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Reduction of Joule Losses in Memristive Switching
Using Optimal Control

Valeriy A. Slipko and Yuriy V. Pershin , Senior Member, IEEE

Abstract4This theoretical study investigates strategies for min-
imizing Joule losses in resistive random access memory (ReRAM)
cells, which are also referred to as memristive devices. Typically, the
structure of ReRAM cells involves a nanoscale layer of resistance-
switching material sandwiched between two metal electrodes. The
basic question that we ask is what is the optimal driving protocol
to switch a memristive device from one state to another. In the
case of ideal memristors, in the most basic scenario, the optimal
protocol is determined by solving a variational problem without
constraints with the help of the Euler-Lagrange equation. In the
case of memristive systems, for the same situation, the optimal
protocol is found using the method of Lagrange multipliers. We
demonstrate the advantages of our approaches through speciûc
examples and compare our results with those of switching with
constant voltage or current. Our ûndings suggest that voltage or
current control can be used to reduce Joule losses in emerging
memory devices.

Index Terms4Memristors,  memristive systems, switching,
optimal control, functional optimization.

I. INTRODUCTION

THE problem of memristive switching optimization has a
few facets. Minimizing Joule heat, switching time, or a

combination of the two are possibilities. Furthermore, mem-
ristive devices can be described using ideal models[1],mem-
ristive models[2],[3],[4], or probabilistic models[5],[6],
[7],[8]. Lastly, the optimization problem can be formulated
with application-speciûc constraints and/or physics-based con-
straints. The highest voltage that can be used in the circuit or the
compliance current to prevent the device from being damaged
are the constraint examples.
To proceed, we shall ûrst introduce the memristive devices[2]

and their certain subset known as ideal memristors[1].The
voltage-controlled memristive devices are deûned by the set of
equations[2]

I(t)=R−1M (x,V)V(t), (1)

ẋ=f(x,V), (2)
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whereV andIare the voltage across and current through the
device, respectively,RM(x,V)is the memristance (memory
resistance),x is a vector ofninternal state variables, and
f(x,V)is a vector state evolution function. Current-controlled
memristive devices are deûned similarly[2]. In the above set,
(1)is the generalized Ohm’s law, while(2)is the state equation.
The latter deûnes the evolution of the internal state variable or
variables.
In ideal memristors[1], the state evolution function is often

proportional to the current. Consequently, the internal state vari-
ablexis proportional to the chargeq. In addition, it is common to
set the proportionality coefûcient to one. In this case, the internal
state variable is simply the charge üown through the device from
an initial moment of time. In what follows, the response of such
idealdevices is described in terms of a generalized Ohm’s law

V=RM(q)I(t), (3)

where the memristance,RM, is a function of charge. Although
this model is quite abstract (physical devices behave substan-
tially differently from the ideal ones[9],[10],[11]), its straight-
forward structure is advantageous for analytical calculations.
In this paper, we apply the calculus of variations and optimal

control theory to the problem of memristive switching. We
have derived the optimal driving protocols for the following
optimization problems:

unconstrained switching of ideal memristors within a ûxed
interval of time (SectionII-A1);
unconstrained switching of ideal memristors within a vari-
able interval of time (SectionII-A3);
unconstrained switching of memristive systems within a
ûxed interval of time (SectionII-B1);
switching of ideal memristors within a ûxed interval of
time in the presence of a constraint (SectionIII-A).

An interesting ûnding is that, in unconstrained ideal memris-
tor problems, the optimal trajectory corresponds to Joule losses
occurring at a consistent rate (see Theorems1and2below). We
compare our derived switching protocols to the cases of constant
voltage or current. Our results show that the voltage or current
control can be used to reduce Joule losses in emerging ReRAM
circuits and systems.
The numerical simulations reported in this work were per-
formed using Mathematica ver. 14.0.0.0. The comparison of
optimal switching protocols is made with switching by constant
voltage and current, which are included solely for comparative
purposes.
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Fig. 1.  Schematics of the optimal trajectory (blue curve labeled byqopt(t))
and few non-optimal trajectories (grey curves) for the optimization problem in
SectionII-A1. The optimal trajectory minimizes the Joule heat functional given
by(4).

This paper is structured as follows. SectionIIis devoted
to unconstrained optimization problems. Within SectionII,
SectionII-Afocuses on ideal memristors, while SectionII-Bis
dedicated to memristive systems. Constrained switching is dis-
cussed in SectionIII. Examples of optimal switching are given
in SectionsII-A2,II-A3,II-B2, and SectionIII-A2where the
calculus of variations and optimal control theory are applied to
linear ideal memristors and memristive systems with a threshold.
The paper concludes with a discussion of our results and future
work.

II. UNCONSTRAINEDOPTIMIZATIONPROBLEMS

A. Ideal Memristors

1) Minimization of Joule Losses:Let us ûrst consider the
problem of minimization of Joule losses in the switching of ideal
memristors. Without loss of generality, the ideal memristors are
described by(3). In this case, the energy cost to switch from
one state to another is a functional[12]with respect to the
charge trajectoryq(t). This trajectory links the initial state of
the memristor,Ri, at the initial moment of time,ti, with its ûnal
state,Rf, at the ûnal moment of time,t=tf. For a givenq(t),
the Joule heat,Q[q(t)], is expressed by

Q[q(t)] =
(qf,tf)

(qi,ti)

q̇2RM(q)dt, (4)

whereqi/fis the initial/ûnal charge (RM(qi/f)=Ri/f), and it
is assumed thatRM(q)is known.

1Our goal is to ûnd the optimal
trajectory,qopt(t), that minimizes the Joul heat functional,(4),
see the illustration in Fig.1.
In principle, this problem is similar to the principle of least

action in classical mechanics[13]. Therefore, to determine the
optimal trajectory we use the Euler-Lagrange equation that leads
to the equation of motion

q̈RM(q)+
1

2
q̇2
dRM(q)

dq
=0. (5)

1Equation(4)establishes a functional, which is an entity that produces a
number when provided with a function.

The ûrst integral of(5), corresponding to the energy conser-
vation law in mechanics,

q̇ RM(q)=C1, (6)

can be integrated leading to

RM(q)dq=C1 dt=C1t+C2, (7)

whereC1andC2are constants.
Note that the ûrst integral,(6), is nothing else than the con-
served <kinetic energy=,RM(q)̇q

2, for the Joule heat functional,
(4). In the present context, it represents the power that is constant
along the optimal trajectory. This observation is formulated in
the following theorem.
Theorem 1: The optimal trajectory minimizing Joule losses
in ideal memristors is characterized by constant power (in un-
constrained problems).
2) Joule Losses in Linear Memristors:As an example of the
above equations, consider the minimization of Joule losses in
linear memristors. Let us assume that in the region of interest, the
memristanceRM(q)can be approximated by a linear function,

RM(q)=a+bq. (8)

Here,aandbare constants. In this case, the integral in(7)can
be easily evaluated and(7)is rewritten as

2

3b
(a+bq(t))

3
2=C1t+C2. (9)

Next, the integration constantsC1andC2are found using
the initial and ûnal point of the trajectory (see(4)and Fig.1).
Explicitly, the charge trajectory minimizing the Joule losses is

qopt(t)=
1

b

3b

2
(C1t+C2)

2
3

−
a

b
=

=
1

b

⎡

£
R
3
2
i(tf−t)+R

3
2

f(t−ti)

tf−ti

¤

§

2
3

−
a

b
. (10)

The current corresponding toqopt(t)is

Iopt(t)=
2

3b

R
3
2

f−R
3
2
i

tf−ti

⎡

£
R
3
2
i(tf−t)+R

3
2

f(t−ti)

tf−ti

¤

§

−13

(11)
and total Joule heat generated during the switching is

Qopt=
2

3b

2 R
3
2

f−R
3
2
i

2

tf−ti
. (12)

Using(6)it is not difûcult to verify that Theorem1is satisûed
byqopt(t).
It is interesting to compareQoptfor the optimal trajectory

(12)to the Joule heat for the trajectory connecting(qi,ti)to
(qf,tf)linearly,

qI=const(t)=qi
tf−t

tf−ti
+qf

t−ti
tf−ti

. (13)
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Fig. 2.  Minimization of Joule losses in the ideal linear memristors (for the model see(8)). (a) Memristance as a function of time for the cases of optimal current
and constant current. The control currents are shown in the inset. This plot was obtained usingRf/Ri= 100 andti=0. (b) Total Joule heat as a function of
Rf/Ri. Asymptotically,Qopt/QI(V)=const→ 8/9asRf/Ri→ 0or@.

We note that this case corresponds to driving by a constant
current. Using(4)one ûnds

QI=const=
1

2b2

R2f−R
2
i (Rf−Ri)

tf−ti
. (14)

It can be directly veriûed that the heatQI=constis always
greater than the optimal Joule heat,QI=const>Qopt, for all
valuesRf=Riandtf>tias it should be.
When the memristor is driven by a constant voltage V,the
Ohm’s law is simply the differential equation ̇qRM(q)=V
having the solution

qV=const(t)=
−a+ R2i+2bV(t−ti)

b
. (15)

Interestingly, in this case the total Joule heat is the same as in
the case of constant current,(14). As the voltage as a function
of switching time interval can be written as

V=
1

2b

R2f−R
2
i

tf−ti
, (16)

another expression forQV=constis

QV=const=
V(Rf−Ri)

b
. (17)

Certain results found for linear memristors are shown graph-
ically in Fig.2. In particular, switching linear memristors using
optimal control reduces Joule losses by up to a factor of8/9
or approximately 11% compared to switching with constant
voltage or current. Fig.2(a)shows that reducing Joule losses
is achieved by increasing the currentIwhen the resistanceRM
is smaller, and vice versa.
3) Simultaneous Minimization of Joule Losses and Switching

Time:Equations(12)and(14)suggest that Joule losses can be
minimized by increasing the switching time. However, in nu-
merous applications, a high operating frequency is essential. In

this part of the paper, we explore how to reconcile the conüicting
demands of low losses and rapid switching.
Thus, we would like to ûnd the trajectory that minimizes Joule

losses and switching time simultaneously. For this purpose, the
cost functional can be selected as

F=f(Q[q(t)]) +g(tf−ti), (18)

wheref(x)andg(x)are monotonously increasing functions,
andQ[q(t)]is given by(4). In the linear case, the cost functional
is simply

F=w1Q[q(t)] +w2·(tf−ti), (19)

wherewiare the positive weights (distinct units).
To ûnd the minimum value of the cost functional, we inde-
pendently varyq(t)andtf. The variation ofq(t)gives the same
(5), and the variation oftfgives the additional equation

w2−w1q̇
2RM(q)t=tf

=0, (20)

which, according to(6), can be simpliûed tow2=w1C
2
1.Asthe

ûrst integral of(5)is given by the same(6), the power is constant
along the optimal trajectory. Therefore, we state the following
theorem.
Theorem 2: The optimal trajectory minimizing Joule losses

and switching time in ideal memristors is characterized by
constant power (in unconstrained problems).
Returning to the example in SectionII-A2, we can use(12)

to express the power in(20)and eventually obtain the optimal
time

(tf−ti)opt=
w1
w2

2

3b
R
3
2

f−R
3
2
i . (21)

At this value oftf−ti,

Qopt=
w2
w1

2

3b
R
3
2

f−R
3
2
i . (22)
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B. Memristive Systems

1) Lagrangian Function:Next, we consider a voltage-
controlled memristive device satisfying(1)3(2). In the following
discussion, we focus on a scenario with a single internal state
variable. However, our primary equations can be adapted to more
complex situations.
Our aim is to identify the most efûcient driving protocol that

minimizes Joule losses when the device switches fromx(ti)=
xitox(tf)=xf. Mathematically, we consider a model with the
Joule heat functional deûned by

Q=
tf

ti

V2(t)

RM(x)
dt → min, (23)

wherexis the function of time according to(2).
According to the general scheme[14], the Lagrangian func-
tion is written as

L=λ0
tf

ti

V2(t)

RM(x)
dt+

tf

ti

Λ(t)[̇x(t)−f(x, V)]dt+l,

(24)
whereλ0andlare constants, andΛ(t)is a function of time
known as the Lagrange multiplier. From(24), the Lagrangian is

L(x,ẋ, V,Λ) =λ0
V2(t)

RM(x)
+Λ(t)[̇x(t)−f(x, V)]. (25)

The necessary conditions for an extrema are the follow-
ing[14]:

Euler-Lagrange equation: d(∂L/∂̇x)/dt=∂L/∂x;
Stationary condition with respect toV:∂L/∂V=0;
Transversality conditionsL̇x(ti)=lx(ti)andL̇x(tf)=

−lx(tf), wherel=λix(ti)+λfx(tf)is the terminant.

The last condition leads toΛ(ti)=λiandΛ(tf)=−λf.
Asλiandλfare arbitrary constants, these conditions can be
omitted. Therefore, our optimization problem is deûned by the
following set of equations:

Λ(t)=λ0
2V(t)

RM(x)fV(x, V)
, (26)

dΛ(t)

dt
=λ0V

2(t)
d

dx

1

RM(x)
−Λ(t)fx(x, V), (27)

dx(t)

dt
=f(x, V), (28)

x(ti)=xi,x(tf)=xf. (29)

2) Derivation of Ideal Memristor Equations:Here, we show
that(5)for ideal memristors in SectionII-A1can be derived
directly from(26)3(29). For this purpose, usingf(x, V)=
V/RM(x)we ûrst obtain the partial derivativesfV=1/RM(x)
andfx=−RM(x)V/R

2
M(x). Substituting these partial deriva-

tives into(26)yields

Λ(t)=2λ0
V(t)

RM(x)/RM(x)
=2λ0V(t). (30)

Using(30),(27)can be rewritten as

V̇(t)=
1

2
V2(t)

RM(x)

R2M(x)
. (31)

Taking into account thatV(t)=RM(q)̇q,(31)leads to

q̈RM(q)+
1

2
(̇q)2
dRM
dq
=0, (32)

which is precisely(5)in SectionII-A1. Therefore, the results
presented in SectionII-A1andII-A1remain consistent when
applying our comprehensive optimization theory formulated for
the memristive devices in the current subsection.
3) Optimal Control of a Threshold-Type Memristive De-

vice:Traditional experimental memristive devices[15],[16]
demonstrate switching with a threshold, which is essential for
nonvolatile information storage. In the following, we apply
the optimization approach from SectionII-B1to a memristive
device described by a model featuring a threshold. Speciûcally,
we consider a device described by the equations[3]

RM(x)=Ron+x(Rof f−Ron), (33)

dx

dt
=

¨
«©

«ª

k(V−Vof f), V >Vof f>0,

0, VonfVfVof f,

k(V−Von), V <Von<0,

(34)

where k>0is the constant,RonandRof fare the on-state
and off-state resistances, andVonandVof fare the thresholds.
According to the above equations, when the voltage is greater
thanVof f, the memristive system switches to the high-resistance
state,Rof f.
For the sake of deûniteness, let us consider the transition
xi→ xfassumingthatV >Vof f.Asf(x, V)=k(V−Vof f),
(26)3(28)take the form

Λ(t)=2λ0
V(t)

kRM(x)
, (35)

dΛ(t)

dt
= −λ0V

2(t)
RM(x)

R2M(x)
, (36)

dx(t)

dt
=k(V−Vof f). (37)

Next, without the loss of generality, we setλ0=1. Substitut-
ingV(t)/RM(x)from(35)into(36)we arrive at

dΛ(t)

dt
=−RM(x)

k

2

2

Λ2(t). (38)

The solution of(38)can be expressed as

Λ(t)=
1

k2

4RM(x)t+C1
, (39)

whereC1is the integration constant.
Using(35)we obtain the following expression for the voltage

V(t)=
k

2

RM(x)
k2

4RM(x)t+C1
(40)
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that can be further simpliûed using the linear dependence of
RM onx,(33). The substitution of(40)and(33)into the state
equation(37)leads to

dx

dt
=

2Ron
RM(x)(t+t0)

−kVof f+
2

t+t0
x, (41)

wheret0=4C1/(k
2RM(x))is employed for compactness in

place ofC1.
The solution of(41)can be written as

x(t)=C(t+t0)
2+kVof f(t+t0)−

Ron
RM(x)

, (42)

whereCis an arbitrary constant. Consequently,

RM(t)=CRM(x)(t+t0)
2+kRM(x)Vof f(t+t0). (43)

The values of the arbitrary constantsCandt0can be deter-
mined by settingRM(ti)equal toRiandRM(tf)equal toRf.
The voltage as a function of time is found by utilizing(40),
which yields

V(t)=2Vof f+
2C

k
(t+t0), (44)

I(t)=
2

kRM(x)

1

t+t0
. (45)

According to(44)the control voltage is a linear function of
time.
Using the initial and ûnal resistances, one can obtain

C=
Rf+Ri− 4RiRf+[kVof fRM(x)(tf−ti)]

2

RM(x)(tf−ti)
2

(46)

and

t0=
1

2C

Rf−Ri
(tf−ti)RM(x)

−kVof f −
tf+ti
2
. (47)

It should be noted that the solution involving the positive
root in(46)has been discarded, as it does not meet the condi-
tionV(t)>Vof f, which we have assumed from the beginning
of this subsection. Furthermore, the sumt0+ti>0, since
we are operating under the assumption that Rf>Riin all
cases. That is important because it guarantees the ûniteness
of the switching currentI(t)deûned by(45)for all moments
of time.
It is also observed thatC is positive ifRf>Ri+
kVof fRM(x)(tf−ti). According to(44), this implies that the
optimal control voltage rises over time, surpassing the double
threshold voltage2Vof feven at the initial momentti. When
Rf=Ri+kVof fRM(x)(tf−ti), the parameterC becomes
zero, and as per(44), the optimal control voltage remains con-
stant atV(t)=2Vof fthroughout the entire switching interval,
fromtitotf.
In the parameter domainRf<Ri+kVof fRM(x)(tf−ti),

the solution given by(43)3(47), ceases to be optimal. In ad-
dition, this solution does not even satisfy the assumption that
V(tf)>Vof f, whenRf→ Ri. It is clear that in this case, the
optimal strategy is to quickly switch the memristor from the
initial stateRito the ûnal stateRfduring a ûnite time interval

Δtby applying the voltage exceeding the threshold voltageVof f
and then applying zero voltage for the remaining time. It turns
out that the magnitude of optimal voltage is the same as in the
case whenRf=Ri+kVof fRM(x)(tf−ti),

V(t)=
2Vof f, ti<t<ti+Δt,

0, ti+Δt<t<tf,
(48)

while in accordance with(33)3(34)memristance is a piecewise
linear function of time

R(t)=
Ri+kVof fRM(x)(t−ti), ti<t<ti+Δt,

Rf, ti+Δt<t<tf,

(49)

whereΔt=(Rf−Ri)/(kRM(x)Vof f).
Finally, the minimal Joule heat is expressed by

Qopt=
4

k2RM(x)
C(tf−ti)+kVof fln

tf+t0
ti+t0

,

(50)
whenRf−RigkVof fRM(x)(tf−ti),
and

Qopt=
4Vof f
kRM(x)

ln
Rf
Ri
, (51)

whenRf−RifkVof fRM(x)(tf−ti).
It is interesting to compare these minimal Joule losses with
the Joule losses for other possible switching regimes: switching
at constant voltageV=V0and constant currentI=I0.Forthe
constant voltage switching protocol by integrating in(23)over
time with(33)and(34)taking into account, we get

QV=const=V
2
0

tf−ti
Rf−Ri

ln
Rf
Ri
, (52)

whereV0=Vof f+(Rf−Ri)/(kRM(x)(tf−ti)).
Similarly, for the constant current switching protocol, we ûnd
for the Joule losses

QI=const=I0 Vof f(tf−ti)+
Rf−Ri
kRM(x)

, (53)

where the constant currentI0is a unique solution of the follow-
ing equation

ekRM (x)(tf−ti)I0=
RfI0−Vof f
RiI0−Vof f

, (54)

in the domainI0>Vof f/Ri, and the voltage depends exponen-
tially on time as

V(t)=Vof f+(RiI0−Vof f)e
kRM (x)I0(t−ti). (55)

Fig.3(a)exempliûes the time dependence of the memristance
for several driving protocols. We note that in the cases of
optimal control, constant voltage control, and constant current
control, the memristance increases quadratically(43), linearly,
and exponentially with time, respectively. Based on the in-
formation presented in Fig.3(b), the use of optimal control
has the potential to decrease Joule losses by approximately
27% compared to switching based on constant voltage and
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Fig. 3.  Minimization of Joule losses in memristive devices. (a) Memristance as a function of time for the cases of optimal control, constant voltage control,
and constant current control. (b) Joule heat as a function ofRf/Ri. These ûgures were obtained using the following set of parameter values:Ron=1 kΩ,

Rof f= 100kΩ,k=0.5(V·µs)
−1,Vof f=0.1V,ti=0,Ri= Ron,tf=2µs, and (a)Rf= Rof f,(b)RonfRffRof f.

by approximately 35% in contrast to switching based on con-
stant current. Qualitatively, the superior efûciency of constant
voltage switching relative to constant current switching can be
attributed to the dynamics in the constant voltage case that is
closer to the optimal one. In particular, this can be recognized
in Fig.3(a).

III. CONSTRAINEDOPTIMIZATIONPROBLEMS

A. Ideal Memristors

1) Pontryagin’s Principle:Let us now address a more com-
plex case involving the optimal control of memristive switching
while taking into account inequality constraints. Speciûcally, we
will focus on the case of an ideal memristor with a current con-
straint, where we assume that the currentI(t)passing through
the device is limited by a critical (compliance) currentIc, such
that|I(t)|fIc. Consequently, we are interested in minimizing
Joule losses, which can be expressed through the functional(4),
while also imposing the current limiting constraint|̇q|fIc.
It is evident that when the critical currentIcis sufûciently
large, the solution of the problem is determined by the same
Euler-Lagrange equation(5). The situation becomes more com-
plicated when the current, calculated using the solution derived
from(7)with speciûed boundary conditions, exceeds the critical
current at least at a certain point in time. In such a situation,
it becomes necessary to incorporate Pontryagin’s principle of
maximum (minimum) to determine the optimal control q(t).
To facilitate this, it is convenient to introduce a new variableu
following the deûnition2

u=̇q. (56)

This way we transfer the constraints into the conûguration
space

|u|fIc. (57)

2It is evident that the deûnition ofuis identical to the current. Nevertheless,
a distinct notation is required since, in Pontryagin’s principle,uis treated as an
independent variable.

The Lagrangian function for this optimal problem is written
as (see[14])

L=
tf

ti

λ0RM(q)u
2+p(t)(̇q(t)−u)dt+l, (58)

where constantλ0g0and functionp(t)are the unknown La-
grange multipliers. In the subsequent discussion, we omit the
terml=λiq(ti)+λfq(tf)from the Lagrangian function(58)
since the transversality conditions associated with it do not
impose any limitations on the solution of the problem under
consideration.
The optimal control must satisfy not only Euler-Lagrange
equation with respect toq,

λ0RM(q)u
2−
dp(t)

dt
=0, (59)

but also the Pontryagin’s principle of maximum (minimum) with
respect tou,

min
|η|fIc

λ0RM(q(t))η
2−p(t)η =λ0RM(q(t))u

2−p(t)u.

(60)
The last condition implies that, at any instantt, the optimal

controlu(t)minimizes the expression in(58)within the range
−IcfufIcfor the optimal solutionq(t)andp(t).
Let us ûrst examine the speciûc case ofλ0=0. Considering
the Euler-Lagrange equation(59),itfollowsthatp(t)is constant.
Applying Pontryagin’s principle(60)withλ0=0, we can deter-
mine the optimal control for the functionu(t)=Icsignp(t)=
±Ic. Therefore, in the case whereλ0=0, the constant maxi-
mum current ̇q=u=±Icis maintained throughout the entire
duration of the memristor switching.
This special solution is only possible under certain boundary

conditions, speciûcally when(qf−qi)/(tf−ti)=±Ic.Ifthis
condition is not satisûed, this particular solution is not viable,
andλ0>0. Furthermore, we can assumeλ0=1in the follow-
ing discussion without loss of generality.
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The minimization of the quadratic function in the LHS of(60)
gives the following optimal control for the functionu(t):

u(t)=
p(t)

2RM (q)
, if|p(t)|

2RM (q)
<Ic,

Icsignp(t), otherwise.
. (61)

The system of equations(56),(59), withλ0=1, and(61)fully
determines the optimal switching of the ideal memristor. It is
evident that the currentu(t)satisûes the constraints speciûed in
(57). Furthermore, by eliminating the Lagrange multiplierp(t)
from Euler-Lagrange(59)using(61)foru(t)<Ic, we obtain the
optimal trajectory for the ideal memristor without constraints, as
expected. Therefore, it is apparent that achieving optimal control
for the ideal memristor under current restrictions generally
involves a smooth and continuous connection of the solution
characterized by constant power (refer to(7)) with the solution
represented by the maximum possible currentq=±Ict+C3,
whereC3is an arbitrary constant.
2) Joule Losses in Linear Memristors:We will illustrate the
method discussed above by considering the switching of a linear
memristor, considered previously in Section II-A2. However,
now we also assume that the maximum possible current is
limited by the critical (compliance) valueIc. It is also assumed
that during the time period fromti=0totf, the memristance
changes fromRM(0) =RitoRM(tf)=Rf>Ri. Further-
more, we consider the most interesting case where at the initial
moment of time the optimal unrestricted current Iopt(t=ti),
given by(11), greater thanIc. This corresponds to the following
inequality:

2
R
3/2
f −R

3/2
i

3btf
√
Ri

>Ic. (62)

Following the previous discussion, to minimize Joule heat, it
is necessary to apply the highest currentIcfor a duration of up
totc. In the case of the linear memristor described by(8),this
leads to the following resistance change:

RM(t)=Ri+bIct, for0ftftc. (63)

Starting att=tc, the optimal solution is given by(10):

RM(t)=

⎡

£
R
3
2
c(tf−t)+R

3
2

f(t−tc)

tf−tc

¤

§

2
3

,fortcftftf,

(64)
where resistanceRc=RM(tc)calculated with the use of(63).
The values of the parameterstcandRcneed to be determined

from the continuity condition of the memristance,RM(t), and
the current,I(t)=ṘM/b, at the instanttcwhen the control
change occurs. This leads to the following equations forRc
andtc:

R3c−3(Ri+bIctf) Rc+2 R
3
f=0, (65)

and

tc=
Rc−Ri
bIc

. (66)

Note that an obvious condition must be met for the ûnal state,
Rf, to be reachable from the initial state,Ri, during time interval
tfdue to the existance of the maximum possible currentIc:

Rf<Ri+bIctf. (67)

This inequality guarantees the existence of two positive roots
of(65), the smallest of which is smaller thanRf, while the
other is larger. This smallest positive root of(65)determines
the resistanceRcand moment of timetc(see(66)), where the
optimal control changes. Note that the inequality(62)guarantees
thatRc>Ri.
Fig.4illustrates our results on the optimal control of an ideal
linear memristor with a current constraint. Fig.4(b)represents
memristance as a function of time calculated by using (63),
(64)for the case of constrained switching and by using(8),
(10)for the case of unconstrained switching. The corresponding
currents, which are proportional to the derivatives of the memris-
tances with respect to time, are presented in Fig.4(a). Clearly,
for the used set of parameters, inequalities(62)and(67)are
satisûed. Thus, it allows us to ûnd the only solution of(65)and
(66),Rc/Rf=0.34andtc/tf=0.26, which determines the
resistance and time moment of control change for this set of
parameters.

B. Memristive Systems

In principle, the general approach developed for memristive
systems in SectionII-Bcombined with the Pontryagin princi-
ple (which we used for the analysis of the switching of ideal
memristors with a current constraint in Section III-A) can be
employed to optimize the switching of memristive devices ((1)
and(2)) in the presence of constraints. However, our deriva-
tions in SectionIII-Asuggest that optimal switching protocols,
in fact, can be obtained using a simpliûed approach, at least
in certain cases. Such cases include (but are not limited to)
some simple (ûrst-order) memristive models and unidirectional
switching.
Consider, for example, situations that involve current compli-

ance (see(57)). The idea is to link the two operational conditions,
speciûcally, with and without current compliance. First of all,
one can consider the unconstrained scenario (using the approach
outlined in SectionII-B). If(57)holds consistently, then the solu-
tions for both constrained and unconstrained problems coincide.
Otherwise, the solutions with and without the constraint should
be combined while adhering to the criteria of (i) maintaining the
continuity of the control parameter and (ii) minimizing Joule
losses.

IV. DISCUSSION

In this theoretical study, novel strategies have been devised
to reduce Joule losses that arise when memristive devices are
switched. Various hypothetical scenarios have been examined,
and substantial energy savings have been shown to be pos-
sible by following speciûc driving protocols proposed in this
research.
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Fig. 4.  Constrained versus unconstrained control of memristive switching. (a) Control current as a function of time. (b) Memristance as a function oftime. This
ûgure was obtained using the following set of parameter values:Ron= Ri=1 kΩ,Rof f= Rf= 100 kΩ,Ic=0.25mA,b=10

2kΩ/(mA·µs),ti=0
andtf=5µs.

It is important to note that our ûndings are model-dependent,
implying that no universal protocol can be applied to all mem-
ristive devices. To implement our method(s), ûrst, the device
model must be identiûed. Subsequently, our optimization tech-
niques can be utilized to determine the optimal driving pro-
tocol for that speciûc device model. The ûnal step involves
veriûcation. Based on our experience, it is always beneûcial
to compare the derived protocol with other easily veriûable
scenarios, such as switching by constant voltage or current. This
comparison is crucial because the solution to the Euler-Lagrange
equation represents an extremum, either a minimum or a
maximum.
One might wonder about the experimental signiûcance of
the ûndings reported in this article, and indeed they are rel-
evant. Our understanding of ideal devices (SectionII-A)in-
dicates that their optimal switching involves constant power.
In threshold-type memristive systems (SectionII-B3), although
constant power conditions do not strictly apply, a similar pattern
remains: lower voltages are paired with lower resistances and
vice-versa. These observations could be utilized in an empirical
optimization.
Furthermore, the model described by (33)and(34)in
SectionII-B3represents a particular instance of the VTEAM
model, which can accurately describe experimental devices[17].
Within the VTEAM, the function that describes the evolution of
the state (the right-hand side of(34)), as a function of volt-
age, is?(V−Von/of f)

αon/of f, whereαon/of fis a constant
parameter. According to[17],(34)is relevant to the transition
from the <on= state to the <off= state in the Pt-Hf-Ti memris-
tor[18]and thus our theory can be veriûed on this experimental
platform. Separate investigations are necessary for different
αon/of fvalues and more complex circuits. We anticipate that
whenαon/of f>2, the most effective approach could be the
use of the maximum permissible voltage, followed by a zero
voltage.
Finally, pulse control is a commonly employed technique
in memristive switching. Notably, the time-dependent cur-
rent/voltage waveforms introduced in this paper can be utilized

as pulses, which reduces the energy needed for memristive
switching compared to using pulses with a ûxed amplitude.
Furthermore, in digital circuit architectures, continuous voltage
waveforms can be replaced by a ûnite set of voltage levels.

V. CONCLUSION

The production of electricity from fossil fuels is one of
the main contributors to global warming. To suppress climate
change, energy-efûcient systems, devices, and technologies
must be implemented. Our study lays the foundation for future
research in optimizing the operational conditions of memristive
devices, which could potentially be adapted for other memory
circuit elements[19]with suitable modiûcations. The experi-
mental validation of our methods on single devices [18],[20]
and their application to memristive circuits, including cross-
bar arrays[21],[22], is of signiûcant interest. The practical
implications of this work can be signiûcant, as implementing
the protocols outlined here could enhance the efûciency of
memristive systems and related technologies such as in-memory
computing and neuromorphic computing, to name a few.
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