then applying zero voltage for the remaining time. It turns
out that the magnitude of optimal voltage is the same as in the
case when Ry = R; + kV, ¢ Ry, (x)(t; —1;),

Vi) = {QVOH‘ ti <t<ti+At, i

0, t + At <t <ty,

while in accordance with (33)—(34) memristance is a piecewise
linear function of time

R + kVop Ry (z)(t — i), & <t <t;+ At
Ry, ti+ At <t <ty
(49)

R(t) =

where At = (Ry — R;) /(KR (z)Vosr).
Finally, the minimal Joule heat is expressed by

4 ty + 1o
—— |C (s — 1)+ kV,;sIn | -L
HR&@)[‘f )+ °””(n+m)y

when Rf == R; > kVofij\,_, (.‘I‘-)(tf — ti),
and

Qopt =

Qopt = _k;?rof();) In %
M @
when Rf —= Ri < kVofij\,_,(;c)(tf =% t-!').

It is interesting to compare these minimal Joule losses with
the Joule losses for other possible switching regimes: switching
at constant voltage V' = Vj; and constant current I = I;. For the
constant voltage switching protocol by integrating in (23) over
time with (33) and (34) taking into account, we get

(51)

tr —1; R
02 ! : In _f'.!
Ry —R, R;
where Vu = Voff =+ (Rf == Rg)/(kR}vf(I)(ff = t-j)).
Similarly, for the constant current switching protocol, we find
for the Joule losses

QV =const — (5 2)

Ry —R;
Qr—const = Io |Vosr(ty — &) + 55— |
const off( f i) kRj\,I(.E)
where the constant current I is a unique solution of the follow-
ing equation

(33)

Relo — Vory

ek By (@)(tr—t:)lo — s S M5
Rily — Vory

(54)

in the domain Iy > V,sr/R;, and the voltage depends exponen-
tially on time as

V(t) == Voff + (R{IQ — Voff) ekR’M(x)Io(t—ﬂ;)_ (55)

Fig. 3(a) exemplifies the time dependence of the memristance
for several driving protocols. We note that in the cases of
optimal control, constant voltage control, and constant current
control, the memristance increases quadratically (43), linearly,
and exponentially with time, respectively. Based on the in-
formation presented in Fig. 3(b), the use of optimal control
has the potential to decrease Joule losses by approximately
27% compared to switching based on constant voltage and
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Minimization of Joule losses in memristive devices. (a) Memristance as a function of time for the cases of optimal control, constant voltage control,

and constant current control. (b) Joule heat as a function of R /R;. These figures were obtained using the following set of parameter values: R,, =1 k (0.
Rof_f =100k, k=0.5(V -lu.S)_l. Voff =01Vt =0.Ri = Ron, ty = 2 ps, and (a) R_f = Roff, (b) Ron < Rf = Roff.

by approximately 35% in contrast to switching based on con-
stant current. Qualitatively, the superior efficiency of constant
voltage switching relative to constant current switching can be
attributed to the dynamics in the constant voltage case that is
closer to the optimal one. In particular, this can be recognized
in Fig. 3(a).

III. CONSTRAINED OPTIMIZATION PROBLEMS
A. Ideal Memristors

1) Pontryagin’s Principle: Let us now address a more com-
plex case involving the optimal control of memristive switching
while taking into account inequality constraints. Specifically, we
will focus on the case of an ideal memristor with a current con-
straint, where we assume that the current I (¢) passing through
the device is limited by a critical (compliance) current /.., such
that |I(#)| < I.. Consequently, we are interested in minimizing
Joule losses, which can be expressed through the functional (4),
while also imposing the current limiting constraint || < I..

It is evident that when the critical current I, is sufficiently
large, the solution of the problem is determined by the same
Euler-Lagrange equation (5). The situation becomes more com-
plicated when the current, calculated using the solution derived
from (7) with specified boundary conditions, exceeds the critical
current at least at a certain point in time. In such a situation,
it becomes necessary to incorporate Pontryagin’s principle of
maximum (minimum) to determine the optimal control g(t).
To facilitate this, it is convenient to introduce a new variable u
following the definition?

u=q. (36)
This way we transfer the constraints into the configuration
space

|u| < L. 57

2 1t is evident that the definition of u is identical to the current. Nevertheless,
a distinct notation is required since, in Pontryagin’'s principle, u is treated as an
independent variable.

The Lagrangian function for this optimal problem is written
as (see [14])

L= / | i [AoRar(q)u® + p(t) (4(t) —w)| dt+1,  (58)

where constant Ap > 0 and function p(¢) are the unknown La-
grange multipliers. In the subsequent discussion, we omit the
term [ = A;q(t;) + Asq(ty) from the Lagrangian function (58)
since the transversality conditions associated with it do not
impose any limitations on the solution of the problem under
consideration.

The optimal control must satisfy not only Euler-Lagrange
equation with respect to g,

@) _,

A RJ‘ 2 _
0 M(Q)u dt L]

(39)
but also the Pontryagin’s principle of maximum (minimum) with
respect to wu,

min [AoRar(q(t))n” — p(t)n] = roRar(g(t))u” — p(t)u.

Iml<Ie
(60)

The last condition implies that, at any instant £, the optimal
control «(f) minimizes the expression in (58) within the range
—I. < wu < I for the optimal solution ¢(¢) and p(t).

Let us first examine the specific case of Ag = 0. Considering
the Euler-Lagrange equation (59), it follows that p(t) is constant.
Applying Pontryagin’s principle (60) with A, = 0, we can deter-
mine the optimal control for the function u(t) = I.sign p(t) =
+1,. Therefore, in the case where Ag = 0, the constant maxi-
mum current ¢ = u = =/, is maintained throughout the entire
duration of the memristor switching.

This special solution is only possible under certain boundary
conditions, specifically when (q; — ¢;)/(t; — t;) = =1, If this
condition is not satisfied, this particular solution is not viable,
and Ap > 0. Furthermore, we can assume Ag = 1 in the follow-
ing discussion without loss of generality.
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The minimization of the quadratic function in the LHS of (60)
gives the following optimal control for the function w(t):

[p(t)]

p(t) i
u(t) = 2R (q)°? if 2R M (g) <[, . (61)
I.sign p(t), otherwise.

The system of equations (56), (59), with A = 1, and (61) fully
determines the optimal switching of the ideal memristor. It is
evident that the current u(#) satisfies the constraints specified in
(57). Furthermore, by eliminating the Lagrange multiplier p(t)
from Euler-Lagrange (59) using (61) for u(t) < I., we obtain the
optimal trajectory for the ideal memristor without constraints, as
expected. Therefore, it is apparent that achieving optimal control
for the ideal memristor under current restrictions generally
involves a smooth and continuous connection of the solution
characterized by constant power (refer to (7)) with the solution
represented by the maximum possible current g = £/t + C5,
where Cj is an arbitrary constant.

2) Joule Losses in Linear Memristors: We will illustrate the
method discussed above by considering the switching of a linear
memristor, considered previously in Section II-A2. However,
now we also assume that the maximum possible current is
limited by the critical (compliance) value I.. It is also assumed
that during the time period from ¢; = 0 to ¢, the memristance
changes from Ry (0) = R; to R (ty) = Ry > R;. Further-
more, we consider the most interesting case where at the initial
moment of time the optimal unrestricted current I, (t = ¢;),
given by (11), greater than /... This corresponds to the following
inequality:

3/2 3/2
BB
3bt s/ R;

Following the previous discussion, to minimize Joule heat, it
is necessary to apply the highest current I, for a duration of up
to £,. In the case of the linear memristor described by (8), this
leads to the following resistance change:

Ry (t) = R; + b,

st (62)

for0 <t <t,. (63)

Starting at £ = ., the optimal solution is given by (10):

RZ(t; —t)+ R2(t—tc)
t;—te '

Ru(t) = fort, <t < ty,
(64)
where resistance R, = R (t.) calculated with the use of (63).
The values of the parameters ¢, and R, need to be determined
from the continuity condition of the memristance, R (%), and
the current, I(t) = Rys/b. at the instant ¢, when the control
change occurs. This leads to the following equations for R,
and t,:

VRE—3(Ri+bl:t;)\/R.+2/R}=0, (65
and
R.—R;
te = b—fc (66)
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Note that an obvious condition must be met for the final state,
R, to be reachable from the initial state, I?;, during time interval
t ¢ due to the existance of the maximum possible current /.:

Ry < Ry +bl.ty . (67)

This inequality guarantees the existence of two positive roots
of (65), the smallest of which is smaller than Ry, while the
other is larger. This smallest positive root of (65) determines
the resistance R, and moment of time ¢, (see (66)), where the
optimal control changes. Note that the inequality (62) guarantees
that R.c - Rg‘.

Fig. 4 illustrates our results on the optimal control of an ideal
linear memristor with a current constraint. Fig. 4(b) represents
memristance as a function of time calculated by using (63),
(64) for the case of constrained switching and by using (8),
(10) for the case of unconstrained switching. The corresponding
currents, which are proportional to the derivatives of the memris-
tances with respect to time, are presented in Fig. 4(a). Clearly,
for the used set of parameters, inequalities (62) and (67) are
satisfied. Thus, it allows us to find the only solution of (65) and
(66), R./R; = 0.34 and t./t; = 0.26, which determines the
resistance and time moment of control change for this set of
parameters.

B. Memristive Systems

In principle, the general approach developed for memristive
systems in Section II-B combined with the Pontryagin princi-
ple (which we used for the analysis of the switching of ideal
memristors with a current constraint in Section III-A) can be
employed to optimize the switching of memristive devices ((1)
and (2)) in the presence of constraints. However, our deriva-
tions in Section ITI-A suggest that optimal switching protocols,
in fact, can be obtained using a simplified approach, at least
in certain cases. Such cases include (but are not limited to)
some simple (first-order) memristive models and unidirectional
switching.

Consider, for example, situations that involve current compli-
ance (see (57)). The idea is to link the two operational conditions,
specifically, with and without current compliance. First of all,
one can consider the unconstrained scenario (using the approach
outlined in Section II-B). If (57) holds consistently, then the solu-
tions for both constrained and unconstrained problems coincide.
Otherwise, the solutions with and without the constraint should
be combined while adhering to the criteria of (i) maintaining the
continuity of the control parameter and (ii) minimizing Joule
losses.

IV. DISCUSSION

In this theoretical study, novel strategies have been devised
to reduce Joule losses that arise when memristive devices are
switched. Various hypothetical scenarios have been examined,
and substantial energy savings have been shown to be pos-
sible by following specific driving protocols proposed in this
research.
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Fig.4. Constrained versus unconstrained control of memristive switching. (a) Control current as a function of time. (b) Memristance as a function of time. This
figure was obtained using the following set of parameter values: R,,, = R; = 1k Q, Ryp5 = Ry = 100k, I, = 0.25 mA, b = 10% kQ/(mA - ps), t; = 0

andty =5 ps.

It is important to note that our findings are model-dependent,
implying that no universal protocol can be applied to all mem-
ristive devices. To implement our method(s), first, the device
model must be identified. Subsequently, our optimization tech-
niques can be utilized to determine the optimal driving pro-
tocol for that specific device model. The final step involves
verification. Based on our experience, it is always beneficial
to compare the derived protocol with other easily verifiable
scenarios, such as switching by constant voltage or current. This
comparison is crucial because the solution to the Euler-Lagrange
equation represents an extremum, either a minimum or a
maximum.

One might wonder about the experimental significance of
the findings reported in this article, and indeed they are rel-
evant. Our understanding of ideal devices (Section II-A) in-
dicates that their optimal switching involves constant power.
In threshold-type memristive systems (Section I1I-B3), although
constant power conditions do not strictly apply, a similar pattern
remains: lower voltages are paired with lower resistances and
vice-versa. These observations could be utilized in an empirical
optimization.

Furthermore, the model described by (33) and (34) in
Section II-B3 represents a particular instance of the VTEAM
model, which can accurately describe experimental devices [17].
Within the VTEAM, the function that describes the evolution of
the state (the right-hand side of (34)), as a function of volt-
age, is oc (V — Vi, 057)*om/2f7, Where ap /055 is a constant
parameter. According to [17], (34) is relevant to the transition
from the “on™ state to the “off™ state in the Pt-Hf-Ti memris-
tor [18] and thus our theory can be verified on this experimental
platform. Separate investigations are necessary for different
Qon/of s values and more complex circuits. We anticipate that
when o,y /o5 > 2, the most effective approach could be the
use of the maximum permissible voltage, followed by a zero
voltage.

Finally, pulse control is a commonly employed technique
in memristive switching. Notably, the time-dependent cur-
rent/voltage waveforms introduced in this paper can be utilized

as pulses, which reduces the energy needed for memristive
switching compared to using pulses with a fixed amplitude.
Furthermore, in digital circuit architectures, continuous voltage
waveforms can be replaced by a finite set of voltage levels.

V. CONCLUSION

The production of electricity from fossil fuels is one of
the main contributors to global warming. To suppress climate
change, energy-efficient systems, devices, and technologies
must be implemented. Our study lays the foundation for future
research in optimizing the operational conditions of memristive
devices, which could potentially be adapted for other memory
circuit elements [19] with suitable modifications. The experi-
mental validation of our methods on single devices [18], [20]
and their application to memristive circuits, including cross-
bar arrays [21], [22], is of significant interest. The practical
implications of this work can be significant, as implementing
the protocols outlined here could enhance the efficiency of
memristive systems and related technologies such as in-memory
computing and neuromorphic computing, to name a few.
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