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We present a measurement of the branching fraction and time-dependent charge-parity (CP) decay-rate
asymmetries in B® — J/yz® decays. The data sample was collected with the Belle II detector at the
SuperKEKB asymmetric e*e~ collider in 2019-2022 and contains (387 + 6) x 10° BB meson pairs from
T (4S) decays. We reconstruct 392 + 24 signal decays and fit the CP parameters from the distribution of
the proper-decay-time difference of the two B mesons. We measure the branching fraction to be
(B = J/wa") = (2.00 £ 0.12 4 0.09) x 107> and the direct and mixing-induced CP asymmetries to be
Cep =0.13£0.12£0.03 and Scp = —0.88 +0.17 = 0.03, respectively, where the first uncertainties are
statistical and the second are systematic. We observe mixing-induced CP violation with a significance of
5.0 standard deviations for the first time in this mode.

DOI: 10.1103/PhysRevD.111.012011

I. INTRODUCTION

Precision measurements of CP asymmetries are powerful
experimental tools to indirectly probe physics beyond the
Standard Model (SM). In the SM, CP violation is governed
by a single complex phase in the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [1,2]. The unitarity
of the CKM matrix can be represented as a triangle in the
complex plane. Precise measurements of the angle ¢, =
arg(=V.aVe*/ViaVi*) [3], where V;; are the CKM
matrix elements, have been performed in B® — J/ywK°
decays [4-6]. These decays proceed via tree-level b —
ccs transitions. However, decay amplitudes involving the
emission and reabsorption of a W boson, also known as
“penguin” diagrams, occur at higher order in SM perturba-
tion theory and can induce a shift in the measurement of ¢,
thereby limiting the sensitivity of CKM fits [7]. In the
absence of penguin amplitudes, the direct and mixing-
induced CP asymmetries are predicted to be C;/, g0 =0
and —nS; g0 = sin2¢;, wheren is the CP eigenvalue of the
decay final state. The world-average values, C,/ g0 =
0.009 £ 0.010 and —7S;,,x0 = 0.708 £0.012 [8], are in
agreement with independent constraints on the CKM
matrix [9,10].

The decay B® — J/yn® proceeds via color-suppressed
b — ccd tree-level transitions and its CP asymmetries can
be used to constrain the contributions from penguin
topologies in BY — J/wK". In the presence of penguin
amplitudes, the observable phase measured by the mixing-
induced CP asymmetry is ¢ = ¢4 + A¢p,, where Ag, is
a shift of the order of 0.5° from the SM value of ¢; = 2¢,
[11,12]. In addition, the value of the branching fraction is
used to probe the size of nonfactorizable SU(3)-breaking
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effects, which are the main contributions to the theoretical
uncertainties in the extraction of A¢, [13]. The world-
average value of the branching fraction is based on the
measurements from the BABAR [14], Belle [15], and CLEO
[16] experiments, resulting in B(B® — J/yz°) = (1.66 +
0.10) x 1073 [17]. More recently, LHCb measured the ratio
of branching fractions of B — J/yz° and B* — J/wK**
decays [18], resulting in a comparable precision on
B(B® - J/wn") using the current knowledge of B(B* —
J/wK*T). BABAR [14] and Belle [15] also measured
the direct and mixing induced CP asymmetries. The
world average values are Cpo_,;),0 = 0.04£0.12 and
Spo— sy = —0.86 £0.14 [8].

The current values of ¢, and A¢,, based on the analysis
in Ref. [12], are (44.47]%)°and (-0.73708")°, respectively,
and do not yet include the most recent measurements
from LHCb [6,18]. With an improvement by a factor of two
on the experimental precision on B® — J/ywK° only, the
precision on ¢, would be limited to 1° by the uncertainty on
Ag,. On the other hand, a similar improvement on the
precision of both B® — J/wK° and B° — J/yz° would
improve the precision on ¢, to 0.78° and confirm the
presence of nonzero penguin contributions [12]. Therefore,
the current experimental knowledge on B° — J/yn°
should be improved.

Here we present a measurement of the branching fraction
and CP asymmetries in B’ — J/yn" decays using a
sample of energy-asymmetric e*e™ collisions at the
Y(4S) resonance provided by the SuperKEKB accele-
rator [19] and collected with the Belle II detector [20].
The sample corresponds to (365 &2) fb~! of integrated
luminosity and contains (387 £ 6) x 10° BB events [21].
An additional (42.6 +£0.2) fb~! off-resonance sample
recorded at 60 MeV below the Y(4S) is used to model
background from continuum e™e~ — ¢g events, where gg
indicates pairs of u, d, s, or ¢ quarks.

The CP asymmetries are determined from the distribu-
tion of the proper-decay-time difference of B°B° pairs. We
denote pairs of B mesons as Bp and By, Where Bcp
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decays into a CP-eigenstate at time 7-p, and B,, decays into a

flavor-specific final state at time #,,,. For quantum-correlated

neutral B-meson pairs from Y (4S) decays, the flavor of Bp

is opposite to that of B, at the instant when the first B decays.

The probability to observe a By, meson with flavor g

(g =+1 for B and ¢ = —1 for B°) and a proper-time

difference At = f¢p — ty,, between the Bep and By,, decays is
e—\At\ /750

P(At.q) = TBO{

— Ccpcos(AmyAt)]}, (1)

1 + CI[SCP Sin(AmdAt)

where 7 is the B lifetime and Am,, is the mass difference
between the B” mass eigenstates [17].

We fully reconstruct Bp in the J /yz° final state using the
intermediate decays J/y — £7¢~ (with #* being an elec-
tron or a muon) and z° — yy, while we only determine the
decay vertex of the By,, decay. The flavor of the B;,, mesonis
inferred from the properties of all charged particles in the
event not belonging to Bqp [22]. We first extract the signal
yields from the distributions of the signal Bp candidates in
observables that discriminate against backgrounds, and then
fit the CP asymmetries from the Ar distribution of candi-
dates populating the signal-enriched region. We validate our
analysis and correct for differences between data and
simulation using BY — J/wK** and B® — J/yK$ decays,
which are ten-fold more abundant than the expected signal
and have a similar final state. To reduce experimental bias,
the signal region in data is examined only after the entire
analysis procedure is finalized. Charge-conjugated modes
are included throughout the text.

The paper is organized as follows. In Sec. II we describe
the experimental setup and in Sec. III we describe the
reconstruction of signal candidates and the selection used to
suppress the backgrounds. The signal extraction and CP
asymmetry fits, from which the physics observables are
measured, are detailed in Secs. IV and V, respectively. The
sources of systematic uncertainties are discussed in Sec. VI.
Finally, the results are summarized in Sec. VII.

II. EXPERIMENT

The Belle II detector operates at the SuperKEKB
accelerator at KEK, which collides 7 GeV electrons with
4 GeV positrons. The detector is designed to reconstruct the
decays of heavy-flavor hadrons and 7 leptons. It consists of
several subsystems with a cylindrical geometry arranged
around the interaction point (IP). The innermost part of
the detector is equipped with a two-layer silicon-pixel
detector (PXD), surrounded by a four-layer double-sided
silicon-strip detector (SVD) [23]. Together, they provide
information about charged-particle trajectories (tracks) and
decay-vertex positions. Of the outer PXD layer, only one-
sixth is installed for the data used in this work. The

momenta and electric charges of charged particles are
determined with a 56-layer central drift-chamber (CDC).
Charged-hadron identification (PID) is provided by a
time-of-propagation counter and an aerogel ring-imaging
Cherenkov counter, located in the central and forward
regions outside the CDC, respectively. The CDC provides
additional PID information through the measurement of
specific ionization. Energy and timing of photons and
electrons are measured by an electromagnetic calorimeter
made of CsI(Tl) crystals, surrounding the PID detectors.
The polar angle coverage of the calorimeter is 12.4° <
0 <314° 32.2° <6 < 128.7° and 130.7° < 6 < 155.1°
in the forward, barrel and backward regions, respectively.
The tracking and PID subsystems, and the calorimeter, are
surrounded by a superconducting solenoid, providing an
axial magnetic field of 1.5 T. The central axis of the
solenoid defines the z axis of the laboratory frame, pointing
approximately in the direction of the electron beam.
Outside of the magnet lies the muon and K! identification
system, which consists of iron plates interspersed with
resistive-plate chambers and plastic scintillators.

We use Monte Carlo simulated events to model signal
and background distributions, study the detector response,
and test the analysis procedure. Quark-antiquark pairs from
ete™ collisions, and hadron decays, are simulated using
KKMC [24] with PYTHIAS [25], and EvtGen [26] software
packages, respectively. The detector response is simulated
using the Geant4 [27] software package. The effects of beam-
induced backgrounds are included in the simulation
[28,29]. We use a simulated sample of generic eTe™
collisions, corresponding to a luminosity of approximately
four times that of the experimental dataset. We also use
large samples of simulated BB pairs, where one of the B
mesons is forced to decay into the final state of interest,
while the other B meson in the event is decayed inclusively.
One sample is used to study the signal, where the B meson
decays as B® — J/wn°. The other samples are used to
study the dominant sources of backgrounds, where the B
meson decays inclusively into charmonium B — J/wX
modes. Collision data and simulated samples are processed
using the Belle II analysis software [30,31].

III. EVENT SELECTION

Events containing a BB pair are selected online by a
trigger system based on the track multiplicity and total
energy deposited in the calorimeter. We reconstruct BY —
J/wn® decays using J/y — £+¢~ and 7° — yy decays, in
which the two light lepton tracks are reconstructed using
information from the PXD, SVD, and CDC [32]. All tracks
are required to have polar angles within the CDC accep-
tance (17° < 6 < 150°). Tracks used to form J/y candi-
dates are required to have a distance of closest approach to
the IP of less than 2.0 cm along the z axis and less than
0.5 cm in the transverse plane to reduce contamination
from tracks not generated in the collision. Muons are
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identified using the discriminator P, = £,/(L, + L,+
L+ Lg+ L, + L,), where the likelihood £; for each
charged particle hypothesis combines particle identification
information from all subdetectors except for the PXD and
SVD. Electron identification is provided by a boosted-
decision-tree (BDT) classifier that combines several calo-
rimeter variables and particle identification likelihoods [33].
We classify tracks as muons or electrons based on a loose
PID requirement which is more than 95% efficient on signal
while rejecting more than 90% of misidentified tracks. The
momenta of electrons are corrected for energy loss due to
bremsstrahlung by adding the four-momenta of photons with
energy in the lab-frame within [75, 1000] MeV and detected
within 50 mrad of the initial direction of the track. The J/y
candidates are formed by combining the four-momenta of
oppositely charged lepton pairs having an invariant mass
m(£+¢7) €12.9,3.2] GeV/c?, where the average J/y mass
resolution is approximately 13 MeV/c? for the muon mode
and 16 MeV/c? for the electron mode. Photons used to
reconstruct z° candidates are identified from calorimeter
energy deposits greater than 22.5 MeV in the forward region
and 20 MeV in the backward and barrel regions. Photon
energy corrections are derived from control samples recon-
structed in collision data and applied to correct for the
imperfect calorimeter energy calibration. The z° candidates
are formed by combining pairs of photons with an invariant
mass m(yy) € [0.05,0.2] GeV/c?, where the average r°
mass resolution is approximately 8 MeV/c?.

The beam-energy constrained mass My, and energy
difference AE are computed for each B® — J/yn°
candidate as My, = \/(E}.,n/c?)? — (Ipjl/c)? and AE =
Ey — E}.,.,» Where E} . is the beam energy, and E} and
pj, are the reconstructed energy and momentum of the Bp
candidate, respectively, all calculated in the center-of-mass
(c.m.) frame. Signal Bp candidates peak at the known B°
mass [17] in My, and zero in AE. The average M, and AE
resolution for properly reconstructed B — J/yz° decays
is approximately 5 MeV/c?> and 50 MeV, respectively.
Misreconstructed candidates from BB events decaying
into final states different than the signal peak in M}, and
follow an exponentially falling distribution in AE.
Continuum events are uniformly distributed in My, and
AE. Only candidates satisfying M., > 5.2 GeV/c?> and
|AE| < 0.5 GeV are retained for further analysis.

The B® — J/wr° decay vertex is determined using the
TreeFitter algorithm [34,35]. The B-p candidate is
constrained to point back to the IP and the J/yw and z°
masses are constrained to their known values [17]. We
retain only Bp candidates with a successful vertex fit and
|AE| < 0.3 GeV. The By, decay vertex is reconstructed
using the remaining tracks in the event. Each track is
required to have at least one measurement point in both the
SVD and CDC subdetectors and correspond to a total
momentum greater than 50 MeV/c. The B,,, decay-vertex
position is fitted using the Rave algorithm [36], which

allows for downweighting the contributions from tracks
that are displaced from the By, decay vertex, and thereby
suppresses biases from secondary charm decays. The
decay-vertex position is determined by constraining the
By,, direction, as determined from its decay vertex and
the IP, to be collinear with its momentum vector [37]. We
only retain candidates with a successful tag-side vertex fit.
The proper-time difference between Bep and By, is esti-
mated from the signed distance, Al, of the B¢cp and By,
decay-vertex positions along the Y'(4S) boost direction,

- Al
A[ = P
Prrie

where fiy = 0.284 is the Y (4S) Lorentz boost and y* =
1.002 is the Lorentz factor of the B mesons in the c.m. frame.
We partially correct for the bias in A7 arising from the angular
distribution of the B meson pairs in the c.m. frame [38],

Af — AT — (f*/P) cos O . 70
1+ 5(F/P) cos O,

where * ~ 0.06 is the boost factor of the B® in the c.m.
frame, 6, ,, is the polar angle of Bp in the c.m. frame, and s
is the sign of Al. The residual bias in Az and its impact on the
CP asymmetries is taken into account in the systematic
uncertainties. We retain candidates with |Az| < 10 ps and
estimated uncertainty o,, € [0.05, 3] ps.

We reduce the contribution from continuum events by
requiring the zeroth to the second Fox-Wolfram moment
[39] to be less than 0.5, which is more than 99% efficient on
signal while rejecting almost half of the continuum back-
ground. We further reduce the continuum events by using a
BDT classifier [40] combining several variables that
discriminate between signal and background The variables
included in the BDT are the following, in decreasing order
of discriminating power: the cosine of the angle between
the momentum of the positively charged lepton and the
direction opposite to the momentum of the B® in the J/y
frame; the “cone” variables developed by the CLEO
collaboration [41]; the second to fourth harmonic moments
calculated with respect to the thrust axis; the ratio of the
zeroth to the second and the zeroth to the fourth Fox-
Wolfram moments; the modified Fox-Wolfram moments
introduced in Ref. [42]; the sphericity and aplanarity of the
event [43]; the cosine of the angle between the thrust axis of
the B.p and the thrust axis of the rest of the event; and the
event thrust [44,45]. We impose a minimum threshold on
the BDT output to maximize signal efficiency while
rejecting as much background as possible. This is achieved
by choosing the threshold corresponding to the edge of the
plateau of the signal efficiency vs. continuum background
rejection curve. This requirement retains more than 97% of
the signal while rejecting more than 88% of the remaining
continuum background in simulation.

(2)

(3)
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We further enrich the sample in signal by requiring at
least one of the two leptons from the J/w candidate to
fulfill a tight PID requirement. We choose the requirement
corresponding to the edge of the plateau of the signal
efficiency vs misidentified lepton rejection curve. This
selection is more than 99% efficient on signal while
rejecting more than half of the misidentified tracks. We
suppress the contributions from beam backgrounds and
misreconstructed energy deposits using a BDT classifier
combining several calorimeter cluster variables [46]. In
order to improve the resolution and reduce the correla-
tion with AE, we redefine the beam-constrained mass
as M}, by replacing the measured 7z° momentum with
P = \/(E,’;eam —Ej;,) /€% = mc? % %, where i
the energy of the J/y candidate in the c.m. frame, We
only keep candidates with M} > 5.27 GeV/ c?, AE €
[-0.18,0.3] GeV, m(¢£T¢7)€(2.95,3.2) GeV/c?> and
m(yy) €[0.1,0.16] GeV/c?.

Events with more than one candidate account for
approximately 3% of the data. No candidates with different
lepton mass hypotheses belonging to the same event
are found in the data. We keep the candidate with the
reconstructed m(yy) mass closest to the known z° mass
[17]. This requirement selects the correct signal candidate
more than 75% of the time for events with multiple
candidates in simulation.

The same event selection is applied on the control
channels, except for the reconstruction of the K% candidate
in B - J/yK g and the requirements on the charged kaon
track and invariant mass of the K** — K*z° candidate in
BT — J/wK**. In order to reproduce the topology of
B — J/yn®, we remove the additional tracks in the final
state from the vertex fit of the control modes.

In the selection of the off-resonance sample, we
remove the continuum suppression BDT and the follow-
ing signal enhancement requirements, in order to increase
the sample size. We verify in simulation that off-reso-
nance and on-resonance continuum data passing the
partial and full signal selections have similar distributions
in the fit observables.

IV. SIGNAL EXTRACTION FIT

The sample passing the event selection is populated by
BY = J/ya® candidates coming from signal events and
backgrounds. We classify as signal those candidates recon-
structed from underlying B® — J/yn® decays for which
the J/y is properly reconstructed. This includes a small
contribution from candidates with a misreconstructed 7z,
which accounts for approximately 3% of the total signal
yield. Their distribution is centered around zero in AE and
around the value of the J/y mass in m(£*£~). Among the
sources of backgrounds, we classify as B — J/yX those
for which the J/y is properly reconstructed but originate

from a different decay than the signal. They follow an
exponentially falling distribution in AE and have the same
distribution in m(£*¢~) as the signal. In addition, we
separate BB events with a misreconstructed J/y and
continuum backgrounds, both of which have a smooth
distribution in AE and m(£7¢7).

We extract the signal yields from an extended likelihood
fit to the unbinned AE and m(£"¢~) distributions. The
likelihood function is

e_(nsig+nbkg> N . .
_ L 1
L= N ] 1{”SigPJ/ym° + Mokg {gq@Pqé
+”BB pi +”bkg(1—9qq)—”BBP,- }} (4)
Npkg BB Npkg X

where i is the index of the candidate, N is the total number
of candidates in the dataset, ng, and ny, are the signal and
background yields, respectively, g,; is the fraction of
continuum background, ngz is the BB background yield
and P' = P(AE")P(m(¢7¢7)") is the probability distribu-
tion function (PDF) of the ith candidate.

The PDFs of the signal in the AE and m(£1¢7)
distributions are described by Crystal Ball functions
[47,48]. The parameters of the AE PDF are determined
from simulation. We account for differences between data
and simulation by adjusting the mean and width according
to differences observed for the BT — J/wK** control
sample. These adjustments consist of shifting the mean
by —4.1 0.8 MeV and scaling the width by a factor of
1.08 + 0.04, where the uncertainties are statistical only.
The parameters of the m(£*¢~) PDF are determined
separately for the J/y — eTe™ and J/y — uu~ modes
from a fit to the B* — J/ l//Kg control sample in data. The
distribution of the B — J/ywX backgrounds is described by
the sum of two exponential functions in AE and by a
Crystal Ball function in m(£*¢~). The parameters of the
AE PDF are determined from simulation while the param-
eters of the m(£*¢~) PDF are shared with the signal. The
AE and m(¢£"¢~) distributions of the BB backgrounds are
described by exponential PDFs with parameters determined
from simulation. The AE and m(£*¢~) distributions of the
continuum background are described by exponential PDFs
with parameters determined from the off-resonance data.

In the fit to the data, we determine ngg, Npye, and gz,
separately for the J/y — ete™ and J/y — ptpu~ modes,
while we fix ngp to the values expected in simulation. The
data are displayed in Fig. 1 with fit projections overlaid.
The signal yields extracted from the fit and signal selection
efficiencies are reported in Table I. We also report the signal
purity, defined as S/ (S + B), where S and B are the number
of signal and background candidates in the signal region.
The latter, which is used to extract the CP asymmetries,
is defined as |AE| <0.1 GeV and 3.0 <m(ete™) <
3.14 GeV/c? or 3.025 < m(utu~) < 3.14 GeV/c%
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FIG. 1. Distributions of (top) AE and (bottom) m(£+¢~) for

B® = J/wr® candidates (data points) with fits overlaid (curves
and stacked areas).

From the signal yields, we determine the branching
fraction

B (e Jese + nﬂ*ﬂ*/elsi;ﬂ’)(l + /%)

sig sig sig
B(J/w — ¢*¢7)B(x° — yy)2N(BB)

(5)

where &g, are the efficiencies obtained from simulated
signal samples and corrected for differences between data
and simulation using control samples, B(J/y — £7¢7) is
the sum of B(J/y — ete™) = (5971 £0.032)% and
B(J/y — putu) = (5961 +£0.033)%, Bz’ —yy) is
(98.823 +0.034)% [17], N(BB) = (387 46) x 10° is
the number of BB pairs in the dataset, and f+=/f% =
1.052 £ 0.031 is the B*/B° production ratio [49]. We
obtain B(B® — J/wz") = (2.00 £ 0.12) x 107, where

TABLE I. Signal efficiencies, yields, and purity in the signal
region. The signal efficiencies are corrected for differences
between data and simulation, and their uncertainties include
both statistical and systematic uncertainties, while the uncertain-
ties on the signal yields are statistical only.

Decay mode &g %] Ngig Purity [%]
J/w — utu 48 +£2 204 + 17 80
J/y — eTe” 41+£2 188 £ 17 83

the uncertainty is statistical only. We validate our analysis
on the B — J/wK*" control sample, for which we
obtain B(B* — J/wK*") = (1.48 +0.04) x 1073, where
the uncertainties are statistical only, in agreement with the
world average [17].

V. CP ASYMMETRY FIT

We determine the CP asymmetries from a likelihood fit
to the unbinned At distribution of flavor-tagged candidates
in the signal region. Candidates outside of the signal region
are removed from the fit as they mostly consist of B —
J/wX background events which dilute the observable CP
asymmetries of the signal. The likelihood function is

L H{(l = fea) (1 = fp)((1 _fJ/wX)Pj/ymO
i=1

+ fJ/WXP3/Wx) + fBBP%g] + quPf;z;} (6)

where f 3, fpg, and f,x are the background fractions in
the signal region, determined from the signal extraction fit,
and P' = P(Af") is the PDF of the ith candidate.

The At distribution of the signal in Eq. (1) is modified to
model the effect of imperfect flavor assignment from the
tagging algorithm
e—lAt ‘ / 750
— {1 — gAw + ga*(1 - 2w)

47 BO
+1q(1=2w) + a®(1 - gAw)]

X [Scp sin(AmyAt) — Cep cos(AmyAt)|}, (7)

P(At,q) =

where w is the wrong-tag probability, Aw is the wrong-tag
probability difference between events tagged as B and B°,
and al® is the tagging efficiency asymmetry between B°
and B°. We divide our sample into intervals of the tag-
quality variable r = 1-2w provided by the tagging algo-
rithm, to gain statistical sensitivity from events with
different wrong-tag fractions. We use the boundaries
(0.0, 0.1, 0.25, 0.45, 0.6, 0.725, 0.875, 1.0) and corre-
sponding calibration parameters obtained with a sample
of B - D* gzt decays in Ref. [22]. The effective flavor
tagging efficiency, defined as >, &;(1 —2w;)?, where ¢;
is the fraction of events associated with a tag decision and
w; is the wrong-tag probability in the i-th r-bin, is
(37.40 £ 0.43 £ 0.36)%, where the uncertainties are stat-
istical and systematic, respectively [22]. Since f,; varies
with r, we use the distribution in off-resonance data to scale
the average fraction in each bin, while fz and f5_,;/,x are
constants in r, as verified in simulation.

The effect of finite detector Af resolution is taken into
account by modifying Eq. (7) as

F(At, qloa) = / P(AL, )R(Al - A|op)dAL,  (8)
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where R is the resolution function, conditional on the

per-event Ar uncertainty o,,. The resolution function is

described by the sum of two components

R(otlon) = (1= fi(oa))G(3tlmGons. SGoar)

+ fi(oa) R (5t{mons, 51081 K/ Onrs [, f <)

9)

where 6t is the difference between the observed and the true

At. The first component is a Gaussian function with mean

mg and width s scaled by 6,,, which models the core of

the distribution. The second component R, is the sum of a

Gaussian function and the convolution of a Gaussian with
two oppositely sided exponential functions,

Ri(xlp.o.k, fo.fo) = (1= fo=f.)G(x|u.0)
+ f<G(x|p,0) ® kexp_(kx)
+ f>G(x[p, o) ® kexp. (—kx),
(10)

where exp.. (kx) = exp(kx) if x > 0 or zero otherwise, and
similarly for exp_(kx). The exponential tails arise from
intermediate displaced charm-hadron vertices from the Bi,,
decay. The fraction f,(c,,) is zero at low values of ,, and
rises steeply to reach a plateau of 0.2 at 65, = 0.25 ps. We

0 I Belle IT ¢ Data
2, 60 — T
o | [Ldt=3651b" e ,
= | --= B> J/yr
& | Bl = /X
g 40 mm BB
] I -
S
< L
g
=20
g L
)
(@)
0 ) -
—10 —5 0 5 10
At [ps]
0 I Belle IT ¢ Data
A& 60 A
o | [L£dt=365 M it )
— l --= B J/ym
o | Bl N B J/pX
2 40t S
& | - g
+~
<
g
<
=i
<
(@)
—10 —5 0 5 10
At [ps]

FIG. 2. Distributions of At for (top) B® and (bottom) B’-tagged
BY — J/wr® candidates (data points) with fits overlaid (curves
and stacked areas).

neglect an outlier component in the resolution, accounting
for O(107%) fraction of events with poorly reconstructed
vertices, which shows no impact on the results. We use the
same resolution function parameters calibrated with a
sample of B® — D*~z" decays as in Ref. [22].

The B — J/wX backgrounds are modeled separately for
decays of B and B* mesons in the At fit, with effective
lifetimes determined from simulation and PDF with the
same functional form as the signal. The CP asymmetries
of the BY = J/yX backgrounds are determined from
simulated B’ — J/wK% and B® — J/yK? decays misre-
constructed as signal. The fraction of B* — J/wX back-
grounds relative to the total amount of B — J/wX
backgrounds is fixed from simulation. The CP asymmetries
of the B™ — J/wX backgrounds are set to zero. The Ar
distribution of the BB backgrounds is described using an
exponential PDF convolved with a Gaussian resolution
model determined from simulated data. The distribution of
the continuum background is modeled with a double-
Gaussian PDF determined from off-resonance data.

We validate the fit by measuring the lifetime on
Bt - J/wK*" and B® - J/yK$ data. We obtain 75+ =
(1.559 £ 0.051) ps and 75 = (1.513 £ 0.024) ps, respec-
tively, where the uncertainties are statistical only. We
also perform the CP asymmetry fit on the B — J /y/Kg
sample, for which we obtain Ccp = —0.045 £ 0.028
and Scp = 0.688 +-0.037, where the uncertainties are
statistical only. All the values of the lifetimes and CP
asymmetries are consistent with the world averages [17].

The B® — J/wz° data are displayed in Fig. 2 with
fit projections overlaid. We determine the direct and
mixing-induced CP asymmetries Ccp = 0.13 £ 0.12 and

t Belle II o~ ¢
| [L£dt=365fb~! /
- BY— J/ym®

Botag (g=+1)

\
100 \{ $ By (q=—1)

Candidates per 2.0 ps
ot
o

Asymmetry
o

|
—_

&
L
S
=l
)
~
(=2}

FIG. 3. Distributions and fit projections of At for background-
subtracted flavor-tagged B° — J/wn® candidates. The fit
PDFs corresponding to candidates tagged as ¢ = —1 and
q = +1 are shown as dashed and solid curves, respectively.
The decay rate asymmetry, defined as [N(¢=+1)—-N(¢g=-1)]/
[N(g=+1)+N(g=-1)], is displayed in the bottom subpanel.
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Scp = —0.88 = 0.17, where the uncertainties are statistical
only. The correlation between Ccp and Scp is 8%. The At
distributions for tagged signal decays, after subtracting the
backgrounds [50], are displayed in Fig. 3, along with the
decay rate asymmetry.

VI. SYSTEMATIC UNCERTAINTIES

Contributions from all considered sources of systematic
uncertainty are listed in Tables II and III for the branching
fraction and CP asymmetries, respectively. The leading
contribution to the total systematic uncertainty on the
branching fraction arises from the 7° efficiency calibration,
while the main systematic uncertainties on the CP asym-
metries originate from the calibration of the flavor tagging
and resolution function with the B® — D*~z* control
sample and tag-side interference.

A. Branching fraction

In the computation of the branching fraction, we correct
the signal efficiencies obtained in simulation using control
samples from collision data. The statistical and systematic
uncertainties associated with the correction factors are
propagated to the measurement of the branching fraction
systematic uncertainty.

The 7° reconstruction efficiency is measured in data and
simulation using the ratio of the yields of D** — D°(—
K~ 72"2%x" and D** — D°%(— K~z")z* decays, scaled
by the inverse values of their branching fractions. The yield
ratio in experimental and simulated data is used to obtain
correction factors as functions of the z° polar angle and
momentum. The average correction factor over the kin-
ematic distribution of the z° in B — J/wz® decays is
1.05 £ 0.04, where the uncertainty is dominated by the
knowledge of the D° branching fractions [17].

The difference in electron and muon identification per-
formance between simulation and experimental data is

TABLE II. Relative systematic uncertainties on the branching
fraction compared with the statistical uncertainties.

Source Relative uncertainty on BF [%]
70 efficiency 3.7
Lepton ID 0.4
BDT 0.3
Tracking efficiencies 0.5
External inputs 0.4
N(BB) 1.4
£/ 15
Fixed parameters 0.9
Backgrounds composition 0.4
Multiple candidates 0.5
Total systematic uncertainty 4.5
Statistical uncertainty 6.0

TABLE III. Systematic uncertainties on the CP asymmetries
compared with the statistical uncertainties.

Source Cep —nyScp
Calibration with B® — D*~z+ 0.017 0.023
Signal extraction fit 0.003 0.017
Backgrounds composition 0.005 0.009
Backgrounds Ar shapes <0.001 0.001
Fit bias 0.010 0.010
Multiple candidates <0.001 0.002
Tracking detector misalignment 0.002 0.002
Tag-side interference 0.027 0.001
Tpo and Amy <0.001 <0.001
Total systematic uncertainty 0.034 0.032
Statistical uncertainty 0.123 0.171

calibrated using J/w — £7¢7, ete” - ¢t (y), and
ete” - ete T¢~ samples. The average -correction
factor over the kinematic distribution of the signal is
1.002 £+ 0.006 for the J/y — eTe~ mode and 0.938 +
0.005 for the J/yw — utu~ mode, where the uncertainties
are the sum in quadrature of the statistical and systematic
uncertainties.

The performance of the continuum-suppression BDT is
validated using the B® — J /w K control sample. The ratio of
the signal efficiency after applying the BDT requirement in
data and simulation is found to be 1.001 £ 0.004 and 1.007 £+
0.003 forthe J/w — ete™ and J/y — pu~ modes, respec-
tively, where the uncertainties are statistical only.

Tracking efficiencies are measured using eTe™ — 777~
events, where one 7 decays as 7~ — e~ 7,1, and the other as
7~ — 7~ n"n v,. Efficiencies for data and simulation are
found to be compatible within an uncertainty of 0.27%,
which is propagated for each track to the uncertainty on the
branching fraction.

We propagate the uncertainty on the branching fractions
of the J/y and 7° decay modes used to reconstruct the
signal [17]. The uncertainty on the number of B mesons in
the sample arises from the measurement of the number of
BB pairs and from the knowledge of the B*/B° production
ratio [49]. Both uncertainties are propagated to the branch-
ing fraction and included in the systematic uncertainty.

We consider the uncertainties associated with the deter-
mination of the signal yields from the fit in the following
way. We repeat the fit by fixing the parameters determined
in the control samples to alternative values chosen accord-
ing to their statistical covariance matrix. We take the
standard deviation of the distribution of the signal yields
thus obtained and propagate it to the branching fraction. To
account for differences in the composition of the back-
grounds between data and simulation, we use simplified
simulated datasets where each component is generated
according to their PDFs. The main B — J/wX background
components are generated with independent AE distribu-
tions and their yields varied between £20% and +50%
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from the expected value. We fit these datasets using the
nominal fit model and obtain an average bias on the signal
yields for each alternative background configuration. We
verify that these variations in the background yields cover
possible disagreements between data and simulation by
comparing their distributions with sidebands enriched in
different type of backgrounds. We define a sideband with
M}, <5.27GeV/c? and m(yy) €[0.1,0.16] GeV/c?, where
the backgrounds with properly reconstructed z° candidates
are dominant, and a sideband with M} > 5.27 GeV/c? and
m(yy) €10.02,0.1] U [0.16,0.2] GeV/c?, where the back-
grounds with mis-reconstructed z° candidates are dominant.
We also account for variations in the BB background yield
and fraction of signal with a misreconstructed z° using the
same approach. We take the standard deviation of the
distribution of the biases as a systematic uncertainty and
propagate it to the branching fraction.

Finally, we repeat our measurement on ensembles of
simulated data using alternative candidate selection
requirements for events with multiple candidates. For each
selection, we obtain an average bias on the signal yields.
We take the standard deviation of the distribution of the
average biases as a systematic uncertainty and propagate it
to the branching fraction.

B. CP asymmetries

We consider the uncertainties associated with the flavor
tagging and resolution function calibration. We repeat the
CP asymmetry fit by fixing the calibration parameters
determined in the B® — D*~z" sample to alternative values
chosen according to their statistical covariance matrix [22].
We also repeat the fit by varying the same set of parameters
within their systematic uncertainties without correlations.
In both cases, we take as a systematic uncertainty the
standard deviation of the CP asymmetries distribution thus
obtained, and sum them in quadrature.

We propagate the statistical uncertainties on the signal
and background fractions to the CP asymmetries. We
repeat the CP asymmetry fit by fixing the yields and
continuum background fractions determined in the signal
extraction fit to alternative values chosen according to their
statistical covariance matrix. The standard deviation of the
distribution of the CP asymmetries thus obtained is
assigned as a systematic uncertainty.

In order to estimate the systematic uncertainty associated
with the background model, we use the ensembles gen-
erated with alternative background compositions used for
the study of the systematic uncertainties on the branching
fraction. These simplified simulated datasets are also
generated with different At distributions for the main B —
J/wX background components. In particular, the B® —
J/wK% and B’ — J/wK? backgrounds are generated using
the known value of their CP asymmetries [17]. We generate
separately an additional prompt component in Af originat-
ing from tracks of the signal-side that are included in the fit

of the tag-side vertex. We fit these datasets using the
nominal fit model and obtain an average bias on the CP
asymmetries for each alternative background configuration.
We take the standard deviation of the distribution of these
biases as a systematic uncertainty.

We also consider the variations of the parameters of the
At PDF of the continuum background using the covariance
matrix determined in the fit to the off-resonance data. We
take as systematic uncertainty the standard deviation of the
distribution of the CP asymmetries thus obtained.

We estimate a fit bias, due to the combined effects of the
approximate determination of Az in Eq. (3) and differences
between the signal and calibration sample, using simulated
signal events generated with C¢p in [-0.4,0.4] and S¢p in
[—1.0,0.0] in steps of 0.2. In the nominal fit to the data, we
correct the CP asymmetries for their bias (0.010 4= 0.001
on Ccp and —0.011 £ 0.001 on Scp, where the uncertain-
ties come from the size of the simulated sample) and assign
the absolute value of the bias (0.01) as a systematic
uncertainty.

The same procedure used to estimate the impact of the
candidate selection on the measurement of the branching
fraction is repeated for the CP asymmetries.

We study the impact of the tracking detector misalign-
ment on the CP asymmetries using simulated samples
reconstructed with various misalignment configurations
and assign as a systematic uncertainty the sum in quad-
rature of the differences with respect to the nominal
alignment configuration.

We estimate the shift from the true values of the CP
asymmetries due to the tag-side interference, i.e., neglect-
ing the effect of CKM-suppressed b — ucd decays in the
B, in the model for Az, using the estimators for Ccp and
Scp that reproduce this bias as given in Ref. [51]. Since the
sign of the bias depends on the strong phase difference
between the favored and suppressed decays, which is
poorly known, we take the maximum absolute value as
a systematic uncertainty.

The values of the B lifetime and oscillation frequency
are fixed in the PDF. To estimate the corresponding
systematic uncertainties, we vary them around their known
values according to their uncertainties [17]. We find that
this has negligible impact on the CP asymmetries.

VII. SUMMARY

We report a measurement of the branching fraction and
CP asymmetries in B® — J/yx° decays using data from
the Belle II experiment. We find 392 + 24 signal decays in
a sample containing (387 & 6) x 10% BB events, corre-
sponding to a value of the branching fraction of

(B® = J/ya®) = (2.00 +0.12 £ 0.09) x 1075, (11)

where the first uncertainty is statistical, and the second
is systematic. The result is consistent with the world
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average [17] and has comparable precision to previous
determinations.
We obtain the following values of the CP asymmetries

Cep = 0.13 £0.12 £ 0.03,
Scp = —0.88 +0.17 + 0.03, (12)

where the first uncertainty is statistical, and the second is
systematic. The results are the most precise to date and are
consistent with previous determinations from Belle and
BABAR [14,15]. The central value of Scp is 5.0 standard
deviations from zero. The significance is calculated using
the sum in quadrature of the statistical and systematic
uncertainties. This is the first observation of mixing-
induced CP violation in B — J/yz" decays from a single
measurement. The improved determinations of the branch-
ing fraction and CP asymmetries in this mode provide
further constraints on the penguin parameters and on the
extraction of the CKM angle ¢, [12].
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